无碳小车说明书

2024-04-18

无碳小车说明书(精选6篇)

篇1:无碳小车说明书

无碳小车说明书

(本小组选择的竞赛项目是竞赛项目二)

一、小车整体说明

小车整体结构上面,我们根据小车功能要求和机器的构成(原动机构、传动机构、执行机构、控制部分),把小车分为驱动部分、转向部分两个模块进行分析和设计。

在此基础上,小车采用三轮机构,后轮驱动,前轮转向,重物下落的过程中通过齿轮传动机构,将重物的重力势能转化为小车运动的动能,在后轮驱动下,再通过转向机构中的凸轮传动,将后轮的行走转化为前轮的转向,以便达到预期的要求。

考虑到竞赛项目二要求的桩距是(400±100)mm,小车车身在允许范围内应尽可能小,并且行走的轨迹也要尽可能的短,这样才能够避免小车车身碰到障碍物或者小车驶出乒乓球桌。

二、驱动部分

原理分析:根据小车功能要求,给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置。该自行小车在半张标准乒乓球台(长1525mm、宽1370mm)上,绕相距一定距离的两个障碍沿8字形轨迹绕行,绕行时不可以撞倒障碍物,不可以掉下球台。以小车绕行的圈数、以及碰倒或避开障碍的多少来综合评定成绩。在设计要求中,驱动部分是将物块重力势能转化为小车的动能,并在有限的动能下,使小车能够移动尽可能多的距离,让成绩达到尽可能好。

机构分析:为达到既定要求,首先,在驱动机构上,我们通过一个绳轮驱动机构将重物的重力势能转化为小车后轮的驱动动能,具体就是将绳子绕过高40cm的定滑轮,一端连在重物上,另一端固定的绕在驱动轴上,通过重物下落带动驱动轴转动,进而实现后轮的驱动。然后,为了使小车运动的距离达到尽可能长,我们使用了一个齿轮传动机构,通过齿轮的运转和传递,使得在绳长确定即能量一定的情况下,小车后轮转动的圈数越多,进而尽可能的增加绕行的圈数,但在这个过正中,不能因为摩擦力的情况而发生自锁现象,在这些情况下,我们抉择出最佳的传动比和传力绳。驱动结构简图如下

三、传动转向部分

要实现尽可能多的使小车重复完成绕八字运动,传动及转向结构是关键,此处我们来分析一下转向机构。

基本原理:

1、传动机构:传动机构的功能是把动力和运动传递到转向机构和驱动轮上。要使小车绕的圈数更多及按设计的轨道精确地行驶,传动机构必需达到传递效率高、传动稳定、结构简单重量轻等要求。在这些要求上我们想过以下几种方法来解决:

1、不用其它额外的传动装置,直接由动力轴驱动轮子和转向机构,此种方式效率最高、结构最简单。在不考虑其它条件时这是最优的方式。

2、.带轮具有结构简单、传动平稳、价格低廉、缓冲吸震等特点但其效率及传动精度并不高。不适合本小车设计。

3.齿轮具有效率高、结构紧凑、工作可靠、传动比稳定但价格较高。因此在第一种方式不能够满足要求的情况下优先考虑使用齿轮传动。

2、转向机构:转向机构是本小车设计的关键部分,直接决定着小车的功能。转向机构也同样需要尽可能的减少摩擦耗能,结构简单,零部件已获得等基本条件,同时还需要有特殊的运动特性。能够将旋转运动转化为满足要求的来回摆动,带动转向轮左右转动从而实现拐弯避障的功能。

能实现该功能的机构有:凸轮机构摇杆、曲柄连杆摇杆、曲柄摇杆、差速转弯等等。

凸轮:凸轮是具有一定曲线轮廓或凹槽的构件,它运动时,通过高副接触可以使从动件获得连续或不连续的任意预期往复运动。优点:只需设计适当的凸轮轮廓,便可使从动件得到任意的预期运动,而且结构简单、紧凑、设计方便;缺点:凸轮轮廓加工比较困难。在本小车设计中由于:凸轮轮廓加工比较困难、尺寸不能够可逆的改变、精度也很难保证、重量较大、效率低能量损失大(滑动摩擦)

曲柄连杆摇杆 优点:运动副单位面积所受压力较小,且面接触便于润滑,故磨损减小,制造方便,已获得较高精度;两构件之间的接触是靠本身的几何封闭来维系的,它不像凸轮机构有时需利用弹簧等力封闭来保持接触。缺点:一般情况下只能近似实现给定的运动规律或运动轨迹,且设计较为复杂;当给定的运动要求较多或较复杂时,需要的构件数和运动副数往往比较多,这样就使机构结构复杂,工作效率降低,不仅发生自锁的可能性增加,而且机构运动规律对制造、安装误差的敏感性增加;机构中做平面复杂运动和作往复运动的构件所长生的惯性力难以平衡,在高速时将引起较大的振动和动载荷,故连杆机构常用于速度较低的场合。在本小车设计中由于小车转向频率和传递的力不大故机构可以做的比较轻,可以忽略惯性力,机构并不复杂,利用 MATLAB 进行参数化设计并不困难,加上个链接可以利用轴承大大减小摩擦损耗提高效率。对于安装误差的敏感性问题我们可以增加微调机构来解决。曲柄摇杆 结构较为简单,但和凸轮一样有一个滑动的摩擦副,其效率低。其急回特性导致难以设计出较好的机构。差速转弯 差速拐是利用两个偏心轮作为驱动轮,由于两轮子的角速度一样而转动半径不一样,从而使两个轮子的速度不一样,产生了差速。小车通过差速实现拐弯避障。差速转弯,是理论上小车能走的最远的设计方案。和凸轮同样,对轮子的加工精度要求很高,加工出来后也无法根据需要来调整轮子的尺寸。(由于加工和装配的误差是不可避免的)综合上面分析我们选择曲柄连杆摇杆作为小车转向机构的方案。

机构分析:首先,要实现绕八字运动,可以采用圆柱凸轮+摇杆。设计适当的沟槽,圆柱凸轮做定轴转动时,通过高副接触可以使从动件获得连续不断的任意往复运动,通过分析走八字时转向轮的运动规律可以获得摇杆的运动规律,以此规律为依据可以分析出圆柱凸轮沟槽的轨迹。其次,要使八字尽可能多,这就要求我们必须减少能量损失,提高能量利用率。考虑到齿轮具有效率高,工作可靠,传动比稳定的特点,我们采用齿轮传动,通过一对啮合的直齿轮机构将驱动住的转动传递给圆柱凸轮。另外为尽量减小摩擦带来的能量损失,可通过使用润滑油润滑的方式来减小摩擦。小车传动及转向结构简图如下

四、理论分析

(1)小车轨迹形状及长度

我们是根据伯努利双扭线来设计小车的8字轨迹,它的直角方程是(x²+y²)²=a²(x²-y²),轨迹的周长C=5.244a,双纽线

考虑到小车运动的实际情况,上图中m,n两点代表两木桩,在autoCAD中画出mn=300mm,400mm,500mm的图像,求出周长。然后用EXCEL的函数功能求出不同桩距的相关数据

autoCAD绘制的双纽线

Excel表格。

(2)圆柱凸轮沟槽的确定

1/21/2通过伯努利双扭线,解出y=(-x2+(8a2x2+a4)/2-a2/2),yy,=-x+4ax/(8x2+a2)1/2,求出y,这样可以求出轮子的转角为α,因为转动杆的长度和前轮与转动副的距离一定,分别可设b,a,c,利用三角函数求得杆的转角为β=arcsin(csinα/b)(β取钝角),这样沟槽的函数h=a*sin(α+β),利用h的变化设计沟槽,使轮子按照预定的轨迹转动。

(3)小车后轮直径齿轮传动比

设小车运动轨迹长度为S,驱动轴齿轮对与凸轮同轴齿轮的传动比为i,后轮直径为D。根据设计要求,小车完成一次八字,圆柱凸轮旋转一周,后轮旋转i 周,即

i×πD=S

D=S/πi

篇2:无碳小车说明书

1.摘要..............................................................1 2.引言..............................................................1 3目的..............................................................1 4工作原理和设计理论推导............................................1 4.1总体结构.....................................................1 4.2设计方案介绍与计算分析.......................................2 4.2.1无碳小车模块机构介绍...................................3 5.设计总结.........................................................8 6.附件

1.摘要

本作品是依据工程训练综合能力竞赛命题主题“无碳小车”,提出一种“无碳”方法,带动小车运行,即给定一定重力势能,根据能量转换原理,设计一种可将该重力势能转化为机械能并用来驱动小车行走的装置。该小车通过微调装置,能够实现自动走“S“字直线绕障。此模型最大的特点是通过两个不完全齿轮驱动前轮摆动,进行可调整的周期性摆动,使前轮的摆动节拍具有可调性。本文将对无碳小车的设计过程,功能结构特点等进行详细介绍,并介绍创新点。

2.引言

随着社会科技的发展,人们的生活水平的提高,无碳对于人们来说,显得越来越重要,建设无碳社会,使得生活更加的环保,没有任何的污染。节能、环保、方便、经济,是现代社会所提倡的。现在许多发达国家都把无碳技术运用到各个领域,像交通,家具等,这也是我国当今所要求以及努力的方向。针对目前这一现状,我们设计了无碳小车模型,用重力势能转化为机械能提供了一种全新的思路,以便更好的解决以上问题。

3目的

本作品设计的目的是围绕命题主题“无碳小车”,即不利用有碳资源,根据能量转化原理,利用重力势能驱动带动具有方向控制功能的小车模型。这种模型比较轻巧,结构相对的简单,能够成功的将重力势能转化为小车的动能,从而完成小车前行过程中的所有动作。

4工作原理和设计理论推导

4.1总体结构

图 1 无碳小车总体结构

无碳小车模型的主要机构有驱动机构、转向机构、行走机构及微调机构。主要部件如下图2所示为小车整体模型。

图 2 无碳小车模型

4.2设计方案介绍与计算分析 4.2.1无碳小车模块机构介绍

1.驱动机构

本方案采用绳轮作为驱动力转换机构。我们采用了梯形轮使能量转化过程中有更合适的转矩使驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。同时做到了到达终点前重块竖直方向的速度要尽可能小,避免对小车过大的冲击,提高了能量利用率。绳轮机构简单,传动效率高,且在针对不同场地导致的所需动力不同的情况,可通过调节绕绳位置来改变转矩,使动力改变,增强适应性。

2.转向机构 如图,本方案采用了摇杆加两个完全相同的不完全齿轮,实现可变周期性转向。考虑到摩擦、制造、安装误差的敏感性等因素,我们最终选用了摇杆加不完全齿轮的方案。考虑到适应场地的需求,我们将原来的一个不完全齿轮改为两个,实现了不完全齿角度差的可调性。

图 3 转向机构

3.行走机构

行走机构即为三个轮子,轮子又厚薄之分,大小之别,材料之不同需要综合考虑。

有摩擦理论知道摩擦力矩与正压力的关系为

对于相同的材料 为一定值。

而滚动摩擦阻力:

MN

fMR3

NR 所以轮子越大小车受到的阻力越小,因此能够走的更远。但由于加工问题材料问题安装问题等等具体尺寸需要进一步分析确定。

由于小车是沿着曲线前进的,后轮必定会产生差速。对于后轮可以采用双轮同步驱动,双轮差速驱动,单轮驱动。

双轮同步驱动必定有轮子会与地面打滑,由于滑动摩擦远比滚动摩擦大会损失大量能量,同时小车前进受到过多的约束,无法确定其轨迹,不能够有效避免碰到障碍。

双轮差速驱动可以避免双轮同步驱动出现的问题,可以通过差速器或单向轴承来实现差速。差速器涉及到最小能耗原理,能较好的减少摩擦损耗,同时能够实现满足要运动。单向轴承实现差速的原理是但其中一个轮子速度较大时便成为从动轮,速度较慢的轮子成为主动轮,这样交替变换着。但由于单向轴承存在侧隙,在主动轮从动轮切换过程中出现误差导致运动不准确,但影响有多大会不会影响小车的功能还需进一步分析。

单轮驱动即只利用一个轮子作为驱动轮,一个为导向轮,另一个为从动轮。就如一辆自行车外加一个车轮一样。从动轮与驱动轮间的差速依靠与地面的运动约束确定的。其效率比利用差速器高,但前进速度不如差速器稳定,传动精度比利用单向轴承高。

双轮差速和单轮驱动在“S”字直线绕障和“8”字绕障中都是可行的,但是相比之下,双轮差速适合于“S“字直线绕障,而单轮驱动更加适合于8字绕障。因此我们选用双轮差速。

综上所述行走机构的轮子应有恰当的尺寸,采用单轮驱动。如果有条件可以通过实验来确定实现差速的机构方案。

4.微调机构

微调部分所要实现的功能分为两个部分:一是实现前轮最大转角αm的变化,二是实现转动周期的变化。根据所要实现的功能不同,微调机构也位于两个部分。

(1)摇杆微调机构

通过改变摇杆的长度,使被约束杆的摆动幅度增大,进而使前轮的最大转角αm发生改变。为了使αm的改变具有连续性,使小车可以适应更复杂的环境,此处采用微调滑块(配有螺母紧固滑块)式机构。其调节具有连续性,且调节精 度较高。

图 4 摇杆微调机构

(2)不完全齿轮微调机构 上文也指出,本方案采用了两个完全相同的不完全齿轮作为主动轮,两不完全齿轮之间有夹角β,此夹角的变化会造成两不完全齿轮对从动轮的作用时间间隔发生改变,即:从动轮做时停时转的间歇运动,而停、转的时间长度发生改。

通过这一点可以调节行走路线中,长度路径和转弯路径的长度。通过两个微

图 5 不完全齿轮机构

调机构的合理配合,基本可以实际行走任意路径。4.2.2无碳小车设计的理论指导

1.运动原理

如上图所示,重物下降时带动绳轮的转动,绳轮的转动带动轮的转动,通过线传动驱动转盘的转动,再通过连杆将转盘周期性的转动转化为前轮的摆动。由后轮的直线运动与前轮的摆动运动结合一起,从而实现了近似正弦曲线的运动轨迹,完成任务。

2.尺寸分析

通过调节微调装置,即:两不完全齿轮角度配合,及微调滑块的位置,可以完成走“S”字直线绕障路线,如下图:

图 6 “S"字直线绕障路线

由于采用了直线与曲线配合的行走路线,可尽量减少周期路程。(1)

v后轮后轮r后轮Bgreenvgreengreenrgreenwithandvgreenvpurplevpurplepurplerpurplepurplebluevrblueblueblue

vBBrBBgreenvgreengreenrgreenwithandvgreenvblue

vbluebluerblueblueyellowvyellowyellowryellow假设r已知,8个未知数7个方程,即只有一个自由变量:

v后轮Kr后轮rpurplergreenrbluer后轮rpurplevbluergreenrblue

记于是:,则

v后轮Kvblue,虽然不一定匀速,但可以对t积分,S后轮Ksblue

K的物理意义在于,r后轮与rpurple的地位是等同的,其大小只会影响最后的精度,而不会影响比例(虽然看上去调整后轮的半径似乎更能影响轨迹,实质上并非如此,但是的确会影响转的圈数,详见下)(2)设0,,轨迹半径为R,则直线段长:弧长为

tanR:Rtan:30.8260.453:0.5473时,比例为12/3当  6 设蓝色上有两组锯齿,每走半个“S”字,蓝色齿轮转了1圈。

另设走直线时记为P1,走弧线时记为P2,半个字中,直线段总长S1,弧线总

s1S1S2s,ss1S112是关于蓝22长,即有,由(1)的公式,可得,其中色齿轮的弧长。转1圈,可知

s1s22rblues1r2blues22(1)sblue,故rblue

可确定其比例,即位置角,同时也可得出

rblue的值无本质影响(在K不变的后轮K2r后轮K2rbluerblue)情况下)。又(其中,若增加blue的值,同时成比例增加r后轮的值,使K不变,则

K2不变,所以外轮还是转这么多圈,相当于成比例放大了。(半个周期里外轮转多少圈在这里无关紧要,在其它分析里可能有用,反正也可以表出。)

由前轮传导等等可以得出蓝色齿轮周长尺寸路程,sblue,而对应的走半个S字的S后轮由需要走的实际路程确定(后轮,B=Back),而

sblue与S后轮之间满足q前述约束关系,这个K就可以调整了。(3)关于前轮倾斜角与轨迹半径

若设前轮所处点与某一后轮所处点的距离为L,则轨迹半RL2sin2,可以实验测得。经过分析与测定,在实物测定之前,我们暂

前后轮轴距L:

150mm

后轮轴长D:

100mm 后轮半径R:

80mm 最大齿轮半径rred:

45mm 不完全齿轮半径rgray: 40mm 定数据如下:

最小齿轮半径ryellow:

8mm 其次小齿轮半径rorange:10mm 其中各齿轮的模数为2,压力角为20°。根据以上分析计算确定小车主要结构的尺寸,如各个齿轮的分度圆半径前后轮轴距,再根据主要结构框架完成各个零件的设计,具体设计见CAD装配图和零件图。

5.设计总结

经过无碳小车整体方案的设计、零件加工、无碳小车的装配以及后期的调试到完成参加比赛。在整个竞赛参与过程中通过亲手制作和对设计方案的思考让我们团队成员学习到了很多,总结无碳小车设计方案和参赛感想如下:

1.无碳小车采用双轮差速,机构简单,转弯更为容易实现。

2.使用T型绳轮,使能量转化过程中有更合适的转矩使驱动力适中。3.采用多处微调机构,便于纠正轨迹,避开障碍物。

篇3:无碳小车设计研究

1.1设计简图

8字型无碳小车以重力作为驱动力, 具有自动转向功能。小车的综合性能以越障能力作为评优标准。设计的结构简图如图1所示

1.2小车整体设计

8字型无碳小车结构是由原动机构、传动机构、转向机构和调节机构组成的。其中原动机构的动力是由重物下落时的重力势能转化而来;传动机构可以采用齿轮传动;转向机构是由曲柄摇杆结合不完全齿轮构成;调节机构则通过调节螺丝来完成。

1.3加工制作

车底板因为不需要承受很大的压力, 精度要求不是非常高, 考虑到质量轻, 并且加工方便以及成本低等因素, 决定用铝合金薄板加工制作成三角形式底板。可以利用&=4mm铝合金板的边角废料, 节约且易加工。

1.4转向机构

转向机构是本小车的关键部分, 尤其8字型小车要求十分严格。能实现转向控制的机构通常有:曲柄连杆+摇杆, 曲柄摇杆, 凸轮机构+摇杆和差速转弯等几种方式。通过实际对比分析可得出, 凸轮机构虽然结构简单, 紧凑, 但轮廓轨迹加工和计算难度较大。而曲柄连杆+摇杆, 其工作原理简单明了, 加工和零件设计均易实现。该结构可将旋转运动转化为满足实际要求的往复直线运动, 进而使得摇杆带动转向轮做周期性左右转动来实现拐弯避障功能。为了减少因紧固连接而造成的摩擦损耗, 可以在连杆两段使用万向节。万向节转向灵活, 机构紧凑可购买。既提高了转向精度又降低了成本, 此转向机构具有结构易加工, 成本低, 调节稳定等优点。

1.5动力转换机构

动力转换机构的功能是将重块的重力势能转化为主动轮的驱动力, 从而把重力势能转换为小车前进的动能。其中简单易行的方案是:利用细线和定滑落机构, 细线两段分别绕在卷筒上和栓在重锤上, 而卷筒则固定在驱动轮轴上, 使得重锤的重力可以转换为驱动轮上的扭矩, 从而带动主动轮产生动力。其中卷筒的直径对车速及小车的稳定性起到至关重要的作用, 适合的卷筒直径是保证小车匀速平稳地造成全程的前提。驱动轴带动安装在其两端的两个后轮旋转, 从而驱动小车前进。如果两个后轮同时驱动的话, 则当小车转弯的时候便会因差速问题导致小车的不稳定, 容易引起侧翻。即采用与S型无碳小车相同的方法:单轮驱动。

1.6传动机构的设计

8字型无碳小车驱动机构主要由绕线盘、重物、齿轮、定滑轮和钢丝绳等构成。根据机械原理相关方面知识可知, 齿轮传动比较繁琐, 原因是传动比设计是否恰当影响到小车转向机构的设计。通过实践与理论相结合的方式得出了以下可行方案:

二级齿轮传动方案, 该方案利用重物下落带动阶梯轴上固定的主动齿轮, 再带动安装在后轮轴上的齿轮, 最后再带动第二级从动齿轮, 将从动齿轮得到的能量转化为后轮驱动力。如图2所示。

1.7驱动机构的设计

根据机械原理知识可知, 齿轮的传递效率大约为98%, 可以较好的提高能量利用率。为了让重物下落时的重力势能转化为小车前进的动能能量损失最少, 我们可以选择以齿轮副来完成滚筒轴到后轮轴的动力传动。但是由于刚开始启动时, 需要的力矩大, 而在小车进入行使状态后, 运动逐渐趋于平稳, 此时需要的力矩较小, 所以可以在滚筒轴上安装一个锥形滚筒。

2 S型无碳小车

2.1设计简图

S型无碳小车的设计简图如图3所示。其运行轨迹为S型, 要求小车具有自动转向功能, 运行轨迹如图4所示。

2.2运动轨迹分析

根据比赛规则, S型无碳小车必须越过不同间距的障碍物。通过分析对比可得出以下两种方案达到上述效果:

方案一:采用变传动比传动。其驱动和转向都设计为变传动比。 优点是能够在不改变幅值的条件下改变小车的转向周期, 在相同的周期内所走的路程较多, 绕过障碍物的数目较多。缺点是变传动比结构比较复杂, 加工难度大。改进的方案是采用分档变速和无极变速机构。

方案二:采用定传动比传动。其中驱动机构和传动机构都采用定传动比, 仅仅通过改变转向的最大转角即可达到绕过不同间距障碍物的目的。其优点是机构比较简单, 传动效率高。缺点是能够绕过障碍物的数目较少。

2.3转向机构

S型无碳小车的轨迹为S型, 应设计前轮导向。转向机构是设计该小车的关键部分, 决定着小车的行走轨迹。其同样需要满足结构简单、加工难度低、减少摩擦损耗等条件, 同时还必须具备特殊的运动性能:能够将主动轴的回转运动转化为摇杆的周期性摆动, 从而带动转向车轮相对车身左右转向而实现S型运动轨迹。通过查阅资料可知能实现该功能的机构有:曲柄摇杆、曲柄连杆+摇杆、凸轮机构+摇杆以及差速转向。从机械相关资料可知, 曲柄连杆机构简单且加工成本低, 故应采用曲柄连杆机构作为小车的转向机构。如图5、 6所示。

2.4行走机构的设计

由于无碳小车是沿着S型轨迹曲线前进, 那么后轮必定会产生差速问题。如果无碳小车采用的是双轮驱动机构, 当小车在转弯时就会导致车身的不稳定, 甚至侧翻, 更加难以保证行走轨迹的精确性。为了解决差速问题, 建议采用结构简便且耗能小的方法, 即采用单轮驱动。意思是将从动轮轴上的一个后车轮作为驱动轮, 其与从动轴建立旋转约束, 以便于传递扭矩。而另一个后车轮则通过轴承套在轴上, 不建立与从动轴的旋转约束, 在前进过程中配合主动轮的转向能够自动调节速度, 从而保证无碳小车在前进的过程中车身的稳定性, 提高了运行轨迹的精确性。

2.5微调机构

S型无碳小车的微调机构即对连杆长度和曲柄长度的调整。因为微调机构能够体现小车的柔性。其中连杆长度决定着转向轮左右转角的大小。而曲柄长度决定的是小车行驶的周期即桩距, 曲柄的长度越长, 绕装周期就越短, 适应障碍物的间距就越短。连杆长度与曲柄长度调整是否适当直接影响到比赛时间, 又由于轨迹路线对两者长度较敏感, 故应精确调试。通过查阅资料可得出, 采用类似丝杠的机构, 用带螺纹的曲柄和连杆, 将螺纹锁死。在调整长度时, 应拧松螺母, 调整长度, 此做法也精确地调整其长度。

3结束语

文章针对全国大学生工程训练大赛中的无碳小车进行了分析, 分为8字型和S型进行阐述。其共同特点就是两者都是利用单轮驱动的结构, 以便于解决差速问题。其中8字型小车转向机构可由多种方式组成, 最好的方法是曲柄连杆加摇杆, 而S型小车则采用连杆机构作为转向机构来实现小车自动转向的。驱动机构两者采用齿轮机构为宜。大量实验证明, 结构简单, 加工难度低, 加工成本小, 实用性好, 效率高才是我们所要达到的目的。

参考文献

[1]方能杰, 柳斌, 王亨, 等.8字循迹无碳小车创新设计[J].浙江农林大学, 2013, 8:76-77.

[2]张金玲, 肖坤, 边普阳, 等.8字型无碳小车的结构设计与实现[J].宁波职业技术学院学报, 2015, 6.

[3]张玉航, 黄力, 王凯.8字绕障无碳小车转向系统的设计[J].科技创新导报, 2014, 7:28-29.

[4]李立成, 徐漫琳, 柯昌辅.S型无碳小车结构设计[D].重庆大学, 2015, 3:152-154.

[5]皇大伟, 景新, 孟程琳, 等.基于凸轮控制的S型无碳小车设计[J].机械设计与制造工程, 2015, 7:43-47.

篇4:论一种可行的8字形无碳小车

关键词: 8字形;间歇控制;机构设计;曲柄搖杆机构

1.前言

如今,科学技术日新月异,人们的生活水平有了很大的改善,然而环境污染问题也越来越凸显出来,因此可持续发展已经被原来越多的人接纳。坚持科学发展,走可持续发展的道路,是社会发展必然趋势,为此我国正在努力将无碳技术应用到工农业及日常生活的各个领域,缩小与发达国家的差距。作为当代有素质的大学生通过自己的知识来设计出一款无碳小车,具有重要的意义。本设计的要求:小车运动所需的能量完全由重力势能提供,不得提供任何其它能量,且小车为行走时不可人工干预其行走。

2.运动轨迹分析及设计

设桩间距为400mm,一个8字路线总长800π,大轮周长为100π,完成一个8字大轮转8圈,间歇机构转2圈如图1。本设计分为三个阶段。阶段一:初始时,小车停在8字交点位置,前轮保持最大转角,不完全齿轮刚好离开完全齿轮,不完全齿轮将空转3/4圈,小车在前轮角度固定下行走大约3/4圆,之后不完全齿轮拨动完全齿轮,实现转向如图2。阶段二:完全齿轮被拨动的过程中,前轮由初始最大角回位再反向变到最大角,并保持这一角度前进,此时不完全齿轮刚好离开完全齿轮如图3。阶段三;在此阶段,小车走过大概3/4圆,不完全齿轮又与完全齿轮啮合,开始转向,到B点结束,不完全齿轮又与完全齿轮分开,如此循环即可实现小车的8字形行走轨迹。

3.小车整体设计

根据今年比赛的新规定,桩被撞到则停止比赛,本作品在保证小车正常行驶的情况下,尽量减小小车的整体尺寸,本设计长150mm宽100mm高574mm。通过对小车行走的分析,可以知道一个8字周期内大轮转8圈,前轮需要转2次向,为实现这一目的,设计本作品差速器右边齿轮与主轴右边齿轮传动比为2:1,主轴左边齿轮与底盘大齿轮传动比为2:1,由此实现大轮转8圈小轮转2次向;为保证小车的平稳行驶,在赋予小车了零件材料后,通过质量分析,以及修改设计之后,小车质心位于车身中心。

4 小车的主要结构

本设计主要由原动机构、传动机构、转向控制机构、调节机构四部分构成,其中原动机构由重锤下落使其重力势能转化为动能;传动机构采用齿轮传动;转向机构由曲柄摇杆结合不完全齿轮构成;调节机构通过调节螺丝来完成。

4.1 原动机构的设计

原动机构将重锤的重力势能转化为小车前进所需的的动能。本设计采用锥形轴作为驱动机构的一部分,可以保证小车在启动时、行进时、结尾时始终保持匀速平稳行驶,并可以有效使小车低速落到车板上,减小碰撞能量损失,增加小车行驶的距离。

4.2 传动机构的改进

本设计采用齿轮传动,可以高效率的将重锤的重力势能转化为小车的动能。采用单轮驱动,并且结合差速器实现小车的平稳转弯,以此防止由于离心力过大小车的侧倒。

4.3 转向控制机构

本设计采用曲柄摇杆机构与不完全齿轮结合的结构实现小车的精确转向,通过计算小车起步时的摆放角度为20°如图5。本作品采用的曲柄摇杆机构通过SolidWorks的模拟仿真,经过大量实验将其极位夹角调到可以忽略的角度(1.47°),极大地减小了小车的急回问题。

4.4 调节机构

通过旋进旋出螺丝来完成小车曲柄摇杆机构调节,以此调整小车。

5.结语

本设计注重整体设计,经过与其它作品的大量对比后设计出本作品。与其它作品相比本设计更看重能量利用率、整体稳定性、运动精确性、结构简单性、以及制造成本。采用双滑轮结构,可以无形中增加绳的长度,提高能量利用率;采用三根柱约束导轨,可以防止小车在行走的晃动,提高小车的稳定性;采用差速器机构保证小车转弯时的稳定;采用单轮驱动,避免了从动轮打滑,使小车更稳定;采用曲柄摇杆机构精确控制小车的转向。

参考文献:

[1]孙恒,陈作模,葛文杰.西北工业大学机械原理及机械零件教研室(第八版)[M].高等教育出版社

篇5:无碳小车设计说明书

无碳小车设计说明书

参赛者:

2010040601213 杨艳超 2010040601208 肖庆敏

2012-9-1

摘要

第二届全国大学生工程训练综合能力竞赛命题主题为“无碳小车”。在设计小车过程中特别注重设计的方法,力求通过对命题的分析得到清晰开阔的设计思路;作品的设计做到有系统性规范性和创新性;设计过程中综合考虑材料、加工、制造成本等给方面因素。我们借鉴了参数化设计、优化设计、系统设计等现代设计发发明理论方法;采用了MATLAB、PROE等软件辅助设计。

我们把小车的设计分为三个阶段:方案设计、技术设计、制作调试。通过每一阶段的深入分析、层层把关,是我们的设计尽可能向最优设计靠拢。

方案设计阶段根据小车功能要求我们根据机器的构成(原动机构、传动机构、执行机构、控制部分、辅助部分)把小车分为车架、原动机构、传动机构、转向机构、行走机构、微调机构六个模块,进行模块化设计。分别针对每一个模块进行多方案设计,通过综合对比选择出最优的方案组合

技术设计阶段我们先对方案建立数学模型进行理论分析,借助MATLAB分别进行了能耗规律分析、运动学分析、动力学分析、灵敏度分析。进而得出了小车的具体参数,和运动规律。接着应用PROE软件进行了小车的实体建模和部分运动仿真。

小车大多是零件都可以通过手工加工出来。对于塑料会采用自制的‘电锯’切割。因为小车受力都不大,因此大量采用胶接,简化零件及零件装配。调试过程会通过微调等方式改变小车的参数进行试验,在试验的基础上验证小车的运动规律同时确定小车最优的参数。

关键字:无碳小车 参数化设计 软件辅助设计 微调机构

灵敏度分析

一、竞赛基本内容

1.本届竞赛命题主题

本届竞赛命题主题为“无碳小车”。命题与高校工程训练教学内容相衔接,体现综合性工程能力。命题内容体现“创新设计能力、制造工艺能力、实际操作能力和工程管理能力”四个方面的要求。

2.小车功能设计要求

给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置。该自行小车在前行时能够自动走成“8”字路线,综合距离最远者获胜,重块落下后,须被小车承载并同小车一起运动,不允许掉落。

要求小车前行过程中完成的所有动作所需的能量均由此能量转换获得,不可使用任何其他的能量形式。

小车要求采用三轮结构(1个转向轮,2个驱动轮),具体结构造型以及材料选用均由参赛者自主设计完成。要求满足:①小车上面要装载一件外形尺寸为60×20 mm的实心圆柱型钢制质量块作为载荷,其质量应不小于750克;在小车行走过程中,载荷不允许掉落。②转向轮最大外径应不小于30mm。

3.小车的设计方法

小车的设计一定要做到目标明确,通过对命题的分析我们得到了比较清晰开阔的设计思路。作品的设计需要有系统性规范性和创新性。设计过程中需要综合考虑材料、加工、制造成本等给方面因素。

小车的设计是提高小车性能的关键。在设计方法上我们借鉴了参数化设计、优化设计、系统设计等现代设计发发明理论方法。采用了MATLAB、PROE等软件辅助设计。下面是我们设计小车的流程(如图一)

图一

二 方案设计

1、基本构思

通过对小车的功能分析小车需要完成重力势能的转换、驱动自身行走、形成固定路线。为了方便设计这里根据小车所要完成的功能将小车划分为五个部分进行模块化设计(车架、原动机构、传动机构、转向机构、行走机构、微调机构)。为了得到令人满意方案,采用扩展性思维设计每一个模块,寻求多种可行的方案和构思。在选择方案时应综合考虑功能、材料、加工、制造成本等各方面因素,同时尽量避免直接决策,减少决策时的主观因素,使得选择的方案能够综合最优。

基本设计图:

图二

2原动机构

原动机构的作用是将重块的重力势能转化为小车的驱动力。能实现这一功能的方案有多种,就效率和简洁性来看绳轮最优。小车对原动机构还有其它的具体要求。1.驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。2.到达终点前重块竖直方向的速度要尽可能小,避免对小车过大的冲击。同时使重块的动能尽可能的转化到驱动小车前进上,如果重块竖直方向的速度较大,重块本身还有较多动能未释放,能量利用率不高。3.由于不同的场地对轮子的摩擦摩擦可能不一样,在不同的场地小车是需要的动力也不一样。在调试时也不知道多大的驱动力恰到好处。因此原动机构还需要能根据不同的需要调整其驱动力。4.机构简单,效率高。

基于以上分析我们提出了输出驱动力可调的绳轮式原动机构。如下图三

如上图我们可以通过改变绳子绕在绳轮上不同位置来改变其输出的动力。

图三

3传动机构

传动机构的功能是把动力和运动传递到转向机构和驱动轮上。要使小车行驶的更远及按设计的轨道精确地行驶,传动机构必需传递效率高、传动稳定、结构简单重量轻等。

1.不用其它额外的传动装置,直接由动力轴驱动轮子和转向机构,此种方式效率最高、结构最简单。在不考虑其它条件时这是最优的方式。

2.带轮具有结构简单、传动平稳、价格低廉、缓冲吸震等特点但其效率及传动精度并不高。不适合本小车设计。

3.齿轮具有效率高、结构紧凑、工作可靠、传动比稳定但价格较高。因此在第一种方式不能够满足要求的情况下优先考虑使用齿轮传动。

4转向机构

转向机构是本小车设计的关键部分,直接决定着小车的功能。转向机构也同样需要尽可能的减少摩擦耗能,结构简单,零部件已获得等基本条件,同时还需要有特殊的运动特性。能够将旋转运动转化为满足要求的来回摆动,带动转向轮左右转动从而实现走固定“8”字路线的功能。能实现该功能的机构有:凸轮机构+摇杆、曲柄连杆+摇杆、曲柄摇杆、差速转弯等等。

通过棘形轮的间歇性运动,使得小车在描红部分时,棘轮的带齿部分未与齿轮啮合,前轮的转动角度不变,当小车到达黑线轨迹部分时,棘轮的带齿部分与齿轮啮合,小车前轮转向发生变化,进入下一个圆中运动,一次类推,小车不断地重复“8”字,进行运动。

基本成型构想:

技术设计

技术设计阶段的目标是完成详细设计确定个零部件的的尺寸。设计的同时综合考虑材料加工成本等各因素。

1、重要技术

如何两轨迹中心间的距离可以在300mm~500mm之间发生变化?

要想达到这一目的,需要同时调节两部分,以由大轨迹变到小轨迹为例来说明

(1)通过减小摩擦轮与摩擦盘中心之间的距离,来降低后轮与摩擦盘之间传动比,使得小车走过一个圆轨迹时的圈数变少。

(2)增大小车前轮(即转向轮)的转动角度,来达到减小轨迹半径的目的。为达到这一目的,可以在圆盘上设置一可沿一条半径连续变化的滑块,通过增大滑块与圆盘中心的距离,来达到这一目的。如下:

设计图纸:

2、小车调试方法

小车的调试是个很重要的过程,有了大量的理论依据支撑,还必须用大量的实践去验证。小车的调试涉及到很多的内容,如车速的快慢,绕过障碍物,小车整体的协调性,小车行走的距离等。

(1)小车的速度的调试:通过小车在指定的赛道上行走,测量通过指定点的时间,得到多组数据,从而得出小车行驶的速度,通过试验,发现小车后半程速度较快,整体协调性能不是太好,于是车小了绕绳驱动轴,减小过大的驱动力同时也增大了小车前进的距离。

(2)小车避障的调试:虽然本组小车各个机构相对来说较简单,损耗能量较少,但是避障不是很好,但与此同时,小车由于设计时采用了多组微调机构,通过观察小车在指定赛道上行走时避障的特点,微调螺母,慢慢小车避障性能改善,并做好标记。

3、小车改进方法

由于本组小车采用胶水黏贴各处,虽然少了许多的加工成本费用,也避免了能量的过多损耗,但小车会有时出现脱胶的现象,导致无法前进,于是想法改进,使小车能量损失减少,同时故障出现的次数减少,稳定性能较好,总路线最远,降低成本。

四 评价分析

1、小车优缺点

优点:(1)小车机构简单,单级齿轮传动,损耗能量少,(2)多处采用微调机构,便于纠正轨迹,避开障碍物,(3)采用大的驱动轮,滚阻系数小,行走距离远,(4)采用磁阻尼,小车稳定性提高,不致使车速过快,缺点: 小车精度要求高,使得加工零件成本高,以及微调各个机构都很费时,避障稳定行差,时而偏左,时而偏右。

2、改进方向

篇6:无碳小车说明书1

1.1本届竞赛命题主题 1.2小车功能设计要求 1.3小车整体设计要求 1.4 小车的设计方法 二 方案设计 2.1 路径的选择 2.2自动转向装置 2.2.1 前轮转向装置 2.2.2 差速转向装置 2.2.3 小结 2.3 能量转换装置 2.4 车架 2.5 微调部分 三 参数的设计 3.1 路径参数的确定 3.2 自动转向装置参数的确定 3.2.1 前轮转向装置参数的确定 3.2.2 差速转向装置参数的确定 3.2.3 小结

3.3 能量转换装置参数的确定 3.4 车架参数的确定 3.5 微调部分参数的确定 四 小车的工程图 4.1 小车部分零件工程图 4.2小车各装置工程图 4.3小车总装配图 五 评价分析 5.1小车优缺点 5.2 小车的改进方向 六 附录 一 绪论

1.1本届竞赛命题主题 本届竞赛命题主题为“无碳小车”。要求经过一定的前期准备后,在集中比赛现场完成一套符合本命题要求的可运行装置,并进行现场竞争性运行考核。每个参赛作品要提交相关的设计、工艺、成本分析和工程管理4项成绩考核作业。

1.2小车功能设计要求

设计一种小车,驱动其行走及转向的能量是根据能量转换原理,由给定重力势能转换来的。给定重力势能为4焦耳(取g=10m/s2),比赛时统一用质量为1Kg的重块(¢50×65 mm,普通碳钢)铅垂下降来获得,落差400±2mm,重块落下后,须被小车承载并同小车一起运动,不允许从小车上掉落。图1为小车示意图。

图1: 无碳小车示意图

竞赛小车在前行时能够自动交错绕过赛道上设置的障碍物。障碍物为直径20mm、高200mm的多个圆棒,沿直线等距离摆放。以小车前行的距离和成功绕障数量来综合评定成绩。见图2。

图2: 无碳小车在重力势能作用下自动行走示意图 1.3小车整体设计要求

无碳小车体现了大学生的创新能力,制作加工能力,解决问题的能力。并在设计过程中需要考虑到材料、加工、制造成本等各方面因素,并且小车具有下列要求:

1.要求小车行走过程中完成所有动作所需的能量均由此重力势能转换获得,不可使用任何其他的能量来源。2.要求小车具有转向控制机构,且此转向控制机构具有可调节功能,以适应放有不同间距障碍物的竞赛场地。

3.要求小车为三轮结构

4.小车有效的绕障方法为:小车从赛道一侧越过一个障碍后,整体穿过赛道中线且障碍物不被撞倒(擦碰障碍,但没碰倒者,视为通过);重复上述动作,直至小车停止。

1.4小车的设计方法

首先,小车的设计一定要做到目标明确,作品的设计需要有系统性规范性和创新性。设计过程中需要综合考虑材料、加工、制造成本等方面因素。其次,为了降低小车的能量损耗,我们设计的小车主要利用齿轮传动,因为齿轮的能量利用率达到95%,最后,做到控制调节路径的功能,由于齿轮便于安装等特点,所以也能运用齿轮传动达到目的。

二 方案设计

通过对小车的功能分析,小车需要完成自动避开障碍物,驱动自身行走,重力势能的转换功能。所以我们将小车的设计分为以下部分,路径的选择,自动转向装置,能量转换装置和车架部分。

2.1路径的选择

因为竞赛小车在前行时能够自动交错绕过赛道上设置的障碍物。障碍物为直径20mm、高200mm的多个圆棒,沿直线等距离摆放。为了在通过障碍物时,行进的距离更短,设计了如图3的路径。即以摆线的方法通过障碍物,然后以相切的直线到达下一障碍物,我们的路径是圆弧和直线的结合。图3:无碳小车路径 2.2自动转向装置

为了能更好的让小车在预计的轨道上行驶,小车的自动转向需要考虑到前轮的自动转向和后轮的差速转向。所以我们设计了自动转向装置和差速转向装置。

2.2.1前轮转向装置

通过重物的下落,带动齿轮轴的旋转,利用齿轮轴的旋转,实现前轮的转向。并在齿轮轴上安装齿轮,考虑到加工和经济效益的原因,为了能实现较大的传动比,需在齿轮的带动下加入一个定轴齿轮系。在定轴轮系中,其中的一个齿轮和一连接杆铰接在一起,连接杆在铰接上一根直角杆,直角杆放置在水平滑槽中,组成组成水平滑动装置,实现杆在水平方向上的来回摆动。直角杆的另一端固定在前轮上,这样随着随着直角杆的来回摆动就可以实现前轮的转动。前轮转向示意图如图四。其实,前轮转向装置分为两部分,一部分为齿轮的传动达到一定的传动比,令一部分为齿轮所带动的水平滑动机构。

图四: 前轮转向示意图 1 图五: 前轮转向示意图2 图六:前轮滑块部分

需要注意的是,直角杆的两杆连接部位有一个滑块,是为了能让直角杆做水平运功。在齿轮轴转动一圈的时候,小车行进一个周期,转弯两次,即直角杆完成一次前后摆动即可。并且需要在拐弯时直角杆摆动,在直线运动时,直角杆不动。小车前轮不转弯。

2.2.2差速转向装置

我们知道,小车在以弧线段转弯的过程中,两后轮的速度是不一样的,为了能让小车按照预期的轨道行驶,我们设计了差速转向装置。并且,在转弯过程中,加入了差速转向就会使能量损耗减小,从而增加小车的行程。差速转向装置示意图如图七。

图七:差速转向装置

在此装置中,主要是运用两阶梯齿轮相互啮合,在直线行进中,阶梯齿轮的啮合相同,在摆线行进中,阶梯齿轮的啮合正好相反。而齿轮轴上的阶梯齿轮为不完全齿轮,才能使得齿轮间的相互啮合顺利进行。主动阶梯齿轮转一圈时,后轮轮子行进的距离应是一个周期长度的距离。

2.2.3小结

不管是前轮的转动,还是差速转向,单独来看都可以满足预期的轨迹。但是,为了减少能量的损耗,轨迹的精确性,我们把两个机构都加入了小车中。诚然,差速转向对机构的精度要求很高,这就使转向装置的零件加工费用增加,但是加入了前轮转向装置后,就减小了对转向装置的精度。考虑到两个机构的组合会使能量损耗增加,但我们利用的都是齿轮传动,能量损耗率很小,前轮主要负责转向,后轮主要负责驱动,相互影响也很小。综上所述,我们加入了前轮转向和差速转向。

2.3能量转换装置 为了能让小车行进的更远,怎么将一定的总能量尽可能以高利用率的形式转换是非常重要的问题。

为了减少能量的损耗,我们利用定滑轮,在下落过程中带动齿轮轴转动,从而使整个小车前进。易知,下落过程中,轮子所带动轴半径的不同会导致轴转动的速度不同。太小的半径提供的力偶距太小而导致小车禁止不懂,太大的半径会使重物掉落的加速度太大而增加能量的损耗,理想的状态时重物匀速下落,这要就可以使小车前进的路程达到最大。所以在此装置中,我们加入了可滑动圆锥筒型装置,即可通过滑动圆锥筒改变提供力偶距的大小,使小车行进的路程达到最大。能量转换装置示意图如图八。

图八:能量转换装置 2.4车架

车架不用承受很大的力,精度要求低。考虑到重量,加工成本,美观等因素,车架采用木材加工制作成三角底板式。

三 参数的确定 3.1路径参数的确定

在上面的讨论中,我们的路径是摆线和直线的组合,为了能让小车更顺利的转弯,转弯角度不能太小,为了能让小车行进的更远,必须使小车转向的半径不能太大。所以,确定了曲线的半径为R?300mm,小车的宽度为a?150mm,小车转角??36.7582?,经过MATLAB拟合的曲线如图十。

轨迹方程为 对方程求积分,得到曲线的长度为))))A1A2?A3A4?192.47mm; B1B2?B3B4?144.35mm; C1C2?C3C4?240.58mm; 曲线的长度为

A2A3?A4A5?854.40mm; B2B3?B4B5?854.40mm; B2B3?B4B5?854.40mm。3.2自动转向装置参数的确定

自动转向装置参数的确定包含前轮转向装置参数的确定和后轮差速转向装置参数的确定。参数的确定有利于判断小车的设计是否合理,小车能否完成预计的轨道等实际问题。这里,我们假设齿轮轴每转一周,小车行进一个周期。

3.2.1前轮转向装置参数的确定

前轮转向装置是为了更好的按照规定的轨迹行进,我们把前轮安装在车架中间,则行进的轨迹为A1A2A3A4。前轮自动转向装置简图如图十一。

图十一:前轮自动转向装置简图

又因为前轮转弯时需要行进的距离为S2?192.47mm,直线需要行进的距离为L2?854.40mm,对应的,小车转弯时,齿轮轴上的齿轮z1旋转的角度为?0?33.1?,小车直线时,齿轮z1旋转的角度为???146.9?。此时齿轮z1为不完全齿轮,只有?0?33.1?才有齿。而齿轮轴旋转了33.1°的时候,齿轮z4需要旋转180°。从而传动比i14?180??5.44。33.1? 由于i14?z1?5.44,传动比较大,所以加入了齿轮z2和z3,根据已知的传动比,为z4 了便于加工等原因,求得z1?30;z2?20;z3?54;z4?15。因为?0?33.1?和z1?30,加工不方便也不符合现实,我们进行了修正,将z1?33;z2?22;z3?50;z4?15。这样就考虑到实际情况也满足预期的轨迹。

我们设计小车总长度为150mm,而齿轮系的长度以达到s??z1z2z3z416.5?11?25?7.5?60mm,所以连杆和直角杆的总长为90mm,2222 我们将在距离齿轮z4中心为5mm的地方装一个销钉。所以直角杆水平摆动的距离为所以我们取连杆的长度为30mm,直角杆的一端长度为50mm。10mm。所以可以得到直角杆另一端的长度为l??5?tan? 2?5?tan19.77?15.1mm。3.2.2差速转向装置

在差速转向装置中,需要满足在直线行进中,阶梯齿轮的啮合相同,在摆线行进中,阶梯齿轮的啮合正好相反,并且两后轮所行进的轨迹满足曲线B1B2B3B4和C1C2C3C4,同时主

动阶梯齿轮转一圈时,后轮轮子行进的距离应是一个周期长度的距离。首先,由车轮转弯运动分析图,图十二:车轮转弯运动分析图

可以得到: 数学表达式:02io1V1r?aW1V2rW2Woio2o1Wo io1r?a?ir 得出:o2 式中,Wo表示齿轮轴的转速,W1和W2分别表示左右两轮的转速。io1和io2分别表示左右侧传动链的传动比。有因为从图中和我们所选择的路径可以得到r?22.5mm,a?7.5mm。io1r?a5??ir3。所以我们得到左右侧传动链的传动比为o2 之后,进行齿轮的分析。后轮差速转向装置简图如图十三。图十三:后轮差速转向装置简图 Z1Z3 iiZZ由图可知左右侧传动链的传动比o1,o2为2和4的相互组合。即传动比是变化的。

Z1 Z25?33 Z当小车行进在第一个转弯口时,1轮的速度小,此时可以得到:4,为了使齿轮能

够够相互啮合,有Z1?Z2?Z3?Z4。通过LINGO软件进行计算,我们得到很多组解。为Z1Z3 ZZ了使小车的设计更加合理,左右侧传动链的传动比2和4不能太大,太大会导致在相同

模数条件下Z1和Z3的齿数过大,也不能太小,太小会因为加工精度的原因产生巨大的误差。从路径参数的选择中,我们知道了一个周期小车行进的总长为S?209.3731mm。我们也知道,在齿轮轴转动一圈的时候,小车前进的路程为S?209.3731mm,所以通过选用合Z1 Z适的传动比2,能够使小车后轮的半径在一个合理的范围内,综上所述,最后,我们选择 的是Z1?100;Z2?20;Z3?90;Z4?30;R轮?83.3mm,为了减小齿轮的半径,以上所有 的齿轮模数都为m?1mm。

最后,我们要将小车两后轮的运动轨迹调整到预期的水平,实现差速转向。即最后需要满足的是左右两轮传动比的相互转换。在一个周期内,两轮的总长度是相同的。在将每一个周期分为两个部分。对1轮来说,转弯时需要行进的距离为S1?144.35mm,直线需要行进的距离为L1?854.40mm,此时齿轮轴所转过的角度为180°,并且1轮的速度小于2轮,此时应是Z3和Z4啮合,所以转弯时Z3对应的旋转的角度为?1?26.05?。对2轮来说,转弯时需要行进的距离为S3?240.58mm,直线需要行进的距离为L3?854.40mm,此时齿轮轴所转过的角度为180°,并且2轮的速度大于1轮,此时应是Z1和Z2啮合,所以转弯时Z1对应的旋转的角度为?2?39.55?。由此分析可知,当左右两阶梯齿轮夹角为?2?39.55?时,可以满足行进的轨迹为预期轨迹。综上所述,可以得到我们选择的是Z1?100;Z2?20;Z3?90;Z4?30;R轮?83.3mm,模数m?1mm,Z1和Z2为不完全齿,左右阶梯齿轮在安装时夹角为?2?39.55?。

3.2.3 小结

我们知道,不管是前轮转向装置还是差速转向装置,都必须同时满足,后轮在转弯的同时,前轮也需要转动。我们从前两问算出的,得到齿轮z1为不完全齿轮,只有?0?33.1?才有齿(一个周期中有两个?0?33.1?),而由差速转向知道左右阶梯齿轮在安装时夹角为?2?39.55?,虽然看起来?与?不同,但是,我们发现?是?和?的平均值,而通过计00212 算我们也知道,只要将?0安装在?2中间即可。3.3能量转换装置的参数确定

我们知道,不同圆锥筒半径提供不同的力偶距,使小车前进的速度不同。我们选定R1=10mm,R2=40mm,由于有了前轮转向装置,齿轮z1距离齿轮轴中心的距离为15mm,所以圆锥筒最长宽度为30mm。且圆锥筒的母线与中心线的夹角为45°。则圆锥筒直径变化范围为20-80mm。

为了固定绳子的环绕,加入了夹角为45°的小片。利用橡皮筋固定。3.4车架装置参数的确定

在我们的设计中,已经知道两后轮的距离为150mm,前后轮的距离为150mm,为了方便加工并考虑到经济条件,我们选用的是梯形板,下底长为130mm,上底长为20mm,高为160mm。

3.4微调装置参数的确定 差速转向装置是齿轮通过啮合带动的,误差不会太大,且稳定性较高。而前轮转向装

置中,是受杆的带动,受到杆长和外界的影响较大,而前轮转向装置对小车行进产生了巨大的影响。所以需要缴入微调装置调节微调杆长,调节杆长后于预期的轨道重合。

四 小车的工程图 4.1 小车部分零件工程图 4.2小车各装置工程图 4.3小车总装配图 五 评价分析 5.1小车优缺点

优点:(1)小车机构简单,单级齿轮传动,损耗能量少。(2)采用大的驱动轮,滚阻系数小,行走距离远。(3)采用磁阻尼,小车稳定性提高,不致使车速过快。

缺点: 小车精度要求高,使得加工零件成本高,以及微调各个机构都很费时,避障稳定行差,时而偏左,时而偏右。

5.2 改进方向 首先,对于路径的选择,我们就可以改进,选择更好的路径。对选择路径的要求就是使小车的转角适中,在一个周期中行进的距离不能太长,在过弯时,圆半径不能尽可能的大,使过弯时小车更安全。这其实是一个求最优解的过程,可以通过LINGO软件进行编程,最后得到一组最优解。而我们是比较主观的选择了半径和车宽。因为我们算出几个值后,发现条件基本符合。

接着,可以利用微调装置.在实际中,由于加工精度的原因,使小车的零件达不到要求,行进出来的路径与预期路径相差很大,差速转向装置是齿轮通过啮合带动的,误差不会太大,且稳定性较高。而前轮转向装置中,是受杆的带动,受到杆长和外界的影响较大,而前轮转向装置对小车行进产生了巨大的影响。所以需要缴入微调装置调节微调杆长,调节杆长后于预期的轨道重合。

其次,对于圆锥筒来说,我们所设计的圆锥筒的半径变化是主观的,由于不知道整个小车的重量而没有确定小车前进所需要的最小力矩。而当我们做出了小车以后,知道了整个小车的质量,就可以确定车前进所需要的最小力矩,从而确定圆锥筒的半径变化范围。

上一篇:危货押运人员职责下一篇:信基督的奶奶作文