第12章典型零件加工工艺作业

2024-04-29

第12章典型零件加工工艺作业(精选8篇)

篇1:第12章典型零件加工工艺作业

第12章典型零件加工工艺作业

1.顶尖在轴类零件加工中起什么作用?在什么情况下需进行顶尖孔的修答:轴类零件最常用两中心孔为定位基准,既符合基准重合的原则,并能够研?有哪些修研方法?

在一次装夹中加工出全部外圆及有关端面,又符合基准统一的原则,所以顶尖在轴类零件加工中上重要的定位元件,起主要起定位作用。

当加工高精度轴类零件时,中心孔的形状误差会影响到加工表面的加工精度,另一方面,当零件进行热处理后,中心孔表面会出现一定的变形,因此,要在各个加工阶段对中心孔进行修研。

修研的方法有三种:用硬质合金顶尖修研;用油石、橡胶砂轮或铸铁顶尖修研;用中心孔磨床磨削。

2.主轴的机械加工工艺路线大致过程是怎样安排的?

答:机床主轴一般是结构复杂,精度要求较高,其机械加工工艺路线为:备料-正火-车端面和钻中心孔-粗车各外圆-调质-半精车-精车-表面淬火-粗、精磨外圆表面-磨内锥孔等几个主要工序。

3.分析主轴加工工艺过程中如何体现基准统一、基准重合、互为基准的原答:主轴在加工过程中,各主要加工表面的精加工均采用锥心轴或锥堵等代则?它们在保证主轴的精度要求中都起了什么重要作用?

替内孔轴线,采用两顶尖支承定位。一般在精加工完两端的锥孔后,两端用锥堵中心孔定位作为定位基准,这样充分体现了基准统一和基准重合的原则; 而在精加工两端锥堵时,又是以轴上的精加工的主要加工外圆作为基准的,体现了互为基准的原则。通过采用这些加工措施,充分保证了主轴的轴颈相对于支承轴颈的同轴度和端面对轴心线的垂直度等相互位置精度。

4.精磨主轴内锥孔的工序是怎样进行?

答:主轴锥孔对主轴支承轴颈的径向跳动,是机床的主要精度指标,因而锥孔的磨削是主轴加工的关键工序之一。在精磨主轴内锥孔时在专用的磨主轴锥孔夹具上进行。如图1所示。

前后支架和底座固定在一起前支架由带锥度的巴氏合金衬套支撑主轴工件前锥轴颈,后支架由镶有尼龙的顶块支撑工件。必须保证工件轴线与砂轮轴线等高,以免将锥孔母线磨成了曲线。浮动夹头的锥柄装在磨床主轴的锥孔内,工件尾端夹于卡头弹性套内,用弹簧把弹性套连同工件向左拉,并通过钢球压向镶有硬质合金的锥柄端面以限制工件的轴向窜动。

图1 磨主轴锥孔夹具

1一弹性套;2一钢球;3一弹簧;4一浮动夹头:5一底座;6一支承架

5.箱体零件的结构特点及主要技术要求有哪些?这些要求对保证箱体零件答:箱体是机器中箱体部件的基础零件,由它将有关轴、套和齿轮等零件组在机器中的作用和机器的性能有何影响?

装在一起,使其保持正确的相互位置关系,彼此按照一定的传动关系协调运动。箱体零件的结构特点是:构造比较复杂,箱壁较薄且不均匀,内部呈腔形,在箱壁上既有许多精度较高的轴承支承孔和平面,也有许多精度较低的紧固孔。箱体类零件需要加工的部位较多,加工的难度也较大。其主要技术要求有:(1)支承孔的精度和表面粗糙度。箱体上轴承支承孔应有较高的尺寸精度和形状精度以及较小的表面粗糙度值,否则,将影响轴承外圈与箱体上孔的配合精度,使轴的旋转精度降低,若是机床主轴支承孔,还会影响其加工精度。

(2)支承孔之间的孔距尺寸精度及相互位置精度。箱体上有齿轮啮合关系的相邻孔之间,应有一定的孔距尺寸精度及平行度的要求,否则会使齿轮的啮合精度降低,工作时产生噪声和振动,并降低齿轮使用寿命,箱体上同轴线孔应有一定的同轴度,否则不仅给轴的装配带来困难,还会使轴承磨损加剧,温度升高,影响机器的工作精度和正常运转。

(3)主要平面精度和表面粗糙度。箱体的主要平面是装配基准面和加工中的定位基准面,它们应有较高的平面度和较小的表面粗造度数值,否则将影响箱体与机器总装时的相对位置和接触刚度以及加工中的定位精度。

(4)支承孔与主要平面的尺寸精度和相互位置精度。箱体上支承孔对装配基面要有一定的尺寸精度和平行度要求,对端面要有一定的垂直度要求。如果车床床头箱主轴孔轴心线对装配基面在水平面内有偏斜,则加工时会使工件产生锥度。

只有满足了这些技术要求才能保证箱体上孔的配合精度、相对位置精度和接6.孔系加工方法有哪几种?举例说明各加工方法的特点及其适用性。答:孔系是指一系列具有相互位置精度要求的孔.箱体零件的孔系主要有平行(1)平行孔系的加工。平行孔系的主要技术要求是各平行孔轴心线之间及中心线与基准面之间的尺寸精度和相互位置精度。加工中常用找正法,镗模法和坐标法。找正法是在通用机床上加工箱体类零件使用的方法,可分为划线找正法,心轴块规找正法和样板找正法,适用于单件小批量生产。用样板找正法时,样板上孔系的孔距精度比工件孔系的孔距精度高,孔径比工件的孔径大。将样板装在工件上,用装在机床主轴上的千分表定心器,按样板逐一找正机床主轴的位置进行加工。该方法找正快,不易出错,工艺装备简单,孔距精度可达上±0.05 mm,常用于加工较大工件。

用镗模法加工孔系时,工件装夹在镗模上,镗杆由模板上的导套支承。加触刚度,使轴装配较为容易。

系、同轴系和交叉孔系。

工时,镗杆与机床主轴浮动连接。影响孔系的加工精度主要是镗模的精度。用镗模法孔距精度较高,这种方法定位夹紧迅速,不需找正,生产效率高,普遍应用于成批和大量生产中。

坐标法镗孔是在普通镗床、立式铣床和坐标镗床上,借助测量装置。按孔系间相互位置的水平和垂直坐标尺寸,调整主轴的位置,来保证孔距精度的镗孔方法。孔距精度取决于主轴沿坐标轴移动的精度。可用于加工孔距精度要求特别高的孔系,如镗模、精密机床箱体等零件的孔系。

(2)同轴孔系加工。同轴孔系的主要技术要求是孔的同轴度。保证孔的同轴度有如下方法:1)镗模法;在成批生产中,采用镗模加工,其同轴度由镗模保证。2)利用已加工过的孔作支承导向法;这种方法是在前壁上加工完毕的孔内装入导向套,支承和引导镗杆加工后壁上的孔,3)利用镗床后立柱上的导向套支承镗杆法;用这种方法加工时镗杆为两端支承,刚度好,但后立柱导套位置的调整复杂,且需较长的镗杆。该方法适用于大型箱体的孔系加工。4)采用调头镗法。当箱体箱壁距离较大时,可采用调头锤法。即工件一次安装完毕,镗出一端孔后,将工件台回转1800,再镗另一端的同轴线孔。这种加工方法锤杆悬伸短,刚性好,但调整工作台的回转时,保证其回转精度较麻烦。(3)交叉孔系的加工。交叉孔系的主要技术要求是各孔的垂直度,主要采用机床本身的回转精度和光学瞄准器定位等方法加工。

7.举例说明安排箱体加工顺序时,一般应遵循哪些主要原则?

答:为了便于安装,箱体一般采用分离式的。分离式箱体的主要加工部位有:轴承支承孔,接合面、端面及底面等。

整个加工过程分为两个大的阶段,先对箱盖和底座分别进行加工,然后对装配好的箱体进行整体加工。第一阶段主要完成平面,连接孔、螺纹孔和定位孔的加工,为箱体的对合装配做准备。第二阶段为在对合装配后的箱体上加工轴承孔及端面,在两个阶段之间安排钳工工序,将箱盖与底座合成箱体,用锥销定位,使其保持一定的相互位置,以保证轴承孔的加工精度和拆装后的精度。这样安排符合箱体加工中的先加工平面、后加工支承孔的原则,也符合粗加工与精加工分开的原则,可以保证箱体轴承孔的加工精底和轴承孔的中心高等尺寸达到要求。

为了保证达到这些要求,加工底座的结合面时,应以底面为精基准,这样可使结合面加工时的定位基准与设计基准重台,有利于保证结合面至底面的尺寸精度和位置精度。箱体对合装配后加工轴承孔时,仍以底面为主要定位基准,并与底面上的两定位销孔组成一面两孔的定位方式,既符合基准统一的原则,也符合基准重合的原则,有利于保证轴承孔轴心线与结合面的重合度和与安装基面的尺寸精度及位置精度。

8.怎能样防止薄壁套筒受力变形对加工精度的影响?

答:为防止薄壁套筒受力变形,在加工时要注意以下几点:①为减少切削力和切削热的影响,粗、精加工应分开进行。使粗加工产生的热变形在精加工中可以得到纠正。并应严格控制精加工的切削用量,以减少零件加工时的变形。

②减少夹紧力的影响,工艺上可以采取以下措施:改变夹紧力的方向,即变径向夹紧为轴向夹紧,使夹紧力作用在工件刚性较好的部位;当需要径向夹紧时,为减少夹紧变形和使变形均匀,应尽可能使径向夹紧力沿圆周均匀分布,加工中可用过渡套或弹性套及扇形夹爪来满足要求;或者制造工艺凸边或工艺螺纹,以减少夹紧变形。

③为减少热处理变形的影响,热处理工序应置于粗加工之后、精加工之前,以便使热处理引起的变形在精加工中得以纠正。

9.深孔加工中首先应解决哪几个主要问题,两种排屑方式的特点如何? 答:钻深孔时,要从孔中排出大量的切屑,同时又要向切削区注放足够的冷却润滑液。普通钻头由于排屑空间有限,冷却液进出通道没有分开,无法注入高压冷却液。所以,冷却、排屑是相当困难的。另外,孔越深,钻头就越长,刀杆刚性也越差,钻头易产生歪斜,影响加工精度与生产率的提高。所以,深孔加工中必须首先解决排屑、导向和冷却毫米几个主要问题,以保证钻孔精度。保持刀具正常工作,提高刀具寿命和生产率。

常用的排屑方式有外排屑和内排屑两种,外排屑时,刀具结构简单,不需用专用设备与专用辅具,排屑空间较大,但切屑排出时易划伤孔壁。内排屑时,将增大刀杆外径,提高刀杆刚度,有利于提高进给量和生产率。冷却排屑效果较好,刀杆稳定,可提高孔的精度和降低孔的表面粗糙度值。

10.滚齿与插齿加工分别用于什么场合?

答:滚齿用于加工精度在7~9级,最高可达4~5级,齿面Ra为1.6~0.4微米的外齿轮;插齿机主要加工精度在7~8,最高可达6,齿面Ra为1.6~0.2米的外齿轮的双连具轮和内齿轮。滚齿是在滚齿机上进行,主要用于滚切直齿和斜齿外啮合圆柱齿轮及蜗轮的轮齿。滚齿的加工精度一般在7~9级,最高可达4~5级,齿面粗糙度值Ra可达1.6~0.4μm。滚齿可作为剃齿或磨齿等齿形精加工之前的粗加工和半精加工。

插齿是在插齿机上进行,主要用于加工直齿圆柱齿轮的轮齿,尤其适合加工内齿轮和多联齿轮的轮齿,还可加工斜齿轮、人字齿轮、齿条、齿扇及特殊齿形的轮齿。插齿加工精度一般在7~8级,最高可达6级,齿面粗糙度值Ra可达1.6~0.2μ m,可作为齿轮淬硬前的粗加工和半精加工。加工较大模数齿轮时,插齿因插齿机和插齿刀的刚性较差,切削时又有空行程存在,生产率比滚齿低;但加工较小模数齿轮,尤其是宽度较小的齿轮时,其生产率不低于滚齿。

11.剃齿原理是什么?它能提高齿轮工件哪些方面的精度? 答:剃齿加工原理相当于一对斜齿轮副的啮合过程,能进行剃齿切削的必要条件是齿轮副的齿面间有相对滑移,相对滑移的速度就是剃齿的切削速度。剃齿刀在加工过程中,在齿面上产生相对滑动,从齿面上刮下很薄的切屑,在啮合过程中逐渐将余量切除。

剃齿能校正前一工序中留下的齿形误差、基节误差、相邻周节误差和齿圈的12.分析珩齿与磨齿有什么异同点?

答:珩齿的加工原理与剃齿相同,珩齿可修正齿形淬火后引起的变形,减小径向圆跳动。

齿面表面粗糙度值,提高相邻周节的精度,并能修正齿轮的短周期分度误差,加工成本低、效率高。磨齿是精加工精密齿轮、特别是加工淬硬的精密齿轮的常用方法,对磨前齿轮的误差或热处理变形有较强的修正能力,但生产率比珩齿低得多,加工成本高,据齿面渐开线形成原理的不同,磨齿可分为成形磨齿和展成磨齿两种。

13.对不同精度的圆柱齿轮,其齿形加工方案如何选择?

答:齿轮加工的工艺路线一般为:毛坯制造与热处理一齿坯加工一轮齿加工一齿端加工一轮齿热处理一精基准修正一轮齿精加工一检验。

对8级精度以下的调质齿轮,用滚齿或插齿就能达到要求,对于淬火齿轮,可采用滚(或插)齿一齿端加工一热处理一修正内孔的方案,但淬火前应将精度相应提高一级,或在淬火后珩齿。

对6~7级精度的齿轮,可用剃一珩齿方案,即滚齿(或插齿)一齿端加工一剃齿一表面淬火一修正基准一珩齿。也可用磨齿方案,即滚齿(或插齿)一齿端加工一渗碳淬火一修正基准一磨齿。剃一珩方案生产率高,广泛用于7级精度齿轮的成批生产中;磨齿方案生产率较低,一般用于6级精度以上或低于6级精度但淬火后变形较大的齿轮。

对5级以上的高精度齿轮,一般应取磨齿方案。

篇2:第12章典型零件加工工艺作业

一、轴类零件

1、轴类零件的功用为支承传动零件,传递扭矩或运动,承受载荷,并保证装配在轴上的零件具有一定的回转精度。

2、轴类零件按其结构形状的特点,可分为光轴、阶梯轴、空心轴和异形轴

3、轴类零件是回转体零件,其长度远大于直径。按轴的长度L与直径D的比,当L/D≤12时,为刚性轴;当L/D>12时,为挠性轴。

4、轴主要由圆柱面、圆锥面、端面、螺纹、键槽、花键等组成。

5、一般轴类零件常选用45钢,通过正火、凋质、淬火等不同的热处理工艺,获得一定的强度、韧性和耐磨性。

对于中等精度和转速较高的轴,可选用40Cr等合金结构钢,通过调质和表面淬火获得较好的综合力学性能。

6、轴类零件外圆表面的车削加工一般可划分为粗车、半精车、精车和精细车等。

粗车是粗加工,从毛坯上切去大部分余量,以尽快获得接近于最后的工件形状和尺寸的操作。

半精车是为了进一步提高零件的加工精度和改善表面质量。精车既可作为较高精度外圆表面的终加工,又可作为光整加工表面的预加工。

精细车是高精度外圆表面的最终加工工序,适用于有色金属零件的加工。

7、细长轴外圆表面的车削

细长轴:长度与直径之比大于20(L/D>20)的轴称为细长轴。细长轴的车削特点为:①细长轴刚性差,在切削过程中受切削力的作用极易产生弯曲变形和振动;②在切削热的作用下,产生很大的线膨胀,若两端顶尖固定支承,则会弯曲变形;③加工中连续切削时间长,刀具磨损大,影响加工精度和表面质量。

细长轴的先进车削方法 ①改进工件装夹方式一般采用一夹一顶的方法。同时在工件端部缠绕一圈直径为φ4的钢丝,以减少接触面积,避免夹紧时形成弯曲力矩;②尾座顶尖改为弹性顶尖,避免工件受热弯曲变形;③采用跟刀架,以提高工件的刚度。④为减小背向力,尽量采用大主偏角车刀,一般取κr=75°-93°;⑤采用反向进 给切削,改变工件受力方向,可减少工件的弯曲变形。

8、定位基准的选择

轴类零件的定位基准,最常用的是两中心孔。因为一般轴的设计基准都是其中心线,用中心孔定位,可实现基准重合,且能最大限度地在一次安装中加工尽可能多的外圆和端面,符合基准统一的原则。

9、主轴加工的工艺过程分为三个阶段:凋质以前的工序为粗加工阶段;调质以后到表面淬火间的工序为半精加工阶段;表面淬火以后的工序为精加工阶段。

10、在主轴加工的过程中,应安排足够的热处理工序。毛坯锻造后安排正火处理,以消除锻造应力,改善切削性能。粗加工后安排调质处理,以提高其力学性能,并为表面淬火准备良好的金相组织。半

精加工后安排表面淬火处理,以提高其耐磨性。

11、加工顺序的安排 轴主要加工表面的工序安排大致如下:锻造→正火→车端面钻中心孔→粗车→调质→半精车→精车→表面淬火→粗、精磨外圆表面。

二、套筒类零件加工

1、常用的套筒类零件的内孔表面加工方法有钻孔、扩孔、铰孔、镗孔、拉孔、磨孔、研磨孔、珩磨孔和滚压孔等。

三、箱体类零件加工

1、箱体平面加工常用的方法有刨削、铣削和磨削。

2、精基准的选择

箱体加工通常优先考虑“基准统一”原则,使具有相互位置精度要求的大部分加工表面的大部分工序,尽可能用同一组基准定位,以避免因基准转换而带来的累积误差,有利于保证箱体各主要表面的相互位置精度。

箱体的设计基准往往也是箱体的装配基准,为保证主要表面间的相互位置精度,也必须考虑“基准重合”原则,使定位基准与设计基准、装配基准重合,避免基准不重合误差,有利于提高箱体各主要表面的相互位置精度。

3、箱体的定位基准常用以下两种方案: 1)三面定位 2)一面两孔定位

4、粗基准的选择

①在保证各加工面均有加工余量的前提下,应使重要孔的加工余

量均匀;②装入箱体内的旋转零件(如齿轮、轴套等)应与箱体内壁有足够的间隙;③注意保持箱体必要的外形尺寸。还应保证定位夹紧可靠。

4.4 圆柱齿轮加工

1、齿轮是齿轮传动中的主要传动元件,其功用是按一定的速比传递运动和动力。

2、齿轮的内孔(或轴颈)、端面(有时还有顶圆)常被用作齿轮加工定位、测量及装配的基准。

3、齿轮的材料按照使用时的工作条件进行选择。一般中等精度齿轮,可选用中碳钢(如45钢)、中碳合金钢(如40Cr)进行调质或表面淬火处理。

4、按齿面形成的原理不同,齿面加工可以分为两类方法:一是成形法,用与被切齿轮齿槽形状相符的成形刀具切出齿面,如铣齿、拉齿和成形磨齿等;二是展成法,齿轮刀具与工件按齿轮副的啮合关系做展成运动,工件齿面由刀具的切削刃包络而成,如滚齿、插齿、剃齿、珩齿和磨齿等。

5、齿形加工方法 1)铣齿

铣齿是指用齿形铣刀在铣床上加工齿面的方法。模数m≤8 mm的齿轮,一般用盘状齿形铣刀在卧式铣床上加工;m>8 mm的齿轮,用指状齿形铣刀在立式铣床上加工。

2)滚齿

滚齿加工是根据展成法原理来加工齿形的。滚刀加工齿轮,相当于齿轮齿条的啮合过程.滚刀旋转时,就相当于齿条在连续地移动,被切齿轮的分度圆沿齿条节线作无滑动的纯滚动,滚刀切削刃的包络 线就形成渐开线齿形。

3)插齿

插齿加工原理相当于一对圆柱齿轮相啮合,一个齿轮磨出前后角以形成切削刃即为插齿刀,通过严格的啮合运动,其包络线形成齿形。

4)剃齿

剃齿刀实质上是一个高精度的斜齿圆柱齿轮,并在每个齿面上沿渐开线方向开出许多小沟槽,形成切削刃。剃齿时剃齿刀1与工件2在空间成交错啮合,剃齿刀高速正反转,带动工件作双面无侧隙的自由对滚,使两啮合面产生相对滑移,刀刃在一定压力下从工件齿面上剃下很薄的切屑

5)珩齿

珩齿原理与剃齿相似,珩磨轮和工件在空间作交错齿轮 副无侧隙啮合传动。当珩磨轮高速带动被珩齿轮正反转时,在相啮合齿轮的齿面上产生相对滑动,磨粒在进给压力下进行切削,为一低速磨削、研磨和抛光等的综合过程。

6).磨齿

磨齿是高精度齿面的加工方法,多用作齿面淬硬后的光整加工。磨齿有展成法和成形法两种,在生产中常用展成法,它根据齿轮齿条的啮合原理来进行加工。按砂轮形状不同,分为以下几种:

1)碟形砂轮磨齿 2)锥形砂轮磨齿 3)蜗杆砂轮磨齿

6、圆柱齿轮加工工艺过程的制定原则:根据齿轮的精度等级、技术要求、结构与尺寸大小、材料与热处理、生产批量及车间现有设备条件而制定。

7、圆柱齿轮加工工艺路线大致为:毛坯制造及热处理—齿坯加工—齿形粗加工—齿圈热处理—精基准修正—齿形精加工—检验。

8、圆柱齿轮加工定位基准的选择

1)盘类齿轮的齿形加工,一般选择内孔和一个端面作为定位基准,符合“基准重合”原则。

2)轴类齿轮的齿形加工一般选择两顶尖孔定位,某些大模数的轴类齿轮多选择轴径和一端面定位。

9、齿坯加工方案

1)大批量生产的齿坯加工 ①在多刀半自动车床上粗车外圆、端面和内孔;②以内孔定位,端面支承,拉花键孔或圆柱孔;③以内孔在 精密心轴或可胀心轴上定位,在多刀半自动车床上精车外圆、端面等。

2)中小批生产的齿坯加工①在卧式车床上粗车齿坯各部分;②在一次安装中精车内孔和基准端面,以保证基准端面对内孔的圆跳动要求;③以内孔在心轴上定位精车外圆及端面等。

3)对于花键孔齿坯,①在卧式车床上粗车齿坯外圆、端面和花键底孔;②以花键底孔定位,端面支承,拉花键孔;③以花键孔在心轴上定位,精车外圆、端面等。

10、齿形加工方案

1)对于8级精度以下的调质齿轮,用滚齿或插齿就能满足要求。2)对于6~7级精度的齿轮,一般有两种加工方案:

①剃—珩方案:滚(插)齿—齿端加工—剃齿—表面淬火—修正基准—珩齿。这种加工方案生产率高,设备简单,成本低,广泛用于成批或大批大量生产中。

②磨齿方案:滚(插)齿— 齿端加工—渗碳淬火—修正基准—磨齿。这种加工方案生产率低,适用于单件小批生产或淬火后变形较大的齿轮。

篇3:典型零件数控加工工艺分析

在机械制造行业,数控机床高效率、高精度的优势日益凸显,越来越多的成型零件都选择在数控机床上加工。但是,许多数控操作人员却不能对一个复杂的零件进行正确的工艺分析,比如工件装夹不合理、加工工序设计不当、切削用量选择不正确、刀具走刀轨迹不合适等等,这些不合理的工艺均会造成生产成本升高、数控机床的效率降低、加工出的产品质量下降等后果。因此,对一个产品进行系统的工艺分析很有必要。

本文旨在通过对一个典型零件的分析,让读者系统地了解数控加工零件的工艺过程。图1所示为数控铣工中级工考证零件图,该零件毛坯尺寸为110mm×90mm×35mm,材料为45#钢,底面和四个侧面均已加工好,要求在规定时间内完成所有加工任务。

2 零件图结构分析

该零件为单件生产,外形为一个六面体。主要结构是由多个不同深度的平面组成的型腔,各平面上分布有不同尺寸的孔及螺纹,整体结构并不复杂,但加工精度要求高,四个M8的内螺纹精度达到IT7级,关键表面的光洁度要求达到Ra1.6μm,另外,还有两个形位公差要求,最小的不超过0.02mm。因此,零件加工应以保证各公差要求为重点。

3 选择设备

根据对被加工零件的结构分析可知,加工该零件所需刀具比较多,涉及到不同类型、不同尺寸的加工刀具,所以,选用VM850立式加工中心。该机床的主要特点是:配备FANUC数控系统;X、Y、Z三轴有效行程分别达800mm、500mm、650mm;三轴定位精度均达±0.008mm;重复定位精度均达±0.005mm。图2所示为VMC850立式加工中心外观图。

4 确定零件的定位基准和装夹方式

零件装夹应特别注意的是:

(1)为了不影响进给和切削加工,在装夹工件时一定要将加工部位敞开;

(2)选择夹具时应尽量做到在一次装夹中将零件需要加工的表面全部加工出来[1]。

基于此,采用以下方案:工件毛坯预先在磨床上加工好顶面和底面,然后,选择B面和四个侧面作为定位面(参见图1),如图3所示用沉头螺钉紧固在压板上,再将压板连同工件毛坯固定在机床工作台面上。通过找正,安装后工件侧面直边应分别与机床X轴、Y轴平行,最大偏移量不超过0.02mm,同时,顶面也应与工作台面保持平行,误差也不得超过0.02mm。

5 确定加工顺序及进给路线

加工顺序实际上也就是加工程序的执行顺序,也就是刀具运动的轨迹。安排加工顺序及进给路线时应注意几个问题:上道工序的加工不能影响下道工序的定位与夹紧;先进行内腔加工工序,后进行外型加工工序;以相同定位、夹紧方式或同一把刀具加工的工序,最好连续进行,以减少重复定位次数与换刀次数;在同一次安装中进行的多道工序,应先安排对工件刚性破坏较小的工序[2]。

合理地选择进给路线不但可以提高切削效率,还可以提高零件的表面精度,在确定进给路线时,应重点考虑几个方面:能保证零件的加工精度和表面粗糙度的要求;尽量使走刀路线最短,这样既可简化程序段,又可减少刀具空行程时间,提高加工效率;应使数值计算简单,程序段数量少,以减少编程工作量[3]。

加工图1零件时,大致加工顺序如下:

(1)粗加工顶面,Ф60孔及沟槽;

(2)钻Ф12、Ф30孔的中心孔,钻Ф6孔及M8螺纹孔的底孔;

(3)粗镗Ф30的孔;

(4)精铣顶面,铰Ф12的孔,精镗Ф30的孔,精铣Ф60孔及沟槽;

(5)Ф6、Ф12、M8孔口倒角;

(6)攻M8螺纹。

6 刀具选择

数控铣床上所采用的刀具要根据被加工零件的材料、几何形状、表面质量要求、热处理状态、切削性能及加工余量等,选择刚性好、耐用度高的刀具。本次加工采用的刀具较多,主要有平底立铣刀、面铣刀、钻头、铰刀、镗刀、丝锥等。表1是加工零件1的刀具卡片。

7 确定切削用量

铣削加工的切削用量包括:切削速度、进给速度、背吃刀量和侧吃刀量。图4所示为端面铣刀加工时的切削用量。考虑刀具耐用度,切削用量的选择顺序是:先选择背吃刀量或侧吃刀量,其次选择进给速度,最后确定切削速度。

铣削的切削速度Vc与刀具的耐用度、每齿进给量、背吃刀量、侧吃刀量以及铣刀齿数成反比,而与铣刀直径成正比。为提高刀具耐用度,允许使用较低的切削速度。但是加大铣刀直径则可改善散热条件,可以提高切削速度。铣削加工的切削速度Vc可参考表2选取[4],也可参考有关切削用量手册中的经验公式通过计算选取。

铣削加工的进给量f(mm/r)是指刀具转一周,工件与刀具沿进给运动方向的相对位移量;进给速度Vf(mm/min)是指单位时间内工件与铣刀沿进给方向的相对位移量。进给速度与进给量的关系为Vf=nf(n为铣刀转速,单位r/min)。表3是铣刀每齿进给量的参考值[5]。

背吃刀量或侧吃刀量的选取主要由加工余量和对表面质量的要求决定:当工件表面粗糙度值要求为Ra=0.8~3.2μm时,应分为粗铣、半精铣、精铣三步进行。半精铣时背吃刀量或侧吃刀量取1.5~2mm;精铣时,圆周铣侧吃刀量取0.3~0.5mm,面铣刀背吃刀量取0.5~1mm[6]。考虑到本例中零件的特点,45#钢切削性能比较好,省掉了半精铣过程。

8 数控加工工艺卡片拟订

对于数控铣削加工工序的划分,主要考虑在数控铣床上加工零件,工序比较集中,一般只需一次装夹即可完成全部工序的加工。加工工序的划分通常使用的方法有:刀具集中分序法;粗、精加工分序法;加工部位分序法。在工序划分过程中主要遵循的原则有以下几点:

(1)基面先行、先粗后精、先主后次、先面后孔的原则;

(2)从简单到复杂的原则;

(3)先加工平面、沟槽、孔,再加工内腔、外形,最后加工曲面的原则[7]。

表4所示为该成型零件的数控加工工序卡片。

9 结束语

由以上实例的数控加工工艺分析可知:通过分析零件图结构、选择合适加工设备、确定定位基准和装夹方式、确定加工顺序及进给路线、选择合适刀具及切削用量,制订出切实可行的加工方案,在Mastercam自动编程软件中编制出加工程序,传送到加工中心,即可完成加工。图5所示为全部刀具路径加工完成后的零件仿真图。

随着数控机床的日益普及,为充分发挥数控机床高效率、高精度的优势,不断提高工程技术人员的工艺水平显得尤为重要。

摘要:数控机床日益普及,但数控加工高效率、高精度的优势却没有充分发挥出来。从零件图结构分析、加工设备选择、定位基准和装夹方式确定、加工顺序及进给路线确定、刀具选择、切削用量确定以及数控加工工序确定等方面全面分析了一个典型零件的数控加工工艺性,最后,在加工中心上加工出该产品并满足了产品的技术要求。

关键词:典型零件,数控加工,加工工艺

参考文献

[1]赵长明,刘万菊.数控加工工艺及设备[M].北京:高等教育出版社,2003.

[2]孟涛,姚志强.加工中心的刀具选择和使用[J].常熟高专学报,2003(4):103-104.

[3]周柏森.曲面模型的数控加工[J].光电对抗与无源干扰,2002(4):21-24.

[4]晏初宏.数控加工工艺与编程[M].北京:化学工业出版社,2003.

[5]田华利.模具型腔数控铣削刀具组合与走刀方式优选[D].济南:山东大学,2006.

[6]余英良.数控加工编程及操作[M].北京:高等教育出版社,2005.

篇4:典型壳体零件加工工艺及夹具设计

关键词:壳体零件;装夹设计;加工工艺

中图分类号:G712 文献标识码:A 文章编号:1005-1422(2015)06-0089-02

在机械加工中,由机床、夹具、刀具与被加工工件一起构成了这一加工过程的一个整体,这一整体称为机械加工工艺系统。因而,分析机械加工精度的过程,也就是分析这一工艺系统在各种不同的工作条件下以各种不同方式反映工件的加工误差,而机床、夹具又是这一工艺系统的重要组成部分,复杂的零件常用数控加工以达到其各种技术要求,在加工零件之前必须进行工艺规划分析和设计,目的是希望得到使用数控机床后的最佳工艺制造流程,最大限度地提高生产效率。

对于壳体零件,采用数控加工,可有效提高零件质量,安装容易,改善传动性能,延长产品使用寿命,以下图典型零件为例介绍壳体零件的加工过程中的部分工艺。

一、壳体零件的技术要求分析

(1)如图一所示零件,要确保主视图位置公差26±0.02、55±0.02、9.5±0.02,主视图B面与¢15沉孔平面距离31.6±0.02,平行度0.02符合图纸要求。

(2)右视图¢18+0.02孔与¢11+0.02轴承孔有垂直度要求,所以二次装夹所用基准要保持相互垂直关系。

(3)右视图平面与¢11+0.02轴承孔中心有67±0.02位置公差要求。

(4)后视图孔位置与主视图孔位置有同位度要求。

二、在安排工艺流程中主要考虑的因素

(1) 选择最短的加工工艺流程。

(2) 尽量发挥机床的各种工艺特点,追求最大限度地发挥数控机床的综合加工能力特长(多工序集中的工艺特点),应在生产流程中配置最少的机床数量、最少的工艺装备和夹具。

(3)工序集中与工艺加工渐精原则的矛盾。

(4) 在对典型工件族工艺流程的安排中,应妥善安排各台机床和生产线的手工调整和检测等工作,即人工干预的影响。

三、关键装夹工具的解决方案

夹具的作用是使工件相对于机床和刀具具有一个正确的安装位置,因此,夹具的制造误差对工件的加工精度影响很大。一是基准不重合误差,在零件图上确定某一表面尺寸、形状、位置所依据的基准称为设计基准。在工序图上用来确定本工序所加工表面加工后的尺寸、形状、位置所依据的基准称为工序基准。在机床上对工件进行加工时,须选择工件上若干几何要素作为加工时的定位基准,如果所选用的定位基准与设计基准不重合,就会产生基准不重合误差。二是定位副制造不准确产生的误差,夹具上的定位元件不可能按基本尺寸制造得绝对准确,其实际尺寸(或位置)都允许在规定的公差范围内变动。

加工此零件,首先要解决装夹问题,这是加工的前题和准备工作,必须要做好,也就是要制作一套工装夹具,是用来确保¢18+0.02孔与各位置公差达到图纸要求,下面对夹具进行设计。

夹具如图二所示(已省略安装螺丝及零件压紧螺丝),在夹具上设置了两个工位01和02,工位01的定位基准为图示的A、B、C三个平面,三平面于空间构成工位01的坐标标系。此工位的作用:一是用于加工主视图上螺孔,轴承孔,定位孔,通孔和台阶,二是用于加工后视图上的螺孔,定位及沉孔,工位02的定位基准是图示的A1、B1、C1三个平面,同样此平面于空间亦构成工位02的坐标系,其作用是用于加工上视图尺寸¢18+0.02孔,M5螺纹孔,平面到¢11+0.02轴承孔中心距离67±0.02,此夹具的制造关键在于保证两坐标系的平行与垂直关系,夹具制造完后,须经严格检验,方向投入生产加工使用。

四、主要加工工艺规划

(1)利用普通车床和普通铣床分别加工图三所示的件A和B,并组装成图三所示的毛坏。其中外圆¢132.mm车至尺寸,内圆为¢98. mm车至尺寸,壳体高度为55.3mm(图纸要求是55mm,留0.3mm余量),内圆¢125. mm台阶深16.3mm (图纸要求¢124.5+0.3+0.0,深度16. mm,分别留0.5 mm和0.3 mm余量),¢11+0.02孔在车床钻孔至¢10,此孔未精加工之前作为加工4个¢11工艺沉孔时压紧零件用。67±0.02尺寸留1-2mm余量。

(2)加工主视图所需尺寸,在机床上校正夹具的坐标方向并压紧夹具,把模板放置在01工位上压紧,再把壳体放置于模板上,以壳体外圆¢132 mm和镶件80mm尺寸定位工件,用一支M10内六角螺丝穿过壳体¢10通孔压紧零件(见图四),找出内圆¢125. mm中心为加工零点值X1Y1,并把其输入到数控机床内,首先加工4个¢11工艺沉孔,加工¢7通孔时,由于孔较深,为防止钻头拆断,必须采用G83啄钻方式。加工完4个¢11工艺沉孔后,用4支M6内六角螺丝穿过¢11沉孔压紧零件,拆去原先M10压紧螺丝。用中心钻分别定位M4螺纹孔,¢3+0.02孔¢9+0.02孔,中心钻选用英寸中心钻,选用该中心钻的特点是,定位孔时通过深度控制,一次把定位和孔口倒角加工完,减少孔口倒角工序。M4螺纹孔按钻底孔¢3.3后用M4丝攻攻牙,¢3+0.02¢9+0.02孔分别采用钻孔、粗镗、精镗,¢11+0.02孔已有¢10底孔,采用粗镗、精镗。粗镗时单边留0.15余量精镗,这样既可保证加工精度,亦能充分发挥加工中心的高效率性,在加工过程中,为防止铝屑粘刀,提高加工表面粗糙度,必须加冷却液,具体的切削参数,粗镗主轴1500r/m,进给速度50mm/m,精镗主轴转速2000 r/m,进给速度40 mm/m,完成孔的加工后,精铣B面与¢15沉孔平面,B面只有0.3 mm余量,采用¢20平刀一次精铣到尺寸,为避免在B面上留下进退刀痕迹,必须采用切线进退刀方式,切削参数主轴转速S1000 r/m,进给速度为200 mm/m,¢15沉孔平面加工采用¢8平刀一次精加工到尺寸,进刀和退刀也采用切线进刀和退刀方式,加工程式见附表程式0001。完成主视图所需加工尺寸后,利用加工中心Y方向读数测量出67±0.02的实际距离,计算出加工余量,为在02工件加工67±0.02作准备,测量方法是用¢10零位棒,在01工位的加工零点,也是¢11+0.02孔的中心Y向读数为零,再移动Y向工作台,使零位棒接触67±0.02侧面,Y向读数会显示实际距离,这样的测量方法只需用于首件加工,以后加工就不需要。

(3) 上视图尺寸的加工,把零件与模板构成的整体从工位01移置于工位02上(见图四),压紧后,X方向加工零点与01工位数值相同,Y方向加工零点定在¢18+0.02孔中心上。首先用¢16平刀粗铣67±0.02尺寸,加工时根据在01工位测量出67±0.02余量是多少,留0.3 mm余量精铣,粗铣完后用中心钻定位¢18+0.02孔和M5螺纹孔,M5螺纹孔的加工按钻底孔¢4.2后用M5丝攻攻牙,¢18+0.02孔的加工过程,分别采用¢12钻头钻孔,¢16平刀扩孔,¢17.7镗刀粗镗,¢18镗刀精镗,要注意的是,由于¢18+0.02孔较深,钻孔必须采用G83啄钻方式,以方便铝屑排出而防止钻头拆断。镗孔时,要采用刚性好的镗刀,镗孔完后用¢16平刀精铣67±0.02到尺寸。

(4)最后加工后视图面各孔,从02工位拆下模板和零件,把模板重新装夹在01工位上,用壳体外圆¢132和¢9+0.02孔定位后压紧。加工零点和主视图加工零点数值相同,首先用中心钻定位M6螺纹孔,¢5.5+0.02孔,¢11沉孔已加工¢7通孔,直接用¢11平刀扩孔,M6螺纹孔的加工按钻底孔¢5.1后用M6丝攻攻牙,¢5.5+0.02孔按钻底孔¢5.1后用¢5.5镗刀精镗到尺寸。

参考文献:

[1]漆向军.车工工艺与技能训练[M].北京:人民邮电出版社,2009.

[2]谭雪松.数控加工技术[M].北京:人民邮电出版社,2009.

[3]于作功.数控铣床和加工中心编程与操作[M].北京:人民邮电出版社,2009.

篇5:典型轴类零件加工工艺分析

(1)轴类零件加工的工艺路线

1)基本加工路线

外圆加工的方法很多,基本加工路线可归纳为四条,

① 粗车—半精车—精车

对于一般常用材料,这是外圆表面加工采用的最主要的工艺路线。

② 粗车—半精车—粗磨—精磨

对于黑色金属材料,精度要求高和表面粗糙度值要求较小、零件需要淬硬时,其后续工序只能用磨削而采用的加工路线。

③ 粗车—半精车—精车—金刚石车

对于有色金属,用磨削加工通常不易得到所要求的表面粗糙度,因为有色金属一般比较软,容易堵塞沙粒间的空隙,因此其最终工序多用精车和金刚石车。

④ 粗车—半精—粗磨—精磨—光整加工

对于黑色金属材料的淬硬零件,精度要求高和表面粗糙度值要求很小,常用此加工路线。

2)典型加工工艺路线

轴类零件的主要加工表面是外圆表面,也还有常见的特特形表面,因此针对各种精度等级和表面粗糙度要求,按经济精度选择加工方法。

对普通精度的轴类零件加工,其典型的工艺路线如下:

毛坯及其热处理—预加工—车削外圆—铣键槽—(花键槽、沟槽)—热处理—磨削—终检,

(1)轴类零件的预加工

轴类零件的预加工是指加工的准备工序,即车削外圆之前的工艺。

校直 毛坯在制造、运输和保管过程中,常会发生弯曲变形,为保证加工余量的均匀及装夹可靠,一般冷态下在各种压力机或校值机上进行校值,

(2) 轴类零件加工的定位基准和装夹

1) 以工件的中心孔定位 在轴的加工中,零件各外圆表面,锥孔、螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若 用两中心孔定位,符合基准重合的原则。中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则。当采用两中心孔定位 时,还能够最大限度地在一次装夹中加工出多个外圆和端面。

2) 以外圆和中心孔作为定位基准(一夹一顶) 用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大。粗加工时,为了提高零件的刚度,可采用轴的外圆表面和一 中心孔作为定位基准来加工。这种定位方法能承受较大的切削力矩,是轴类零件最常见的一种定位方法。

3) 以两外圆表面作为定位基准 在加工空心轴的内孔时,(例如:机床上莫氏锥度的内孔加工),不能采用中心孔作为定位基准,可用轴的两外圆表面作为定位基准。当工件是机床主轴时,常以两 支撑轴颈(装配基准)为定位基准,可保证锥孔相对支撑轴颈的同轴度要求,消除基准不重合而引起的误差。

4)以带有中心孔的锥堵作为定位基准 在加工空心轴的外圆表面时,往往还采用代中心孔的锥堵或锥套心轴作为定位基准,见图6.9所示。

篇6:第12章典型零件加工工艺作业

实 验 报 告

(实验)课程名称典型轴类零件的数控车削工艺与加工

电子科技大学教务处制表

电 子 科 技 大 学

学生姓名:dfkjf;laj lk 学fg dfg 指导教师:

实验地点:工程训练中心114

实验时间:f2012-4fsdf-15

一、实验室名称:工程训练中心

二、实验项目名称:典型轴类零件的数控车削工艺与加工

三、实验学时:32

四、实验原理:

轴类零件是机器中经常遇到的典型零件之一。它主要用来支承传 动零部件,传递扭矩和承受载荷。轴类零件是旋转体零件,其长度大 于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端 面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空 心轴和曲轴等。轴的长径比小于 5 的称为短轴,大于 20 的称为细长轴,大多数 轴介于两者之间。轴用轴承支承,与轴承配合的轴段称为轴颈。轴颈是轴的装配基 准,它们的精度和表面质量一般要求较高,其技术要求一般根据轴的 主要功用和工作条件制定,通常有以下几项:

1、尺寸精度 起支承作用的轴颈为了确定轴的位置,通常对其尺寸精度要求较 高(IT5~IT7)装配传动件的轴颈尺寸精度一般要求较低。(IT6~IT9)。

2、几何形状精度 轴类零件的几何形状精度主要是指轴颈、外锥面、莫氏锥孔等的圆 度、圆柱度等,一般应将其公差限制在尺寸公差范围内。对精度要求 较高的内外圆表面,应在图纸上标注其允许偏差。

3、相互位置精度 轴类零件的位置精度要求主要是由轴在机械中的位置和功用决定 的。通常应保证装配传动件的轴颈对支承轴颈的同轴度要求,否则会影响传动件(齿轮等)的传动精度,并产生噪声。普通精度的轴,其配合轴段对支承轴颈的径向跳动一般为 0.01~0.03mm,高精度轴(如 主轴)通常为 0.001~0.005mm。

4、表面粗糙度 一般与传动件相配合的轴径表面粗糙度为 Ra2.5~0.63?m,与轴承 相配合的支承轴径的表面粗糙度为 Ra0.63~0.16?m。

(二)、轴类零件的毛坯和材料及热处理)、轴类零件的毛坯和材料及热处理 轴类零件的毛坯和材料

1、轴类零件的毛坯 轴类零件可根据使用要求、生产类型、设备条件及结构,选用棒 料、锻件等毛坯形式。对于外圆直径相差不大的轴,一般以棒料为主; 而对于外圆直径相差大的阶梯轴或重要的轴,常选用锻件,这样既节约材料又减少机械加工的工作量,还可改善机械性能。根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。中小批生产多采用自由锻,大批大量生产时采用模锻。

2、轴类零件的材料及热处理 轴类零件应根据不同的工作条件和使用要求选用不同的材料并 采用不同的热处理规范(如调质、正火、淬火等),以获得一定的强度、韧性和耐磨性。45 钢是轴类零件的常用材料,它价格便宜经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机 械性能,淬火后表面硬度可达 45~52HRC。40Cr 等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。轴承钢 GCr15 和弹簧钢 65Mn,经调质和表面高频淬火后,表 面硬度可达 50~58HRC,并具有较高的耐疲劳性能和较好的耐磨性 能,可制造较高精度的轴。精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用 38CrMoAIA 氮化钢。这种钢经调质和表面氮化后,不仅能获得很高的 表面硬度,而且能保持较软的芯部,因此耐冲击韧性好。与渗碳淬火 钢比较,它有热处理变形很小,硬度更高的特性。

五、实验目的:了解典型零件的特点、生产过程与应用;学习工 实验目的: 程制造工艺,学习工程手册的使用,掌握典型零件的毛坯制造、热处 理、机加工方法,将传统加工与现代制造技术有机结合,合理制定数 控加工工艺,正确使用数控设备及刀夹量具。

五、实验目的:

设计轴件,完成代码,完成轴件的加工。了解轴件加工的原理。

六、实验器材(设备、元器件):

计算机、Mastercam X3软件、仿真软件、数控车床、90°外圆车刀、60°螺纹刀、切槽刀,尖头车刀量具及材料。

七、实验步骤:

1、设计零件,绘制图形。

2、根据零件图样进行工艺 实验步骤:

分析、处理,编制数控加工工艺文件。

3、根据加工工艺文件编制加 工程序。

4、在数控车床上加工出零件。工艺路线:

(1)夹一端,伸出101mm(2)先粗加工外轮廓SR9、R5、圆锥、M30及32、38的外圆!(3)精加工第(2)步

(4)切外圆为26的槽(5)加工M30的外圆(6)切断

八、实验数据及结果分析:

附件:轴类零件的数控加工工艺

程序: % G21 G0 T0101 G97 S1400 M03 G0 X42.Z0.G98 G1 X0.F60.G0 Z2.G97 S900 X28.395 Z4.5 G1 Z2.5 F200.Z-93.334 G2 X30.394 Z-99.965 R131.663 G1 X33.222 Z-98.551 G0 Z4.5 X26.396

G1 Z2.5 Z-64.969

X26.4 Z-64.98 Z-70.Z-75.Z-79.063

G2 X28.795 Z-94.864 R131.663 G1 X31.623 Z-93.449 G0 Z4.5 X24.397 G1 Z2.5 Z-59.971

X26.4 Z-64.98 Z-70.Z-75.Z-79.063 G2 X26.796 Z-84.527 R131.663 G1 X29.624 Z-83.113 G0 Z4.5 X22.397 G1 Z2.5 Z-54.974 X24.797 Z-60.971 X27.625 Z-59.557 G0 Z4.5 X20.398 G1 Z2.5 Z-49.976 X22.797 Z-55.974 X25.626 Z-54.559 G0 Z4.5 X18.399 G1 Z2.5 Z-24.879 X18.595 Z-24.93 G3 X18.81 Z-25.107 R.2 G1 Z-46.006 X20.798 Z-50.976 X23.627 Z-49.562 G0 Z4.5 X16.4 G1 Z2.5 Z-20.Z-24.8 X18.G3 X18.185 Z-24.823 R.2 G1 X18.595 Z-24.93 G3 X18.799 Z-25.061 R.2 G1 X21.628 Z-23.646 G28 U0.W0.M05 T0100 M00 G0 T0202 G97 S1200 M03 G0 X24.419 Z-23.522 G1 X20.648 Z-22.854 F120.G2 X17.912 Z-26.505 R30.482 F100.G1 Z-44.201 F120.G2 X18.38 Z-44.937 R30.482 G1 X21.208 Z-43.523 G0 X22.114 Z-26.493

G1 X18.312 Z-25.871

G2 X17.038 Z-28.102 R30.482 F100.G1 Z-42.603 F120.G2 X18.312 Z-44.835 R30.482 G1 X21.141 Z-43.421 G0 X21.296 Z-27.856

G1 X17.438 Z-27.33

G2 X16.163 Z-30.208 R30.482 F100.G1 Z-40.498 F120.G2 X17.438 Z-43.376 R30.482 G1 X20.266 Z-41.962 G0 X20.479 Z-29.559

G1 X16.563 Z-29.152

G2 X15.288 Z-35.353 R30.482 F100.X16.563 Z-41.554 R30.482 F120.G1 X19.391 Z-40.14 G97 S1300 G0 Z2.X16.G1 Z0.Z-20.X18.41 Z-25.107

G2 X14.887 Z-35.353 R30.682 X18.Z-45.R30.682 G1 X26.Z-65.Z-70.Z-75.G2 X25.969 Z-77.032 R131.863 X30.Z-100.R131.863 G1 X32.828 Z-98.586 G28 U0.W0.M05 T0200 M00

G0 T0303

G97 S600 M03 G0 X36.8 Z-69.G1 X20.4 F40.G0 X36.8 Z-68.2 G1 X20.4 X20.64 Z-68.32 G0 X36.8 Z-69.8 G1 X20.4 X20.64 Z-69.68 G0 X36.8 Z-70.2 G1 X26.4 G2 X25.6 Z-69.8 R.4 G1 X20.4 X20.64 Z-69.68 G0 X36.8 Z-67.8 G1 X26.4 G3 X25.6 Z-68.2 R.4 G1 X20.4 X20.64 Z-68.32 G0 X36.8 Z-66.386 X28.828 G1 X26.Z-67.8 G3 X25.6 Z-68.R.2 G1 X20.G0 X28.828 Z-71.614 G1 X26.Z-70.2 G2 X25.6 Z-70.R.2 G1 X20.X20.3 Z-69.85 G0 X28.828 Z-24.X26.8 G1 X10.4 G0 X26.8 Z-23.2 G1 X10.4 X10.64 Z-23.32 G0 X26.8

Z-24.8 G1 X10.4

X10.64 Z-24.68 G0 X26.8 Z-25.2 G1 X16.4

G2 X15.6 Z-24.8 R.4 G1 X10.4

X10.64 Z-24.68 G0 X26.8 Z-22.8 G1 X16.4

G3 X15.6 Z-23.2 R.4 G1 X10.4

X10.64 Z-23.32 G0 X26.8 Z-21.386 X18.828

G1 X16.Z-22.8 G3 X15.6 Z-23.R.2 G1 X10.G0 X18.828 Z-26.614

G1 X16.Z-25.2 G2 X15.6 Z-25.R.2 G1 X10.X10.3 Z-24.85 G0 X18.828 X36.8 Z-69.G1 X20.4 G0 X36.8 Z-68.2 G1 X20.4

X20.64 Z-68.32 G0 X36.8 Z-69.8 G1 X20.4

X20.64 Z-69.68 G0 X36.8 Z-70.2 G1 X26.4

G2 X25.6 Z-69.8 R.4 G1 X20.4 X20.64 Z-69.68 G0 X36.8 Z-67.8 G1 X26.4 G3 X25.6 Z-68.2 R.4 G1 X20.4 X20.64 Z-68.32 G0 X36.8 Z-66.386 X28.828 G1 X26.Z-67.8 G3 X25.6 Z-68.R.2 G1 X20.X20.3 Z-68.15 G0 X28.828 Z-71.614 G1 X26.Z-70.2 G2 X25.6 Z-70.R.2 G1 X20.X20.3 Z-69.85 G0 X28.828 Z-24.X26.8 G1 X10.4 G0 X26.8 Z-23.2 G1 X10.4 X10.64 Z-23.32 G0 X26.8 Z-24.8 G1 X10.4 X10.64 Z-24.68 G0 X26.8 Z-25.2 G1 X16.4 G2 X15.6 Z-24.8 R.4 G1 X10.4 X10.64 Z-24.68 G0 X26.8 Z-22.8

G1 X16.4

G3 X15.6 Z-23.2 R.4 G1 X10.4

X10.64 Z-23.32 G0 X26.8 Z-21.386 X18.828

G1 X16.Z-22.8 G3 X15.6 Z-23.R.2 G1 X10.X10.3 Z-23.15 G0 X18.828 Z-26.614

G1 X16.Z-25.2 G2 X15.6 Z-25.R.2 G1 X10.X10.3 Z-24.85 G0 X18.828

G28 U0.W0.M05 T0300 M00

G0 T0404

G97 S800 M03 G0 X20.Z3.45 X15.022

G99 G32 Z-22.F1.5 G0 X20.Z3.301 X14.486

G32 Z-22.F1.5 G0 X20.Z3.185 X14.068

G32 Z-22.F1.5 G0 X20.Z3.087 X13.713

G32 Z-22.F1.5 G0 X20.Z3.X13.4

G32 Z-22.F1.5

G0 X20.Z3.X13.4 G32 Z-22.F1.5 G0 X20.Z3.45 G28 U0.W0.M05 T0400 M01 G0 T0303

G97 S600 M03 G0 X44.Z-103.G98 G1 X40.F40.X1.8 X5.8 G0 X34.G28 U0.W0.M05 T0300 M30 %

九、实验结论:

完场轴件设计与代码实现,并且最后完成轴件的加工!

十、总结及心得体会:

在实验中自己通过对数控机床的操作切实的参与轴件的加工,对轴件的设计与代码的实现。

十一、对本实验过程及方法、手段的改进建议: 实验的过程中时间的安排与其他的课会有所冲突。

报告评分:

指导教师签字:

平时得分:

实际操作得分:

报告得分:

总成绩:

指导教师:

篇7:典型零件的加工工艺及其优化

目前我国的典型零件的加工工艺还是主要依靠于所用加工零件的设备。由于现在对典型零件的要求越来越高, 尤其是对内孔部分的精准度。但是, 对于目前我国所拥有的设备中, 能够满足要求的数控机床还比较少。对于中小型企业来讲, 过于豪华的数控机床的成本过高, 是无法承受的。在本文中假设用两台数控机床来加工内孔, 产生的效果由图1所示。

本文所选用的第一个数控车床是CK3220, 此类数控机床的主要特点是:三十度整体倾斜床身, 刚性好, 排屑流畅, 操作宜人性好。配置进口高精度直线予负荷滚动导轨, 机床位置精度高。主轴轴承采用进口高精度轴承组。采用排刀布局其特点是结构简单可靠, 节省换刀时间降低成本, 也可以配置进口高精度电动转塔刀架, 换刀时间0.3秒, 可靠性高。主轴润滑采用德高速润滑脂, 主轴温升低, 无需日常润滑维护。可以根据用户要求配置日本F A N U C、西门子或其它公司生产的数控系统, 机电一体, 操作方便。工作夹持系统有手动、液动、气动、卡盘、夹头五种不同形式供用户选择。尾台也有手动、气动、液动的形式供选择。全封闭防护, 美观, 大方。主要用于加工典型零件的锥面和镗孔, 并且这两个部分都需要采用精加工。

本文所选用的第二个数控机床是BX26S, 此类数控机床的最主要特点是双主轴的数控车床。该数控车床是根据广大机械加工用户的实际需要, 开发的实用经济型数控车床。它具有实用、操作方便、加工精度高等特点, 能实现直线、锥度、圆弧、螺纹等复杂的零件加工, 特别适用零件形状复杂的单件和批量生产产品, 如各种仪器、仪表、电子产品、微型元件、接插件、眼镜、钟表、打火机及各种五金小配件等。性能可靠。并根据具体情况进行了优化。自从该数控车床投入市场以来, 用户使用情况良好并获得广泛好评。主要用于加工典型零件中的钻孔、车螺纹、车端面、车端面槽、割断、横孔、加工精度不高的粗车和粗镗孔、半精镗孔以及要求最为精准的精车。

2 典型零件加工工艺的要求及弊端

如果以短轴零件为例。在短轴类加工的过程中的主要要求是集中在一是外螺纹, 就是在圆锥或是圆柱外便面上所形成的螺纹;二是位于外侧的六边形方面;三是卸油的横孔;四是锥面, 这里要求是密封的锥面, 并且对于角度要求也是比较高的;五是内孔, 这里指的是高精度的内孔, 此类内孔的要求是比较高的, 不仅仅内孔的半径比正常的要小些并且误差不能超过0.02 mm。

如果采用数控机床CK3220和数控机床BX26S这两种设备共同对典型零件进行加工, 还是会存在一些问题。采用两台数控机床对典型零件进行加工, 加工程序是比较繁琐的。首先从时间上来讲, 用这两台数控机床加工典型零件所用的时间大约在四分钟左右, 对于一个零件的性价比来讲, 一个四分钟加工的零件性价比是比较低的。并且最主要的问题是典型零件的加工时间增加, 就会造成产量过低, 无法满足订单的需求。会是的企业失信, 这对于一个企业的生存和发展是十分不利的。其次从工具上来讲, 用这两台数控机床加工典型零件所用的刀具是十三把, 对于刀具与设备的磨损是很高的, 成本也会随之增加。如果忽略对设备的磨损的问题, 使用两台数控机床产生的最大问题是劳动力数量的增加。假设每台数控只有一个人来操作, 采用两台数控机床加工就要两个人进行加工, 成本太高。最后从目前典型零件的加工工艺上来讲, 没能解决典型零件的锥度难题, 现在采用的加工工艺的效率过低。镗刀和镗刀杆还不是很匹配, 无法达到精加工内孔的要求。由于粗钻孔时出现的问题, 很可能会引起在后续加工时产生断刀的情况, 并且更换刀具也是十分麻烦的, 这对于企业来讲是计划外的损失。综上所述, 在典型零件的加工工艺和设备上确实存在很多劣势。

3 对典型零件加工工艺的优化

本文对目前我国典型零件的加工工艺一进行分析, 提出现阶段典型零件加工工艺的弊端。针对问题进行分析, 提出解决问题的方法, 改善典型零件的加工工艺。一是由采用两种数控机床加工一个典型零件所用的加工时间是四分钟左右, 所用的劳动力数量是正常的两倍, 时间比较长且成本过高, 速度慢且不稳定, 无法满足数目叫大的订单, 因此, 可以改良成采用一台比较先进的数控机床对典型零件进行加工。二是在设备的选用上应该采用比较材质较好, 性价比较高的设备钻头, 尽量避免断刀的情况发生同时注意减少对刀具的使用。三是改善现有典型零件的加工技术。想要优化典型零件整体的加工工艺, 不能只改善加工的设备, 最主要的是改善加工的工艺。对于典型零件加工来讲, 加工内孔的工艺是比较重要的, 因此应先改进这部分的加工工艺。可以放弃以前的方法, 采用精加工的方式取代。

4 结语

随着新时代的发展, 科技的进步, 对于典型零件的加工工艺的要求也在逐步提高。通过对新一轮典型零件的加工工艺优化后, 加工的时间和成本上都有了一定的减少。将一部分劳动力运用到其他科研的领域中, 能够促进我国社会的高速发展。典型零件加工工艺的进步为后续的工艺生产奠定了基础, 也为社会生产提供了强有力的支持。

摘要:随着时代的发展, 人们对任何事物都有了进一步的要求。对于现阶段的典型零件的加工工艺水平来讲, 要想既高效率又高质量加工典型零件, 首先一定要准备现在国内外比较领先的数控加工设备, 其次要设计好切实可行的工艺加工方案。本文通过分析典型零件的加工工艺, 进一步对其进行优化并提出观点。本文的第一部分介绍典型零件的加工工艺;本文的第二部分是通过分析典型零件的加工, 提出现在所面临的问题。本文的第三部分是通过对上述两方面实际情况出发, 提出典型零件加工工艺的优化方法。

关键词:典型零件,工艺水平,优化方案

参考文献

[1]陈洪涛.数控加工工艺与编程[M].北京:高等教育出版社, 2009.

[2]王艳, 乔吉超.典型钛合金壳体零件加工工艺[J].制造技术与机床, 2007 (7) :126-128.

篇8:典型轴类零件加工的工艺分析

关键词:典型轴类零件 加工 工艺分析

一、轴类零件加工的工艺分析

轴类零件加工工艺分析过程包含选择毛坯、分析技术要求、选择定位基准、热处理分析、确定加工顺序及选择刀具和给定合适的切削用量等。

轴类零件毛坯多采用锻件,曲轴类轴件采用球墨铸铁铸件。轴类零件一般轴向的技术要求不高,但是对于支承部位,轴颈的径向尺寸精度和形位精度要求却比较高:径向尺寸精度等级一般为IT6-IT8,而形位精度主要要求圆度和圆柱度。配合部位的形位公差要求为同轴度和圆跳动,主要保证配合轴颈与支承轴颈的同轴度。在定位基准选择时,由于轴上常见结构如外圆表面、内孔、螺纹等结构表面的同轴度需要满足要求,因此这些表面的设计基准一般都是轴的中心线,所以一般轴类零件的定位基准都为轴的中心线。

在热处理工序中,零件一般在粗车前采用正火或退火处理,这样可以起到改善零件金相组织和切削性能、消除残余内应力的作用,防止零件变形开裂。对于性能要求较高的零件,在粗加工后、精加工前一般还要安排调质处理,以提高零件的综合性能。对于互相有相对运动的接触表面,为提高接触表面的耐磨性,需要在精加工前后进行表面淬火或进行化学热处理。

轴类零件的加工顺序要按由粗到精、由远到近(由左到右)的原则确定。切削用量的控制一般包含进给量、背吃刀量及主轴转速等因素。在粗车时采用进给量和背吃刀量较大,以减少进给次数;在精车时采用进给量和背吃刀量较小,以提高加工精度。

二、典型结构的轴类零件加工工艺分析

下图为一个典型结构的轴类零件,包含常见典型结构,如圆柱、内孔、逆圆弧、外螺纹、内螺纹、外槽、内槽等,其加工工艺分析如下。

毛坯材料为优质碳素结构钢,45#钢,尺寸大小为直径φ65mm、长125mm,无热处理硬度要求。

加工顺序按由粗到精、由远到近的原则确定。即首先从左到右进行外轮廓粗车(留0.5mm余量)及精车,然后钻孔、镗内退刀槽、镗内螺纹。接着换头装夹加工右端,然后粗、精车外轮廓,以及切退刀槽,最后再进行螺纹粗加工及精加工。

具体步骤为:先夹持毛坯右端,车右端轮廓95mm处,车φ40mm外圆、R6的圆弧、φ60mm外圆和R45的圆弧;接着先打中心孔,再用φ8mm钻头钻孔,深度为25mm,然后换φ20mm的钻头扩孔,接着用镗刀镗φ22.5mm的孔,再换内槽刀镗φ28mm的槽;然后再用内螺纹刀车M24×1.5的螺纹;最后调头加工φ32mm外圆、R4和R6的圆弧、φ60mm外圆,再切退刀槽;最后再车M32×0.75的螺纹。

表1 刀具的选择:左端加工用刀

序号刀号刀具规格名称加工内容备注

1T01硬质合金端面45?车刀粗、精车端面

2T02硬质合金90?车刀粗、精车φ40mm外圆左偏刀

3T03硬质合金镗刀粗、精镗φ22.5mm孔

4T04硬质合金内螺纹刀车M24×1.5的螺纹

5T05硬质合金内槽刀切φ28mm槽

6尾座硬质合金φ18mm钻头钻孔

右端加工用刀

序号刀号刀具规格名称加工内容备注

1T01硬质合金端面45?车刀粗、精车端面

2T02车刀粗、精车φ32mm外圆左偏刀

3T03硬质合金车槽刀切退刀槽

4T0460?度硬质合金外螺纹车刀车M32×0.75螺纹

掌握切削用量要根据“粗车较大,精车较小”的原则,如表2给定参考量。

表2

主轴转速

S,(r/min)进 给 量

F,(mm/min)背 吃 刀 量

ap,(mm)

粗车外圆8001001.5

精车外圆10001000.2

钻孔3001000

粗镗孔8001001.5

精镗孔10001000.2

内退刀槽300250

粗车内螺纹 100750.4

精车内螺纹200750.1

外退刀槽300250

粗车外螺纹100750.4

精车外螺纹200750.1

最后,在工艺分析基础上编写加工工艺卡,再上机切削加工。

(作者单位:安徽省行知学校)endprint

摘 要:本文针对典型结构的轴类零件的技术要求,探讨对其常见典型结构——圆柱、内孔、逆圆弧、外螺纹、内螺纹、外槽、内槽等的加工工艺分析。

关键词:典型轴类零件 加工 工艺分析

一、轴类零件加工的工艺分析

轴类零件加工工艺分析过程包含选择毛坯、分析技术要求、选择定位基准、热处理分析、确定加工顺序及选择刀具和给定合适的切削用量等。

轴类零件毛坯多采用锻件,曲轴类轴件采用球墨铸铁铸件。轴类零件一般轴向的技术要求不高,但是对于支承部位,轴颈的径向尺寸精度和形位精度要求却比较高:径向尺寸精度等级一般为IT6-IT8,而形位精度主要要求圆度和圆柱度。配合部位的形位公差要求为同轴度和圆跳动,主要保证配合轴颈与支承轴颈的同轴度。在定位基准选择时,由于轴上常见结构如外圆表面、内孔、螺纹等结构表面的同轴度需要满足要求,因此这些表面的设计基准一般都是轴的中心线,所以一般轴类零件的定位基准都为轴的中心线。

在热处理工序中,零件一般在粗车前采用正火或退火处理,这样可以起到改善零件金相组织和切削性能、消除残余内应力的作用,防止零件变形开裂。对于性能要求较高的零件,在粗加工后、精加工前一般还要安排调质处理,以提高零件的综合性能。对于互相有相对运动的接触表面,为提高接触表面的耐磨性,需要在精加工前后进行表面淬火或进行化学热处理。

轴类零件的加工顺序要按由粗到精、由远到近(由左到右)的原则确定。切削用量的控制一般包含进给量、背吃刀量及主轴转速等因素。在粗车时采用进给量和背吃刀量较大,以减少进给次数;在精车时采用进给量和背吃刀量较小,以提高加工精度。

二、典型结构的轴类零件加工工艺分析

下图为一个典型结构的轴类零件,包含常见典型结构,如圆柱、内孔、逆圆弧、外螺纹、内螺纹、外槽、内槽等,其加工工艺分析如下。

毛坯材料为优质碳素结构钢,45#钢,尺寸大小为直径φ65mm、长125mm,无热处理硬度要求。

加工顺序按由粗到精、由远到近的原则确定。即首先从左到右进行外轮廓粗车(留0.5mm余量)及精车,然后钻孔、镗内退刀槽、镗内螺纹。接着换头装夹加工右端,然后粗、精车外轮廓,以及切退刀槽,最后再进行螺纹粗加工及精加工。

具体步骤为:先夹持毛坯右端,车右端轮廓95mm处,车φ40mm外圆、R6的圆弧、φ60mm外圆和R45的圆弧;接着先打中心孔,再用φ8mm钻头钻孔,深度为25mm,然后换φ20mm的钻头扩孔,接着用镗刀镗φ22.5mm的孔,再换内槽刀镗φ28mm的槽;然后再用内螺纹刀车M24×1.5的螺纹;最后调头加工φ32mm外圆、R4和R6的圆弧、φ60mm外圆,再切退刀槽;最后再车M32×0.75的螺纹。

表1 刀具的选择:左端加工用刀

序号刀号刀具规格名称加工内容备注

1T01硬质合金端面45?车刀粗、精车端面

2T02硬质合金90?车刀粗、精车φ40mm外圆左偏刀

3T03硬质合金镗刀粗、精镗φ22.5mm孔

4T04硬质合金内螺纹刀车M24×1.5的螺纹

5T05硬质合金内槽刀切φ28mm槽

6尾座硬质合金φ18mm钻头钻孔

右端加工用刀

序号刀号刀具规格名称加工内容备注

1T01硬质合金端面45?车刀粗、精车端面

2T02车刀粗、精车φ32mm外圆左偏刀

3T03硬质合金车槽刀切退刀槽

4T0460?度硬质合金外螺纹车刀车M32×0.75螺纹

掌握切削用量要根据“粗车较大,精车较小”的原则,如表2给定参考量。

表2

主轴转速

S,(r/min)进 给 量

F,(mm/min)背 吃 刀 量

ap,(mm)

粗车外圆8001001.5

精车外圆10001000.2

钻孔3001000

粗镗孔8001001.5

精镗孔10001000.2

内退刀槽300250

粗车内螺纹 100750.4

精车内螺纹200750.1

外退刀槽300250

粗车外螺纹100750.4

精车外螺纹200750.1

最后,在工艺分析基础上编写加工工艺卡,再上机切削加工。

(作者单位:安徽省行知学校)endprint

摘 要:本文针对典型结构的轴类零件的技术要求,探讨对其常见典型结构——圆柱、内孔、逆圆弧、外螺纹、内螺纹、外槽、内槽等的加工工艺分析。

关键词:典型轴类零件 加工 工艺分析

一、轴类零件加工的工艺分析

轴类零件加工工艺分析过程包含选择毛坯、分析技术要求、选择定位基准、热处理分析、确定加工顺序及选择刀具和给定合适的切削用量等。

轴类零件毛坯多采用锻件,曲轴类轴件采用球墨铸铁铸件。轴类零件一般轴向的技术要求不高,但是对于支承部位,轴颈的径向尺寸精度和形位精度要求却比较高:径向尺寸精度等级一般为IT6-IT8,而形位精度主要要求圆度和圆柱度。配合部位的形位公差要求为同轴度和圆跳动,主要保证配合轴颈与支承轴颈的同轴度。在定位基准选择时,由于轴上常见结构如外圆表面、内孔、螺纹等结构表面的同轴度需要满足要求,因此这些表面的设计基准一般都是轴的中心线,所以一般轴类零件的定位基准都为轴的中心线。

在热处理工序中,零件一般在粗车前采用正火或退火处理,这样可以起到改善零件金相组织和切削性能、消除残余内应力的作用,防止零件变形开裂。对于性能要求较高的零件,在粗加工后、精加工前一般还要安排调质处理,以提高零件的综合性能。对于互相有相对运动的接触表面,为提高接触表面的耐磨性,需要在精加工前后进行表面淬火或进行化学热处理。

轴类零件的加工顺序要按由粗到精、由远到近(由左到右)的原则确定。切削用量的控制一般包含进给量、背吃刀量及主轴转速等因素。在粗车时采用进给量和背吃刀量较大,以减少进给次数;在精车时采用进给量和背吃刀量较小,以提高加工精度。

二、典型结构的轴类零件加工工艺分析

下图为一个典型结构的轴类零件,包含常见典型结构,如圆柱、内孔、逆圆弧、外螺纹、内螺纹、外槽、内槽等,其加工工艺分析如下。

毛坯材料为优质碳素结构钢,45#钢,尺寸大小为直径φ65mm、长125mm,无热处理硬度要求。

加工顺序按由粗到精、由远到近的原则确定。即首先从左到右进行外轮廓粗车(留0.5mm余量)及精车,然后钻孔、镗内退刀槽、镗内螺纹。接着换头装夹加工右端,然后粗、精车外轮廓,以及切退刀槽,最后再进行螺纹粗加工及精加工。

具体步骤为:先夹持毛坯右端,车右端轮廓95mm处,车φ40mm外圆、R6的圆弧、φ60mm外圆和R45的圆弧;接着先打中心孔,再用φ8mm钻头钻孔,深度为25mm,然后换φ20mm的钻头扩孔,接着用镗刀镗φ22.5mm的孔,再换内槽刀镗φ28mm的槽;然后再用内螺纹刀车M24×1.5的螺纹;最后调头加工φ32mm外圆、R4和R6的圆弧、φ60mm外圆,再切退刀槽;最后再车M32×0.75的螺纹。

表1 刀具的选择:左端加工用刀

序号刀号刀具规格名称加工内容备注

1T01硬质合金端面45?车刀粗、精车端面

2T02硬质合金90?车刀粗、精车φ40mm外圆左偏刀

3T03硬质合金镗刀粗、精镗φ22.5mm孔

4T04硬质合金内螺纹刀车M24×1.5的螺纹

5T05硬质合金内槽刀切φ28mm槽

6尾座硬质合金φ18mm钻头钻孔

右端加工用刀

序号刀号刀具规格名称加工内容备注

1T01硬质合金端面45?车刀粗、精车端面

2T02车刀粗、精车φ32mm外圆左偏刀

3T03硬质合金车槽刀切退刀槽

4T0460?度硬质合金外螺纹车刀车M32×0.75螺纹

掌握切削用量要根据“粗车较大,精车较小”的原则,如表2给定参考量。

表2

主轴转速

S,(r/min)进 给 量

F,(mm/min)背 吃 刀 量

ap,(mm)

粗车外圆8001001.5

精车外圆10001000.2

钻孔3001000

粗镗孔8001001.5

精镗孔10001000.2

内退刀槽300250

粗车内螺纹 100750.4

精车内螺纹200750.1

外退刀槽300250

粗车外螺纹100750.4

精车外螺纹200750.1

最后,在工艺分析基础上编写加工工艺卡,再上机切削加工。

上一篇:听出心灵的杂音读后感下一篇:运营经营管理公约