学前期末测试卷

2024-05-16

学前期末测试卷(共8篇)

篇1:学前期末测试卷

学前班上期末语文测试卷

一、按顺序填写拼音字母(28 分)

ɑ())(i()ü b()m()d())l(()k()j())(Z()s zh()sh()

二、听写。(28 分)

三、写反义词。(18 分)大——(左——()上——()开——())前——(多——())

四、先找朋友,再连线。(20 分)一口 二朵 三片 四本 五把 书 刀 叶 井 花 六只 七头 八条 九个 十棵 牛 人 树 鸟 鱼

五、组词(6 分)牛(心())北(今())午(冬())


篇2:学前期末测试卷

(满分:100分)

一、读一读,写一写。(4×10=40分)

二、给音节填出正确的声调。(5×6=30分)

huɑduo he chɑ dɑ shu

shɑfɑ mu mɑ

三、读拼音,连一连。(5×6=30分)

fēi jī kuí huā pí qiú hóu zi q

篇3:“证明”测试卷

1. 下列语句中, 不属于命题的是 () .

A. 延长线段AB到CB. 自然数都是整数

C. 有两条边相等的三角形是等腰三角形D. 平行于同一条直线的两条直线平行

2. 下列命题是真命题的是 () .

A.内错角相等B.多边形的外角和小于内角和

C.平行于同一条直线的两条直线平行D.相等的角是对顶角

3. 已知, 则△ABC的形状是 () .

A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形

4. 直线a、b、c、d的位置如图所示, 如果∠1=58°, ∠2=58°, ∠3=70°, 那么∠4等于 () .

A.58°B.70°C.110°D.116°

5. 如图, AB∥CD, EF与AB、CD分别相交于点E、F, EP⊥EF, 与∠EFD的平分线FP相交于点P, 且∠BEP=50°, 则∠EPF= () .

A. 70°B. 65°C. 60°D. 55°

6. 如图, ∠ACB=90°, CD⊥AB, 垂足为D, 则下列结论错误的是 () .

A.图中有三个直角三角形B.∠1=∠2

C. ∠1和∠B都是∠A的余角D. ∠2=∠A

7. 如图, 把一块等腰直角三角尺的直角顶点放在直尺的一边上, 如果∠1=40°, 那么∠2的度数为 () .

A. 40°B. 45°C. 50°D. 60°

8. 如图, E、F、G、H依次是四边形ABCD各边的中点, O是形内一点, 若S四边形AEOH=3, S四边形BFOE=4, S四边形CGOF=5, 则S四边形DHOG是 () .

A. 6B. 5C. 4D. 3

二、填一填

9. 命题“内错角相等”的逆命题为______________________.

10. 若一个多边形的内角和是它的外角和的4倍, 则这个多边形的边数为_______.

11. 如图, AB∥CD, AD与BC交于点E, 若∠B=35°, ∠D=45°, 则∠AEC=_______.

12. 某江段江水流向经过B、C、D三点拐弯后与原来相同, 如图, 若∠ABC=120°, ∠BCD=80°, 则∠CDE=_______.

13. 如图, ∠A=65°, ∠B=75°, 将纸片的一角折叠, 使点C落在△ABC外, 若∠2=20°, 则∠1的度数为_______度.

14. 如图, 点A, C, F, B在同一直线上, CD平分∠ECB, FG∥CD, 若∠ECA为α度, 则∠GFB为_______度 (用关于α的代数式表示) .

15. 如图, AB∥CD, ∠CDE=119°, GF交∠DEB的平分线EF于点F, ∠AGF=130°, 则∠F=_______.

16. 如图, C岛在A岛的北偏东60°方向, 在B岛的北偏西45°方向, 则从C岛看A、B两岛的视角∠ACB=_______°.

三、解一解

17. 已知:如图, AD⊥BC于D, EF⊥BC于F, 交AB于G, 交CA延长线于E, ∠1=∠2.

求证:AD平分∠BAC, 填写分析和证明中的空白.

【分析】要证明AD平分∠BAC, 只要证明_________=_________,

而已知∠1=∠2, 所以应联想这两个角分别和∠1、∠2的关系, 由已知BC的两条垂线可推出_________∥________, 这时再观察这两对角的关系已不难得到结论.

证明:∵AD⊥BC, EF⊥BC (已知) ,

∴_________∥_________ (_________) .

∴_________=_________ (两直线平行, 内错角相等) ,

_________=_________ (两直线平行, 同位角相等) .

∵_________ (已知) ,

∴_________, 即AD平分∠BAC (_________) .

18.如图, DG⊥BC, AC⊥BC, EF⊥AB, ∠1=∠2,

求证:CD⊥AB.填写分析和证明中的空白.

证明:∵DG⊥BC, AC⊥BC (已知) ,

∴∠DGB=∠ACB=90° (垂直的定义) .

∴DG∥AC (_______) .

19. 如图, 已知在△ABC中, AD平分∠EAC且AD∥BC. 求证:∠B=∠C.

20. 如图, 在直角 △ABC中, ∠C=90° , BD平分∠ABC交AC于点D, AP平分∠BAC交BD于点P.

(1) ∠APD的度数为_________;

(2) 若∠BDC=58°, 求∠BAP的度数.

21. (1) 如图 (1) , AB∥CD, 点P在AB、CD外部, 若∠B=40°, ∠D=15°, 则∠BPD=_______.

(2) 如图 (2) , AB∥CD, 点P在AB、CD内部, 则∠B, ∠BPD, ∠D之间有何数量关系?

证明你的结论;

(3) 在图 (2) 中, 将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M, 如图 (3) , 若∠BPD=90°, ∠BMD=40°, 求∠B+∠D的度数.

22. 如图1, 在Rt△ABC中, ∠ACB=90°, D是AB上一点, 且∠ACD=∠B.

(1) 求证:CD⊥AB, 并指出你在证明过程中应用了哪两个互逆的真命题;

(2) 如图2, 若AE平分∠BAC, 交CD于点F, 交BC于E.求证:∠AEC=∠CFE;

篇4:期末考试测试卷(一)

1.抛物线y=mx2的准线方程为y=2,则m的值为    .

2.若函数f(x)=a-x+x+a2-2是偶函数,则实数a的值为    .

3.若sin(α+π12)=13,则cos(α+7π12)的值为   .

4.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是    .

5.已知向量a的模为2,向量e为单位向量,e⊥(a-e),则向量a与e的夹角大小为    .

6.设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当x∈(-2,0)时,f(x)=2x,则f(2012)-f(2013)=    .

7.已知直线x=a(0

8.已知双曲线x2a2-y2=1(a>0)的一条渐近线为y=kx(k>0),离心率e=5k,则双曲线方程为   .

9.已知函数f(x)=ax(x<0),

(a-3)x+4a(x≥0)满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0成立,则a的取值范围是    .

10.设x∈(0,π2),则函数y=2sin2x+1sin2x的最小值为    .

11.△ABC中,C=π2,AC=1,BC=2,则f(λ)=|2λCA+(1-λ)CB|的最小值是

12.给出如下四个命题:

①x∈(0,+∞),x2>x3;

②x∈(0,+∞),x>ex;

③函数f(x)定义域为R,且f(2-x)=f(x),则f(x)的图象关于直线x=1对称;

④若函数f(x)=lg(x2+ax-a)的值域为R,则a≤-4或a≥0;

其中正确的命题是    .(写出所有正确命题的题号).

13.在平面直角坐标系xOy中,点P是第一象限内曲线y=-x3+1上的一个动点,以点P为切点作切线与两个坐标轴交于A,B两点,则△AOB的面积的最小值为    .

14.若关于x的方程|ex-3x|=kx有四个实数根,则实数k的取值范围是    .

二、解答题

15.已知sin(A+π4)=7210,A∈(π4,π2).

(1)求cosA的值;

(2)求函数f(x)=cos2x+52sinAsinx的值域.

16.在四棱锥PABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.

(1)求四棱锥PABCD的体积V;

(2)若F为PC的中点,求证PC⊥平面AEF;

(3)求证CE∥平面PAB.

17.某企业有两个生产车间分别在A、B两个位置,A车间有100名员工,B车间有400名员工.现要在公路AC上找一点D,修一条公路BD,并在D处建一个食堂,使得所有员工均在此食堂用餐.已知A、B、C中任意两点间的距离均有1km,设∠BDC=α,所有员工从车间到食堂步行的总路程为s.

(1)写出s关于α的函数表达式,并指出α的取值范围;

(2)问食堂D建在距离A多远时,可使总路程s最少.

18.已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:x2a2+y2b2=1(a>b>0)有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

(1)求m的值与椭圆E的方程;

(2)设Q为椭圆E上的一个动点,求AP·AQ的取值范围.

19.幂函数y=x的图象上的点Pn(t2n,tn)(n=1,2,…)与x轴正半轴上的点Qn及原点O构成一系列正△PnQn-1Qn(Q0与O重合),记an=|QnQn-1|

(1)求a1的值;

(2)求数列{an}的通项公式an;

(3)设Sn为数列{an}的前n项和,若对于任意的实数λ∈[0,1],总存在自然数k,当n≥k时,3Sn-3n+2≥(1-λ)(3an-1)恒成立,求k的最小值.

20.已知函数f(x)=(x2-3x+3)·ex定义域为[-2,t](t>-2),设f(-2)=m,f(t)=n.

(1)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数;

(2)求证:n>m;

(3)求证:对于任意的t>-2,总存在x0∈(-2,t),满足f′(x0)ex0=23(t-1)2,并确定这样的x0的个数.

附加题

21.[选做题] 本题包括A,B,C,D四小题,请选定其中两题作答,每小题10分,共计20分.

A.选修41:几何证明选讲

自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

B.选修42:矩阵与变换

已知二阶矩阵A=1a

34对应的变换将点(-2,1)变换成点(0,b),求实数a,b的值.

C.选修44:坐标系与参数方程

椭圆中心在原点,焦点在x轴上.离心率为12,点P(x,y)是椭圆上的一个动点,

若2x+3y的最大值为10,求椭圆的标准方程.

D.选修45:不等式选讲

若正数a,b,c满足a+b+c=1,求13a+2+13b+2+13c+2的最小值.

[必做题] 第22、23题,每小题10分,计20分.

22.如图,在底面边长为1,侧棱长为2的正四棱柱ABCDA1B1C1D1中,P是侧棱CC1上的一点,CP=m.

(1)试确定m,使直线AP与平面BDD1B1所成角为60°;

(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q⊥AP,并证明你的结论.

23.(本小题满分10分)

已知,(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,(其中n∈N*)

(1)求a0及Sn=a1+a2+a3+…+an;

(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.

参考答案

一、填空题

1. -18

2. 2

3. -13

4. 0.75

5. π3

6. 12

7. 710

8. x24-y2=1

9. (0,14]

10. 3

11. 2

12. ③④

13. 3324

14. (0,3-e)

二、解答题

15.解:(1)因为π4<A<π2,且sin(A+π4)=7210,

所以π2<A+π4<3π4,cos(A+π4)=-210.

因为cosA=cos[(A+π4)-π4]

=cos(A+π4)cosπ4+sin(A+π4)sinπ4

=-210·22+7210·22=35.所以cosA=35.

(2)由(1)可得sinA=45.所以f(x)=cos2x+52sinAsinx

=1-2sin2x+2sinx=-2(sinx-12)2+32,x∈R.因为sinx∈[-1,1],所以,当sinx=12时,f(x)取最大值32;当sinx=-1时,f(x)取最小值-3.

所以函数f(x)的值域为[-3,32].

16.解:(1)在Rt△ABC中,AB=1,

∠BAC=60°,∴BC=3,AC=2.

在Rt△ACD中,AC=2,∠CAD=60°,

∴CD=23,AD=4.

∴SABCD=12AB·BC+12AC·CD

=12×1×3+12×2×23=523.则V=13×523×2=533.

(2)∵PA=CA,F为PC的中点,

∴AF⊥PC.∵PA⊥平面ABCD,∴PA⊥CD.

∵AC⊥CD,PA∩AC=A,

∴CD⊥平面PAC.∴CD⊥PC.

∵E为PD中点,F为PC中点,

∴EF∥CD.则EF⊥PC.

∵AF∩EF=F,∴PC⊥平面AEF.

(3)取AD中点M,连EM,CM.则EM∥PA.

∵EM平面PAB,PA平面PAB,

∴EM∥平面PAB.

在Rt△ACD中,∠CAD=60°,AC=AM=2,

∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.

∵MC平面PAB,AB平面PAB,

∴MC∥平面PAB.

∵EM∩MC=M,

∴平面EMC∥平面PAB.

∵EC平面EMC,

∴EC∥平面PAB.

17.解:(1)在△BCD中,

∵BDsin60°=BCsinα=CDsin(120°-α),

∴BD=32sinα,CD=sin(120°-α)sinα,

则AD=1-sin(120°-α)sinα.

s=400·32sinα+100[1-sin(120°-α)sinα]

=50-503·cosα-4sinα,其中π3≤α≤2π3.

(2)s′=-503·-sinα·sinα-(cosα-4)cosαsin2α=503·1-4cosαsin2α.

令s′=0得cosα=14.记cosα0=14,α0∈(π3,2π3);

当cosα>14时,s′<0,当cosα<14时,s′>0,

所以s在(π3,α0)上单调递减,在(α0,2π3)上单调递增,

所以当α=α0,即cosα=14时,s取得最小值.

此时,sinα=154,

AD=1-sin(120°-α)sinα=1-32cosα+12sinαsinα

=12-32·cosαsinα=12-32·14154=12-510.

答:当AD=12-510时,可使总路程s最少.

18.解:(1)点A代入圆C方程,得(3-m)2+1=5.

∵m<3,∴m=1.

圆C:(x-1)2+y2=5.

设直线PF1的斜率为k,则PF1:y=k(x-4)+4,即kx-y-4k+4=0.

∵直线PF1与圆C相切,∴|k-0-4k+4|k2+1=5.解得k=112,或k=12.

当k=112时,直线PF1与x轴的交点横坐标为3611,不合题意,舍去.

当k=12时,直线PF1与x轴的交点横坐标为-4,

∴c=4,F1(-4,0),F2(4,0).

2a=AF1+AF2=52+2=62,a=32,a2=18,b2=2.

椭圆E的方程为:x218+y22=1.

(2)AP=(1,3),设Q(x,y),AQ=(x-3,y-1),

AP·AQ=(x-3)+3(y-1)=x+3y-6.

∵x218+y22=1,即x2+(3y)2=18,

而x2+(3y)2≥2|x|·|3y|,∴-18≤6xy≤18.

则(x+3y)2=x2+(3y)2+6xy=18+6xy的取值范围是[0,36].

x+3y的取值范围是[-6,6].

∴AP·AQ=x+3y-6的取值范围是[-12,0].

19.解:(1)由P1(t21,t1)(t>0),得kOP1=1t1=tanπ3=3t1=33,

∴P1(13,33),a1=|Q1Q0|=|OP1|=23.

(2)设Pn(t2n,tn),得直线PnQn-1的方程为:y-tn=3(x-t2n),

可得Qn-1(t2n-tn3,0),

直线PnQn的方程为:y-tn=-3(x-t2n),可得Qn(t2n+tn3,0),

所以也有Qn-1(t2n-1+tn-13,0),得t2n-tn3=t2n-1+tn-13,由tn>0,得tn-tn-1=13.

∴tn=t1+13(n-1)=33n.

∴Qn(13n(n+1),0),Qn-1(13n(n-1),0),

∴an=|QnQn-1|=23n.

(3)由已知对任意实数时λ∈[0,1]时,n2-2n+2≥(1-λ)(2n-1)恒成立,

对任意实数λ∈[0,1]时,(2n-1)λ+n2-4n+3≥0恒成立

则令f(λ)=(2n-1)λ+n2-4n+3,则f(λ)是关于λ的一次函数.

对任意实数λ∈[0,1]时,f(0)≥0

f(1)≥0.

n2-4n+3≥0

n2-2n+2≥0n≥3或n≤1,

又∵n∈N*,∴k的最小值为3.

20.(1)解:因为f′(x)=(x2-3x+3)·ex+(2x-3)·ex=x(x-1)·ex

由f′(x)>0x>1或x<0;由f′(x)<00<x<1,所以f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减

欲f(x)在[-2,t]上为单调函数,则-2<t≤0.

(2)证:因为f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减,所以f(x)在x=1处取得极小值e

又f(-2)=13e2<e,所以f(x)在[-2,+∞)上的最小值为f(-2)

从而当t>-2时,f(-2)<f(t),即m<n.

(3)证:因为f′(x0)ex0=x20-x0,所以f′(x0)ex0=23(t-1)2即为x20-x0=23(t-1)2,

令g(x)=x2-x-23(t-1)2,从而问题转化为证明方程g(x)=x2-x-23(t-1)2=0

在(-2,t)上有解,并讨论解的个数.

因为g(-2)=6-23(t-1)2=-23(t+2)(t-4),g(t)=t(t-1)-23(t-1)2=13(t+2)(t-1),所以

①当t>4或-2<t<1时,g(-2)·g(t)<0,所以g(x)=0在(-2,t)上有解,且只有一解.

②当1<t<4时,g(-2)>0且g(t)>0,

但由于g(0)=-23(t-1)2<0,

所以g(x)=0在(-2,t)上有解,且有两解.

③当t=1时,g(x)=x2-x=0x=0或x=1,所以g(x)=0在(-2,t)上有且只有一解;

当t=4时,g(x)=x2-x-6=0x=-2或x=3,

所以g(x)=0在(-2,4)上也有且只有一解.

综上所述,对于任意的t>-2,总存在x0∈(-2,t),满足f′(x0)ex0=23(t-1)2,

且当t≥4或-2<t≤1时,有唯一的x0适合题意;当1<t<4时,有两个x0适合题意.

(说明:第(2)题也可以令φ(x)=x2-x,x∈(-2,t),然后分情况证明23(t-1)2在其值域内,并讨论直线y=23(t-1)2与函数φ(x)的图象的交点个数即可得到相应的x0的个数)

附加题

21.(A)解:因为MA为圆O的切线,所以MA2=MB·MC.

又M为PA的中点,所以MP2=MB·MC.

因为∠BMP=∠BMC,所以△BMP∽△PMC.

于是∠MPB=∠MCP.

在△MCP中,由∠MPB+∠MCP+∠BPC+∠BMP=180°,得∠MPB=20°.

(B)解:∵0

b=1a

34-2

1=-2+a

-6+4,

∴0=-2+a

b=-2,即a=2,b=-2.

(C)解:离心率为12,设椭圆标准方程是x24c2+y23c2=1,

它的参数方程为x=2cosθ

y=3sinθ,(θ是参数).

2x+3y=4ccosθ+3csinθ=5csin(θ+φ)最大值是5c,

依题意tc=10,c=2,椭圆的标准方程是x216+y212=1.

(D)解:因为正数a,b,c满足a+b+c=1,

所以,(13a+2+13b+2+13c+2)[(3a+2)+(3b+2)+(3c+2)]≥(1+1+1)2,

即13a+2+13b+2+13c+2≥1,

当且仅当3a+2=3b+2=3c+2,即a=b=c=13时,原式取最小值1.

22.解:(1)建立如图所示的空间直角坐标系,则

A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),

B1(1,1,1),D1(0,0,2).

所以BD=(-1,-1,0),BB1=(0,0,2),

AP=(-1,1,m),AC=(-1,1,0).

又由AC·BD=0,AC·BB1=0知AC为平面BB1D1D的一个法向量.

设AP与面BDD1B1所成的角为θ,

则sinθ=cos(π2-θ)=|AP·AC||AP|·|AC|

=22·2+m2=32,解得m=63.

故当m=63时,直线AP与平面BDD1B1所成角为60°.

(2)若在A1C1上存在这样的点Q,设此点的横坐标为x,

则Q(x,1-x,2),D1Q=(x,1-x,0).

依题意,对任意的m要使D1Q在平面APD1上的射影垂直于AP.等价于

D1Q⊥APAP·D1Q=0x+(1-x)=0x=12

即Q为A1C1的中点时,满足题设的要求.

23.解:(1)取x=1,则a0=2n;取x=2,则a0+a1+a2+a3+…+an=3n,

∴Sn=a1+a2+a3+…+an=3n-2n;

(2)要比较Sn与(n-2)2n+2n2的大小,即比较:3n与(n-1)2n+2n2的大小,

当n=1时,3n>(n-1)2n+2n2;

当n=2,3时,3n<(n-1)2n+2n2;

当n=4,5时,3n>(n-1)2n+2n2;

猜想:当n≥4时,3n>(n-1)2n+2n2,下面用数学归纳法证明:

由上述过程可知,n=4时结论成立,

假设当n=k,(k≥4)时结论成立,即3k>(k-1)2k+2k2,

两边同乘以3得:3k+1>3[(k-1)2k+2k2]=k2k+1+2(k+1)2+[(k-3)2k+4k2-4k-2]

而(k-3)2k+4k2-4k-2=(k-3)2k+4(k2-k-2)+6=(k-3)2k+4(k-2)(k+1)+6>0,

∴3k+1>((k+1)-1)2k+1+2(k+1)2

即n=k+1时结论也成立,∴当n≥4时,3n>(n-1)2n+2n2成立.

综上得,当n=1时,Sn>(n-2)2n+2n2;当n=2,3时,Sn<(n-2)2n+2n2;

篇5:学前班语文期末测试卷题目

和县实验学校学前班语文期末试题卷

姓名 得分

一、写出六个单韵母。(12分)

二、按顺序把拼音填完。(15分)

ɑ ___ e ___ u ___

b ___ ___ f d ___ n ___

___ k ___ j ___ ___

___ c ___ zh ___ ___ r

三、拼一拼。(12分)

例:b-ó-b( ó ) ( h )-u-ā-h( u )ā

m-ā-m( ) n-ǚ-n( )

h- é-h( ) x-ī-( )

j-ǘ-( )ú q-ǚ-q( )

d - u -ǒ-d( )( ) x-( )-ā-xi( )

( )-ú-zú ch-è-( )è

四、比一比,写一写。(24分)

u--ü i--j b--d

p--q m--n f--t

五、读一读,找一找,把整体认读音节圈出来。(7分)

ze zi cu ci si sɑ

zhi zhu chi shi ji ri

六、看图连线(10分)

tù zi bō luó xī guā lí zi jú zi

七、看图在正确的音节后面画“ ”。(10分)

jī( )-jǐ( ) zhú( )-zhū( ) shī( )-shì( )

shé( )- shě( ) hū( )-hǔ( )

八、看图给音节填出正确的声调。(10分)

huɑ duo he chɑ dɑ shu

shɑ fɑ mu mɑ

篇6:学前期末测试卷

2016-2017年春季学期学前班拼音期末测试卷

学校: 班级: 姓名: 得分:

一、按要求给拼音分类。(16分)

ch in ue wu u r chi y yin w s ing zh yi i yun 1.韵母: 2.声母: 3.整体认读音节:

二、拼一拼、写一写。(20分)

j-in()xun()-()q-ie()sun()-()n-iu()xing()-()k-ui()dong()-()c-ai()zhui()-()

四、找朋友。(14分)

Q g D q G m

K k

M d

W o O w

五、看拼音写汉字。(20分)

七、照样子写笔画(10分)

tai yang xue xi xiao cao yu san qing wa()()()()()

六.给以下拼音注上合适的声调(10分)

lai shang qiu bi yu 来 上 球 笔 雨

zuo you cao you yong 左 右 草 有 用

篇7:幼儿园学前班测试卷

( ) ( ) ( ) ( )

( ) ( )

○○○○○○○○○○○○○○○○○○

( )

12378111520

二、想一想,□里应填几(48分)。

91316

1718

9

11

三、选择(10分):

1、我要吃少的,我选:2、我要洗多的,我选:

四、看图计算(28分)

△△ △△ ◇◇◇ ◇◇◇◇ ○○○

2+2= 3+4= 3-1= 7-1=

☆☆

☆ ☆☆☆

☆☆

篇8:期末考试测试卷(二)

1.已知R为实数集,M={x|x2-2x<0},N={x|x≥1},则M∩(CRN)=    .

2.命题:“x∈(0,+∞),x2+x+1>0”的否定是    .

3.已知z=(a-i)(1+i)(a∈R,i为虚数单位),若复数z在复平面内对应的点在实轴上,则a=   .

4.设不等式组0≤x≤2,

0≤y≤2,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是    .

5.阅读右图所示的程序框图,运行相应的程序,输出的s值等于    .

6.椭圆x2a2+y2b2=1(a>b>0)的右焦点为F1,右准线为l1,若过点F1且垂直于x轴的弦的弦长等于点F1到l1的距离,则椭圆的离心率是    .

7.已知正方形ABCD的边长为1,点E是AB边上的动点,则DE·DC的最大值为    .

8.设a,b∈R,且a≠2,若定义在区间(-b,b)内的函数f(x)=lg1+ax1+2x是奇函数,则a+b的取值范围是   .

9.巳知函数f(x)=cosx(x∈(0,2π))有两个不同的零点x1,x2,且方程f(x)=m有两个不同的实根x3,x4.若把这四个数按从小到大排列构成等差数列,则实数m的值为    .

10.关于x的不等式x2+25+|x3-5x2|≥ax在[1,12]上恒成立,则实数a的取值范围是    .

11.已知正数x,y满足(1+x)(1+2y)=2,则4xy+1xy的最小值是    .

12.已知函数f(x)=x4+ax3+2x2+b,其中a,b∈R.若函数f(x)仅在x=0处有极值,则a的取值范围是    .

13.已知a,b,c(a<b<c)成等差数列,将其中的两个数交换,得到的三个数依次成等比数列,则a2+c22b2的值为    .

14.如图,用一块形状为半椭圆x2+y24=1(y≥0)的铁皮截取一个以短轴BC为底的等腰梯形ABCD,记所得等腰梯形ABCD的面积为S,则1S的最小值是    .

二、解答题(本大题共6小题,共计90分)

15.(本小题满分14分)

在△ABC中,A,B,C为三个内角a,b,c为三条边,π3<C<π2,且ba-b=sin2CsinA-sin2C.

(1)判断△ABC的形状;

(2)若|BA+BC|=2,求BA·BC的取值范围.

16.(本小题满分14分)

如图,直三棱柱ABCA1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.

(1)求证:C1E∥平面ADF;

(2)设点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?

17.(本小题满分15分)

已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,且经过点P(1,32).

(1)求椭圆C的方程;

(2)设F是椭圆C的右焦点,M为椭圆上一点,以M为圆心,MF为半径作圆M.问点M满足什么条件时,圆M与y轴有两个交点?

(3)设圆M与y轴交于D、E两点,求点D、E距离的最大值.

18.(本小题满分15分)

如图,AB是沿太湖南北方向道路,P为太湖中观光岛屿,Q为停车场,PQ=5.2km.某旅游团游览完岛屿后,乘游船回停车场Q,已知游船以13km/h的速度沿方位角θ的方向行驶,sinθ=513.游船离开观光岛屿3分钟后,因事耽搁没有来得及登上游船的游客甲为了及时赶到停车地点Q与旅游团会合,立即决定租用小船先到达湖滨大道M处,然后乘出租汽车到点Q(设游客甲到达湖滨大道后能立即乘到出租车).假设游客甲乘小船行驶的方位角是α,出租汽车的速度为66km/h.

(1)设sinα=45,问小船的速度为多少km/h时,游客甲才能和游船同时到达点Q;

(2)设小船速度为10km/h,请你替该游客设计小船行驶的方位角α,当角α余弦值的大小是多少时,游客甲能按计划以最短时间到达Q.

19.(本小题满分16分)

已知各项均为正数的等差数列{an}的公差d不等于0,设a1,a3,ak是公比为q的等比数列{bn}的前三项,

(1)若k=7,a1=2

(i)求数列{anbn}的前n项和Tn;

(ii)将数列{an}和{bn}的相同的项去掉,剩下的项依次构成新的数列{cn},设其前n项和为Sn,求S2n-n-1-22n-1+3·2n-1(n≥2,n∈N*)的值;

(2)若存在m>k,m∈N*使得a1,a3,ak,am成等比数列,求证k为奇数.

20.(本小题满分16分)

已知函数f(x)=-x3+x2+b,g(x)=alnx.

(1)若f(x)在x∈[-12,1)上的最大值为38,求实数b的值;

(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;

(3)在(1)的条件下,设F(x)=f(x),x<1

g(x),x≥1,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形(O为坐标原点),且此三角形斜边中点在y轴上?请说明理由.

附加题

21.[选做题] 在A、B、C、D四小题中只能选做2题,每小题10分,共计20分

A.选修41:(几何证明选讲)

如图,从圆O外一点P作圆O的两条切线,切点分别为A,B,AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,

求证:O、C、P、D四点共圆.

B.选修42:(矩阵与变换)

已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=1

1,并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.

C.选修44:(坐标系与参数方程)

在极坐标系中,曲线C的极坐标方程为ρ=22sin(θ-π4),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为

x=1+45t

y=-1-35t(t为参数),求直线l被曲线C所截得的弦长.

D.选修45(不等式选讲)

已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值;

[必做题] 第22题、第23题,每小题10分,共计20分

22.袋中装着标有数字1,2,3,4的卡片各1张,甲从袋中任取2张卡片(每张卡片被取出的可能性都相等),并记下卡面数字和为X,然后把卡片放回,叫做一次操作.

(1)求在一次操作中随机变量X的概率分布和数学期望E(X);

(2)甲进行四次操作,求至少有两次X不大于E(X)的概率.

23.(本小题满分10分)

对一个边长互不相等的凸n(n≥3)边形的边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色.所有不同的染色方法记为P(n).

(1)求P(3),P(4),P(5);

(2)求P(n).

参考答案

一、填空题

1. {x|0<x<1}

2. x∈(0,+∞),x2+x+1≤0

3. 1

4. 4-π4

5. -3

6. 12

7. 1

8. (-2,-32]

9. -32

10. (-∞,10]

11. 12

12. [-83,83]

13. 10

14. 239

二、解答题

15.(1)解:由ba-b=sin2CsinA-sin2C及正弦定理有:sinB=sin2C,

∴B=2C或B+2C=π,若B=2C,且π3<C<π2,∴23π<B<π,B+C>π(舍);∴B+2C=π,则A=C,∴△ABC为等腰三角形.

(2)∵|BA+BC|=2,∴a2+c2+2ac·cosB=4,∴cosB=2-a2a2(∵a=c),而cosB=-cos2C,∴12<cosB<1,∴1<a2<43,∴BA·BC=accosB=a2cosB=2-a2∈(23,1).

16.解:(1)连接CE交AD于O,连接OF.

因为CE,AD为△ABC中线,

所以O为△ABC的重心,CFCC1=COCE=23.

从而OF∥C1E.

OF面ADF,C1E平面ADF,

所以C1E∥平面ADF.

(2)当BM=1时,平面CAM⊥平面ADF.

在直三棱柱ABCA1B1C1中,

由于B1B⊥平面ABC,BB1平面B1BCC1,所以平面B1BCC1⊥平面ABC.

由于AB=AC,D是BC中点,所以AD⊥BC.又平面B1BCC1∩平面ABC=BC,

所以AD⊥平面B1BCC1.

而CM平面B1BCC1,于是AD⊥CM.

因为BM=CD=1,BC=CF=2,所以Rt△CBM≌Rt△FCD,所以CM⊥DF.

DF与AD相交,所以CM⊥平面ADF.

CM平面CAM,所以平面CAM⊥平面ADF.

当BM=1时,平面CAM⊥平面ADF.

17.解:(1)∵椭圆x2a2+y2b2=1(a>b>0)的离心率为12,且经过点P(1,32),

∴a2-b2a=12

1a2+94b2=1,即3a2-4b2=0

1a2+94b2=1,

解得a2=4

b2=3,

∴椭圆C的方程为x24+y23=1.

(2)易求得F(1,0).设M(x0,y0),则x204+y203=1,

圆M的方程为(x-x0)2+(y-y0)2=(1-x0)2+y02,

令x=0,化简得y2-2y0y+2x0-1=0,Δ=4y20-4(2x0-1)>0……①.

将y20=3(1-x204)代入①,得3x20+8x0-16<0,解出-4

又∵-2≤x0≤2,∴-2≤x0<43.

(3)设D(0,y1),E(0,y2),其中y1

DE=y2-y1=4y20-4(2x0-1)

=-3x20-8x0+16=-3(x0+43)2+643,

当x0=-43时,DE的最大值为833.

18.解:(1)如图,作PN⊥AB,N为垂足.

sinθ=513,sinα=45,

在Rt△PNQ中,

PN=PQsinθ=5.2×513=2(km),

QN=PQcosθ=5.2×1213=4.8(km).

在Rt△PNM中,

MN=PNtanα=243=1.5(km).

设游船从P到Q所用时间为t1h,游客甲从P经M到Q所用时间为t2h,小船的速度为v1km/h,则

t1=PQ13=26513=25(h),

t2=PMv1+MQ66=2.5v1+3.366=52v1+120(h).

由已知得:t2+120=t1,52v1+120+120=25,∴v1=253.

∴小船的速度为253km/h时,游客甲才能和游船同时到达Q.

(2)在Rt△PMN中,

PM=PNsinα=2sinα(km),

MN=PNtanα=2cosαsinα(km).

∴QM=QN-MN=4.8-2cosαsinα(km).

∴t=PM10+QM66=15sinα+455-cosα33sinα=1165×33-5cosαsinα+455.

∵t′=1165×5sin2α-(33-5cosα)cosαsin2α

=5-33cosα165sin2α,

∴令t′=0得:cosα=533.

当cosα<533时,t′>0;当cosα>533时,t′<0.

∵cosα在α∈(0,π2)上是减函数,

∴当方位角α满足cosα=533时,t最小,即游客甲能按计划以最短时间到达Q.

19.(1)因为k=7,所以a1,a3,a7成等比数列,又{an}是公差d≠0的等差数列,

所以(a1+2d)2=a1(a1+6d),整理得a1=2d,又a1=2,所以d=1,

b1=a1=2,q=b2b1=a3a1=a1+2da1=2,

所以an=a1+(n-1)d=n+1,bn=b1×qn-1=2n,

①用错位相减法或其它方法可求得{anbn}的前n项和为Tn=n×2n+1;

②因为新的数列{cn}的前2n-n-1项和为数列{an}的前2n-1项的和减去数列{bn}前n项的和,

所以S2n-n-1=(2n-1)(2+2n)2-2(2n-1)2-1=(2n-1)(2n-1-1).

所以S2n-n-1-22n-1+3·2n-1=1(n≥2,n∈N*).

(2)由(a1+2d)2=a1(a1+(k-1))d,整理得4d2=a1d(k-5),

因为d≠0,所以d=a1(k-5)4,所以q=a3a1=a1+2da1=k-32.

因为存在m>k,m∈N*使得a1,a3,ak,am成等比数列,

所以am=a1q3=a1(k-32)3,

又在正项等差数列{an}中,am=a1+(m-1)d=a1+a1(m-1)(k-5)4,

所以a1+a1(m-1)(k-5)4=a1(k-32)3,又因为a1>0,

所以有2[4+(m-1)(k-5)]=(k-3)3,

因为2[4+(m-1)(k-5)]是偶数,所以(k-3)3也是偶数,

即k-3为偶数,所以k为奇数.

20.解:(1)由f(x)=-x3+x2+b,得f′(x)=-3x2+2x=-x(3x-2),

令f′(x)=0,得x=0或23.

列表如下:

x-12(-12,0)0(0,23)23(23,1)

f′(x)-0+0-

f(x)f(-12)递减极小值递增极大值递减

由f(-12)=38+b,f(23)=427+b,∴f(-12)>f(23),即最大值为f(-12)=38+b=38,∴b=0.

(2)由g(x)≥-x2+(a+2)x,得(x-lnx)a≤x2-2x.

∵x∈[1,e],∴lnx≤1≤x,且等号不能同时取,∴lnx<x,即x-lnx>0,

∴a≤x2-2xx-lnx恒成立,即a≤(x2-2xx-lnx)min.

令t(x)=x2-2xx-lnx,x∈[1,e]),求导得,

t′(x)=(x-1)(x+2-2lnx)(x-lnx)2,

当x∈[1,e]时,x-1≥0,lnx≤1,x+2-2lnx>0,从而t′(x)≥0,

∴t(x)在[1,e]上为增函数,

∴tmin(x)=t(1)=-1,∴a≤-1.

(3)由条件,F(x)=-x3+x2,x<1

alnx,x≥1,

假设曲线y=F(x)上存在两点P,Q满足题意,则P,Q只能在y轴两侧,

不妨设P(t,F(t))(t>0),则Q(-t,t3+t2),且t≠1.

∵△POQ是以O(O为坐标原点)为直角顶点的直角三角形,

∴OP·OQ=0,∴-t2+F(t)(t3+t2)=0…(*),

是否存在P,Q等价于方程(*)在t>0且t≠1时是否有解.

①若0

此方程无解;

②若t>1时,(*)方程为-t2+alnt·(t3+t2)=0,即1a=(t+1)lnt,

设h(t)=(t+1)lnt(t>1),则h′(t)=lnt+1t+1,

显然,当t>1时,h′(t)>0,即h(t)在(1,+∞)上为增函数,

∴h(t)的值域为(h(1),+∞),即为(0,+∞),

∴当a>0时,方程(*)总有解.

∴对任意给定的正实数a,曲线y=F(x)上总存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上.

附加题

21.A.选修41:(几何证明选讲)

证明:因为PA,PB为圆O的两条切线,所以OP垂直平分弦AB,

在Rt△OAP中,OM·MP=AM2,

在圆O中,AM·BM=CM·DM,

所以,OM·MP=CM·DM,

又弦CD不过圆心O,所以O,C,P,D四点共圆.

B.选修42:(矩阵与变换)

设M=ab

cd,则ab

cd1

1=31

1=3

3,故a+b=3,

c+d=3.

ab

cd-1

2=9

15,故-a+2b=9,

-c+2d=15.

联立以上两方程组解得a=-1,b=4,c=-3,d=6,故M=-14

-36.

C.选修44:(坐标系与参数方程)

解:将方程ρ=22sin(θ-π4),x=1+45t

y=-1-35t分别化为普通方程:

x2+y2+2x-2y=0,3x+4y+1=0,

由曲线C的圆心为C(-1,1),半径为2,所以圆心C到直线l的距离为25,

故所求弦长为22-(25)2=2465.

D.选修45(不等式选讲)

解:由柯西不等式可知:(x+y+z)2≤[(2x)2+(3y)2+z2]·[(12)2+(13)2+12]

故2x2+3y2+z2≥2411,当且仅当2x12=3y13=z1,即:x=611,y=411,z=1211时,

2x2+3y2+z2取得最小值为2411.

22.解:(1)由题设知,X可能的取值为:3,4,5,6,7.

随机变量X的概率分布为

X34567

P1616131616

因此X的数学期望E(X)=(3+4+6+7)×16+5×13=5.

(2)记“一次操作所计分数X不大于E(X)”的事件记为C,则

P(C)=P(“X=3”或“X=4”或“X=5”)=16+16+13=23.

设四次操作中事件C发生次数为Y,则Y~B(4,23),

则所求事件的概率为P(Y≥2)=1-C14×23×(13)3-C04×(13)4=89.

23.解:(1)P(3)=6,P(4)=18,P(5)=30.

(2)设不同的染色法有pn种.易知.

当n≥4时,首先,对于边a1,有3种不同的染法,由于边a2的颜色与边a1的颜色不同,所以,对边a2有2种不同的染法,类似地,对边a3,…,边an-1均有2种染法.对于边an,用与边an-1不同的2种颜色染色,但是,这样也包括了它与边a1颜色相同的情况,而边a1与边an颜色相同的不同染色方法数就是凸n-1边形的不同染色方法数的种数pn-1,于是可得

pn=3×2n-1-pn-1,pn-2n=-(pn-1-2n-1).

于是pn-2n=(-1)n-3(p3-23)=(-1)n-2·2,

pn=2n+(-1)n·2,n≥3.

上一篇:有关励志对联下一篇:分布式水文模型的发展、现状及前景