X射线衍射分析

2024-05-16

X射线衍射分析(共8篇)

篇1:X射线衍射分析

X射线衍射分析 实验目的

1、了解X衍射的基本原理以及粉末X衍射测试的基本目的;

2、掌握晶体和非晶体、单晶和多晶的区别;

3、了解使用相关软件处理XRD测试结果的基本方法。实验原理

1、晶体化学基本概念

晶体的基本特点与概念:①质点(结构单元)沿三维空间周期性排列(晶体定义),并有对称性。②空间点阵:实际晶体中的几何点,其所处几何环境和物质环境均同,这些“点集”称空间点阵。③晶体结构=空间点阵+结构单元。非晶部分主要为无定形态区域,其内部原子不形成排列整齐有规律的晶格。

对于大多数晶体化合物来说,其晶体在冷却结晶过程中受环境应力或晶核数目、成核方式等条件的影响,晶格易发生畸变。分子链段的排列与缠绕受结晶条件的影响易发生改变。晶体的形成过程可分为以下几步:初级成核、分子链段的 图1 14种Bravais点阵

表面延伸、链松弛、链的重吸收结晶、表面成核、分子间成核、晶体生长、晶体生长完善。Bravais提出了点阵空间这一概念,将其解释为点阵中选取能反映空间点阵周期性与对称性的单胞,并要求单胞相等棱与角数最多。满足上述条件棱间直角最多,同时体积最小。1848年Bravais证明只有14种点阵。晶体内分子的排列方式使晶体具有不同的晶型。通常在结晶完成后的晶体中,不止含有一种晶型的晶体,因此为多晶化合物。反之,若严格控制结晶条件可得单一晶型的晶体,则为单晶。

2、X衍射的测试基本目的与原理

X射线是电磁波,入射晶体时基于晶体结构的周期性,晶体中各个电子的散射波可相互干涉。散射波周相一致相互加强的方向称衍射方向。衍射方向取决于晶体的周期或晶胞的大小,衍射强度是由晶胞中各个原子及其位置决定的。由倒易点阵概念导入X射线衍射理论, 倒易点落在Ewald 球上是产生衍射必要条件。1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用布拉格方程表示:

2dsinn 式中d为晶面间距;n为反射级数;θ为掠射角;λ为X射线的波长。布拉格方程是X射线衍射分析的根本依据。

X 射线衍射(XRD)是所有物质,包括从流体、粉末到完整晶体,重要的无损分析工具。对材料学、物理学、化学、地质、环境、纳米材料、生物等领域来说,X射线衍射仪都是物质结构表征,以性能为导向研制与开发新材料,宏观表象转移至微观认识,建立新理论和质量控制不可缺少的方法。其主要分析对象包括:物相分析(物相鉴定与定量相分析)。晶体学(晶粒大小、指标化、点参测定、解结构等)。薄膜分析(薄膜的厚度、密度、表面与界面粗糙度与层序分析,高分辨衍射测定单晶外延膜结构特征)。织构分析、残余应力分析。不同温度与气氛条件与压力下的结构变化的原位动态分析研究。微量样品和微区试样分析。实验室及过程自动化、组合化学。纳米材料等领域。仪器与试剂

仪器型号及生产厂家:丹东浩元仪器有限公司DX-2700型衍射仪。测试条件:管电压40KV;管电流40mA;X光管为铜靶,波长1.5417Å;步长0.05°,扫描速度0.4s;扫描范围为20°~80°。试剂:未知样品A。4 实验步骤

1、打开电脑主机电源。

2、开外围电源:先上拨墙上的两个开关,再开稳压电源(上拨右边的开关,标有稳压)。

3、打开XRD衍射仪电源开关(按下绿色按钮)。

4、开冷却水:先上拨左边电源开关,再按下RUN按钮,确认流量在20左右方可。

5、开高压(顺时针旋转45°,停留5s,高压灯亮)。

6、打开XRD控制软件XRD Commander。

7、防光管老化操作:按照20KV、5mA;25KV、5mA;30KV、5mA;35KV、5mA;40KV、5mA;40KV、40mA程式分次设置电压、电流,每次间隔3分钟。设置方法:电压、电流跳到所需值后点set。

8、设置测试条件:设置扫描角度为3°~80°,步长0.05°,扫描速度0.4s。

9、点击Start开始测试。

10、降高压:将电压、电流分别降至20KV,5mA后,点击Set确认。

11、关高压:逆时针旋转45°,高压灯灭。

12、等待5min,再关闭冷却水,先关RUN,再关左边电源。

13、关闭控制软件(XRD Commander)。

14、关XRD衍射仪电源开关(按下红色按钮)。

15、关电脑。

16、关外围电源。实验数据及结果

本实验测定了一种粉末样品的XRD图谱并对测定结果进行物相检索,判断待测样品主要成分、晶型及晶胞参数。粉末样品的XRD图谱:

图2 未编号粉末样品X-Ray衍射图谱 实验结果分析与讨论

数据处理:对图谱进行物相检索

结论:经过对样品谱图进行物相检索,发现该粉末样品中含有两种晶相,主相为Sr2CaMoO6,另外一种杂相为SrMoO4.7 思考题

1、简述X射线衍射分析的特点和应用。

答:X射线衍射仪具有易升级,操作简便和高度智能化的特点,灵活地适应地矿、生化、理化等多方面、各行业的测试分析与研究任务。X 射线衍射(XRD)是所有物质,包括从流体、粉末到完整晶体,重要的无损分析工具。对材料学、物理学、化学、地质、环境、纳米材料、生物等领域来说,X射线衍射仪都是物质结构表征,以性能为导向研制与开发新材料,宏观表象转移至微观认识,建立新理论和质量控制不可缺少的方法。其主要分析对象包括:物相分析(物相鉴定与定量相分析)。晶体学(晶粒大小、指标化、点参测定、解结构等)。薄膜分析(薄膜的厚度、密度、表面与界面粗糙度与层序分析,高分辨衍射测定单晶外延膜结构特征)。织构分析、残余应力分析。不同温度与气氛条件与压力下的结构变化的原位动态分析研究。微量样品和微区试样分析。实验室及过程自动化、组合化学。纳米材料等领域。

2、简述X射线衍射仪的工作原理。

答:用高能电子束轰击金属“靶”材产生X射线,X射线的波长和晶体内部原子面间的距离相近,当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。当X射线以掠角θ(入射角的余角)入射到某一点阵晶格间距为d的晶面上时,在符合布拉格方程的条件下,将在反射方向上得到因叠加而加强的衍射线。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格方程条件的反射面得到反射,测出θ后,利用布拉格方程即可确定点阵晶面间距、晶胞大小和类型。

篇2:X射线衍射分析

一:实验目的

(1)概括了解X射线衍射仪的结构及使用。

(2)练习用PDF(ASTN)卡片以及索引,对多相物质进行相分析。二:X射线衍射仪简介

近年来,自动化衍射仪的使用已日趋普遍。传统的衍射仪由X射线发生器、测角仪、记录仪等几部分组成。自动化衍射仪是近年才面世的新产品,它采用微计算机进行程序的自动控制。入射x射线经狭缝照射到多晶试样上,衍射线的单色化可借助于滤波片或单色器。如图1所示,D/max—rc所附带的石墨弯晶单色器的反射效率在28.5%以上。衍射线被探测器(目前使用正比计数器)所接受,电脉冲经放大后进入脉冲高度分析器。操作者在必要时可利用该设备自动画出脉冲高度分布曲线,以便正确选择基线电压与上限电压。信号脉冲可送至数率仪,并在记录仪上画出衍射图。脉冲亦可送人计数器(以往称为定标器),经微处理机进行寻峰、计算峰积分强度或宽度、扣除背底等处理,并在屏幕上显示或通过打印机将所需的图形或数字输出。D/max—rc衍射仪目前已具有采集衍射资料、处理图形数据、查找管理文件以及自动进行物相定性分析等功能。

图1 D/max—rc工作原理方框图

物相定性分析是X射线衍射分析中最常用的一项测试。D/max—rc衍射仪可自动完成这一过程。首先,仪器按所给定的条件进行衍射数据的自动采集,接着进行寻峰处理并自动启动检索程序。此后系统将进行自动检索匹配,并将检索结果打印输出。

衍射仪法的优点较多:如速度快、强度相对精确、信息量大、精度高、分析简便、试样制备简便等。衍射仪对衍射线强度的测量是利用电子计数管(electronic counter)直接测定的。

这里关键要解决的技术问题是:1.X射线接收装置--计数管;2.衍射强度必须适当加大,为此可以使用板状试样;3.相同的(hkl)镜面也是全方向散射的,所以要聚焦;4.计数管的移动要满足布拉格条件。这些问题的解决关键是由几个机构来实现的:1.X射线测角仪——解决聚焦和测量角度的问题;2.辐射探测仪——解决记录和分析衍射线能量问题。

X射线衍射仪的光学原理图如下:

测角仪是衍射仪的核心部件。(1)样品台S:位于测角仪中心,可以绕O轴旋转,O轴与台面垂直,平板状试样C放置于样品台上,要与O轴重合,误差小于0.1mm;(2)X射线源:X射线源是由X射线管的靶上的线状焦点F发出的,F也垂直于纸面,位于以O为中心的圆周上,与O轴平行;(3)光路布置:发散的X射线由F发出,投射到试样上,衍射线中可以收敛的部分在光阑处形成焦点,然后进入技术管。(4)测角仪台面:狭缝、光阑和计数管固定在测角仪台面上,台面可以绕O轴转动,角位置可以从刻度盘上读出。(5)测量动作:样品台和测角仪台可以分别绕O轴转动,也可以机械连动,机械连动时样品台转过θ角时计数管转动2θ角,这样设计的目的是使X射线在板状试样表面的入射角经常等于反射角,常称这一动作为θ-2θ连动。

X光管产生的特征X射线经准直狭缝以θ角入射到样品表面,其衍射光线由放在与入射x射线成2θ角的探测器测量(强度I)。θ-2θ角可由测角仪连续改变(扫描),测出相应I-θ曲线,从而获得物质结构信息。三:操作规程

由指导老师讲解

四:实验结果

五:实验内容及报告要求

(1)由指导教师在现场介绍X射线衍射仪的构造,进行操作表演,并描画一两个衍射峰。

(2)以2~3人为一组,按事先描绘好的多相物质的衍射图进行物相定性分析。(3)记录所分析的衍射图的测试条件,将实验数据及结果以表格形式列出。

六:思考题

篇3:X射线衍射分析

1 微量物证

微量物证是在破解犯罪过程中和司法鉴定领域中最有效的微量或痕量的物质材料或痕迹, 具有体小质微、易被忽视、出现率高、较为隐蔽、易被污染和散失、不易毁灭、具有分离性和不完整性等特点。微量物证鉴定是运用物理学、化学和仪器分析方法对微量检材或检材微量成分的特异性和种属性质进行定性、定量的分析, 以其物理属性和化学属性来证明其与案件事实的联系。同一认定和种属认定理论是物证鉴定中的最重要和最基本的理论, 物质的特异性是同一认定的依据, 而种属性质可用于确定物证的种类。

通常所见的微量物证可以按照文书笔迹、爆炸残留物、油脂及其斑痕、纤维材料、染料和涂料、聚合物、土壤、金属材料、玻璃等来进行划分。同时, 微量物证又可以按照无机物、有机物、混合物、金属和非金属等来进行划分。

2 XRD技术

XRD技术的工作原理是由高能电子束轰击金属靶产生X射线 (波长在0.06 nm~20 nm) , X射线能穿透一定厚度的物质。其波长与晶体内部原子面间距相近, 晶体可作为X射线的空间衍射光栅。衍射波的叠加形成了衍射峰。不同物质的晶体结构, 其衍射峰的峰位不同, 每种物质都具有特定的X射线衍射谱图;在混合物中, 一种物质成分的衍射谱图与其他物质成分的存在无关;检材中某种物质的含量与其衍射峰的强度成正相关性。利用这一原理, X射线衍射谱图可以用来判断各种物质的成分, 衍射峰强度用来判断该种成分在物质中的相对含量。同时对物质的结构类型和完整性进行分析。XRD技术可分析的样品比较广泛, 只要在含有晶体结构的物质中都可以进行衍射分析。

XRD技术具有需要样品量少、不损伤检材、高精确性分析检材、能得到有关晶体完整性的大量信息, 且XRD技术的检验结果在法庭上能起到定结论的作用, 这些特点是其他检验方法不可比拟的, 显著提高了XRD技术在鉴定领域的应用。

3 XRD技术在微量物证鉴定中的运用

3.1 XRD技术在对矿石物证进行分析中的应用

在环境污染案件中, 对污染矿物来源的鉴定是一个难点。以往红外光谱、扫描电镜/能谱可以对特征官能团、形貌和元素进行定性分析, 无法准确溯源。XRD技术可以根据矿物晶体结构与原矿进行同一性比对, 找到污染矿物源。

在对一些文物损坏和偷盗案件进行侦查的过程中, 运用XRD技术对文物本身材料成分和作案器具上遗留的成分进行比对, 确定作案工具。除此之外, 在家庭装修中出现的一些关于瓷砖等材料的纠纷时, 也可以用XRD技术进行成分鉴定。

3.2 XRD技术在对纸张添加剂进行检验中的应用

文书鉴定是一类非常重要的微量物证鉴定, XRD技术通过对纸张加工过程中所用纤维原料、无机填料和工艺条件等不同因素的分析来对包括对各种假币、股票、契约、各类证件的鉴定, 和对历史文物、爆炸案的鉴定等。

3.3 XRD技术在无机炸药物证检验中的应用

无机炸药是犯罪分子在各类爆炸案件中经常使用的一类炸药, 是在侦查、司法鉴定爆炸案件过程中非常重要的证据。以往的化学显色法、毛细管电泳法、离子色谱法和SEM/EDX法只能分析炸药的离子和元素, 而XRD技术可以确定无机炸药的主要成分, 进而确定炸药种类。

4 结语

微量物证鉴定在公安和司法鉴定的相关工作中发挥着举足轻重的作用。XRD技术因其所需样品量少、不损伤检材、高精确性分析、检验结果在法庭上能起到定结论的作用等独特优势, 在矿石、纸张添加剂、无机炸药等微量物证鉴定领域正被广泛使用。希望本文对XRD技术的应用思路和微量物证鉴定范围的扩大有所提示。

摘要:针对微量物证鉴定检材样品量少、要求保持原始物证完整性和高精度定性定量的要求, 提出X射线衍射法对物质的检验优势, 举例叙述了X射线衍射法对矿石、纸张添加剂、无机炸药等的鉴定能力, 进一步说明X射线衍射法在微量物证鉴定领域独特的优势。

关键词:微量物证鉴定,X射线衍射法,应用分析

参考文献

[1]詹小溪.微量物证在刑事侦查应用中的思考[D].合肥工业大学, 2014.

[2]吕洁.微量物证在侦查中的价值及其发展构想[J].河北公安警察职业学院学报, 2010, 02:21-24.

[3]黄必胜, 袁明洋, 陈科力.X射线衍射技术在矿物类中药鉴定中的研究进展[J].中国现代中药, 2013, 11:917-921.

[4]谢雨贝.论交通事故微量物证的检验分析[D].西南政法大学, 2015.

篇4:X射线衍射分析

关键词:X射线衍射 物相分析 应力 结晶度

中图分类号:TB302 文献标识码:A 文章编号:1674-098X(2014)12(a)-0020-01

自从伦琴发现了X射线,随后X射线被用于表征晶体的结构和物质的物相。当X射线通过某种物质时,会产生不同的衍射花样,该衍射花样可用于表征物质的晶体结构。随着现代科学技术的发展,X射线衍射技术的不断进步,在材料探测方面取得了重要进展,X射线衍射技术可以对晶体、非晶体、人工器件和生物有机体等材料的结构进行分析和表征,该技术为材料科学的发展提供了一种重要的结构表征手段。

1 X射线衍射基本原理

X射线是一种波长较短的电磁波,波长在10-10~10-12 m之间,X射线一般由X射线光管产生,在一根封闭的真空管中,在管子的阴极和阳极施加一个高电压,从阴极发射出的电子流在高压作用下被加速,高速电子流轰击阳极金属靶产生X射线。当一束单色的X射线照射到晶体上时,由于晶体物质是由规则排列的原子构成,规则排列的原子间的距离与X射线波长相当,经不同原子散射的X射线相互干涉,X射线在某些特殊方向上被加强,衍射线方位和强度的空间分布与晶体结构密切相关,不同晶体结构的物质具有各自独特的衍射花样,这就是X射线衍射的基本原理[1]。

1913年,英国物理学家布拉格父子提出了可以反映衍射空间方位和晶体内部结构关系的布拉格方程:

(1)

式中d为晶体的晶面间距,n为任意正整数,θ为掠射角,λ为X射线波长。

2 X射线衍射技术在材料分析中的应用

2.1 物相分析

任何一种晶体都有自己特定的点阵类型、晶胞大小、晶胞中原子的位置和数目等结构参数,这些特定的结构与X射线的衍射角θ和衍射强度I存在某种对应关系。因此,当X射线在晶体中发生衍射时,不同的晶体对应不同的衍射花样,不存在衍射花样完全相同的两种物质。对于自然界中存在的结晶物质,在一定的规范的测试条件下,对所有物质进行X射线衍射测试,得到所有物质的标准X射线衍射花样(即I-2θ曲线),各种已知晶体的X射线衍射花样的收集、校订、编辑和出版工作是由“粉末衍射标准联合委员会(JCPDS)”负责,每一种晶体的X射线衍射花样被制成一张卡片,称为粉末衍射卡(简称PDF卡),X射线物相分析就是利用PDF卡片进行物相检索和分析的。要对某种未知样品进行物相分析时,首先利用X射线衍射仪测试出该样品的X射线衍射花样,然后将实验测试X射线衍射花样与数据库中标准的X射线衍射花样进行对比,如果该样品是一种单相物质,通过对比可以直接确定该样品的物相;如果该样品是由多种晶体构成,则可以在所测重叠的衍射花样中将各种晶体的衍射花样逐一剥离出来,从而确定出该样品的物相构成。

2.2 应力的测定

薄膜的性能与其化学成分、微结构、表形貌及残余应力等多种因素密切相关。研究表明,残余应力对薄膜的电磁学和力学性能及其使用寿命都有重要影响。准确测量薄膜的残余应力是薄膜应用的基础,在科学和技术方面具有重要的意义。薄膜残余应力的测试方法主要包括中子衍射法、拉曼光谱法、压痕法、曲率法和X射线衍射法等。与其他方法相比,X射线衍射技术因其具有非破坏性、可测局部应力、可测表面应力、可区分应力类型、测量时无需使材料处于无应力状态等优点而成为一种比较理想的残余应力测试手段。于国建等[2]采用X射线衍射技术测试了金属有机化学气相沉积(MOCVD)技术外延生长的GaN薄膜的应力情况,结果表明,GaN薄膜中存在压应力。

2.3 材料粒径的表征

纳米材料的性能与其粒径的尺寸密切相关。由于纳米材料颗粒尺寸较小,极易发生团聚,若采用粒度分析仪测试纳米材料的颗粒尺寸,得到的结果与其实际的颗粒尺寸差距较大。利用X射线衍射花样,根据谢乐公式可以测定纳米材料的平均颗粒尺寸。杨景景等[3]利用谢乐公式计算出溶胶-凝胶法制备Co掺杂ZnO薄膜的平均晶粒尺寸,并研究Co掺杂量对ZnO薄膜晶粒尺寸的影响。

2.4 结晶度的测定

结晶度是影响材料性能的重要参数。在一些情况下,物质结晶相和非晶相的衍射图谱往往会重叠。结晶度的测定主要是根据结晶相的衍射图谱面积与非晶相图谱面积的比,在测定时必须把晶相、非晶相及背景不相干散射分离开来。范雄等[4]利用X射线衍射仪测试了不同退火时间处理的聚丙烯的X射线衍射花样,并采用函数分峰法计算出样品中非晶峰和结晶峰比例关系,计算出不同退火处理条件下聚丙烯的结晶度,找出聚丙烯结晶度随退火时间的变化规律。

3 结语

X射线衍射技术已经渗透到物理、化学和材料科学等诸多领域,成为一种重要测试和分析方法。该文主要介绍了X射线衍射的基本原理以及X射线衍射技术在材料物相分析、应力测量、晶粒尺寸分析和结晶度计算等方面的应用。

参考文献

[1]范雄.金属X射线衍射学[M].北京:机械工业出版社,1998.

[2]于国建,徐明升,胡小波,等.SiC衬底上生长的GaN外延层的高分辨X射线衍射分析[J].人工晶体学报,2014,43(5):1017-1022.

[3]杨景景,方庆清,王保明,等.Co掺杂对ZnO薄膜结构和性能的影响[J].物理学报,2007,56(2):1116-1120.

篇5:X射线衍射技术及物相分析

(一)实验目的要求

1.学习了解X射线衍射仪的结构和工作原理; 2.掌握X射线衍射物相定性分析的方法和步骤;

二、实验仪器

本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。3.给定实验样品,设计实验方案,做出正确分析鉴定结果。

1.X射线管

X射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。X射线管线焦点为1×10平方毫米,取出角为3~6度。此X射线管为密闭式,功率为2千瓦。X射线靶材为Cu。

选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。2.测角仪

测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。

(1)衍射仪一般利用线焦点作为X射线源S。如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。

(2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。

(3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为

接收狭缝(RS).生产厂供给0.15毫米、0.3毫米、0.6毫米宽的接收狭缝。(4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。SS和DS配对,生产厂供给与发散狭缝的发射角相同的防散射狭缝。(5)S1、S2称为索拉狭缝,是由一组等间距相互平行的薄金属片组成,它限制入射X射线和衍射线的垂直方向发散。索拉狭缝装在叫做索拉狭缝盒的框架里。这个框架兼作其他狭缝插座用,即插入DS,RS和SS.

3.X射线探测记录装置

衍射仪中常用的探测器是闪烁计数器(SC),它是利用X射线能在某些固体物质(磷光体)中产生的波长在可见光范围内的荧光,这种荧光再转换为能够测量的电流。由于输出的电流和计数器吸收的X光子能量成正比,因此可以用来测量衍射线的强度。

闪烁计数管的发光体一般是用微量铊活化的碘化钠(NaI)单晶体。这种晶体经X射线激发后发出蓝紫色的光。将这种微弱的光用光电倍增管来放大,发光体的蓝紫色光激发光电倍增管的光电面(光阴极)而发出光电子(一次电子),光电倍增管电极由10个左右的联极构成,由于一次电子在联极表面上激发二次电子,经联极放大后电子数目按几何级数剧增(约106倍),最后输出几个毫伏的脉冲。

三、实验原理

根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。

每一种结晶物质都有各自独特的化学组成和晶体结构。没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。因此,当X 2

射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I0来表征。其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映。

在材料科学工作中经常需要进行物相分析,即分析某种材料中含有哪几种结晶物质,或是某种物质以何种结晶状态存在。根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质方法,就是X射线物相分析。利用X射线衍射分析可确定某结晶物质属于立方、四方、六方、单斜还是斜方晶系。

由布拉格(Bragg)方程得晶体的每一个衍射峰都和一组晶面间距为d的晶面组的关系:

式中,为入射线与晶面的夹角,λ为入射线的波长。

另一方面,晶体的每一条衍射线的强度I又与结构因子F模量的平方成正比:

式中,I0为单位截面上入射X射线的功率;K为比例因子,与实验衍射几何条件、试样的形状、吸收性质、温度及一些物理常数有关;V为参加衍射的晶体的体积;|F|2称为结构因子,取决于晶体的结构,它是晶胞内原子坐标的函数,由它决定了衍射的强度。可见d和|F|2都是由晶体的结构所决定的,因此每种物质都必有其特有的衍射图谱。因而可以根据它们来鉴别结晶物质的物相。通常利用PDF衍射卡片进行物相分析。

四、参数选择 1.阳极靶的选择

选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。不同靶材的使用范围。

必须根据试样所含元素的种类来选择最适宜的特征X射线波长(靶)。当X射线的波长稍短于试样成分元素的吸收限时,试样强烈地吸收X射线,并激发产生成分元素的荧光X射线,背底增高。其结果是峰背比(信噪比)P/B低(P为峰强度,B为背底强度),衍射图谱难以分清。

X射线衍射所能测定的d值范围,取决于所使用的特征X射线的波长。X射线衍射所需测定的d值范围大都在1nm至0.1nm之间。为了使这一范围内的衍射峰易于分离而被检测,需要选择合适波长的特征X射线。一般测试使用铜靶,但因X射线的波长与试样的吸收有关,可根据试样物质的种类分别选用Co、Fe,或Cr靶。此外还可选用钼靶,这是由于钼靶的特征X射线波长较短,穿透

能力强,如果希望在低角处得到高指数晶面衍射峰,或为了减少吸收的影响等,均可选用钼靶。2.扫描范围的确定

不同的测定目的,其扫描范围也不同。当选用Cu靶进行无机化合物的相分析时,扫描范围一般为90°~2°(2θ);对于高分子,有机化合物的相分析,其扫描范围一般为60~2°;在定量分析、点阵参数测定时,一般只对欲测衍射峰扫描几度。

3.管电压和管电流的选择

工作电压设定为3~5倍的靶材临界激发电压。选择管电流时功率不能超过X射线管额定功率,较低的管电流可以延长X射线管的寿命。

X射线管经常使用的负荷(管压和管流的乘积)选为最大允许负荷的80%左右。但是,当管压超过激发电压5倍以上时,强度的增加率将下降。所以,在相同负荷下产生X射线时,在管压约为激发电压5倍以内时要优先考虑管压,在更高的管压下其负荷可用管流来调节。靶元素的原子序数越大,激发电压就越高。由于连续X射线的强度与管压的平方呈正比,特征X射线与连续X射线的强度之比,随着管压的增加接近一个常数,当管压超过激发电压的4~5倍时反而变小,所以,管压过高,信噪比P/B将降低,这是不可取得的。具体数据见表三:衍射仪测试条件参数选择。4.发散狭缝的选择(DS)

发散狭缝(DS)决定了X射线水平方向的发散角,限制试样被X射线照射的面积。如果使用较宽的发射狭缝,X射线强度增加,但在低角处入射X射线超出试样范围,照射到边上的试样架,出现试样架物质的衍射峰或漫散峰,对定量相分析带来不利的影响。因此有必要按测定目的选择合适的发散狭缝宽度。

生产厂家提供1/6°、1/2°、1°、2°、4°的发散狭缝,通常定性物相分析选用1°发散狭缝,当低角度衍射特别重要时,可以选用1/2°(或1/6°)发散狭缝。5.接收狭缝的选择(RS):

生产厂家提供0.15mm、0.3mm、0.6mm的接收狭缝,接收狭缝的大小影响衍射线的分辨率。接收狭缝越小,分辨率越高,衍射强度越低。通常物相定性分析时使用0.3mm的接收狭缝,精确测定可使用0.15mm的接收狭缝。6.滤波片的选择: Z滤40,Z滤=Z靶-2 7. 扫描速度的确定

常规物相定性分析常采用每分钟2°或4°的扫描速度,在进行点阵参数测定,4

微量分析或物相定量分析时,常采用每分钟1/2°或1/4°的扫描速度。

五、样品制备

X射线衍射分析的样品主要有粉末样品、块状样品、薄膜样品、纤维样品等。样品不同,分析目的不同(定性分析或定量分析),则样品制备方法也不同。1.粉末样品

X射线衍射分析的粉末试样必需满足这样两个条件:晶粒要细小,试样无择优取向(取向排列混乱)。所以,通常将试样研细后使用,可用玛瑙研钵研细。定性分析时粒度应小于44微米(350目),定量分析时应将试样研细至10微米左右。较方便地确定10微米粒度的方法是,用拇指和中指捏住少量粉末,并碾动,两手指间没有颗粒感觉的粒度大致为10微米。

常用的粉末样品架为玻璃试样架,在玻璃板上蚀刻出试样填充区为20×18平方毫米。玻璃样品架主要用于粉末试样较少时(约少于500立方毫米)使用。充填时,将试样粉末-点一点地放进试样填充区,重复这种操作,使粉末试样在试样架里均匀分布并用玻璃板压平实,要求试样面与玻璃表面齐平。如果试样的量少到不能充分填满试样填充区,可在玻璃试样架凹槽里先滴一薄层用醋酸戊酯稀释的火棉胶溶液,然后将粉末试样撒在上面,待干燥后测试。2.块状样品

先将块状样品表面研磨抛光,大小不超过20×18平方毫米,然后用橡皮泥将样品粘在铝样品支架上,要求样品表面与铝样品支架表面平齐。3.微量样品

取微量样品放入玛瑙研钵中将其研细,然后将研细的样品放在单晶硅样品支架上(切割单晶硅样品支架时使其表面不满足衍射条件),滴数滴无水乙醇使微量样品在单晶硅片上分散均匀,待乙醇完全挥发后即可测试。4.薄膜样品制备

将薄膜样品剪成合适大小,用胶带纸粘在玻璃样品支架上即可。

六、样品测试

1.首先打开冷却循环水系统电源;

2.15min后开启衍射仪总电源,将制备好的试样插入衍射仪样品台;

3.打开计算机,当计算机与X射线衍射仪联机完成后,点击XG operation,启动X射线衍射仪。将管电压、管电流逐步由默认值20kV、2mA升至40kV、20mA。关闭XG operation。

4.点击Standard Measurement,设置参数;(1)设置存盘路径、文件名;(2)扫描范围的确定;

当选用Cu靶进行无机化合物的相分析时,扫描范围一般为90°~2°(2θ);对于高分子、有机化合物的相分析,其扫描范围一般为60°~2°。本实验为 5

10~80;

(3)扫描速度的确定;

常规物相定性分析常采用每分钟2°或4°的扫描速度,在进行点阵参数测定、微量分析或物相定量分析时,常采用每分钟1/2°或1/4°的扫描速度。本实验为4°/min;

(4)管电压和管电流的选择;

工作电压设定为3~5倍的靶材临界激发电压。选择管电流时功率不能超过X射线管额定功率,较低的管电流可以延长X射线管的寿命。X射线管经常使用的负荷(管压和管流的乘积)选为最大允许负荷的80%左右。本实验为40kV、20mA。

(5)狭缝的选择;

DS和SS均为1°,RS为0.3mm。

(6)各项设置完成后点击Attachment键开始测量。

5.测量完毕,关闭X射线衍射仪应用软件。点击XG operation,先将管电压、管电流逐步由40kV、20mA降至默认值20kV、2mA,然后关闭X射线衍射仪,关闭X射线衍射仪电源;取出试样;15分钟后关闭冷却循环水系统及线路总电源。

七、数据处理

采用Jade5.0分析软件分析测试数据,步骤如下:

1.打开Jade5.0分析软件,点击File patterns,双击所选测试数据01.raw; 2.鼠标左键点击S/M键进行自动检索;

3.若自动检索结果不好,可进行人工手动检索,鼠标右键点击S/M键; 4.物相检索后,选择最为匹配的PDF卡;

5.文件的添加。若分析的一系列测试数据为不同条件制备的同一物质,不必逐一分析,可进行文件的添加。点击File patterns,单击所选数据02.raw,然后点击add键,文件添加完成。XRD图谱自动按添加顺序由下向上排列,点击窗口右侧的功能键来调节谱图间距;

6.生成物相分析报告。点击File→Print set up。通过Copy可将物相分析报告粘贴到画图板或Word文档里。

八、实验报告及要求

1.实验课前必须预习实验讲义和教材,掌握实验原理等必需知识。

2.根据教师给定实验样品,设计实验方案,选择样品制备方法、仪器条件参数等。

3.要求实验报告用纸写出:实验原理,实验方案步骤(包括样品制备、实验参数选择、测试、数据处理等),选择定性分析方法,物相鉴定结果分析等。

篇6:X射线衍射在材料分析当中的应用

摘要:X射线衍射分析(X-ray diffraction,简称XRD),是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。本文主要介绍X射线衍射分析在材料科学中应用并以测量内应力为例对其进行具体分析。关键词:材料分析,射线衍射,应用

1912年劳厄衍射实验的成功,为X射线衍射分析的应用开辟了广阔的前景。根据衍射花样可以进行晶体和非晶体的结构测定,研究与结构和结构变化相关的各种问题。X射线衍射的应用已渗透到物理、化学、地质、天文、生命科学、材料科学、石油化工、金属冶金、医药等行业 ,成为非常重要的近代物理分析方法。X 射线衍射分析在石油化工领域的应用包括未知物物相鉴定、催化研究、结晶性聚合物研究。

X射线衍射分析用于催化研究已经有五十余年的历史,近年来由于X射线仪的新发展以及电子计算机技术的应用,使X射线衍射成为催化研究中不可缺少的分析手段。在催化研究中的应用包括催化剂的剖析、催化剂研制及应用过程中各阶段物相组成变化、活性组分变化状况等。从催化剂的剖析结果可以推断催化剂载体和活性组分的类型。通过对催化剂研制过程中各阶段的样品分析, 帮助了解工艺条件变化对各物相组成的影响。应用过程中各阶段物相组成变化、活性组分变化状况等对于寻找改善催化剂的途径,增加其活性与选择性是十分重要的。

在催化剂的研究中,总要涉及催化剂的活性、稳定性、失活机理等问题,这些问题与催化剂的活性物相有关。催化剂的物相组成、晶粒大小等往往是决定其活性和选择性的重要因素。

目前各衍射仪厂家都可配备各种附件装置,包括高低温衍射附件、原位样品池,可以在高、低温条件下模拟生产过程,测量出相变或反应动力学的各种信息,高温加热中样品的晶体结构变化或各种物质相互熔解的变化,晶格常数漂移,熔融样品析出晶相的识别等。

为了能确切测量在不同气氛、温度、压力条件下催化剂等各种材料的结构组成变化,近年设计开发了原位技术。原位分析已在红外等仪器上有了很大程度的发展。由于X射线强度被衍射仪附件的窗口强烈衰减,金属被等窗口厚度 在微米数量级,不能承受较大压力,附件只能在常压或低压下使用, 并且一些反应气体腐蚀性较强,使原位技术在衍射仪上的应用受到限制。清华大学自行设计了“原位”X 射线衍射样品池,用于催化剂的测试,研究催化剂体系的震荡反应机理及活性物相。

衍射分析还用于X型、Y型、ZSM、SAPO等各种分子筛的硅铝比、结晶度、晶胞参数测定,各类样品的结构参数测定。

篇7:X射线衍射分析

实验学时:2

一、实验目的

1.了解X射线衍射仪的构造及基本原理

2.了解衍射仪法测得粉末衍射花样的基本特征,并掌握定性分析方法 3.测试并鉴别一个粉末样品

二、实验内容

本实验涉及了三个知识点: 1.X射线衍射仪的构造及基本原理 2.X射线衍射物相定性分析的原理 3.多相粉末样品的鉴别 三.实验原理、方法和手段

(一)X射线衍射仪的基本构造

本实验使用的X射线衍射仪。仪器主要分为如下几部分:X射线发生器、X射线测角仪、辐射探测器、电脑。主要部件如图1所示,简述如下:

1.X射线管

图1 X射线管示意图

X射线管是由玻璃外罩将发射X射线的阴极与阳极密封在高真空(10-5~10-7mmHg)之中的管状装置。

(1)阴极:由绕成螺线形的钨丝组成,用高压电缆接负高压,并加到灯丝电流,灯丝电流发射热电子。管壳做成U形,目的是加长阴极与阳极间放电的距离。

(2)阳极:又称靶,是使电子突然减速和发射X射线的地方,靶材为特定的金属材料(例如铜靶,钼靶等)。靶安装在靶基上(多为铜质),靶基底部通冷却水管,在工作过程中不断喷水冷却,并与衍射仪的管座相接并一起接地。

操作时由高压电缆接预高压,并加以灯丝电流,管壳应经常保持干燥清洁。2.测角仪

测角仪安装在衍射仪前部,用于安置试样,各类附件及各种计数器,其相对位置如图2所示:

(二)测角仪的工作原理

入射线从X射线管焦点S出发,经过入射光阑系统DS投射到试样P表面产生衍射,衍射线经过接收光阑系统RS进入计数器C。注意:试样台H、计数器C可以分别独立地沿测角仪轴心转动,工作时试样与计数管以1:2的角速度同时扫描(θ-2θ连动)。试样与计数管的转角度数可在测角仪圆盘上的刻度读出。

(三)X射线物相分析原理

任一种结晶物质都具有特定的晶体结构。在一定波长的X射线照射下,每种晶体物质都给出自己特有的衍射花样,每一种晶体物质和它的衍射花样一一对应,多相试样的衍射花样只是有它所含物质的衍射花样机械叠加而成。

为便于对比和存储,将d和I的数据组代表衍射花样。将由试样测得的d-I数据组与已知结构物质的标准d-I数据组进行对比从而鉴定出试样中存在的物相。

四、实验组织运行要求

分批组织实验,要求学生在实验前预习实验指导书,了解实验内容,实验过程中能独立完成实验指导书中的要求。

五、实验条件

所用仪器设备:日本岛津XRD-6000型X射线衍射仪。实验材料:混合粉末样品

六、实验步骤 1.制备试样

将待测混合粉末样品用样品盛放片盛放,将样品轻轻压紧刮平、固定,就可插到衍射仪的样品台上进行扫描测试.2.辐射的选择

不管是哪种方法,其辐射的选择原则相同.根据化学成分的原则,阳极靶面材料的原子序数Z最好比被测物质的原子序数Z小1-2或相等,即

Z靶

衍射仪选用采用计数率的闪烁计数器SC-70,可以实现70万CPS的计数线性。

4.测量参数的选择

测量参数的选择应该说比较繁复,它包括光阑、时间常数、扫描速度、倍率等,受很多因数制约,只能靠实验的积累。

5.衍射实验

对待测样品进行衍射实验,电脑显示衍射花样。6.XRD实验分析(1)计算机检索

实验室配备了PDF卡片库,采用该系统可检索全JCPDS-PDF卡片。只要将待测样品的实验衍射数据(d-I)及其误差(d±△d)考虑输入,也可以输入样品的元素信息以及物相隶属的子数据库类型(有机、无机、金属、矿物等),计算机按照给定的程序将之与标准的花样进行匹配、检索、淘汰、选择,最后输出结果。

(2)分析各个峰的归属(3)计算聚合物材料的结晶度

七、实验报告 要求如下:

1.简述X射线衍射仪技术的原理及各主要部分的作用 2.掌握物相定性分析的基本原理 3.分析混合粉末样品衍射实验结果

八、安全防护

篇8:X射线衍射分析

结皮是新型干法生产线中常见的问题,严重时会影响生产的正常进行,因此,不少水泥工作者对此进行了不同程度的研究。李建锡[1]等人在珠江水泥厂、云浮水泥厂、宁国水泥厂和四平水泥厂等水泥厂作过调研,分析了各个厂预分解系统中不同部位、不同温度及其他物理化学环境造成的各种不同结皮的特征,认为结皮料可以分为三类:密实料块、疏松结皮和硬块结皮。整个预分解系统中出现的各种结皮都可以看作是这三个类型结皮料的组合或过渡形式。笔者在珠江水泥有限公司5 000t/d预分解窑系统的各个点上抽取物料样品、窑皮样品和结皮样品,并对这些样品进行了荧光分析[2,3]。本文将对部分样品进行XRD分析。

1 试验材料与方法

1.1 样品选取

2007年4月30日,因检修窑内耐火砖而停窑。冷窑16h后入窑取样。熟料出口(窑口)至窑内5m处没有窑皮,从6m处开始取样,记作YP06,8m处窑皮样品记作YP08,依此类推,直至28m处窑皮样品,记作YP28;窑尾上升烟道的结皮样品分别记作JPS1~JPS7;窑列C2~C5的结皮样品分别记作JPA2~JPA5;炉列C2~C4的结皮样品分别记作JPB2~JPB4;分解炉的结皮记作JPB6;窑列C1、炉列C1和C5没有结皮,取不到样品[3]。共计27个样品。本文从中选取JPS2、JPS6、JPA5、JPB2和YP12共5个样品作XRD分析。5个样品的挥发性组分含量见表1。

%

1.2 样品检测

1.2.1 XRF分析

XRF分析仪的型号为:PHILIPS PW 2424;荧光分析仪的参数为:电压30kV,电流70mA,水温30℃,真空度4.10。

1.2.2 XRD分析仪

XRD分析仪采用Co(Kα)靶,管流30mA,管压40kV,扫描速度12(°)/min,扫描范围10°~80°。

2 分析结果与结论

5个样品的XRD分析结果见图1~图5。

1)JPS2结皮和JPS6结皮属于硬块结皮类型。从图1看出,JPS2结皮的主要矿物是硬石膏、方解石和SiO2等,其中以硬石膏的衍射峰最强,说明结皮中含有相当数量的CaSO4,CaSO4是由刚分解的CaO和烟气中的SO3化合生成的。CaSO4颗粒不但能被融体润湿,还可熔于融体形成致密坚硬的结皮[4]。从图2看出,与JPS2结皮相比,JPS6结皮多了一种主要矿物Na2SO4,且Na2SO4的衍射峰较为强烈,说明结皮中的硫酸盐不但以CaSO4的形式存在,而且以R2SO4的形式存在。图1和图2进一步解释了上升烟道结皮硫和碱的变化趋势[3]。Na2SO4的挥发温度低,CaSO4的挥发温度高,因此在降温过程中,CaSO4的冷凝率大于Na2SO4。

2)JPA5结皮属于疏松结皮类型。从图3可以看出,KCl和NaCl具有较强的衍射峰,而硬石膏的衍射峰则相对较弱,没发现有Na2SO4的衍射峰,说明了引起窑列C5结皮的活跃组分由硫变成了氯,碱的主要存在形式也由硫酸盐形式转为氯盐形式。图3进一步验证了文献[3]中所叙述的挥发性组分的变化趋势。

3)JPB2结皮属于密实料块类型。从图4可以看出,JPB2结皮的主要矿物是硬石膏、方解石、SiO2、KCl和Na2SO4,各矿物的衍射峰较为清晰,受到的干扰较少,说明在结皮前各种矿物已黏附在粉尘颗粒上形成晶体,甚至有少量矿物相互混合,形成低温共融体。在B列C2内,受到活性黏土矿物(无定形二氧化硅)的作用,这些物质黏结形成结皮,这种黏结力主要体现为表面力,即范德华力、静电力及高的比表面能等。此图从另一个侧面证实了A列和B列C2~C4间结皮的形成机理[3]。

4)YP12窑皮是距离窑口12m处的窑皮。从图5可以看出,YP12窑皮的主要矿物是硅酸盐熟料的常规矿物:C3S、C2S和C4AF等,没发现KCl、NaCl和Na2SO4等矿物的衍射峰,但XRF分析结果又显示YP12含有相当数量的碱、氯、硫成分,共10.784 2%(见表1),因此,这些物质很可能以单质的形式被包裹在玻璃相中,或被固化在常规熟料矿物的晶格中。

综上所述,JPS2结皮含有相当数量的CaSO4,CaSO4颗粒是导致这个区域结皮的主要物质;JPS6结皮中的硫酸盐存在形式由熔点较高的CaSO4向熔点较低的R2SO4过渡;引起窑列C5结皮JPA5的活跃组分由硫变成了氯,碱的主要存在形式也由硫酸盐形式转为氯盐形式;形成JPB2结皮黏结力主要体现为表

面力,即范德华力、静电力及高的比表面能等。

摘要:通过XRD分析可知:窑尾上升烟道2号结皮JPS2含有相当数量的CaSO4,CaSO4颗粒是导致这个区域结皮的主要物质;上升烟道6号结皮JPS6中的硫酸盐存在形式由熔点较高的CaSO4向熔点较低的R2SO4过渡;引起窑列C5结皮JPA5的活跃组分由硫变成了氯,碱的主要存在形式也由硫酸盐形式转为氯盐形式;形成炉列C2结皮JPB2的黏结力主要体现为表面力,即范德华力、静电力及高的比表面能等。

关键词:预分解窑,结皮,窑皮

参考文献

[1]李建锡,陈全德,袁润章.预分解系统结皮特征的研究[J].水泥工程,1999(1):10-13.

[2]邝焯荣,吴笑梅,樊粤明,等.挥发性组分在预分解窑系统的分布(一)[J].水泥,2008(4):14-18.

[3]邝焯荣,吴笑梅,樊粤明,等.挥发性组分在预分解窑系统的分布(二)[J].水泥,2008(5):15-19.

上一篇:《花仙子》读后感下一篇:回忆往事作文300字