电力变压器交接试验项目

2024-04-10

电力变压器交接试验项目(精选7篇)

篇1:电力变压器交接试验项目

第六章 电力变压器

第6.0.1条 电力变压器的试验项目,应包括下列内容:

一、测量绕组连同套管的直流电阻;

二、检查所有分接头的变压比;

三、检查变压器的三相接线组别和单相变压器引出线的极性;

四、测量绕组连同套管的绝缘电阻、吸收比或极化指数;

五、测量绕组连同套管的介质损耗角正切值tgδ;

六、测量绕组连同套管的直流泄漏电流;

七、绕组连同套管的交流耐压试验;

八、绕组连同套管的局部放电试验;

九、测量与铁芯绝缘的各紧固件及铁芯接地线引出套管对外壳的绝缘电阻;

十、非纯瓷套管的试验;

十一、绝缘油试验;

十二、有载调压切换装置的检查和试验;

十三、额定电压下的冲击合闸试验;

十四、检查相位;

十五、测量噪音。注:①1600kVA以上油浸式电力变压器的试验,应按本条全部项目的规定进行。②1600kVA及以下油浸式电力变压器的试验,可按本条的第一、二、三、四、七、九、十、十一、十二、十四款的规定进行。③干式变压器的试验,可按本条的第一、二、三、四、七、九、十二、十三、十四款的规定进行。④变流、整流变压器的试验,可按本条的第一、二、三、四、七、九、十一、十二、十三、十四款的规定进行。⑤电炉变压器的试验,可按本条的第一、二、三、四、七、九、十、十一、十二、十三、十四款的规定进行。⑥电压等级在35kV及以上的变压器,在交接时,应提交变压器及非纯瓷套管的出厂试验记录。

第6.0.2条 测量绕组连同套管的直流电阻,应符合下列规定:

一、测量应在各分接头的所有位置上进行;

二、1600kVA及以下三相变压器,各相测得值的相互差值应小于平均值的4%,线间测得值的相互差值应小于平均值的2%;1600kVA以上三相变压器,各相测得值的相互差值应小于平均值的2%;线间测得值的相互差值应小于平均值的 1%;

三、变压器的直流电阻,与同温下产品出厂实测数值比较,相应变化不应大于2%;

四、由于变压器结构等原因,差值超过本条第二款时,可只按本条第三款进行比较。第6.0.3条 检查所有分接头的变压比,与制造厂铭牌数据相比应无明显差别,且应符合变压比的规律;电压等级在220kV及以上的电力变压器,其变压比的允许误差在额定分接头位置时为±0.5%。

第6.0.4条 检查变压器的三相接线组别和单相变压器引出线的极性,必须与设计要求及铭牌上的标记和外壳上的符号相符。

第6.0.5条 测量绕组连同套管的绝缘电阻、吸收比或极化指数,应符合下列规定:

一、绝缘电阻值不应低于产品出厂试验值的70%。

二、当测量温度与产品出厂试验时的温度不符合时,可按表6.0.5换算到同一温度时的数值进行比较。表 6.0.5 油浸式电力变压器绝缘电阻的温度换算系数 温度差K 5 10 15 20 25 30 35 40 45 50 55 60 换算系数A 1.2 1.5 1.8 2.3 2.8 3.4 4.1 5.1 6.2 7.5 9.2 11.2 注:表中K为实测温度减去20℃的绝对值。当测量绝缘电阻的温度差不是表中所列数值时,其换算系数A可用线性插入法确定,也可按下述公式计算:(6.0.5-1)校正到20℃时的绝缘电阻值可用下述公式计算: 当实测温度为20℃以上时:(6.0.5-2)当实测温度为20℃以下时:(6.0.5-3)式中 R20——校正到20℃时的绝缘电阻值(MΩ); Rt——在测量温度下的绝缘电阻值(MΩ)。

三、变压器电压等级为35kV及以上,且容量在4000kVA及以上时,应测量吸收比。吸收比与产品出厂值相比应无明显差别,在常温下不应小于1.3。

四、变压器电压等级为220kV及以上且容量为120MVA及以上时,宜测量极化指数。测得值与产品出厂值相比,应无明显差别。

第6.0.6条 测量绕组连同套管的介质损耗角正切值tgδ,应符合下列规定:

一、当变压器电压等级为35kV及以上,且容量在8000kVA及以上时,应测量介质损耗角正切值tgδ;

二、被测绕组的tgδ值不应大于产品出厂试验值的130%;

三、当测量时的温度与产品出厂试验温度不符合时,可按表6.0.6换算到同一温度时的数值进行比较。表 6.0.6 介质损耗角正切值tgδ(%)温度换算系数 温度差K 5 10 15 20 25 30 35 40 45 50 换算系数A 1.15 1.3 1.5 1.7 1.9 2.2 2.5 2.9 3.3 3.7 注:表中K为实测温度减去20℃的绝对值。当测量时的温度差不是表中所列数值时,其换算系数A可用线性插入法确定,也可按下述公式计算:(6.0.6-1)校正到20℃时的介质损耗角正切值可用下述公式计算: 当测量温度在20℃以上时:(6.0.6-2)当测量温度在20℃以下时:(6.0.6-3)式中 tgδ20——校正到20℃时的介质损耗角正切值; tgδt——在测量温度下的介质损耗角正切值。

第6.0.7条 测量绕组连同套管的直流泄漏电流,应符合下列规定:

一、当变压器电压等级为35kV及以上,且容量在10000kVA及以上时,应测量直流泄漏电流;

二、试验电压标准应符合表6.0.7的规定。当施加试验电压达1min时,在高压端读取泄漏电流。泄漏电流值不宜超过本标准附录三的规定。表6.0.7 油浸式电力变压器直流泄漏试验电压标准 绕组额定电压(kV)6~10 20~35 63~330 500 直流试验电压(kV)10 20 40 60 注:①绕组额定电压为13.8kV及15.75kV时,按10kV级标准;18kV时,按20kV级标准。②分级绝缘变压器仍按被试绕组电压等级的标准。

第6.0.8条 绕组连同套管的交流耐压试验,应符合下列规定:

一、容量为8000kVA以下、绕组额定电压在110kV以下的变压器,应按本标准附录一试验电压标准进行交流耐压试验;

二、容量为8000kVA及以上、绕组额定电压在110kV以下的变压器,在有试验设备时,可按本标准附录一试验电压标准进行交流耐压试验。

第6.0.9条 绕组连同套管的局部放电试验,应符合下列规定:

一、电压等级为500kV的变压器宜进行局部放电试验,实测放电量应符合下列规定: 1.预加电压为。2.测量电压在 下,时间为30min,视在放电量不宜大于300pC。3.测量电压在 下,时间为30min,视在放电量不宜大于500pC。4.上述测量电压的选择,按合同规定。注:Um均为设备的最高电压有效值。

二、电压等级为220kV及330kV的变压器,当有试验设备时宜进行局部放电试验。

三、局部放电试验方法及在放电量超出上述规定时的判断方法,均按现行国家标准《电力变压器》中的有关规定进行。

第6.0.10条 测量与铁芯绝缘的各紧固件及铁芯接地线引出套管对外壳的绝缘电阻,应符合下列规定:

一、进行器身检查的变压器,应测量可接触到的穿芯螺栓、轭铁夹件及绑扎钢带对铁轭、铁芯、油箱及绕组压环的绝缘电阻;

二、采用2500V兆欧表测量,持续时间为1min,应无闪络及击穿现象;

三、当轭铁梁及穿芯螺栓一端与铁芯连接时,应将连接片断开后进行试验;

四、铁芯必须为一点接地;对变压器上有专用的铁芯接地线引出套管时,应在注油前测量其对外壳的绝缘电阻。

第6.0.11条 非纯瓷套管的试验,应按本标准第十五章“套管”的规定进行。第6.0.12条 绝缘油的试验,应符合下列规定:

一、绝缘油试验类别应符合本标准表19.0.2的规定;试验项目及标准应符合表19.0.1的规定。

二、油中溶解气体的色谱分析,应符合下述规定: 电压等级在63kV及以上的变压器,应在升压或冲击合闸前及额定电压下运行24h后,各进行一次变压器器身内绝缘油的油中溶解气体的色谱分析。两次测得的氢、乙炔、总烃含量,应无明显差别。试验应按现行国家标准《变压器油中溶解气体分析和判断导则》进行。

三、油中微量水的测量,应符合下述规定: 变压器油中的微量水含量,对电压等级为110kV的,不应大于20ppm;220~330kV的,不应大于15ppm;500kV的,不应大于10ppm。注:上述ppm值均为体积比。

四、油中含气量的测量,应符合下述规定: 电压等级为500kV的变压器,应在绝缘试验或第一次升压前取样测量油中的含气量,其值不应大于1%。

第6.0.13条 有载调压切换装置的检查和试验,应符合下列规定:

一、在切换开关取出检查时,测量限流电阻的电阻值,测得值与产品出厂数值相比,应无明显差别。

二、在切换开关取出检查时,检查切换开关切换触头的全部动作顺序,应符合产品技术条件的规定。

三、检查切换装置在全部切换过程中,应无开路现象;电气和机械限位动作正确且符合产品要求;在操作电源电压为额定电压的85%及以上时,其全过程的切换中应可靠动作。

四、在变压器无电压下操作10个循环。在空载下按产品技术条件的规定检查切换装置的调压情况,其三相切换同步性及电压变化范围和规律,与产品出厂数据相比,应无明显差别。

五、绝缘油注入切换开关油箱前,其电气强度应符合本标准表19.0.1的规定。第6.0.14条 在额定电压下对变压器的冲击合闸试验,应进行5次,每次间隔时间宜为5min,无异常现象;冲击合闸宜在变压器高压侧进行;对中性点接地的电力系统,试验时变压器中性点必须接地;发电机变压器组中间连接无操作断开点的变压器,可不进行冲击合闸试验。

第6.0.15条 检查变压器的相位必须与电网相位一致。

第6.0.16条 电压等级为500kV的变压器的噪音,应在额定电压及额定频率下测量,噪音值不应大于80dB(A),其测量方法和要求应按现行国家标准《变压器和电抗器的声级测定》的规定进行。第七章 电抗器及消弧线圈

第7.0.1条 电抗器及消弧线圈的试验项目,应包括下列内容:

一、测量绕组连同套管的直流电阻;

二、测量绕组连同套管的绝缘电阻、吸收比或极化指数;

三、测量绕组连同套管的介质损耗角正切值tgδ;

四、测量绕组连同套管的直流泄漏电流;

五、绕组连同套管的交流耐压试验;

六、测量与铁芯绝缘的各紧固件的绝缘电阻;

七、绝缘油的试验;

八、非纯瓷套管的试验;

九、额定电压下冲击合闸试验;

十、测量噪音;

十一、测量箱壳的振动;

十二、测量箱壳表面的温度分布。注:①干式电抗器的试验项目可按本条第一、二、五、九款规定进行。②消弧线圈的试验项目可按本条第一、二、五、六款规定进行;对35kV及以上油浸式消弧线圈应增加第三、四、七、八款。③油浸式电抗器的试验项目可按本条第一、二、五、六、七、九款规定进行;对35kV及以上电抗器应增加第三、四、八、十、十一、十二款。④电压等级在35kV及以上的油浸电抗器,还应在交接时提交电抗器及非纯瓷套管的出厂试验记录。第7.0.2条 测量绕组连同套管的直流电阻,应符合下列规定:

一、测量应在各分接头的所有位置上进行;

二、实测值与出厂值的变化规律应一致; 三、三相电抗器绕组直流电阻值相间差值不应大于三相平均值的2%;

四、电抗器和消弧线圈的直流电阻,与同温下产品出厂值比较相应变化不应大于2%。第7.0.3条 测量绕组连同套管的绝缘电阻、吸收比或极化指数,应符合本标准第6.0.5条的规定。第7.0.4条 测量绕组连同套管的介质损耗角正切值tgδ,应符合本标准第6.0.6条的规定。第7.0.5条 测量绕组连同套管的直流泄漏电流,应符合本标准第6.0.7条的规 定。第7.0.6条 绕组连同套管的交流耐压试验,应符合下列规定:

一、额定电压在110kV以下的消弧线圈、干式或油浸式电抗器均应进行交流耐压试验,试验电压应符合本标准附录一的规定;

二、对分级绝缘的耐压试验电压标准,应按接地端或其末端绝缘的电压等级来进行。第7.0.7条 测量与铁芯绝缘的各紧固件的绝缘电阻,应符合本标准第6.0.10条的规定。第7.0.8条 绝缘油的试验,应符合本标准第6.0.12条的规定。第7.0.9条 非纯瓷套管的试验,应符合本标准第十五章“套管”的规定。第7.0.10条 在额定电压下,对变电所及线路的并联电抗器连同线路的冲击合闸试验,应进行5次,每次间隔时间为5min,应无异常现象。第7.0.11条 测量噪音应符合本标准第6.0.16条的规定。第7.0.12条 电压等级为500kV的电抗器,在额定工况下测得的箱壳振动振幅双峰值不应大于100μm。第7.0.13条 电压等级为330~500kV的电抗器,应测量箱壳表面的温度分布,温升不应大于65℃。第八章 互感器 第8.0.1条 互感器的试验项目,应包括下列内容:

一、测量绕组的绝缘电阻;

二、绕组连同套管对外壳的交流耐压试验;

三、测量35kV及以上互感器一次绕组连同套管的介质损耗角正切值tgδ;

四、油浸式互感器的绝缘油试验;

五、测量电压互感器一次绕组的直流电阻;

六、测量电流互感器的励磁特性曲线;

七、测量1000V以上电压互感器的空载电流和励磁特性;

八、检查互感器的三相结线组别和单相互感器引出线的极性;

九、检查互感器变化;

十、测量铁芯夹紧螺栓的绝缘电阻;

十一、局部放电试验;

十二、电容分压器单元件的试验。注:①套管式电流互感器的试验,应按本条的第一、二、六、九款规定进行;其中第二款可随同变压器、电抗器或油断路器等一起进行。②六氟化硫封闭式组合电器中的互感器的试验,应按本条的第六、七、九款规定进行。第8.0.2条 测量绕组的绝缘电阻,应符合下列规定:

一、测量一次绕组对二次绕组及外壳、各二次绕组间及其对外壳的绝缘电阻;

二、电压等级为500kV的电流互感器尚应测量一次绕组间的绝缘电阻,但由于结构原因而无法测量时可不进行;

三、35kV及以上的互感器的绝缘电阻值与产品出厂试验值比较,应无明显差别;

四、110kV及以上的油纸电容式电流互感器,应测末屏对二次绕组及地的绝缘电阻,采用2500V兆欧表测量,绝缘电阻值不宜小于1000MΩ。第8.0.3条 绕组连同套管对外壳的交流耐压试验,应符合下列规定:

一、全绝缘互感器应按本标准附录一规定进行一次绕组连同套管对外壳的交流耐压试验。

二、对绝缘性能有怀疑时,串级式电压互感器及电容式电压互感器的中间电压变压器,宜按下列规定进行倍频感应耐压试验: 1.倍频感应耐压试验电压应为出厂试验电压的85%。2.试验电源频率为150Hz及以上时,试验时间t按下式计算:(8.0.3-1)式中t——试验电压持续时间(s); f——试验电源频率(Hz)。3.试验电源频率不应大于400Hz。试验电压持续时间不应小于20s。4.倍频感应耐压试验前后,应各进行一次额定电压时的空载电流及空载损耗测量,两次测得值相比不应有明显差别。5.倍频感应耐压试验前后,应各进行一次绝缘油的色谱分析,两次测得值相比不应有明显差别。6.倍频感应耐压试验时,应在高压端测量电压值。高压端电压升高容许值应符合制造厂的规定。7.对电容式电压互感器的中间电压变压器进行倍频感应耐压试验时,应将分压电容拆开。由于产品结构原因现场无条件拆开时,可不进行倍频感应耐压试验。三、二次绕组之间及其对外壳的工频耐压试验电压标准应为2000V。第8.0.4条 测量35kV及以上互感器一次绕组连同套管的介质损耗角正切值tgδ,应符合下列规定:

一、电流互感器: 1.介质损耗角正切值tgδ(%)不应大于表8.0.4-1的规定。表8.0.4-1 电流互感器20℃下介质损耗角正切值tgδ(%)额定电压(kV)35 63~220 330 500 充油式 3 2 充胶式 2 2 胶纸电容式 2.5 2 油纸电容式 1.0 0.8 0.6 2.220kV及以上油纸电容式电流互感器,在测量tgδ的同时,应测量主绝缘的电容值,实测值与出厂试验值或产品铭牌值相比,其差值宜在±10%范围内。

二、电压互感器: 1.35kV油浸式电压互感器的介质损耗角正切值tgδ(%),不应大于表8.0.4-2的规定。 表8.0.4-2 35kV油浸式电压互感器介质损耗角正切值tgδ(%)温度(℃)5 10 20 30 40 tgδ(%)2.0 2.5 3.5 5.5 8.0 2.35kV以上电压互感器,在试验电压为10kV时,按制造厂试验方法测得的tgδ值不应大于出厂试验值的130%。第8.0.5条 对绝缘性能有怀疑的油浸式互感器,绝缘油的试验,应符合下列规定:

一、绝缘油电气强度试验应符合本标准第十九章表19.0.1第10项的规定。

二、电压等级在63kV以上的互感器,应进行油中溶解气体的色谱分析。油中溶解气体含量与产品出厂值相比应无明显差别。

三、电压等级在110kV及以上的互感器,应进行油中微量水测量。对电压等级为110kV的,微量水含量不应大于20ppm;220~330kV的,不应大于15ppm;500kV的,不应大于10ppm。注:上述ppm值均为体积比。

四、当互感器的介质损耗角正切值tgδ(%)较大,但绝缘油的其它性能试验又属正常时,可按表19.0.1第11项进行绝缘油的介质损耗正切值tgδ测量。第8.0.6条 测量电压互感器一次绕组的直流电阻值,与产品出厂值或同批相同型号产品的测得值相比,应无明显差别。第8.0.7条 当继电保护对电流互感器的励磁特性有要求时,应进行励磁特性曲线试验。当电流互感器为多抽头时,可在使用抽头或最大抽头测量。同型式电流互感器特性相互比较,应无明显差别。第8.0.8条 测量1000V以上电压互感器的空载电流和励磁特性,应符合下列规定:

一、应在互感器的铭牌额定电压下测量空载电流。空载电流与同批产品的测得值或出厂数值比较,应无明显差别。

二、电容式电压互感器的中间电压变压器与分压电容器在内部连接时可不进行此项试验。第8.0.9条 检查互感器的三相结线组别和单相互感器引出线的极性,必须符合设计要求,并应与铭牌上的标记和外壳上的符号相符。第8.0.10条 检查互感器变比,应与制造厂铭牌值相符,对多抽头的互感器,可只检查使用分接头的变比。第8.0.11条 测量铁芯夹紧螺栓的绝缘电阻,应符合下列规定:

一、在作器身检查时,应对外露的或可接触到的铁芯夹紧螺栓进行测量。

二、采用2500V兆欧表测量,试验时间为1min,应无闪络及击穿现象。

三、穿芯螺栓一端与铁芯连接者,测量时应将连接片断开,不能断开的可不进行测量。第8.0.12条 局部放电试验,应符合下列规定:

一、35kV及以上固体绝缘互感器应进行局部放电试验。

二、110kV及以上油浸式电压互感器,在绝缘性能有怀疑时,可在有试验设备时进行局部放电试验。

三、测试时,可按现行国家标准《互感器局部放电测量》的规定进行。测试电压值及放电量标准应符合表8.0.12的规定。表8.0.12 互感器局部放电量的允许水平接地方式 互感器型式 预加电压(t>10s)测量电压(t>1min)绝缘型式 允许局部放电水平视在放电量(pC)中性点绝缘系统或中性点共振接地系统 电流互感器与相对地电压互感器 1.3Um 液体浸渍 20 固体 100 相与相电压互感器 1.3Um 1.1Um 液体浸渍 20 固体 100 中性点有效接地系统 电流互感器与相对地电压互感器 0.8×1.3Um 液体浸渍 20 固体 100 相与相电压互感器 1.3Um 1.1Um 液体浸渍 20 固体 100 注:Um为设备的最高电压有效值。

四、500kV的电容式电压互感器的局部放电试验,可按本标准第18.0.4条的规定进行。

五、局部放电试验前后,应各进行一次绝缘油的色谱分析。第8.0.13条 电容分压器单元件的试验,应符合下列规定:

一、电容分压器单元件的试验项目和标准,应按本标准第18.0.2、18.0.3、18.0.4条的规定进行;

二、当继电保护有要求时,应注意三相电容量的一致性。第九章 油 断 路 器 第9.0.1条 油断路器的试验项目,应包括下列内容:

一、测量绝缘拉杆的绝缘电阻;

二、测量35kV多油断路器的介质损耗角正切值tgδ;

三、测量35kV以上少油断路器的直流泄漏电流;

四、交流耐压试验;

五、测量每相导电回路的电阻;

六、测量油断路器的分、合闸时间;

七、测量油断路器的分、合闸速度;

八、测量油断路器主触头分、合闸的同期性;

九、测量油断路器合闸电阻的投入时间及电阻值;

十、测量油断路器分、合闸线圈及合闸接触器线圈的绝缘电阻及直流电阻;

十一、油断路器操动机构的试验;

十二、断路器电容器试验;

十三、绝缘油试验;

十四、压力表及压力动作阀的校验。第9.0.2条 由有机物制成的绝缘拉杆的绝缘电阻值在常温下不应低于表9.0.2的规定。表 9.0.2 有机物绝缘拉杆的绝缘电阻标准 额 定 电 压(kV)3~15 20~35 63~220 330~500 绝缘电阻值(MΩ)1200 3000 6000 10000 第9.0.3条 测量35kV多油断路器的介质损耗角正切值tgδ,应符合下列规 定:

一、在20℃时测得的tgδ值,对DW2、DW8型油断路器,不应大于本标准表15.0.3中相应套管的tgδ(%)值增加2后的数值;对DW1型油断路器,不应大于本标准表15.0.3中相应套管的tgδ(%)值增加3后的数值。

二、应在分闸状态下测量每只套管的tgδ。当测得值超过标准时,应卸下油箱后进行分解试验,此时测得的套管的tgδ(%)值,应符合本标准表15.0.3的规定。第9.0.4条 35kV以上少油断路器的支柱瓷套连同绝缘拉杆以及灭弧室每个断口的直流泄漏电流试验电压应为40kV,并在高压侧读取1min时的泄漏电流值,测得的泄漏电流值不应大于10μA;220kV及以上的,泄漏电流值不宜大于5μA。第9.0.5条 交流耐压试验,应符合下列规定:

一、断路器的交流耐压试验应在合闸状态下进行,试验电压应符合本标准附录一的规定;

二、35kV及以下的断路器应按相间及对地进行耐压试验;

三、对35kV及以下户内少油断路器及联络用的断路器,可在分闸状态下按上述标准进行断口耐压。 第9.0.6条 测量每相导电回路电阻,应符合下列规定:

一、电阻值及测试方法应符合产品技术条件的规定;

二、主触头与灭弧触头并联的断路器,应分别测量其主触头和灭弧触头导电回路的电阻值。第9.0.7条 测量断路器的分、合闸时间应在产品额定操作电压、液压下进行。实测数值应符合产品技术条件的规定。第9.0.8条 测量断路器分、合闸速度,应符合下列规定:

一、测量应在产品额定操作电压、液压下进行,实测数值应符合产品技术条件的规定;

二、电压等级在15kV及以下的断路器,除发电机出线断路器和与发电机主母线相连的断路器应进行速度测量外,其余的可不进行。第9.0.9条 测量断路器主触头的三相或同相各断口分、合闸的同期性,应符合产品技术条件的规定。第9.0.10条 测量断路器合闸电阻的投入时间及电阻值,应符合产品技术条件的规定。第9.0.11条 测量断路器分、合闸线圈及合闸接触器线圈的绝缘电阻值不应低于10MΩ,直流电阻值与产品出厂试验值相比应无明显差别。第9.0.12条 断路器操动机构的试验,应符合下列规定:

一、合闸操作。1.当操作电压、液压在表9.0.12-1范围内时,操动机构应可靠动作; 表9.0.12-1 断路器操动机构合闸操作试验电压、液压范围 电 压 液 压 直 流 交 流 (85%~110%)Un(85%~110%)Un 按产品规定的最低及最高值 注:对电磁机构,当断路器关合电流峰值小于50kA时,直流操作电压范围为(80%~110%)Un。Un为额定电源电压。2.弹簧、液压操动机构的合闸线圈以及电磁操动机构的合闸接触器的动作要求,均应符合上项的规定。

二、脱扣操作。1.直流或交流的分闸电磁铁,在其线圈端钮处测得的电压大于额定值的65%时,应可靠地分闸;当此电压小于额定值的30%时,不应分闸。2.附装失压脱扣器的,其动作特性应符合表9.0.12-2的规定。表9.0.12-2 附装失压脱扣器的脱扣试验 电源电压与额定电源电压的比值 小于35%* 大于65% 大于85% 失压脱扣器的工作状态 铁芯应可靠地释放 铁芯不得释放 铁芯应可靠地吸合 *当电压缓慢下降至规定比值时,铁芯应可靠地释放。3.附装过流脱扣器的,其额定电流规定不小于2.5A,脱扣电流的等级范围及其准确度,应符合表9.0.12-3的规定。

三、模拟操动试验。1.当具有可调电源时,可在不同电压、液压条件下,对断路器进行就地或远控操作,每次操作断路器均应正确,可靠地动作,其联锁及闭锁装置回路的动作应符合产品及设计要求; 当无可调电源时,只在额定电压下进行试验。2.直流电磁或弹簧机构的操动试验,应按表9.0.12-4的规定进行;液压机构的操动试验,应按表9.0.12-5的规定进行。表9.0.12-3 附装过流脱扣器的脱扣试验过流脱扣器的种类 延时动作的 瞬时动作的 脱扣电流等级范围(A)2.5~10 2.5~15 每级脱扣电流的准确度 ±10% 同一脱扣器各级脱扣电流准确度 ±5% 注:对于延时动作的过流脱扣器,应按制造厂提供的脱扣电流与动作时延的关系曲线进行核对。另外,还应检查在预定时延终了前主回路电流降至返回值时,脱扣器不应动作。表9.0.12-4 直流电磁或弹簧机构的操动试验 操作类别 操作线圈端钮电压与 额定电源电压的比值(%)操作次数 合、分 110 3 合 闸 85(80)3 分 闸 65 3 合、分、重合 100 3 注:括号内数字适用于装有自动重合闸装置的断路器及表9.0.12-1“注”的情况。表9.0.12-5 液压机构的操动试验 操 作 类 别 操作线圈端钮电压 与额定电源电压的比值(%)操 作 液 压 操 作 次 数 合、分 110 产品规定的最高操作压力 3 合、分 100 额定操作压力 3 合 85(80)产品规定的最低操作压力 3 分 65 产品规定的最低操作压力 3 合、分、重合 100 产品规定的最低操作压力 3 注:①括号内数字适用于装有自动重合闸装置的断路器。②模拟操动试验应在液压的自动控制回路能准确、可靠动作状态下进行。③操动时,液压的压降允许值应符合产品技术条件的规定。第9.0.13条 断路器电容器试验,应按本标准第十八章“电容器”的有关规定进行。第9.0.14条 绝缘油试验,应按本标准第十九章“绝缘油”的规定进行。对灭弧室、支柱瓷套等油路相互隔绝的断路器,应自各部件中分别取油样试验。第9.0.15条 压力动作阀的动作值,应符合产品技术条件的规定;压力表指示值的误差及其变差,均应在产品相应等级的允许误差范围内。第十章 空气及磁吹断路器 第10.0.1条 空气及磁吹断路器的试验项目,应包括下列内容:

一、测量绝缘拉杆的绝缘电阻;

二、测量每相导电回路的电阻;

三、测量支柱瓷套和灭弧室每个断口的直流泄漏电流;

四、交流耐压试验;

五、测量断路器主、辅触头分、合闸的配合时间;

六、测量断路器的分、合闸时间;

七、测量断路器主触头分、合闸的同期性;

八、测量分、合闸线圈的绝缘电阻和直流电阻;

九、断路器操动机构的试验;

十、测量断路器的并联电阻值;

十一、断路器电容器的试验;

十二、压力表及压力动作阀的校验。注:①发电机励磁回路的自动灭磁开关,除应进行本条第八、九款试验外,还应作以下检查和试验:常开、常闭触头分、合切换顺序;主触头和灭弧触头的动作配合;灭弧栅的片数及其并联电阻值;在同步发电机空载额定电压下进行灭磁试 验。②磁吹断路器试验,应按本条第二、四、六、八、九款规定进行。第10.0.2条 测量绝缘拉杆的绝缘电阻值,不应低于本标准表9.0.2的规定。第10.0.3条 测量每相导电回路的电阻值及测试方法,应符合产品技术条件的规定。第10.0.4条 支柱瓷套和灭弧室每个断口的直流泄漏电流的试验,应按本标准第9.0.4条的规定进行。第10.0.5条 空气断路器应在分闸时各断口间及合闸状态下进行交流耐压试验;磁吹断路器应在分闸状态下进行断口交流耐压试验;试验电压应符合本标准附录一的规定。第10.0.6条 断路器主、辅触头分、合闸动作程序及配合时间,应符合产品技术条件的规定。第10.0.7条 断路器分、合闸时间的测量,应在产品额定操作电压及气压下进行,实测数值应符合产品技术条件的规定。第10.0.8条 测量断路器主触头三相或同相各断口分、合闸的同期性,应符合产品技术条件的规定。第10.0.9条 测量分、合闸线圈的绝缘电阻值,不应低于10MΩ;直流电阻值与产品出厂试验值相比应无明显差别。第10.0.10条 断路器操动机构的试验,应按本标准第9.0.12条的有关规定进行。注:对应于本标准表9.0.12中的“液压”应为“气压”。第10.0.11条 测量断路器的并联电阻值,与产品出厂试验值相比应无明显差 别。第10.0.12条 断路器电容器的试验,应按本标准第十八章“电容器”的有关规定进行。第10.0.13条 压力动作阀的动作值,应符合产品技术条件的规定。压力表指示值的误差及其变差,均应在产品相应等级的允许误差范围内。

篇2:电力变压器交接试验项目

测量绕组连同套管的绝缘电阻、吸收比或极化指数;吸收比大于等于1.3 3

测量绕组连同套管的介质损耗角正切值 tanδ小于0.8% 4

测量变压器各额定分接下电压比允许偏差不超过±0.5% 5

篇3:电力变压器交接试验项目

在电力建设中, 10 k V变配电所是供配电系统中一个的重要环节, 它是将电网电能输送到用户的一个中转站。而10 k V干式变压器更是这个中转站的心脏。20世纪80年代末, 干式变压器从国外进入中国, 至今每年以超过25%的增长率迅猛发展。干式变压器的优点主要集中在节能、环保、性能参数等方面。所以干式变压器已经成为变配电室的主流变压器。新建变配电室在干式变压器安装后必须对干变的主要性能进行测试, 作为干式变压器受送电的主要依据。

1 试验的目的

干式变压器结构简单、运行可靠、噪音低、过载能力强, 为检查变压器绕组之间、绕组与引线之间的机械特性是否良好, 各绕组之间电阻是否平衡, 保护的可靠性、灵敏性以及其他性能能否满足技术规范的要求, 要对10 k V高压配电室干式变压器进行严格的电气试验。

2 对试验仪器、工器具的安全要求

(1) 试验电源必须实行“一闸一机”制, 必须接至漏电保护器上, 额定漏电电流应不大于30 m A, 额定漏电动作时间应小于0.1 ms。

(2) 试验仪器的外壳必须接地良好, 接地线的截面不小于5 mm2, 其电源线无损伤及老化。

(3) 试验仪器操作旋钮转动平滑灵活, 无间断点, 无突升点。

(4) 万用表、兆欧表、电流电压表、移动电源盘、绝缘手套、绝缘靴等经检验合格, 并在有效期范围之内。

(5) 常用工具应绝缘良好。

(6) 试验时设置安全警戒区域, 无关人员禁止入内。

(7) 操作人员必须取得相关试验资质持证上岗。

3 试验工序、方法及要求

试验准备→试验接线→设备试验→试验拆线→试验结果分析→试验报告整理。

3.1 测量绕组连同套管的直流电阻

(1) 测量应在各分接头所有位置上进行。对于一般10 k V干式变压器容量大都在1 600 k VA及以下, 所以各相测得值的相互差值应小于平均值的4%, 线间测得值的相互差值应小于平均值的2%。

(2) 直阻测量方法:

1) 用感性负载速测欧姆计测量绕组直流电阻时, 其接线及测量方法应符合测试仪器的技术要求。

2) 用双臂电桥测量时, 双臂电桥其测量引线的接线如图1所示。

3) 若用单臂电桥测量阻值较大的变压器绕组, 则注意测量的数据应减去电桥引线的电阻值。

(3) 变压器的直流电阻, 与同温下产品出厂实测数值比较, 相应变化不应大于2%;将不同温度下的绕组直流电阻温度换算到同一温度:

式中, Rx为换算至温度为tx时的电阻;Ra为温度为ta时所测得的电阻;T为温度换算系数, 铜线为235, 铝线为225;tx为需要换算Rx的温度;ta为测量Ra时的温度。

3.2 检查所有分接头的变压比

检查所有变压器的变压比也应在变压器各分接头所有位置上进行。变压比与制造厂铭牌数据相比应无明显差别, 且符合变比的规律。额定分接的变压比允许偏差为±0.5%, 其他分接的偏差应在变压器阻抗值的1/10以内, 但不超过1%。

3.3 检查三相变压器的结线组别和极性

变压器结线组别和极性的检查是保证并列运行和保护极性的重要措施。

测试方法一般用直流法, 取一干电池分别加在AB、BC、AC。A接正、B接负。观察低压端电压表的指示方向和最大数值, 电压表也是a接正、b接负。

3.4 测量绕组连同套管的绝缘电阻

(1) 10k V干式变压器一次侧对地以及一次侧相间均采用2500V或5 000 V、10 000 MΩ及以上兆欧表。

(2) 对于10 000/400 V的干式变压器二次侧可用500 V摇表进行绝缘测试。

(3) 绝缘电阻值不应低于出厂试验值的70%。

3.5 交流耐压试验

绕组额定电压在10 k V以下的变压器, 应按标准进行交流耐压试验。

(1) 试验电压的频率为50 Hz, 电压波形应尽可能接近正弦波形。

(2) 试验接线图如图2所示。

(3) 限流电阻按照0.2~1.0Ω/V选取。如果在试验中需要测量电容电流, 可在试验变压器高压线圈尾端接入毫安表以及并联1只短路保护开关。

(4) 变压器交流耐压标准如表1所示。

(5) 干式变压器出厂试验电压是根据现行国家标准《干式电力变压器》GB6450规定的出厂试验电压交接试验乘以0.8制定的。

3.6 测量与铁芯绝缘的各紧固件及铁芯接地线引出套管对外壳的绝缘电阻

(1) 进行器身检查的变压器, 应测量可接触到的穿芯螺栓、轭铁夹件及绑扎钢带对铁轭、铁芯、油箱及绕组压环的绝缘电阻;

(2) 采用2 500 V兆欧表测量, 持续时间为1 min, 应无闪络及击穿现象;

(3) 当轭铁梁及穿芯螺栓一端与铁芯相连时, 应将连接片断开后进行试验;

(4) 铁芯必须为一点接地, 对变压器上有专用的铁芯接地线引出套管时, 应在注油前测量其对外壳的绝缘电阻, 其绝缘电阻值一般不低于10МΩ。

4 结语

通过以上试验方法对10 k V干式变压器进行性能测试并对测试数据进行分析, 了解变压器在投运前的各种性能状态, 保证了干式变压器在使用中的安全可靠。

参考文献

[1]GB50150—2006电气装置安装工程电气设备交接试验标准[S]

[2]河南省电力公司.火电工程调试技术手册[M].北京:中国电力出版社, 2003

篇4:电力变压器交接试验项目

【关键字】 10kv;干式变压器;电气交接;试验分析

【引言】在如今的世界,经济发展如火如荼,这其中电力毋庸置疑是最重要的驱动力,10kv干式变压器在电力行业起着决定生死的重大作用,自干式变压器从国外引入,它的使用频率和数量迅猛增长,它之所以这么受到电力行业的欢迎,成为主流变压器,是因为它的确有着其他变压器所不具备的特点,它集环保、高效、节能等优点于一身,10kv干式变压器在未来的几年一定能够取代普通变压器,独占电力行业。然而,在10kv干式变压器普及之前,我们一定要对其进行电气交接试验分析,了解它的主要性能,为干式变压器受送电提供方便,为人们的生命安全负责。

实验的目的

10kv干式变压器由于引入国内的时间比较晚,我国电力行业对其主要性能和安全等问题还不能给出确凿的证据,接下来我们就围绕10kv干式变压器安装后各个绕组同引线之间是否安全可靠、各个绕组之间的电阻是否平衡等问题来进行电气交接试验。

试验所需工具和相关注意事项

(一)、仪器仪表和工具

湿温度计一支(误差允许≤1℃)、兆欧表一盒(2500V、5000V)、变压器直流电阻测试仪一盒、变压比测试仪一盒、导线或地线若干。

(二)、试验注意事项

1、因为电气交接试验属于破坏性实验,所以干式变压器进行试验时一定要遵循一机一闸的原则,再将其接到漏电保护器上,同时还要保证额定的漏电电流不得超过30mA。

2、实验操作人员,在进入实验场地时,必须戴上安全帽,穿上绝缘鞋,避免发生不必要的危险。

3、实验应该在天气良好的情况下进行,遇到大风雷雨天气应该自觉停止一切实验。

4、干式变压器的性能实验仪器一定要保证外壳接地,检查实验线路,避免出现由于电路老化而带来巨大的损失。

5、检查湿温度计、兆欧表、变压器直流电阻测试仪、变压比测试仪、导线等是否已经损坏,在实验场地周围拉上安全警戒线,驱逐无关人员,保证实验的顺利进行。

6、在实验的过程中如果出现兆欧表指针迅速发生偏转,偏转的角度多大,应该立即断开总开关,换上量程合适的兆欧表再继续进行测量。

试验项目

1、绝缘电阻试验

2、交流耐压

试验方法和过程

(一)、绝缘电阻试验

1、试验仪器:湿温度计一支、2500V或5000V兆欧表一块

2、试验原理:绝缘电阻试验是检查干式变压器是否处于绝缘状态的最基本的方法。试验中,我们首先用兆欧表来测量干式变压器的绝缘电阻,在测量时由于很难做到控制单一变量的标准,但是对于干式变压器而言,测量时只需要读取其最稳定的值,记录下来,作为干式变压器绝缘电阻的值。

3、试验方法和步骤

用湿温度计测量试验场地的温度和湿度,记录下来,取其平均值作为最终结果。

將兆欧表地线进行接地,戴上绝缘手套,将兆欧表的导线与干式变压器相接,合上开关,记录多组绝缘电阻的值,关闭开关,将兆欧表放回原地,计算出绝缘电阻的平均值,作为最终结果。

将被测量的电路接地放电

用以上方法测量并记录干式变压器的夹件和铁芯的绝缘电阻

试验结果分析指标

当测量的环境温度与干式变压器出场的环境温度差异太大时,应该舍弃测量数据,把环境温度调到与出场温度一致时,再进行测量,得出较为准确的数据

测得的绝缘电阻值不超过出厂值的70%

、交流耐压

1、试验仪器:试验变压器、合适容量的调压器、串联电抗器、漏电保护器

2、试验原理:外施交流电压试验,试验电压波形尽可能接近正弦,试验电压值为测量电压的峰值除以根号2

3、试验方法及步骤

a)根据相关规程或制造厂家的规定值确定试验电压并根据所试电力变压器的容量选择合适电压等级的电源设备,测量保护电阻和试验仪器。若试验过程中出现电压较高,则应立即使用串联谐振来降低试验电源的容量。

b)对主绝缘电阻进行试验,测量的数据合格后再进行交流耐压的试验

c)检查试验仪器是否能够正常使用,以保证试验的顺利进行

d)试验结束,合上总开关,将各仪器放回原处

4、试验结果分析指标:在进行耐压试验时,如果各仪器的的指针不跳动,被试验变压器没有发出放电的声音,这说明变压器的耐压试验合格。如果各仪器的指示突然上升,而且被试验的变压器发出强烈的放电声,同时还伴着球隙放电,则说明该变压器的耐压试验不合格,此种变压器不能投入使用。

五、试验结果分析

1、交流耐压试验是检验电力设备绝缘程度最有效,也是最直接的方法,是防止安全事故的一项必备工序,由于交流耐压试验电力一般要比正常的运行电压要高,电力部门在长期的运营中,绝缘长期受到电场、温度和机械振动等各大原因而逐渐发生劣化,很容易造成安全事故,但是,经过这种实验,我们可以排除变压器的安全隐患,提高设备的安全裕度,进行这种实验是非常必要的。

2、绝缘电阻试验是检验变压器是否安全的最有效的方法,因为变压器通常都是超负荷运作,所以,一定要对变压器的绝缘电阻经常进行试验,在试验过程中,如果将绝缘电阻换算至同一温度下,将其与前一次测量结果结果相比无明显变化,则此种变压器可以投入使用,如果测量的结果与前一次测量的数据相比相差很大,则此种变压器不能投入使用;如果测得它的吸收比不低于1.3或者变压器的极化指数不低于1.5,则此种干式变压器合格,反之,则此种干式变压器不合格,应该禁止投入使用。

结束语

综上所述,现如今的中国发展迅猛,经济发展日新月异,电力在其中扮演着一个举足轻重的角色,我国应该投入更多的人力和财力来强化我国的电网,变压器作为整个电网的心脏,其重要性不必赘述,研发一个好的变压器,对于一个国家来说相当于如获珍宝,而从国外引入的10kv干式变压器为我们国家的电力领域注入了一股全新的活力,犹如一股清新剂,将电力部门的供受电能力拉上了一个台阶,10kv干式变压器的安装试验对于变压器的安全运营起着极其重要的作用,所以,在电力部门将新型的变压器投入运营之前一定要通过具体的试验和严谨的分析来确保干式变压器的安全使用,我相信随着科技的飞速发展,各种各样的新式变压器将会被研发和使用,但是,无论经济的发展有多快,始终要坚信安全第一,只有在生命安全有保障的前提下,才能谈及一个国家的发展是否迅猛,不然,一切都只是枉然。

参考文献:

[1] 曾庆赣,蔡定国,刘斌,张勖成. 智能化节能型干式变压器特点及选型应用[J]. 电器工业. 2003(10)

[2] 尹克宁. H级干式变压器的现状及其发展前景[J]. 电力设备. 2002(01)

[3] 郭振岩,刘景江. 干式变压器发展新动向[J]. 变压器. 2002(05)

[4] 郭宏山. 绿色环保型H级干式变压器的性能和发展前景[J]. 上海电力. 2002(04)

篇5:电力变压器高压试验及故障处理

社会发展越来越快,人们也越来越离不开电力,稳定可靠的电力供应为人们舒适的现代生活提供了重要保证。而保证电力系统中电力变压器安全平稳运行是维持电力正常供应必要条件。通常在电力变压器安装前需进行高压试验,这样就能确保在后期电力设备能安全运行,即使出现故障也能及时补救。变压器高压试验的前提条件

为确保变压器高压试验流程的顺利进行以及试验结果的准确性、可靠性,高压试验过程应满足以下前提条件:

(1)实验温度控制在-20℃~40℃范围之内众所周知,温度对于各种材料的性质、特性都有或多或少的影响。电力变压器的绝缘电阻同样也受到温度变化的影响,且大体呈反比例关系。在一定范围内,随着周围温度的升高,变压器绝缘电阻阻值会随之下降,该情况通常只出现在温度不超过四十度的范围内;变压器绝缘电阻阻值会随温度的降低而升高。造成这种现象的原因主要有两个:一方面随着温度升高,绝缘电阻中的微观分子或离子的无规则运动会加剧,从而导致绝缘电阻阻值将低;另一方面,随着周围温度的升高,绝缘电阻中所包含的水分子会溶解绝缘电阻中的组成物质,从而使其阻值降低。因此,应将温度控制在-20℃~40℃范围之内,以保证试验结果的准确性。

(2)周围环境湿度不应高于85%除了受到温度的影响之外,绝缘电阻的阻值还受到周围环境湿度的影响。在高压试验中,通常需要多次数据记录,有时还需反复试验,时间跨度较大,空气湿度越大,将导致测量结果难以准确。为此,应严格控制空气湿度在85%以下。

(3)最好采用新的变压器,可以减少由于长时间使用使变压器内部水分较多,引起变压器受潮的影响,从而保证测量数据的准确性。

(4)试验中务必要保持变压器的清洁。变压器的绝缘性能是其工作性能的重要影响因素之一,如果在试验中存在气体、污垢、粉尘,会使变压器的绝缘性能下降,从而影响试验结果。

(5)有足够大的保护电阻进行保护,变压器高压试验过后应尽量保证变压器的可用性,因此,为防止高压试验中出现超出变压器额定电压而是变压器损坏的情况,应有准备足够的保护电阻进行保护。

(6)电压控制的一定范围之内,以保护额定容量的电器,同时保证试验中有良好的散热条件。变压器高压试验的主要内容

按照相关规定及试验目的,应合理的选取试验内容,以期能对实际工程作出更好的指导,通常电力变压器高压试验的主要内容有以下几点:

2.1 绝缘电阻的测量在电力变压器高压试验中,绝缘电阻的测量是一个相对简单的试验,并且对整个试验起到预防性的作用。电阻的大小通常能反映出绝缘电阻的受潮及老化程度,

因此在进行变压器绝缘电阻测量过程中应严格控制空气湿度和温度。

2.2 泄漏电流的测量通常采用数显电流测试仪测量电力变压器泄漏的电流,当不能满足试验要求时可通过直流高电压试验。若泄漏电流明显偏低,很可能是变压器本身存在问题,不能正常使用。

2.3 局部放电试验局部放电试验是应用比较广泛的一种试验项目,这主要是由于其具有非破坏性的特点。进行该试验的方法有如下两种:(1)选择工频耐压作为预激磁电压,然后将其降到局部放电试验的电压值,使这一过程大概持续10-15分钟,然后对局部放电量进行测量;(2)选择模拟运行过程中的过电压作为预激磁电压,然后将其降到局部放电试验的电压值,使该过程持续一至一个半小时,然后测量局部放电量。在以上两种试验方法中,后一种方法可以对变压器在长期工作电压下是否出现局部放电情况进行测量,有利于保障电力变压器的安全运行。此外,在电力变压器的局部放电试验中需要注意以下事项:对绝缘介质的承受场强、绝缘结构设计、带电与接地电极的表面场进行考虑时,是以局部放电量的值小于规定值为依据,而不是以主、纵绝缘是否放电作为考虑的注意依据。

2.4 变压比测量变压比测量在变压器高压试验中具有非常重要的地位,且测量方法多样,其中变压比电桥法应用比较普遍,且常用语现场试验中,主要原因是,变压比电桥法能够不受电源稳定程度的影响,测量准确度高,可以直接读取误差,且试验电压可以调节,较为安全。

2.5 介质损耗因数测试变压器绝缘损耗的大小与介质损耗因数有密切联系,因此可以通过介质损耗因数额大小,评判变压器的绝缘性能。变压器高压常见故障处理

3.1 变压器异声故障处理变压器正常运行时,会发出一些声响,但也有可能是故障引起的异声,引起变压器异声的主要原因如下:如果变压器“嗡嗡”较大,可能是由于贴心加紧螺栓是未拧紧造成的;如果变压器发出“叮当叮当”的金属撞击声,可能是变压器内有铁质垫圈、螺母等杂物;如果在套管处会听到“嘶嘶”的放电声,甚至在夜间还能看到蓝色的小火花,这是由于空气潮湿造成的,可以不做处理。

3.2 变压器油温异常故障处理(1)分接的不同开关接触不良,会造成接触电阻阻值增大,从而造成损耗增大,引起局部发热;(2)相邻几个线匝之间绝缘损坏,使匝间金属直接接触而形成短路环流,电流短路使局部产生高热量;(3)外力损伤造成硅钢间绝缘损坏形成短路,亦会造成铁心过热。

3.3 变压器接头过热故障处理变压器一般是铜制的引出端头,当与铝接触时,由于空气潮湿,容易发生电化学反应,铝被腐蚀,产生大量的热,造成接头损坏,因此应尽量避免铜铝接触。当必须接触时,可用特殊过渡头连接。

3.4 变压器油位异常分析及处理多次放油未及时补充、严重漏油或者油量本来就不足又遇到温度大幅降低等因素都会造成变压器油位异常降低,此时都应将变压器停止运行,待补油后再重新运行。

3.5 变压器外表异常故障处理(1)套管安装时有碰上或者制造时有瑕疵,容易是系统内外产生过电压,引起闪络放电;(2)防爆管破损是由于螺栓拧得太紧或者内部发生段落等原因造成的;(3)变压器内装备的呼吸器下端玻璃管内一般都装有变色硅胶方便试验人员监视呼吸器的呼吸功能。

若硅胶变成粉红色,则说明变色硅胶不再有吸潮能力,呼吸器也不能调节变压器上方内外压力的平衡。变压器高压试验的安全保障

变压器高压试验还应保证人员安全,为保证试验人员的安全问题应采取必要的措施。主要从人员设备两方面加以保障。

4.1 人员方面

(1)变压器高压试验是一项危险性较高的工作,必须注重安全问题因此必须采用专业人员负责,决不可掉以轻心。

(2)试验前应做好安全准备,比如在试验区周围设置安全防护网,设置警告牌,派专职人员把守在试验区周围,防止闲杂人等无意闯入引起安全问题。

(3)试验中,应该专人负责专项工作,做到分工明确,避免人员扎堆造成部分区域人员集中,部分区域无人负责。分工时,应注意充分利用人员优势,发挥人员长处,同时应设立区域负责人,随时检查试验人员的工作情况。

4.2 设备方面

(1)试验设备之间应进行短接并做可靠接地,防止感应电压产生。试验室中的闲置电容也要进行接地处理。

(2)试验中绝缘材料等由于高温等原因可能产生分解膨胀,引起变压器外壳爆炸的危险,因此试验中应防止过载或短路现象。结语

篇6:电力变压器交接试验项目

1 高压电气试验概述

电气试验的类别可以分为很多种, 主要有出厂、交接、大修以及预防性等。出厂试验主要是对出厂的机械设备进行质量检查, 包括产品的设计、制造以及工艺等, 避免不合格产品流落在外。交接试验主要是针对电气设备投运前进行产品缺陷的检查, 途中是否有损坏, 通过这些判断结果决定是否投入使用。预防性试验主要是在投运后, 进行定期检查。绝缘试验和特性试验是根据试验的性质从高压试验里进行分类的。而绝缘试验又可以分为非破坏性试验和破坏试验组成, 非破坏试验主要是利用对设备无损坏性的方法进行判断, 该方法只能发现设备的整体缺陷, 具有一定的局限性, 但这种方法是目前使用最为广泛的一种检测手段。而破坏性试验因其电压较高, 对于设备中集中性缺陷检测较为方便, 但是经常使用会对机械设备的绝缘造成损伤, 降低设备的使用期限。对于机械设备的电气等方面的特性可以进行相关的特性试验, 例如, 短路器的分合闸时间参数等。

2 电气交接试验中的问题

交接试验直接影响着企业的经济发展, 电气交接试验的顺利度, 不仅可以保证销售量, 还可以增加企业的知名度, 带动经济的发展。

特殊立项试验由于试验技术难度大、试验装备特殊, 因此被列为特殊试验项目。在进行发动机现场直流耐压试验的时候, 要使设备的表面不存在积水, 这样做的目的是为了避免在使用过程中出现放电现象, 甚至会影响水管的正常使用。因此, 在进行项目建设时, 一定要处理好表面清除工作, 尤其是要保持表面的干燥性, 一定不能出现积水等现象, 否则将导致严重的后果。在变压器冲击合闸的问题管理方面, 根据相关规定, 其变压器冲击合闸的次数一般在5次左右, 在变压器冲击的时候常见的问题就是会产生励磁涌流, 从而会造成电流误差等不良现象, 影响整个变压器绝缘性的试验。对于CVT的中压电容的介损测试中我们使用的二次励磁法对于电容器存在的缺陷不能完整的显示出来, 主要是因为电容器上的电压相当低, 并且还会对元件造成损坏。在交接试验的时候, 工作人员通常会在真空断路器的端口进行检测, 其主要的检测目的是测试其耐压性能, 了解其灭弧室的真空度。在本次研究中, 并未发现相应的直接方法, 一般规定其耐压值不能低于80%。

3 最新实验方法

传统的高压电气进行交接试验的时候, 不仅浪费时间, 而且对材料的损耗也相当大。因此, 无论从哪个角度来看, 我们都必须加强技术上的创新与技能的提高。目前在线测试技术对于测试介损、泄露电流IC等方面进行判断设备的绝缘状况非常有效, 对于变压器和发动机的检测主要是针对局部放电问题, 对于避雷器等主要是采用便携式仪器测试进行阻性电流的测试等。

3.1 高压新试验设备选材

对高压新试验设备选材主要是针对高压测试设备项目实施的可能性和有效性进行有效的技术论证和经济评价, 以确定一个在全方面都满足的最佳方案。我国目前电力及与电力相关的技术发展中, 节能降耗是促进经济发展的有效的手段。

3.2 现场高压新试验的标准程序

对于标准化作业的进行, 只有严格按照相关规范流程进行操作, 才能确保其试验结果的准确性和工作人员的人身安全。例如, 在进行变压器指导书中有相关规定指出, 在作业标准步骤等方面, 明确指出编制依据以及引用标准、实验目的、工程概况等这些都是重点内容。因此, 在实践操作过程中, 一定要全面考虑相关因素, 按照规范进行作业。

电气交接试验项目主要是针对电气设备安装中各个细节是否到位的一个检验工作, 对于试验工作可以根据具体的情况, 采取不同的试验。如果想进行一个小规模的试验可以进行互感器的特性试验, 如果想进行一个较大规模的试验, 可以进行变压器的局部放电试验, 而且需要注意的一点是交接试验要在整个电气设备安装的过程中交叉进行, 在每一步的安装工序完成后必须经过试验, 试验合格后才可以进行下一步工序的安装。

4 试验监督

高压电气交接试验监督工作在一定的程度上具有超前预见的特点。在进行试验监督工作之前需要我们制定详细的、准确的、科学的交接试验监督方案, 建立相应的专业技术监督机构, 确定参与的技术和监督人员的数量, 仔细分配各个部门的职责权利, 确保参与试验的各个部门能够积极的配合工作, 最后进行试验监督工作顺利高效率的进行。在工作开展中需要注意以下几点:1) 试验工作开始前, 各部们应该对试验过程中运用到的技术进行交流, 这样不仅有利于各部门对于实验中的规则标准有一个了解, 而且对于实验的前期准备工作, 诸如实验需要用到的机械设备、技术资料等有充分的准备, 可以提高实验的成功率;2) 合理的管理制度和监督工作的高效率可以有效的提高技术监督质量和水平, 对电气交接试验进行全程的监督工作, 可以对在试验过程中出现的问题进行及时有效的分析和处理, 保证安装工程完工的速度和质量;3) 特高压工程质量监督是一项十分复杂且重要的工作, 技术监督工作包括很多方面, 而特高压工程中的技术监督作为整个监督系统中最重要的管理部分, 其监督和控制工作水平和质量将直接影响着整个电器安装工程的质量, 在进行监督时要全面落实监督工作原则。

除了在试验过程中进行技术监督外, 还应在设备进行设计、生产、调试等各个阶段进行技术监督工作, 同时在进行特高压工程前期准备工作以及设计、制造、相关标准的制定过程, 技术监督人员应该进行参与, 这样就可以深入了解在进行试验时需要注意的地方和特殊要求, 提高整个技术监督工作的水平和质量。

5 结论

综上所述, 电气设备高压电气交接试验中存在一些问题, 如变压器冲击合闸的次数问题等。这些问题严重制约着电气设备安装工作的顺利开展, 必须要解决这些问题, 才能提高工程施工质量。笔者希望更多的专业人士能投入到该课题研究中, 针对文中存在的不足, 提出指正建议, 为提高我国电气设备安装工作做出重要的贡献。

摘要:本文主要针对电力设备高压电气交接问题以及其相应对策进行分析、探讨。阐述了在当前形势下, 加强高压电气试验的重要性, 针对目前试验中存在的问题进行研究。笔者通过研究, 总结和归纳自身多年工作经验, 提出一些相应的对策。希望通过本文的分析能帮助相关单位提高工作水平和质量, 能更好地应对工作中存在的问题。

关键词:电力设备,高压电气,交接试验

参考文献

[1]赵鑫.电力设备高压电气交接试验问题探讨[J].科技创新与应用, 2012, 29:162.

[2]黄海飞.电力设备高压电气交接试验问题探讨[J].科技致富向导, 2012, 03:364.

篇7:电力变压器交接试验项目

关键词:电力设备;电气交接试验;绝缘检测;试验方法

中图分类号:TM506 文献标识码:A 文章编号:1006-8937(2016)21-0079-02

电力设备建设单位要想在竞争日益激烈的市场中获得生存与发展,首先就是要加快项目的建设周期,同时还必须要保证项目的建设质量,在此基础上还要开发有自身特色的独特产品,以满足不同用户的个性化需要。电力设备的交接试验是影响电力建设项目以及建设周期和建设质量的重要环节,因此做好电力设备高压电气的交接试验,确保试验内容的适用性和交接程序、试验结论的准确性,是保证电力设备调试及工程项目按照预期要求顺利投产的关键因素。追求经济效益是企业适应市场生存环境的必然要求,因此,在高压电气交接试验中还应该在保证试验质量的基础上尽量降低试验成本,以便争取项目利润的最大化。

1 电力设备高压电气试验概述

通常情况下,电力设备高压电气试验可以分为出厂试验、交接试验和预防性试验等几种。其中,出厂试验是以电气设备的设计、制造工艺的检验为主要目标,目的是避免存在质量缺陷的设备出厂,为确保电力设备后续的正常使用奠定基础。尤其是对大型电气设备而言,其出厂试验需要使用单位进行严格监督,并对高压电气试验过程的报告进行认真分析,以便为后续设备的稳定运行提供指导。

在整个高压电气设备试验程序中,交接试验占有主要地位。交接试验主要是指电气设备在投入运行前需要根据《交接规程》中的相关要求和制造厂家的技术标准对设备的电气状况进行检查,目的是确认试验后的设备是否可以投入到工作中去正常使用。同时,在交接试验过程中形成的数据和产生的结果都可以为设备后续的检修提供参考。此外,预防性试验也是非常重要的。预防性试验主要是指高压电气设备在投入到使用之后对其进行的定期检查,内容包括多个方面,例如电气设备是否存在绝缘缺陷等等。

除了前面提到的三种试验方式外,按照试验的内容和基本要求还可以将高压电气交接试验分为特性试验和绝缘试验两类。其中,绝缘试验又包括破坏性与非破坏性试验两种。非破坏性试验在试验过程中不破坏电气设备,通过采取适当的措施对试验设备的整体予以把握,通常这种方法不能涉及到电气的实质性参数,所以存在试验灵敏度不高的问题,但是依然是排除设备故障的主要手段之一。而破坏性试验由于涉及的电压较高,可以发现电气设备存在的多种缺陷类型,但是这种试验会对电气设备产生一定的损伤,长期多次试验后会影响电气设备的使用寿命。特性试验则主要是对电力设备的电气性能、机械性能进行的检验,内容包括电力设备的伏安特性曲线和断路器的分合闸时间等相关参数。

2 电力设备高压电气交接试验中需要关注的主要 问题

电力设备的高压电气交接试验属于一种特殊类型的试验,对试验流程的控制和实施技术要求较高,试验难度较大,而且需要使用特殊的试验设备和器材,因此一直属于国家特殊试验项目,对该试验的操作流程进行了严格控制,并制定了相应的技术标准。在开展电气交接试验时,产生的试验费用一般情况下都是由甲方承担的。

实验过程中,首先在进行发电机现场耐压试验时,要对引水管与地面不存在绝缘的发电机进行预先的绝缘处理,清理发电机表面,以免试验过程中由于出现放电现象而导致引水管的破坏。在通常情况下,甲方没有特殊要求时一般不在现场参与这种交接试验。同时,在交接试验过程中要关注变压冲击合闸的次数,容量较大的时候最好保证在五次左右。

另外,在电气交接试验时要重点观察冲击合闸产生的励磁涌流是否会导致差动保护的误动作,而不要仅仅只是关注变压器的绝缘性能。而对于干式变压器而言,考虑到其主保护方式为速断保护,因此冲击次数可以调整为冲击三次。

其次,在对CVT的中压电容介损进行试验时,通常采取二次鼓磁法进行测试。但是,这种测试方法并不能完全将电容器中存在的问题检测出来,这主要是因为试验过程中为电容器提供的电压通常为2~3 kV,如果超出了这一标准就会破坏电磁单元中的相关元件。

第三,在断路器检测试验中,需要检测断路器的耐压大小来确定灭弧室的实际真空程度,确认其是否满足实际要求。但是从目前的掌握的情况来看,暂时并没有直接的可测量方法,因此为了保证测量结果,在测试时要使设备能够达到的耐压值不能过小,应该达到出厂规定电压的80%以上。

此外,还需要说明两点,一是在试验过程中还应该重点关注跳闸时间,若跳闸时间过长则会导致设备跳闸次数增加,引起电压值的增加。常规情况下,要求电压超过 40 kV时,对应的时间不得超过3 ms;小于40 kV时,对应的时间不得超过2 ms。二是在对电缆的耐压性能进行检测时,橡塑绝缘要使用直流方式进行检测。对于这个一点,相关的技术标准中对“直流耐压可能对绝缘有害”进行了详细说明,检测前要认真阅读。

3 电力设备高压电气交接试验方法

在使用传统的高压电气交接方法进行试验时,不但存在浪费时间的问题,而且消耗的试验材料较多。因此,在实际的试验过程中必须重视试验技术的创新与提高,积极应用新的交接试验技术进行相关试验。当前,使用在线测试技术采取介损、泄露电流等方面的测试方法能够较好的判断设备的绝缘状况,对于变压器、发动机的电气检测则主要采用局部放电方式,而对于避雷器等设备则可以采用便携式设备对阻性电流进行测试。

3.1 高压电气交接试验器材

在进行高压电气交接试验之前要针对具体的测试对象制定可行的实施技术方案,并论证测试方案的可行性和测试结果的准确性,以便保证试验技术方案在能够顺利实施的基础上最大程度的减少试验成本。近些年来,随着社会经济的快速发展,能源储备日益减少,未来能源供给不足将在一定程度上阻碍经济的持续发展。面对这些问题,首先就必须要加强对新能源的利用和探索,降低当前能源消耗过大的问题。因此,电力企业也应该根据当前的实际发展状况,采取合理的技术措施尽量减少在能源方面的消耗,以保证企业得以持续发展。所以,在选择高压电气交接试验的器材过程中,除了要保证其满足电力设备损耗参数检测等功能之外,还应该保证其具有较低的能耗性能。

3.2 高压电气交接试验程序

在高压电气交接试验过程中要将标准化操作和作业程序落实到位,要将作业指导书中的标准程序采取操作卡片的方式应用到日常工作当中,例如将变压器作业指导书中的具体内容和现场作业标准逐步分解,并根据实际的岗位操作需要分发给对应的工作人员。其中主要的内容包括这样几个方面:试验技术方案编制依据或者对应的标准、试验目的、试验工程量、参加试验操作的人员配置、参加人员的基本素质要求、交接试验的设备及量具、安全防护设备、交接试验条件与试验前准备、质量控制措施、安全文明施工与环境管理要求、环境因素及其控制措施等。

高压电气交接试验工作是对电力设备的阶段性安装工作是否合格进行的一次检验,根据设备的实际情况,该阶段性试验规模可大可小——可以是一个互感设备的特性测试,也可以是一个大型变压器的局部放电试验。交接试验应该在设备的整个安装过程中是穿插进行的,虽然每进行一次交接试验都表明完成了一个阶段性的工作,但是在试验过程中所有的安装工作都必须要停止,只有在等到试验完成、检验合格之后才能够进行后续的安装工作。

3.3 高压电气交接试验的监督与管控

严格的技术监督工作是确保电力设备高压电气交接试验得以成功的基础,同时也是设备投入使用之后稳定运行的重要保障。电力设备高压电气交接试验监督工作包括设备的设计选型、监督制造、调试、基础设施建设以及生产运行等多个阶段,监督工作必须面向高压电气交接试验的全过程。同时,监督管控的工作人员还必须对整个交接试验有全面的了解,如果发现不符合施工要求时要立即停工进行技术整改,这样才能达到对交接进行监督的目的。

值得一提的是,电力设备高压电气交接试验管理工作必须具有一定的超前性,在具体的施工程序没有开始之前就应该编制对应的技术监督与管理方案,并根据实验规模进行量化细分,有条件的企业还应该成立专业的技术监督小组来保证交接试验程序的顺利开展。

参考文献:

[1] 王英超.电力设备高压电气交接试验问题以及相应对策探讨[J].科技 传播,2014,(21).

[2] 翟景坚.电力设备高压电气交接试验问题探讨[J].科技致富向导,2013, (15).

上一篇:与外商沟通的33个绝招下一篇:燕子的课文原文