电力变压器的保护措施

2022-11-01

第一篇:电力变压器的保护措施

电线、电缆及变压器等线缆保护措施方案

坪坝区小龙坎正街至风天路主干道环境综合改造工程外墙电线、电缆及变压器等线缆保护措施方案

一、工程简介

沙坪坝区小龙坎正街至风天路主干道环境综合改造工程位于沙坪坝区,包括小龙坎正街至天星桥转盘、天星桥转盘至西南医院、天星桥转盘至风天路,全长4.4公里。工作内容包括外墙面、阳台、门窗、遮雨蓬、空调外机、沿街底层门面、防盗网及护拦、线网、屋顶、围墙整治。

由于多数为老旧的居民住房,电线、电缆等线网满布于墙面,没有统一的走向,在施工时有效保护是施工的一个重点。外墙施工时需对其进行统一保护,待外墙施工完后在对其电线、电缆进行统一整理。

在外脚手架搭设施工中,有局部的建筑物与高压线的距离较近,在脚手架搭设过程中或在脚手架上操作的过程中的安全存在较大的隐患。电力公司在巡查中发现架体在搭设中与高压线相邻太近,不能保证安全距离,存在严重安全隐患后,要求在施工中需采取相应的安全保证措施,否则要求停止该处脚手架搭设。项目部经过现场实际查勘,凡是高压电线与建筑物的距离在3米以内的,拟采取对脚手架搭设方案进行局部调整,已保证安全施工。

另外在居民楼旁边有变压器及电杆时,也应对其变压器等设施进行先保护后搭设脚手架施工。故在变压器四周设置防护棚,保证施工和用电安全。

二、外墙电线、电缆保护具体措施

(一)、准备工作

(1)脚手架搭设好后,派专业电工沿外墙检查裸露在外墙上的电线、电缆走向,弄清楚电线种类、性质、是否带电,与业主间的关系等。摸清楚电线的基本情况。

(2)必要时联系电力及宽带等相关部门对其进行交底,以便情况了解的更清楚。

(3)统计出需要进行保护电线的工程量,提出保护材料的计划。

(二)、具体实施措施

(1)派专业人员对裸露在外墙面的电线进行清理、分类。

(2)采用PVC塑料管对其电线进行穿管对其电线进行保护,由于电线不能从一端穿入,采用先把PVC塑料管剖开,再把电线放进去。电线不能全部堵满套管,只能放入套管一半的电线。

(3)电线穿好套管后,在脚手架上对其套管进行固定。

(4)如在该处电线位置的外墙上需动用焊机等动火作业,在下部的电线套管表面缠裹防火棉,并派专职安全员进行巡视,避免发生火灾等事故。

(5)待外墙施工完毕后,对其外墙电线进行改造,达到漂亮、整洁外观。

三、高压电线及电杆保护措施

1、外墙脚手架搭设在距高压电线最近位置或电杆上部横杆距架体前后约3米处距墙边间距调整,架体靠墙体间距调整为70-80mm;

2、下部防护棚脚手架按要求搭设,上层外墙脚手架在该转角处落搭设脚手架距墙距离根据实际情况作调整。

2、脚手架搭设过程前,安全员针对该处进行特别安全交底,在施工过程中,安全员必须现场巡视;在电线或电杆距脚手架没有安全距离的情况下操作,先要与电力部门取得联系,在断电的情况下进行脚手架搭设及防护,待防护好后再通电。

3、脚手架搭设好后,在立杆与高压线位置采取全封闭,保证后续工作在操作时工具、材料等与高压电线及电杆接触。外脚手架外立面用九夹板封闭上部2米,下部1米,宽3米。防止人员操作时触碰到电线。

4、在九夹板封闭好后表面用绝缘板再覆盖一道。

四、变压器及电杆保护措施

1、先测量出脚手架外边缘与该变压器及电杆的距离,确定保护范围。

2、在变压器四周搭设脚手架防护棚,立杆与变压器的间距为80CM,顶棚离高压电缆2m(双层防护,底层防护与其最高点垂直距离不得小于1m),立杆与立杆间距为1.2-1.5m。

3、在变压器上部及四周采用绝缘板封闭,顶部在绝缘板的上部用竹跳及九夹板铺防护层。

五、安全措施

1、对其操作人员进行安全技术交底,让工人在思想上引起重视。

2、检查线路应为持证上岗的专业人员,在检查线路时工人要戴好安全帽、拴好安全绳,带好绝缘手套,穿好绝缘靴。

3、在穿管时,如发现电线有损伤、接头有松动等问题,需先进行处理,再穿管。

4、在电线保护管的上方进行焊接等工作时,一定要避免火花溅落到电线保护管上,确保用火安全。

5、搭设和拆除防护架必须由符合“特种作业人员安全技术考核规定”的架子工进行,操作人员必须持证上岗。操作时必须配戴安全帽、安全带、穿防滑鞋。

6、在脚手架搭设时,操作人员进入现场必须遵守安全生产纪律,必须带好安全帽及安全带,并扣好安全扣。

7、搭设时应有临时支撑,防止初立的立杆倾倒伤人。

8、在搭至近高压线时,须特别注意每传递的竹竿不得与高压线相碰,操作人员必须互相提醒,互相关心。

9、在搭设时,必须有专业的安全员全程巡视监控作业人员操作的各环节的安全动态情况,发现有不合安全规范的地方,尤其是在距高压线很近时必须全程监控。

10、在作业前,安全员应向班组操作人员作详细的交底并严格按照方案搭设技术要求进行。

11、搭设前应搭设警戒线,并指派专人看护,防止人员进入警戒区。

12、在采取以上措施时,均先征得电力部门同意后,方可实施。

附图一:电线保护构造图 附图二:高压电线保护措施图 附图三:变压器及电杆保护措施图

第二篇:爆破电力保护措施

一、工程概况

1、工程地址:

2、建设单位名称:

3、施工单位名称:

二、施工组织措施:

1、项目负责人:

2、现场安全负责人:

3、现场技术负责人:

4、爆破操作员:

5、施工期限:

三、施工期间对电力设施保护的安全措施:

(一)安全教育:

1、爆破开工前,必须对全体施工人员尤其是爆破操作相关人员进行安全教育,要让施工人员了解爆破工地附近的高压电网情况,以及电网的重要性和危害性,学习掌握防护措施。

2、在日常工作中,爆破操作相关人员应随时接受供电部门检查人员的安全指导

(二)爆破开挖时的保护措施

1、在边导线水平距离500米范围内爆破施工,必须严格按照GBJ201-83《土方爆破工程施工及验收规范》和GB6722-86《爆破安全规程》执行。

2、爆破现场必须安排专人管理。开始爆破前,管理员必须检查爆破数量、覆盖情况和其它安全措施落实情况,无安全隐患后方可进行爆破施工。

3、根据《电力设施保护条例》及《爆破安全规程》GB62722-2003有关要求,距110千伏梨亭线13#-14#凉石西童线8#-9#保护区塔10米范围内禁止一切开挖,50米范围内禁止放炮。

4、该处爆破工程均全部采用松动爆破,爆破只在岩石体内部作用,爆破前应先进行试炮,确对高压线安全不构成威胁后方可进行爆破。现场爆破作业在进行爆破,作业必须采取浅孔(孔深不大于3米)、少药(药量少于450克/孔)方式进行爆破,每次起炮不超过3炮,每次起爆药量不超过2.5KGg,且必须使用2000*1500*10mm的胶垫两层双层覆盖以防止飞石对导线的损伤。

5、爆破作业后,安排爆破操作人员及时清收现场废弃的炮线。

6、夜间及能见度不良的气候条件下,不得进行爆破作业,并将每日爆破时间进行明确(每日爆破时间段为:9:00—12:00;13:00—17:00;

7、如遇爆破孔内积水且必须把孔内的积水清除干净,方能起爆

(三)监督检查

1、在日常施工中,我单位将安排工作人员每天对电力设施的各项保护措施进行自查,发现问题及时整改。

2、在日常施工中,随时接受电力部门的检查指导,对于供电部门检查人员提出的整改要求,我单位将积极配合落实

3、如造成线路故障,由我方承担一切损失 现场负责人:联系电话: 有限公司 2014年月日

第三篇:浅议电力系统电力变压器的故障分析

文章来源: 时间: 2011-03-17 11:56:08 关键字: 变压器,故障,分析

变压器的故障分析及处理方法是电工和电气技术人品必须掌握的一门实用技术。熟悉而准确地排除变压器、电气故障,是每个电气工作人员必须具有的基本功。这就要求电气工作人员不仅需要掌握电工基本理论,而且还要不断地积累实践经验、从实践中学习。我们将从两方面来探讨变态器的故障状态。

1、变压器投运前的检测

作为配变运行管理人员,一定要做到勤检查、勤维护、勤测量,及时发现问题及时处理,采取各种措施来加强配电变压器的保护,防止出现故障或事故,以保证配电网安全、稳定、可靠运行。为保障变压器的安全运行,变压器投运前必须进行现场检测,其主要内容如下:

①变压器本体、冷却装置及所有附件均完整无缺陷、不渗漏、油漆完整。

②变压器油箱、铁心和夹件外引接地线均可靠接地。

③储油柜、冷却装置、净油器等油系统上的阀门均在开的位置,储油柜油温标示线清晰可见。

④高压套管的接地小套管应接地,套管顶部将军帽应密封良好,与外部引线的连接接触良好并涂有电力脂。

⑤变压器的储油柜和电容式套管的油位正常,隔膜式储油柜的集气盒内应无气体。

⑥有载分接开关的油位需略低于变压器储油柜的油位。

⑦进行各升高座的放气,使其完全充满变压器油,气体继电器内应无残余气体。

⑧吸湿器内的吸附剂数量充足、无变色受潮现象,油封良好,能起到正常呼吸作用。

⑨无励磁分接开关的位置应符合运行要求,有载分接开关动作灵活、正确、闭锁装置动作正确。

⑩温度计指示正确,整定值符合要求。

油浸式自冷变压器上层油温不宜经常超过85℃,最高不得超过95℃(配电变压器侧温孔插入温度计可随时测得运行变压器的即时温度),不得长期过负荷运行。但在日负荷系数小于1(日平均负荷与最大负荷之比),上层油温不超过允许值的情况下,可以按正常过负荷的规定运行,总过负荷值不应超过变压器额定容量的30%(室内变压器为20%)。当变压器上层油温超过95℃后,每增加5℃变压器内的绝缘(油等绝缘介质)老化速度要增加一倍,使用年限要相应减少。因此,必须避免长时间过负荷运行。冷却装置试运行正常。进行冷却装置电源的自动投切和冷却装置的故障停运试验。继电保护装置应经调试整定,动作正确。

变压器投运前的检测全部合格后,需对变压器进行试投运并达到一定的指标参数才算正常。

2.、日常运行维护管理方面

变压器用于变配电站较多,而这就要求值班人员要做到一“观察”,二“记录”,三“检测”。值班人员随时监视控制盘上的仪表指示,抄表次数由现场规程规定。当变压器过载运行时,要增加抄表次数,加强监视。变压器容量为315kVA及以下者,每天检查一次;容量在560kVA及以上者,每班检查一次,容量在1800kVA及以上者,每2h检查一次。对于无值班人员的变电站,安装在变压器室的315kVA及以下的变压器和柱上变压器,每两个月至少检查一次。容量在3150kVA以下者每月至少检查一次,容量在3150kVA及以上者每10天至少检查一次。

配电变压器在日常运行维护管理中,经常出现的问题:一是检修或安装过程中,紧固或松动变压器导电杆螺帽时,导电杆随着转动,可能导致二次侧引出的软铜片相碰,造成相间短路或一次侧线圈引线断;二是在变压器上进行检修不慎掉下物体、工具砸坏套管,轻则造成闪络接地,重则造成短路;三是在并列运行的变压器检修、试验或更换电缆后未进行核相,随意接线导致相序接错,变压器投入运行后将产生很大的环流而烧毁变压器;四是在变压器低压侧装有防盗计量箱,由于空间问题、工艺压接不好,有的直接用导线缠绕,致使低压侧接线接触电阻过大,大负载运行时发热、打火,使导电杆烧坏。

在使用配电变压器的过程中,一定要定期检查三相电压是否平衡,如严重失衡,应及时采取措施进行调整。同时,应经常检查变压器的油位、温度、油色正常,有无渗漏,呼吸器内的干燥剂颜色有无变化,如已失效要及时更换,发现缺陷及时消除。

定期清理配电变压器上的污垢,必要时采取防污措施,安装套管防污帽,检查套管有无闪络放电,接地是否良好,有无断线、脱焊、断裂现象,定期摇测接地电阻。

在拆装配电变压器引出线时,严格按照检测工艺操作,避免引出线内部断裂。发现变压器螺杆有转动情况,必须进行严格处理,确认无误后方可投运。合理选择二次侧导线的接线方式,如采用铜铝过渡线夹等。在接触面上涂上导电膏,以增大接触面积与导电能力,减少氧化发热。

在配电变压器

一、二次侧装设避雷器,并将避雷器接地引下线、变压器的外壳、二次侧中性点3点共同接地,对100kVA以上容量且电感设备较多的变压器宜采用自动补偿装置,功率因数宜选在0.85~0.93范围内自动投切进行补偿(切莫进行过补偿)。坚持每年一次的预防性试验,将不合格的避雷器及时更换,减少因雷击或谐振而产生过电压损坏变压器。

对无载调压后要进行直流电阻测量,在切换无载调压开关时,每次切换完成后,首先应测量前后两次直流电阻值,做好记录,比较三相直流电阻是否平衡。在确定切换正常后,才可投入使用。在各档位进行测量时,除分别做好记录外,注意将运行档直流电阻放在最后一次测量。

防止二次短路。配电变压器二次短路是造成变压器损坏的最直接的原因,合理选择配电变压器的高低压熔丝规格是防止低压短路直接损坏变压器的关健所在。一般情况下配电变压器的高压侧(跌落保险)熔丝选择在1.2~1.5倍高压侧额定电流以内,低压侧按额定电流选用,在此情况下,即使发生低压短路故障,熔丝也能对变压器起到应有的保护作用。变压器能否承受各种短路电流主要取决于变压器结构设计和制造工艺,且与运行管理、运行条件及施工工艺水平等方而有很大的关系,变压器短路事故对电网系统的运行危害极大。

避免三相负载不平衡运行。变压器三相负载不平衡运行,将造成三相电流的不平衡,此时三相电压也不平衡。对三相负载不平衡运行的变压器,应视为最大电流的负荷,若在最大负荷期间测得的三相最大不平衡电流或中性线电流超过额定电流的25%时,应将负荷在三相间重新分配。

同时,也要加强现场施工和运行维护中的检查,使用可靠的短路保护系统。

现场进行变压器的安装时,必须严格按照厂家说明和规范要求进行施工,严把质量关,对发现的隐患必须采取相应措施加以消除。运行维护人员应加强变压器的检查和维护保修管理工作,以保证变压器处于良好的运行状况,并采取相应措施,降低出口和近区短路故障的几率。为尽量避免系统的短路故障,对于己投运的变压器,首先配备可靠的供保护系统使用的直流系统,以保证保护动作的正确性;其次,应尽量对因短路跳闸的变压器进行试验检查,可用频率响应法测试技术测量变压器受到短路跳闸冲击后的状况,根据测试结果有目的地进行吊罩检查,这样就可有效地避免重大事故的发生。

要使配电变压器保持长期安全可靠运行,除加强提高保护配置技术水平之外,在日常的运行管理方面同样也十分重要。为避免类似事故的发生,应从多方而采取有效的控制措施,以保证变压器及电网系统的安全稳定运行。

第四篇:浅析电力系统防雷保护措施及意义 摘 要

人类对雷电采取防护措施,最早可追溯到12世纪。中国湖南现存的岳阳慈氏塔(约在1100年重建),自塔顶有6条铁链沿6个角下垂至地面上一定高度,可用来防止雷击损坏。有的古塔还将此类铁链沉入水井,实现良好接地。本文简要从雷电的形成,雷电对电力系统的破坏方面出发,简述了几种常用的避雷措施的应用以及避雷设施安装使用的必要性。 关键词雷电危害;途径;防范措施;防线;微电子;接地;屏蔽 目录

前言„„„„„„„„„„„„„„„„„„„„„„„„„„„„„2 雷电的形成以及对电力系统的危害„„„„„„„„„„„„„„„„2 普遍采用的防雷措施„„„„„„„„„„„„„„„„„„„„„„3 微电子器件防雷措施„„„„„„„„„„„„„„„„„„„„„„6 接地与屏蔽的应用„„„„„„„„„„„„„„„„„„„„„„„7 综合性防雷措施„„„„„„„„„„„„„„„„„„„„„„„„8 结论„„„„„„„„„„„„„„„„„„„„„„„„„„„„„9 致谢„„„„„„„„„„„„„„„„„„„„„„„„„„„„„9 前言

随着科技的发展,电力已成为最重要的资源之一,如何保证电力的供应对于国民经济发展和人民生活水平的提高都有非常重要的意义。雷电是一种雄伟壮观而又有点令人生畏的自然现象,它的危害体现在雷电的热效应、机械效应、过电压效应以及电磁效应,当它对大地产生放电时,便会造成巨大的破坏。我国是一个多自然灾害的国家,跟地理位置有着不可分割的关系,其中最为严重的是广东省以南的地区,惠州、深圳、东莞一带的雷电自然灾害已经达到世界之最,这些地方是由于大气层位置比较低所造成。因此,对输电线路加强防雷措施,不但可以减少由于雷电击中输电线路而引起的跳闸次数,还可以有效保护变电站内电气设备的安全运行,是维持电力系统持续、可靠供电的重要环节。

一、 雷电的形成以及对电力系统的危害 云层与地之间的雷击放电,由一次或若干次单独的闪电组成,每次闪电都携带若干幅值很高、持续时间很短的电流。一个典型的雷电放电将包括二次或三次的闪电,每次闪电之间大约相隔二十分之一秒的时间。大多数闪电电流在10,000至100,000安培的范围之间降落,其持续时间一般小于100微秒。供电系统内部由于大容量设备和变频设备等的使用,带来日益严重的内部浪涌问题。我们将其归结为瞬态过电压( TVS)的影响。任何用电设备都存在供电电源电压的允许范围。有时即便是很窄的过电压冲击也会造成设备的电源或全部损坏。瞬态过电压(TVS)破坏作用就是这样。在我国的东莞夏季五月至八月之间,由于雷电对输电线路的破坏所带来的一系列相关的经济亏损就接近当季的GDP比例亏损度的百分之六,达到上千万的经济损失。由于我国的的输电线路分布广泛,而且大多数地处旷野,很容遭到雷击。当雷电击中电力线路时,雷电流需经过电力线路泄入大地。即使雷电没有击中电力线路,当雷击发生后,导线上感应的异号电荷失去束缚,向导线两则流动,这些电流通过线路侵入变电站或袭击电气设备,在设备上形成过电压。当过电压高于设备的额定雷电冲击耐受电压时,设备就会损坏。

雷击对地闪电可能以两种途径作用在供电系统上:

1.直接雷击:雷电放电直接击中电力系统的部件,注入很大的脉冲电流。发生的概率相对较低。

2. 间接雷击:雷电放电击中设备附近的大地,在电力线上感应中等程度的电流和电压。

内部浪涌发生的原因同供电系统内部的设备启停和供电网络运行的故障有关: 供电系统内 1 部由于大功率设备的启停、线路故障、投切动作和变频设备的运行等原因,都会带来内部浪涌,给用电设备带来不利影响。特别是计算机、通讯等微电子设备带来致命的冲击。即便是没有造成永久的设备损坏,但系统运行的异常和停顿都会带来很严重的后果。直接雷击是最严重的事件,尤其是如果雷击击中靠近用户进线口架空输电线。在发生这些事件时,架空输电线电压将上升到几十万伏特,通常引起绝缘闪络。雷电电流在电力线上传输的距离为一公里或更远,在雷击点附近的峰值电流可达100kA或以上。在用户进线口处低压线路的电流每相可达到5kA到10kA。在雷电活动频繁的区域,电力设施每年有好几次遭受雷电直击事件引起严重雷电电流。间接雷击和内部浪涌发生的概率较高,绝大部分的用电设备损坏与其有关。所以电源防浪涌的重点是对这部分浪涌能量的吸收和抑制,浪涌引起的瞬态过电压(TVS)保护,最好采用分级保护的方式来完成。从供电系统的入口(比如大厦的总配电房)开始逐步进行浪涌能量的吸收,对瞬态过电压进行分阶段抑制。

二、普遍采用的防雷措施

首先,应该建立必要的三道防线 2.1第一道防线、应是连接在供电系统入口进线各相和大地之间的大容量电源防浪涌保护器。一般要求该级电源保护器具备100KA/相以上的最大冲击容量,要求的限制电压应小于1500V。我们称为CLASSI 级电源防浪涌保护器。 这些电源防浪涌保护器是专为承受雷电和感应雷击的大电流和高能量浪涌能量吸收而设计的,可将大量的浪涌电流分流到大地。它们仅提供限制电压(冲击电流流过SPD时,线路上出现的最大电压称为限制电压)为中等级别的保护,因为CLASS I 级的保护器主要是对大浪涌电流的吸收。 仅靠它们是不能完全保护供电系统内部的敏感用电设备。

2.2第二道防线、应该是安装在向重要或敏感用电设备供电的分路配电设备处的电源防浪涌保护器。这些SPD对于通过供电入口浪涌放电器的剩余浪涌能量进行更完善的吸收,对于瞬态过电压具有极好的抑制作用。该处使用的电源防浪涌保护器要求的最大冲击容量为45KA/相以上,要求的限制电压应小于1200V。我们称为CLASS II 级电源防浪涌保护器。(参见UL1449-C2的有关条款)。 2.3最后的防线、 可在用电设备内部电源部分使用一个内置式的电源防浪涌保护器,以达到完全消除微小瞬态的瞬态过电压的目的。该处使用的电源防浪涌保护器要求的最大冲击容量为20KA/相或更低一些,要求的限制电压应小于1000V。对于一些特别重要或特别敏感的电子设备,具备第三级的保护是必要的。同时也可以保护用电设备免受系统内部产生的瞬态过电压影响。

其次,雷电是常见的大气层中强电磁干扰源,为了更好地防御雷击电磁脉冲,在建立必要的三道防线的同时,还应采取有效的等电位、屏蔽及过压保护等措施。

2.4大楼中机房位置的选择,由雷电流的“集肤效应”可知,雷电流几乎全部集中在外墙,而室内的磁场强度在电流流经的柱子附近最大,所以计算机房应放在建筑物的中间位置,而且还要避开大楼外侧作为引下线的柱子。机房内布置设备时,也应与外墙立柱保持一定的距离。建筑物可采用直击雷防护装置。它由接闪部分、引下线和接地装置组成,有避雷针、避雷带、避雷网和避雷线等类型。沿屋脊、屋檐敷设的金属导体(避雷带)或网格状导体(避雷网),或高出屋面竖立的金属棒以及金属屋面和金属构件等,统称为接闪装置或接闪器。连接接闪装置与接地装置的金属导体称为防雷引下线(简称引下线)。为将接闪器雷电流扩散到大地中而埋设在土壤中的金属导体(接地极)和连接线总称为接地装置。利用建筑物屋顶的金属构件和建筑物内部的钢筋组成一个整体的大网笼称为笼式避雷网。它具有良好的分流、均压和屏蔽作用,是保护性能最好的防雷方式。

2.5等电位连接技术,使用连接导线或过电压(浪涌)保护器将防雷装置和建筑物的金属装置、外来导线、电气装置等连接起来,以实现均压等电位。

2 防雷器又称等电位连接器、过电压保护器、浪涌抑制器、突波吸收器、防雷保安器等,用于电源线防护的防雷器称为电源防雷器。鉴于目前的雷电致损特点,雷电防护尤其在防雷整改中,基于防雷器防护方案是最简单、经济的雷电防护解决方案。防雷器的主要作用是瞬态现象时将其两端的电位保持一致或限制在一个范围内,转移有源导体上多余能量,将多余能量向地下泄放,是实现均压等电位连接的重要组成部分。防雷器在功能上可分为防直击雷的防雷器和防感应雷的防雷器。可防直击雷的防雷器通常用于可能被直击雷击中的线路保护,按人、物和信息系统对雷电及雷电电磁脉冲的感受强度不同把环境分成几个区域:LPZOA区,本区内的各物体都可能遭到直接雷击,因此各特体都可能导走全部雷电流,本区内电磁场没有衰减。LPZOB区,本区内的各物体不可能遭到直接雷击,但本区电磁场没有衰减。LPZ1区,本区内的各物体不可能遭到直接雷击,流往各导体的电流比LPZOB区进一步减少,电磁场衰减和效果取决于整体的屏蔽措施。后续的防雷区(LPZ2区等)如果需要进一步减小所导引的电流和电磁场,就应引入后续防雷区,应按照需要保护的系统所要求的环境区选择且续防雷区的要求条件。保护区序号越高,预期的干扰能量和干扰电压越低。如LPZOA区与LPZ1区交界处的保护。用10/35μs电流波形测试与表示其通流能力。防感应雷的防雷器通常用于不可能被直击雷击中的线路保护,如LPZOB区与LPX1区、LPZ1区交界处的保护。用8/20μs电流波形测试与表示其通流能力响应时间,防雷器对瞬态现象起控制作用所需的时间,与波形性质有关。残压,防雷器对瞬态现象的电压限制能力,与雷电流幅值及波形性质有关。

2.6屏蔽措施,利用建筑物的金属构架、门窗、地板等均相互焊(连)在一起;形成一个“法拉第笼”,并与地网形成良好的电气连接。屏蔽管线入户一般要求采用地下电缆,其金属护层要在两端做良好接地。

发电厂和变电所广泛使用独立避雷针。变电架构上的避雷针(110千伏及以上电压变电所)和烟囱、水塔上的避雷针可防护直击雷。大中型变电所常需安装8~10支高30米左右的避雷针群。装于发电厂烟囱上的避雷针可用来保护发电厂,其高度可达120米。这样,直击雷防护的可靠性可达安全运行1000~1300年的耐雷指标(MTBF)。有些变电所是用避雷线来保护。为防护由输电线传入的雷电侵入波,可采用阀型避雷器或氧化锌避雷器。对其保护性能及通流能量等要求甚高,还需严格作到全伏秒特性与被保护的变压器等相配合, 避雷器的尺寸亦甚庞大,如500千伏变电所的避雷器高达5米以上。

110、220千伏变电所对侵入波的防护,其平均无故障时间MTBF运行值分别可达80年和200年,330~500千伏级的目标值均为300~500年。继电保护和控制回路多用电缆的金属屏蔽层,并在两端接地,或将绝缘电线、塑料电缆穿入铁管,将两端接地,以防护感应雷和侵入波。对发电机的雷电侵入波防护,则采用旋转电机专用避雷器,并配以由50~100米长的金属屏蔽电缆(电缆埋入地中且在两端和中间设置多点接地)和电缆首端的避雷器及其前方的避雷针或避雷线保护段(作为第一道防线)组成进线保护段。这一保护系统能确保发电机的MTBF达100~300年。若采用防雷线圈(不用电缆)和避雷器的保护方式,MTBF超过600年。输电线路用避雷线保护。110千伏、220千伏、330~500千伏线路分别可达到平均事故 0.2次、0.17次和0.1次/百公里年。为使避雷针、避雷线的布置处于屏蔽雷闪的最佳位置和获得较好的计算方法,并将保护失效率──绕击率(即每1000次雷击,绕过保护装置而击于被保护物上的次数)限制到最低限度,自1925~1926年美国人Peek在实验室用“人工雷”首次对避雷针模型进行试验以来,一直在进行研究。中国在避雷针设计、计算上较为先进,实际绕击率已达到0.5%。

2.7雷电过电压的保护,当雷电击中电网或电网附近雷击时,都能在线路上产生雷电过电压。雷电过电压沿着线路传播进入机房内,造成计算机及相关设备损坏。电源系统应多级保护,逐级泄流,使残压限制在2倍U额定电压值。雷电的瞬变电磁场,可在信号线路及其回路上感应产生过电压,损坏相应的接口电路。因此实际安装时,要求保护装置靠近被保 3 护设备,保护元件两端采用双绞线;使得耦合回路的总面积减少,减弱磁场耦合效应。

三、微电子器件防雷措施

微电子器件中 TTL 数字电路的抗冲击能力最弱,10V 、 30ns 脉宽的冲击电压可使 TTL 电路损坏:雷电流产生的磁场达 0.07×10 - 4T 时可使微电子器件误动,无电磁异蔽时即使雷电流通道远在 1km 处,也可能使微电子设备误动。为使微电子器件遇雷击时不致损坏,有效的办法是选用新型保护器件 ——TVS 管。

3.1 TVS 管即瞬态电压抑制器。当其两极受到反向瞬态高能量冲击时,它能以 10 - 12s 量级的速度,将两级间的高阻抗变为低阻抗,吸收高达数千瓦的浪涌功率,使两极间的电压箝位于一个预定值 ( 一般小于 2 倍额定工作电压 ) ,有效的保护电子电路中的精密元器件免受各种浪涌脉冲的破坏。TVS 管的伏安特性如图所示。

TVS管和稳压管一样,是反向应用的。其中VR称为最大转折电压,是反向击穿之前的临界电压。VB是击穿电压,其对应的反向电流IT一般取值为1 mA。VC是最大箝位电压,当TVS管中流过的峰值电流为IPP的大电流时,管子两端电压就不再上升了。因此TVS管能够始终把被保护的器件或设备的端口电压限制在VB~VC的有效区内。与稳压管不同的是,IPP的数值可达数百安培,而箝位响应时间仅为1×10-12s。TVS的最大允许脉冲功率为PM=VCIPP,且在给定最大钳位电压下,功耗PM越大,其浪涌电流的承受能力越大。这就是 TVS 管抑制出现的浪涌脉冲功率,保护电子元件的过程。

3.2 TVS 管的显著特点为:响应速度快 (10 - 12s 级 ) 、瞬时吸收功率大 ( 数千瓦 ) 、漏电流小 (10 - 9A 级 ) 、击穿电压偏差小 (±5 % UBR 与 ±10 % UBR 两种 ) 、箝位电压较易控制 ( 箝位电压 Uc 与击穿电压 UBR 之比为 1.2 ~ 1.4) 、体积小等。它对保护装置免遭静电、雷电、操作过电压、断路器电弧重燃等各种电磁波干扰十分有效,可有效地抑制共模、差模干扰,比如感应雷击一般都是通过感应进入的,两根输电线会同时感应到,就是共模干扰。如果雷击直接打到了其中一根输电线上,这根线的干扰会比另一根强很多,而且波形也不一样,这就是差模干扰,而TVS 管正是微电子设备过电压保护的首选器件之一。

四、接地与屏蔽的应用

4.1 接地

良好的接地是防雷中至关重要的一环。接地电阻值越小过电压值越低。因此,在经济合理的前提下应尽可能降低接地电阻。通信调度综合楼的通信站应与一楼内的动力装置共用接地网并尽可能与防雷接地网直接相连。通信机房内应敷设均压带并围绕机房敷设环行接地 4 母线。

在电力调度通信综合楼内,需另设接地网的特殊设备,其接地网与大楼主地网之间可通过击穿保险器或放电器连接,以保证正常时隔离,雷击时均衡电位。 接地的其他方面均应严格按有关规程办理。各国为研究超高压、特高压输电的长间隙和绝缘子串的雷电冲击特性、变电设备的冲击特性,先后制出高达3600千伏、4800千伏、6000千伏、甚至10000千伏的冲击电压发生器,用以进行大量的试验研究工作。 4.2 屏蔽

为减少雷电电磁干扰,通信机房及通信调度综合楼的建筑钢筋、金属地板均应相互焊接,形成等电位法拉第宠。设备对屏蔽有较高要求时,机房六面应敷设金属屏蔽网,将屏蔽网与机房内环行接地母线均匀多点相连。

架空电力线由站内终端杆引下后应更换为屏蔽电缆;室外通信电缆应采用屏蔽电缆,屏蔽层两端要接地;对于既有铠带又有屏蔽层的电缆应将铠带及屏蔽层同时接地,而在另一端只将屏蔽层接地。电缆进入室内前水平埋地 10m 以上,埋地深度应大于 0.6m ;非屏蔽电缆应穿镀锌铁管并水平埋地 10m 以上,铁管两端应良好接地。若在室外人口端将电力线与铁管间加接压敏电阻,防雷效果会更好。

五、综合性防雷措施

为避免雷害,对电力调度自动化系统,应采取 “ 整体防御、综合治理、多重保护 ” 的方针。除采用上述保护与接地措施外,配电变压器高低压侧均应装接金属氧化物避雷器,并三点联合接地。程控交换机室外进出线、 Modem 等应装过电压保护器;当 RTU 等装置离显示屏较远时应装信号线过电压保护器。灵活综合的应用各类防雷措施是有效保护输电线路免遭雷击破坏,保证正常供电的最有效手段之一。

六. 问题探讨

国内外防雷专家关于“消雷技术”之争,已成为防雷领域最大争论的焦点。因为“消雷技术”是一发展中的防雷技术,是对传统的防雷理论的创新,就其理论仍有待于进一步的去研究、完善和探讨。“消雷技术”在我国的防雷学术界从理论研究和实验,都作了大量的工作,并于70年代末分别在西昌卫星发射场和武汉水利电力学院两地进行了实验工作,并取得了大量的实验数据,在其试验总结报告中对“消雷器”作出定性的结论。因雷电是一自然现象,而引雷防雷和“消雷”防雷都必须遵循雷电规律,顺应客观规律,实事求实的去研究和完善防雷技术,因规范对“消雷器”不规范的宣传。 减少雷电灾害,这不仅是我国高科技中的难题,也是世界性的难题.美国正试用飞机在积雨中大量播撒融化银晶体或金属箔丝促使云中放电,消除云中强电场.还试用尾部拖有铜丝发射升空的小火箭作人工引雷实验.日本正在设计实施激光引雷实验.利用强大功率的激光光束射向雷云,在空中形成高温等离子体,为闪电提供给定的放电通道,由此引导雷电电流泄人保持区之外的大地。

因引雷防雷技术在实际应用中,存在诸多不足,故在改善和完善传统的防雷技术是势在必行,创新发展防雷技术,以满足现代科技对防雷保护提出的更高要求。古人在防雷理论及应用虽与现代科学对防雷保护的认识有所不同,但其自然消雷系统均达到良好的防雷效果,都需要我们去研究,采用现代的科技手段,去研究古人的防雷理论,是很有现实意义的。因防雷理论涉及到地磁场、空间电场、空间气流场,地理,地质、气象等多学科的综合科学。研究我国多发雷击区的分布及季节、气候的关系。从中去理解雷电发生于自然而消除于自然中的科学内涵,科学的引导探索自然规律。故防雷技术的理论仍需在实践中进一步的去完善,而“消雷技术”的理论和实用性更有待进一步的去探索。

七、 结论

随着科技发展,生产和生活用电量越来越大,电已经成为最重要的资源之一,如何保证电力的供应对于国民经济发展和人民生活水平的提高都有非常重要的意义。雷击事故是电力 5 供应部门最重要的灾害之一,据浙江省电力工业局文件公布:1993年浙江全省发生的96次输电线路事故中,由雷电引起的事故79起, 占总数的82.3%.1995年8月5日14时15分,一场雷击造成台湾北部20年来最大的停电事故, 仅停电补偿费就在1000万台币以上。

在电力输送过程中,如何防雷显得十分重要,防雷击术的研究已经取得了很大的发展,线路防雷的保护措施会越来越多。在实际中,输电线路的防雷保护是一个系统工程,需要因地制宜,根据不同区域的地形地貌和气候特点,合理地选择防雷保护措施。严格按防雷接地规程办事,应用新技术新装置,采取综合性的防雷措施是确保电力系统及电力调度自动化系统极大减少雷害的重要手段。良好的接地与屏蔽并安装过电压保护器后可使被保护装置的耐雷水平提高 10 倍以上。 尊敬的指导老师:

由于水平有限,本人在这方面写作尚属首次,其中不足之处难免,恳请老师严厉指正,我将虚心接受,并对老师的指导及帮助从心底里表示诚挚的谢意,谢谢老师,同时对老师孜孜不倦的教诲表示崇高的敬意。辛苦您了,老师!!! 6

第五篇:浅谈电力变压器的特点和作用

大家的生活离不开电,那么随处可见的就是人们重要的伙伴,没有了电,生活将寸步难行,因此我们要先了解一下电力变压器的特点:

首先是一种静止的电气设备,是用来将某一数值的交流电压(电流)变成频率相同的另一种或几种数值不同的电压(电流)的设备。额定容量是它的主要参数。现在较为节能的电力变压器是非晶合金铁心配电变压器,其最大优点是,空载损耗值特低。

其次电力变压器是发电厂和变电所的主要设备之一。变压器的作用是多方面的不仅能升高电压把电能送到用电地区,还能把电压降低为各级使用电压,以满足用电的需要。总之,升压与降压都必须由变压器来完成。在电力系统传送电能的过程中,必然会产生电压和功率两部分损耗,在输送同一功率时电压损耗与电压成反比,功率损耗与电压的平方成反比。利用变压器提高电压,减少了送电损失。

再次变压器是由绕在同一铁芯上的两个或两个以上的线圈绕组组成,绕组之间是通过交变磁场而联系着并按电磁感应原理工作。变压器安装位置应考虑便于运行、检修和运输,同时应选择安全可靠的地方。在使用变压器时必须合理地选用变压器的额定容量。变压器空载运行时,需用较大的无功功率。这些无功功率要由供电系统供给。因此,变压器的额定容量应根据用电负荷的需要进行选择,不宜过大或过小。

大家要做到保护电力变压器,尽量不要破坏变压器,电力变压器是日常生活中很重要的设备。

上一篇:邓丽君第一次处给谁了下一篇:等级医院评审工作汇报