常用热塑性塑料简介

2024-05-05

常用热塑性塑料简介(精选5篇)

篇1:常用热塑性塑料简介

一、常用塑料包装材料简介

一、聚乙烯(PE)

(一)性能及用途

聚乙烯是典型的热塑性塑料,为无臭、无味、无毒的可燃性白色粉末。成型用的聚乙烯树脂均为经挤出造粒的蜡状颗粒料,外观呈乳白色。

聚乙烯的分子量在1万~100万之间,分子量超过100万的为超高分子量聚乙烯。分子量越高,其物理力学性能越好,但随着分子量的增高,加工性能降低。因此,要根据使用情况选择适当的分子量和加工条件。高分子量聚乙烯是个加工结构材料和负荷材料,而地分子量聚乙烯只适合作涂覆、上光剂、润滑剂和软化剂等。

聚乙烯的力学性在很大程度上取决于复合物的分子量、支化度和结晶度。高密度聚乙烯的拉伸强度为20~25MPa,而低密度聚乙烯的拉伸强度只有10~12MPa。聚乙烯的伸长率主要取决于密度,密度大,结晶度高,其蔓延性就差。

聚乙烯的电绝缘性能优异。因为它是非绝缘材料,其介电常教及介电损耗几乎与温度、频率无关;高频性能很好,适于制造各种高频电缆和海底电缆的绝缘层。

(二)品种

1. 低密度聚乙烯(LDPE)

(1)性能

低密度聚乙烯的密度范围为0.910~0.925g/cm³。分子结构为主链上带有长、短不同支链的支链型分子。在主链上每1000个碳原子中约带有50个以下的乙基、丁基或更长的支链。与高密度和中密度聚乙烯相比,它具有较低的结晶度(55%~65%),较低的软化点(108ºC~126ºC)以及较宽的熔体指数(0.2~80g/10min)。

由于低密度聚乙烯的化学结构与石蜡烃类似,不含极性基团,所以具有良好的化学稳定性,对酸、碱和盐类水溶液具有耐腐蚀作用。它的电性能及好,具有导电率低、介电常数低、介电损耗低以及介电强度高等特性。但低密度聚乙烯的耐热性能较差,也不耐氧和光老化。因此,为了提高其耐老化性能,通常要在树脂中加入抗氧剂和紫外线吸收剂等。

低密度聚乙烯具有良好的柔软性、延伸性和透明性,但机械强度低于高密度聚乙烯和线型低密度聚乙烯。

(2)用途

低密度聚乙烯主要用于制造薄膜。薄膜制品约占地密度聚乙烯制品总产量的一半以上,用于农用薄膜及各种食品、纺织品和工业品的包装。低密度聚乙烯电绝缘性能优良,常用作电线电缆的包覆材料。注射成型制品有各种玩具、盖盒、容器等。与高密度聚乙烯掺混后经注射成型和中空成型可制管道及容器等。

2.高密度聚乙烯(HDPE)

(1)性能

高密度聚乙烯的高密度为0.941~0.965g/cm³。分子结构为线型结构,支链少,平均每1000个碳原子仅含有几个支链。与低密度聚乙烯相比,高密度聚乙烯结晶度达80%~90%,密度大,使用温度较高,硬度和机械强大较大,耐化学性能好。

(2)用途

高密度聚乙烯的用途与低密度聚乙烯不同。低密度聚乙烯约50%~70%用于制造薄膜;而高密度聚乙烯则主要用于制造中空硬制品,约占总消费量的40%~65%。具体用途有:吹塑法制造各种瓶、罐及各种工业用槽、桶等容器;注射成型制造各种盆、桶、蓝、篓、筐等日用成器、日用杂品和家具等;挤出成型制造各种管材、捆扎带以及纤维、单丝等。此外,还可用于制造电线电缆的包覆材料和合成纸;加入大量无机钙盐以后,还可以制造钙塑包装箱和家具、门窗等。最近,高密度聚乙烯用于制造高强度超薄薄膜,做

食品、农副产品和纺织品的包装材料发展很快。

3.中密度聚乙烯(MDPE)

(1)性能

密度为0.926~0.940g/cm³,分子结构为支链数介于高密度聚乙烯和低密度乙烯之间的线型高分子。结晶度为70%~75%,软化温度为110ºC~115ºC,除兼有高、低密度聚乙烯的性能外,还具有优良的抗应力开裂性、刚性及耐热性。

(2)用途

最适宜于高速吹塑成型制造瓶类,高速自动包裹用薄膜以及各种注射成型制品和旋转成型制品,如桶、罐等。还可用于电线电缆包覆层。

4.线型低度密度聚乙烯(LLDPE)

(1)性能

线型低密度聚乙烯的密度为0.910~0.925g/cm³。

由于线型低密度聚乙烯分子侧链为短支链,分子结构介于线型高密度聚乙烯和带有长支链的高压法低密度聚乙烯之间,所以其物理机械性能优于普通低密度聚乙烯。在机械性能方面,线型低密度聚乙烯的拉伸强度比普通低密度与乙烯高50%~70%,伸长率高50%以上,耐冲击强度、穿刺强度及耐低温冲击性能均比低密度聚乙烯好。在物理性能方面,在相同密度情况下,线型低密度聚乙烯的熔点比低密度聚乙烯高,使用温度范围宽,允许使用温度比低密度聚乙烯高10ºC~15ºC。

(2)用途

线型低密度聚乙烯可代替低密度聚乙烯制造薄膜、管材、注射成型制品、中空吹塑容器、旋转成型制品及电线电缆包覆材料等。制得的产品的机械性能比低密度聚乙烯好。所以,制造相同强度的制品时,线型低密度聚乙烯制品可减薄。

二、聚丙烯(PP)

(一)性能

聚丙烯重量轻,密度为0.90~0.91g/cm³,是通用塑料中最轻的一种。

聚丙烯具有优良的耐热性,长期使用的温度可达100ºC~120ºC,无载荷时使用温度可达150ºC,聚丙烯是通用塑料中唯一能在水中煮沸,并能经受135ºC的消毒温度的品种,因此可制造输送热水的管道。聚丙烯的耐低温性能不如聚乙烯,催化温度为-10ºC~-13ºC(聚乙烯为-60ºC)。低温甚至室温下的抗冲击性能不佳,低温下易脆裂是聚丙烯的主要缺点。

聚丙烯是一种非极性所料,具有优良的化学稳定性,并且结晶度越高,化学稳定性越好。除强化性酸(如发烟硫酸、硝酸)对他有腐蚀作用外,室温下还没有一种溶剂能使聚丙烯溶解,只是低分子量的脂肪烃、芳香烃和氯化烃对它有软化或溶胀作用。它的吸水性很小,吸水率还不到0.01%。

聚丙烯在成型和使用中易受光、热、氧的作用而老化。聚丙烯在大气中12天就老化变脆,室内放置4个月就会变质,通常需添加紫外线吸收剂、抗氧剂、炭黑和氧化锌等来提高聚丙烯制品的耐候性。

聚丙烯的力学强度、刚性和耐应力开裂都超过高密度聚乙烯,而且有突出的延伸性和抗弯曲疲劳性能,用它制成的活动铰链经过7000万次弯曲试验,竟无损坏痕迹。

聚丙烯的电绝缘性能优良,特别是高频绝缘性很好,击穿电压强度也高,加上吸水率低,可用于120ºC使用的无线电、电视的耐热绝缘材料。

(二)用途

聚丙烯综合性能优良,可以用注射成型、挤出成型、中空成型制成各种制品。在这些用途中用于注射成型制品居首位,包括日用器具、娱乐和体育用品、玩具等;汽车部件,如蓄电池壳体、空调零件、散热器叶片等;硬包装,如医疗洗涤器、盖罩、化妆品盒;机械零件,如洗衣机洗槽、搅拌器、空气管。挤出成型制品包括电线、电缆、薄膜、片材、管材等。薄膜主要用于包装服装、针织品、食品、香烟等。中空成型制品包括容器、瓶类。聚丙烯纤维分长丝(单丝、复丝、膨体纱)、短纤丝。纤维可代替棉、麻、丝、毛等天然纤维。主要用于生产机织和针织,如地毯、沙发布、捆扎材料、绳索和编织袋等。

三、聚氯乙烯(PVC)

(一)性能

聚氯乙烯是无毒、无臭的白色粉末,密度为1.40g/cm³,加入增塑剂和填料的聚氯乙烯塑料的密度为1.15~2.00g/cm³。

聚氯乙烯的力学性能取决于聚合物的分子量、增塑剂和填料的含量。聚合物的分子量越大,力学性能、耐寒性、热稳定性越高,但成型加工比较困难;分子量低则相反。增塑剂的加入,它不但能提高聚氯乙烯的流动性,降低塑化温度,而且使其变软。通常,在100份聚氯乙烯树脂中增塑剂量大于25份即变成软质塑料,伸长率增加,而拉伸强度、刚度、硬度等力学性能均降低;增塑剂加入量小于25份时为硬质或半硬质塑料,具有较高的力学强度。

聚氯乙烯是无定型聚合物,它的玻璃化温度(Tg)为80ºC左右,在此温度下即开始软化,随着温度的升高,力学性能逐渐丧失。显然,Tg是聚氯乙烯理论使用温度的上限。但在实际应用中,聚氯乙烯的长期使用温度不宜超过65ºC。聚氯乙烯的耐寒性较差,尽管齐催化温度低于-50ºC,但低温下即使软质聚氯乙烯制品也会变硬、变脆。由于聚氯乙烯含氯量达65%,因而具有阻燃性和自熄性。

聚氯乙烯的热稳定性差,无论受热或日光都能引起变色,从黄色、橙色、棕色直到黑色,并伴随着力学性能和化学性能的降低。

聚氯乙烯具有较好的典型能,其电绝缘性可与硬橡胶媲美。

(二)用途

聚氯乙烯的应用比较广泛。在包装材料方面,它可制造包装薄膜、收缩薄膜、复合薄膜和透明片材,还可制作集装箱和周转箱以及包装涂层。

四、聚苯乙烯(PS)

(一)性能

聚苯乙烯是质硬、脆、透明、无定型的热塑性塑料。没有气味,燃烧时冒黑烟。密度为1.04~1.09g/com³,易于染色和加工,吸湿性低,尺寸稳定性、电绝缘和热绝缘性能极好。

聚苯乙烯的力学性能同制造方法、分子量大小、取向度以及所含杂质有关。分子量大的强度高,分子量在5万以下的拉伸强度很低,10万以上的其拉伸强度的改善就不明显了。分子量高时成型困难,通常分子量控制在5~20万。

聚苯乙烯可溶解于许多溶剂中,如苯、甲苯、四氯化碳、氯仿、邻二氯苯等。

聚苯乙烯的透光率为87%~92%,其透光性仅次于有机玻璃。折光指数为1.59~1.60。受光照射或长期存放,会出现面混浊和发黄现象。

聚苯乙烯毒性极低,属于卫生安全的塑料品种。

(二)用途

聚苯乙烯由于具有高透明度、廉价、刚性、绝缘、印刷性好、易成型等优点,使它在青工制品,装潢和包装等方面有一定的使用价值。

五、聚对苯二甲酸乙二醇脂(PET)

(一)性能

聚对苯二甲酸乙二醇脂系结晶型聚合物,密度为1.30~1.38g/cm³,熔点为255ºC~260ºC,在热塑性塑料中具有最大的强韧性,其薄膜拉伸强度可与铝箔相匹敌,为聚乙烯的9倍,聚碳酸酯和尼龙的3倍。

聚对苯二甲酸乙二醇脂在较宽的温度范围内,保持其优良的物理机械性能,-20º~80Cº内温度的影响很小,长期使用温度可达120ºC,能在150ºC使用一段时间。

聚对苯二甲酸乙二醇脂在较高温度下,也能耐氟氢酸、磷酸、乙酸、乙二酸,但盐酸、硫酸、硝酸能使它受到不同程度的破坏,如拉伸强度下降。强碱尤其是高温下的碱,能使它的表面发生水解,其中以氨水的作用更剧。

(二)用途

聚对苯二甲酸乙二醇脂除了大量用于抽丝做纤维外,多用于制造薄膜,大量用于电影片基、X光片基、录音音像带基。由于电性能好,在电气、电子工业中可做B级(130ºC)绝缘材料。此外,还大量用于吹塑瓶子,如用于调味品、食用油、饮料、化妆用品瓶子。注射制品坚韧耐磨,吸湿性小,尺寸稳定,弹性模量高,并具有优良的电性能和耐化学性,主要用于机械、电气电子精密结构件,如线圈骨架、配电开关、继电器原件等。

六、聚酰胺(PA)

(一)性能

聚酰胺是乳白色或微黄色不透明粒状或粉状物,密度为1.02~1.15g/cm³,吸水率为0.3%~9.0%,随着链节中碳原数的增加,密度和吸水率趋于降低。

聚酰胺的结构可以看作是聚乙烯分子链中每间隔一定距离嵌入一个聚酰胺基团。这中间隔随链节中碳原子数的增加而增大,其性能受聚酰胺基团的影响变小,作为聚乙烯的性质增加。例如,聚酰胺的拉伸强度弯曲强度、熔点和吸水率等都随着链节中碳原子数的增加而降低。但由于聚酰胺基团的存在,聚酰胺类聚合物都显示出耐磨、易吸水的共性。

与金属比,聚酰胺的刚性比较低,表面硬度和耐蠕变性也较差,但它的比强度高于金属,比压缩强度与金属相当。

聚酰胺的拉伸强度、弯曲强度和硬度随温度和吸水率的增大而降低。而冲击强度则随温度和吸水率的增大而明显提高。

聚酰胺居于有优良的耐磨性,各种聚酰胺的摩擦系数差别不大,通常在0.1~0.3之间。如果在聚酰胺中添加二流化钼、石墨等填料或聚四氟乙烯粉末,可进一步提高其耐磨性。

聚酰胺的熔点温度范围窄,通常在180ºC~280ºC之间,长期使用温度一般不宜超过100ºC。若在100ºC以上的温度下长期与氧接触,会使制品逐渐呈现褐色,丧失使用性能。

大多数聚酰胺具有自燃性,少数品种具有可燃性,但对火焰的传播速度很慢。

聚酰胺在室温下耐稀酸、弱碱和大多数盐类,但强酸、较高浓度的酸及强氧化剂会使其明显受到侵蚀,在较高温度下发生破坏。

聚酰胺的耐溶剂性优良。能耐烃类、油类及一般溶剂,如四氧化碳、乙酸甲脂、苯、四氢呋喃等。它对矿物油、植物油均呈惰性,但水和醇及其类似的化合物能使聚酰胺溶胀,在常温下可溶于极性的酚类化合物和氯化钙的甲醇溶液。

各种聚酰胺的电性能在干态时基本相同,具有较高的电阻值,但随着温度和吸水率的增加有明显的降低;介电常数与此相反,虽吸水率的增加而增大。

(二)用途

聚酰胺在工业上主要用于制造各种机械、汽车、化工、电子和电器装置的零部件,特别用于高强度或耐磨制件,如各种齿轮、滑轮、轴承、泵体中叶轮、风箱叶片、高压密封圈、阀座、垫片、各种壳体、工具手柄、支撑架、汽车灯照等。在电子仪器设备、继电器等电器设备中制作零件、电梯导轨、建筑装饰用扶手等。在包装上可制成薄膜,与铝箔制成复合材料,用于罐头、食品和饮料的包装。

七、聚偏二氯乙烯(PVDC)

(一)性能

聚偏二氯乙烯是硬币、韧性、半透明至透明材料,带有不同程度的黄色。经紫光照射后发暗橙道淡紫色荧光。密度为1.70~1.75g/cm³,吸水性<0.1%。

与其他塑料相比,聚偏二氯乙烯对很多气体和溶液具有很低的透过率,故广泛用作包装材料。纯聚偏二氯乙烯由于难以制得适当的测试样品,因而很少获知其机械性能。主要是测定共聚物的强度。聚偏二氯乙烯的机械性能与结晶的种类、数量和定向程度有关。拉伸强度随结晶度升高,而韧性和伸长率则随之而下降。聚偏二氯乙烯在热、紫外线、离子辐射、碱性试剂、催化金属或盐类作用下容易分解,分解反应的共同特点是有氯或氢释放出来。

(二)用途

聚偏二氯乙烯除作纤维用外,主要用作包装薄膜。此外还可作为防湿的涂料和粘合剂。

八、聚乙烯醇(PVA)

(一)性能

聚乙烯醇的密度为1.26~1.29g/cm³,折射率为1.52,紫外线照射后发蓝白色荧光。吸水性大,浸入水中能溶解。对纤维的含水率可达30%~50%,在65%RH、25ºC环境下的湿率也可达4.5%。能透过水蒸气,但难透过醇蒸汽,更不能透过有机溶剂蒸汽、惰性气体和氢气。聚乙烯醇薄膜的阻气性甚至优于聚偏二氯乙烯薄膜。聚乙烯醇的弹性模数为4400~5400MPa,拉伸强度为35MPa,伸长率取决于含湿量,平均可达450%;纤维的湿强度是干强度的55%~60%;薄膜的硬度随分子量的增加而增加。聚乙烯醇虽为结晶性高聚物,但熔点不敏锐,融熔温度范围为220ºC~240Cº。玻璃化温度为85ºC。

聚乙烯醇受热软化,稳定使用温度为120ºC~140Cº。在250ºC,有氧存在分解时,产生自然。由于聚乙烯醇在一般气候条件下都会吸湿,故不宜在电绝缘方面应用。

(二)用途

由于聚乙烯醇具有良好的透明性、五静电性、韧性、印刷性,极好的阻气性和良好的耐化学性,作为水溶性的包装材料是个分适宜的。

九、乙烯-醋酸乙烯脂共聚物(EVA)

(一)性能

EVA共聚物是高分子的热塑性聚合物,是典型的无规共聚体。EVA由于在乙烯支链中引入由极性的醋酸集团所组成的短支链,打乱了原来的结晶状态,从而降低了支链上乙烯的结晶度,同时还增加了聚合物链之间的距离。这就使EVA比聚乙烯更富有柔韧性和弹性。

EVA的熔体指数(MI)的大小与聚合工艺条件有关,亦与VA含量有关,在同一聚合条件下,VA含量逾高,其MI亦逾高。

EVA的介电常数、介电损耗角正切值与共聚物中VA含量呈线性的函数关系,即VA含量越高,其介电常数也就越大。

EVA热分解温度为229ºC~230º,也有文献报道在250Cº以上。

EVA对于气体和湿气的渗透性要比低密度聚乙烯高,因此它不宜做高度抗渗透材料。EVA的耐油、耐化学药品性比聚乙烯、聚氯乙烯稍差,随VA含量的增加,这一倾向愈加明显。

(二)用途

EVA可作为收缩薄膜、重包装袋、可挠性电线和电缆护套,也常用于注射和吹塑制品、热熔粘合剂、各种板材纸张涂层、泡沫制品等。EVA还可作为其他树脂的改性剂。

十、聚碳酸酯(PC)

(一)性能

聚碳酸酯是无色或微黄色透明颗粒,无味、无臭、无毒。密度为1.2g/cm³,吸水率小于0.16%,透明率为75%~90%,折光指数(25ºC)1.5890,可制成透明、半透明,不透明的各种制品。

聚碳酸酯具有优异的冲击强度和耐蠕变性,拉伸强度和弹性模量也较高,而且能在较高的温度范围内保持较高的力学强度;不足之处是它的疲劳强度和耐磨性差。聚碳酸酯既有良好的耐寒性,又有良好的耐热性。它的脆化温度为-100%,最高使用温度为100%,可在-60~120ºC下长期使用。

聚碳酸酯对热、氧、大气和紫外线有良好的稳定性。但长期在室外使用或在强光照射下,其表面会变暗,失去光泽、泛黄,甚至产生龟裂。

聚碳酸酯是极性聚合物,电性能比非极性的碳氢聚合物稍差,但仍属于电性能优良的塑料品种。

(二)用途

聚碳酸酯的用途十分广泛,可用作机械零件,能耐油酸可作食品和医药包装薄膜,能经受高温消毒,可作外科医疗器械。由于其力学强度高,又可作安全防护用的面罩、安全帽、机械防护罩等,以及飞机的挡风罩、座舱盖、空调管道、舱门、仪表盘、座位及结构材料等。日前,聚碳酸酯已成为航空和宇航工业中不可缺少的材

篇2:常用热塑性塑料简介

1.实验目的

(1)通过本实验,应熟悉挤出成型的原理,了解挤出工艺参数对塑料制品性能的影响。(2)了解挤出机的基本结构及各部分的作用掌握撤出成型基本操作。

2.实验原理

(1)塑料造粒。合成出来的树脂大多数呈粉末状,粒径小成型加工不方便,而且合成树脂中又经常需要加入各种助剂才能满足制品的要求,为此就要将树脂与助剂混合,制成颗粒,这步工序称作“造粒”。树脂中加入功能性助剂可以造功能性母粒。造出的颗粒是塑料成型加工的原料。

此使用颗粒料成型加工的主要优点有:①颗粒料比粉料加料方便,无需加制加料器;②颗粒料比粉料密度大,制品质量好;③挥发物及空气含量较少,制品不容易产生气泡;④使用功能性母料比直接添加功能性助剂量更容易分散。

塑料造粒可以使用辊压法混炼,塑炼出片后切粒,也可以使用挤出塑料,塑化挤出条后切粒。本实验采用挤出冷却后造粒的工艺。

(2)挤出成型原理及应用。热塑性塑料的挤出成型是主要的成型方法之一,塑料的挤出成型就是塑料在挤出机中,在一定的温度和一定压力下熔融塑化,并连续固定截面的模型,得到具有特定断面开关连续型材的加工方法.不论挤出造粒还是挤出制品都分两个阶段,第一阶段,固体状树脂原料在机筒中,借助于筒料外部的加热螺杆转动的剪切挤压作用而熔融通,同时熔体在压力的推动下被连续挤出口模;第二阶段是被挤出的开票失去塑性变为固体即制品,可为条状、版状、棒状、筒状等。因此,应用挤出的方法既可以造粒也能够生产型材或异型材。

3.实验设备用原料

原料:聚乙烯100份,聚丙烯100份,碳酸钙30份,抗氧剂1010 0.3份,硅烷偶联剂KH550 0.5份。

仪器:SJ-20型双螺杆挤出机,切粒机 挤出机技术参数如下:

螺杆直径:22mm。长径比L/D:20mm。螺杆转速:0~600r/min。产量:0.7~6kg/h。电机功率:3KW。加热功率:3.3KW。

挤出机各部分结构的作用如下。

(1)传动装置。由电动机、减速机构和轴承等组成。具有保证挤出过程中螺杆转速恒定、制品质量的稳定性以及保证能够变速作用。

(2)加料装置。无论原料是粒状、粉状和片状,加料装置都采用加料斗。加料斗内应有切断料流、标定料量和卸除余料等装置。

(3)料筒。料筒是挤出机的主要部件之一,塑料的混合,塑化和加压过程都在其中进

°行。挤压时料筒内的压力可达55MPa,工作温度一般为180~250C,因此料筒是受压和受热的容器,通常由高强度、坚韧耐磨和耐腐蚀的合金钢制成。料筒外部设有分区加热和冷却的装置,而且各自附有热电偶和自动仪表等。

(4)螺杆。螺杆是挤出机的关键部件。一般螺杆的结构如图3-3所示。

通过螺杆的转动料筒内的塑料才能发生移动,得到增压和部分热量(摩擦热)。螺杆的几何参数,诸如直径、长径比、各段长度比例以及螺槽深度等,对螺杆的工作特性均有重大影响。

螺杆直径(D)和长径比(L/D)是螺杆基本参数之一,螺杆直径常用以表示挤出机大小的规格,根据所制制品的形状大小和生产率决定。长径比是螺杆特性的重要参数,增大长径比可使塑料化更均匀。

(5)口模和机头。机头是口模与料件之间的过渡部分,其长度与和形状随所用塑料的种类、制品的形状加热方法及挤出机的大小和类型而定。机头和口模结构的好坏,对制品的产量和质量影响很大,其尺寸根据流变学和实践经验确定。

4.实验步骤

(1)配料:用电子称称量所需原料,将各种原料经手工初步搅匀后,加入高速混合机中,关闭高速混合机顶门和底门,开动混合机搅拌1min,在搅拌下打开底门用装料袋接料,关闭混合机,清理混合机内腔。

(2)了解挤出塑料的熔融指数,确定挤出温度控制范围。

(3)检查挤出机的各部分,确认设备正常,接通电源,加热,通冷却水。待各段预热到要求温度时,手动转动螺杆,以确定料筒中残留的上次加工的料完全熔融。保温10min以上再加料。

(4)开动主机。在转动下先加少量塑料,注意进料和电流计情况。开动切粒机和风冷机,待有熔料挤出后,将挤出物用手(戴上手套)和镊子慢慢引上冷却牵引装置,同时经过切粒机切粒并收集产物。

(5)挤出平稳,继续加料,调整各部分,控制温度等工艺条件,维持正常操作。

(6)观察挤出料条形状和外观质量,记录挤出物均匀、光滑时的各段温度等工艺条件,记录一定时间内的挤出量,计算产率,重复加料,维持操作20min。(7)试验完毕,带模头不再有熔体流出时,关闭主机,整理各部分。

5.实验报告

(1)列出实验用挤出机的技术参数。

(2)报告实验所用原料及操作工艺条件,计算挤出产率。(3)取样测定熔融指数和性能。(4)讨论

①结合试样性能检验结果,分析产物性能与原料、工艺条件及实验设备操作的关系。②影响挤出物均匀性的主要原因有哪些?怎样影响?如何控制? ③实验中,应控制哪些条件才能保证得到质量好的样品或制品?

6.注意事项

(1)熔体被挤出之前,任何人不得在机头口模的正前方。挤出过程中,严防金属杂质、小工具等物料落入进料口中。

(2)清理设备时,只能使用铜棒、铜制刀等工具,切忌损坏螺杆和口模等处的光洁表面。(3)挤出过程中,要密切注意工条件的稳定,不得任意改动。如果发现不正常现象,应立即停车,进行检查正理再恢复实验。

7.思考题

篇3:常用热塑性塑料简介

近年来, 建筑、市政、水利、农业和工业等行业对塑料管道的需求不断增大, 拉动了我国塑料管道行业的高速发展。在提高生产能力和应用量、增加产品种类、扩大应用领域、促进产业科技进步、加强标准化建设等方面, 我国塑料管道行业取得了很大的成绩, 已成为塑料管道生产和应用大国。“十二五”期间, 塑料管道产量的增长速度将保持在10%左右, 预计到2015年, 全国塑料管道产量将超过1320万t, 塑料管道在全国各类管道中的市场占有率超过50%[1]。

塑料有许多公认的独特优点, 但是强度较低是其明显的缺点。因此, 全塑料管的应用必然受到限制。利用其它高强度材料与塑料复合制造增强复合管是国内外一直在努力探索的课题。钢管具有强度高、能应用于高压力范围的优点, 但存在易氧化腐蚀、寿命较短、施工复杂等缺点;塑料管 (如PE管) 则正好与钢管相反:耐腐蚀、施工简便, 但由于强度较低, 只能应用于中、低压范围, 而且大多不能制成盘管。为克服塑料管和钢管的缺点, 各种结构形式的复合管材应运而生。可以制成很长连续盘管的增强热塑性塑料 (RTP) 管相比于金属管道就具有了独特的优势。RTP管一出现, 就受到了相关行业的追捧, 同时, RTP复合管道生产工艺先进、成本低、性能优良、施工费用少且技术易配套, 为此深受各国的普遍重视, 美、德、法、英、日、俄等国家早在20世纪70年代就开始研究RTP复合管的生产技术, 目前已经投入工业化生产。

1 RTP管简介

柔性增强热塑性塑料管 (Reinforced Thermoplastic Pipe, 以下简称RTP管) , 是一种柔性、长距、耐高压的增强型绿色环保管材。RTP管通常由3层构成 (见图1) , 内外层为PE80、PE100以上的材料, 中间层为增强材料复合而成的增强带, 增强材料可以为聚酯纤维、芳纶纤维或钢丝等。

由于RTP管实现了大中口径高压管材成卷包装运输和施工, 每卷长度200~2000 m不等, 相对于其它的大中口径管以6~9 m直管供货, 不仅降低了运输费用, 更重要的是使管与管之间的连接接头大大减少了, 可靠性也大大的提高, 施工的速度提高了数十倍, 运输和施工费用降低了约70%, RTP管已经在国外许多石油输送及天然气输送领域中大量成功使用。

柔性增强热塑性塑料复合管通常以高密度聚乙烯 (HDPE) 80级以上的塑料、高强纤维或钢丝绳为主要原料, 经过挤出、成型、缠绕、外覆、卷取等工艺, 生产出长度超千米的高压柔性管材。采用不同的增强层材料及外覆材料, 还可以得到各种不同压力等级、不同性能的RTP管材。

1.1 RTP管的优点

(1) 耐腐蚀, RTP管内外管壁均具有良好的防腐性能, 适用于多种腐蚀性介质及各种腐蚀性环境。

(2) 耐高压, RTP管具有较高的承压能力。通过选择不同的增强材料, 最大承压可达32 MPa, 爆破压力更可高达100MPa。

(3) 耐温保温, RTP管的使用温度范围宽为-42~102℃, 可满足大多数场合的温度需求;在温差30℃的情况下, 每百米温降不到1℃。

(4) 输送能力强, RTP管内壁光滑、不结垢、不结蜡, 流动阻力小, 耐磨损, 输送能力持久不变, 降低了输送管线的维护成本。

(5) 柔韧性好, RTP管韧性极高, 具有良好的耐冲击性, 抗土壤沉降、地震等能力强。安装时可通过蛇型布局进行自然补偿, 不需要直管段热补偿装置, 从而节约安装成本。

(6) 施工便捷, RTP管可像电缆一样盘卷铺放施工, 每天可铺设1~2 km;拉伸强度高, 铺设管道时, 长时间最大拉力可达5 t, 瞬间最大拉力可达10 t。

(7) 接头少, RTP管单根长度可达200~2000 m, 因此接头很少, 可靠性更高, 节约了成本。

(8) 性价比高, 根据德国威肯公司资料显示, 与碳钢管道比较, RTP管可节约投资25%以上。

(9) 使用寿命长, RTP管的常规设计寿命为20年, 最高可达50年。

表1为RTP管材与其它材质管材的性能对比。

1.2 RTP管材的主要应用领域

按照压力等级和管径的不同, RTP管道大致可应用于3个不同的领域:

(1) 小口径高压柔性管道 (5~25 MPa) , 直径50~150 mm, 盘卷管。用于油田注水等。

小口径高压柔性管道用来替代目前油田注水使用的钢管和玻璃钢管, 因为耐腐蚀性好, 并且以盘卷形式供应, 方便铺设, 所以取代的优势非常明显, 如果性能可靠、价格合理, 能够取代传统的钢管和玻璃钢管。

(2) 小口径中压柔性管道 (1.6~5 MPa) , 直径100~200 mm, 盘卷管。用于油田和矿山输水、输气、输浆, 工程和市政抢险或者临时铺设的管道。

小口径中压柔性管道用来替代目前油田和矿山使用的钢管和玻璃钢管, 因为耐腐蚀性好, 可以盘卷供应, 方便铺设 (尤其在沙漠、海滩等环境中) , 如果性能可靠、价格合理能够逐步推广使用。

工程和市政抢险中要大量使用管道, 近年来质量轻、连接和铺设方便的塑料管道被逐步看好, 在地震和矿难救灾中发挥了巨大的作用。在国家重视“民生”的政策下, 将会有较好的市场前景。

(3) 大中口径的低压管道 (<1.6 MPa) 用于城乡输水管道。直径100~1600 mm或者更大, 直径200 mm以下以盘卷形式供应, 直径250 mm以上直管供应。在这个领域预计市场较大, 但是竞争的产品也会很多, 如PE管、PVC管等。

2 国内外RTP复合管生产及应用情况

2.1 国外RTP复合管的生产及应用情况

(1) 加拿大Flexpipe Systems Inc.公司所生产的商品名为Flexpipe line pipe (FPLP) 的RTP管, 其结构特征是3层复合 (HDPE-玻璃纤维增强层-HDPE) , 经预处理的玻璃纤维缠绕在内管上作为增强层, 由于玻璃纤维没有涂覆环氧树脂, 因此保留有一定的柔软性, 可盘卷长管, 长度可达到2100 m。提供3个产品系列, 压力等级分别达到2.0 MPa、5.2 MPa、10.3MPa, 目前最高可达17.2 MPa。

Flexpipe提供的尺寸是2英寸 (50 mm) 、3英寸 (90 mm) 、4英寸 (110 mm) 和6英寸 (150 mm) 。标准的管材有一黑色外护套层, 提供最少20年的抗紫外线 (UV) 暴晒保护。作为特殊定货, 可以提供白色的Flexpipe管材, 应用在要求低吸热场合, 同样提供最少20年的抗紫外线 (UV) 保护。主要市场在加拿大和美国的石油、天然气开采业。

(2) 美国FIBERSPAR公司的Line Pipe管为2层复合 (PE-玻璃纤维增强环氧树脂) , 通常内衬层用HDPE, 较高温度用PEX, 特殊要求可用PVDF。制造成可盘卷长管。

FIBERSPAR的Line Pipe在北美提供的尺寸范围在DN65~150 mm, 压力等级范围在2.1~17.5 MPa, 连续长度最长达2英里 (3219 m) (取决于尺寸和卷盘的容量) , 产品主要用于石油、天然气的输送。

(3) 奥地利的Pipelife Nederland B.V.生产的商品名为Solu Force的RTP管道, 其结构特征是3层复合, 即PE内衬层-芳纶纤维增强带或钢丝增强带-PE外护套层。可盘卷成长管。其常用规格为:直径3、4英寸 (90、110 mm) , 最大工作压力2.9~15 MPa。该公司产品被应用于石油天然气集聚管道、注水管道。

(4) 英国Wellstream的Flexsteel管, 3层复合 (PE内衬层-钢增强层-PE外护套层) , 可盘卷长管。产品直径为2、3、4、5、6英寸 (50、90、110、125、160 mm) , 最大工作压力等级为5.2、6.9、10.3、15.5 MPa。

(5) 法国Technip-Coflexip公司的RTP-COFLELIFT管, 3层复合 (PE内衬层-芳纶纤维或钢丝增强层-PE外护套层) , 可盘卷长管。产品直径为3、4、5、6英寸 (90、110、125、160 mm) , 设计工作压力分别为5.5、4.3、3.7、3.2 MPa。

2.2 国内RTP复合管生产及应用情况

我国RTP管的生产起步较晚, 2009年南京晨光欧佩亚复合管工程有限公司从德国“克劳斯玛菲”公司引进我国第1条RTP生产线, 成为全球第5个研制生产芳纶增强热塑料复合管 (RTP管) 的企业 (见图2) , 管径DN65~DN150, 公称压力2~15 MPa, 盘卷长度为400~1800 m。

经过几年的发展, 我国的RTP生产企业在消化吸收国外技术的基础上研制了国产RTP管道生产线, 例如:广州励进新技术有限公司自主研发了我国首条“柔性热塑性增强塑料复合管”生产线, 一举打破了德国公司独家垄断国际市场的局面, 生产线采用一步法RTP生产工艺, 能够提供钢丝带、玻纤带及芳纶带等各种材料增强RTP管材生产线;此外, 上海金纬管道设备制造有限公司也开发了高压RTP编织复合管道生产线。

目前, 国产的RTP管已在陆上油气田, 如大庆油田、长庆油田、塔里木油田等使用或试用, 主要用于输水管线、注醇管线以及油气的集输管线, 而适用于长输管线以及海上油气田的高端产品目前国内尚在研制中。

在RTP管的3层结构中可以认为管体的承压能力完全是由中间层 (结构层) 承担的, 内、外层分别承担起容纳输送流体和保护中间层的作用, 所以增强材料的选择在很大程度上决定了RTP管的承压能力。国外RTP管的增强材料通常使用芳纶纤维, 但由于其价格高, 目前国内仅有少数厂家采用, 如南京航天晨光欧佩亚复合管工程有限公司, 其产品与奥地利的“Pipelife Nederland B.V.”所生产的商品名为“Solu Force”的RTP管道结构类似[2]。

为了降低成本, 国内一些厂家采用其它增强纤维来生产RTP管, 如河北省景县液力柔性管汇厂选用聚酯纤维作为增强材料;此外还有厂家使用钢丝做增强材料, 如长春高祥特种管道有限公司所开发的钢丝编织增强管, 是我国市场上开发比较早, 应用也比较成功的增强管道, 它基本上模仿橡胶高压管道的原理和增强方法, 管壁由3层组成, 增强层是由高强度钢丝编织而成 (见图3) , 该类型产品已被应用于新疆某盐田输送含盐的卤水 (要求抗腐蚀、抗磨损) , 广西某铝矿输送尾矿浆, 大连到长山岛跨海输水管道 (直径450 mm, 1.6 MPa) 等工程。钢丝编织增强管的生产工艺与国外的RTP类似, 也是先生产HDPE内管, 然后把钢丝紧密编织在内管外表面, 并且涂覆热熔胶, 最后复合1层HDPE外保护层。

就目前国内的RTP管发展情况来看, 考虑到设备成本和原料成本的因素, 10 MPa以上即芳纶增强管的推广还比较困难。7 MPa左右的可以考虑聚酯纤维或是长玻纤增强带。此外, 由于国内塑料管道市场对小口径中压柔性管道 (1.6~5MPa) 的需求, 江苏联冠科技发展有限公司、浙江康润机械科技有限公司等企业借助现有的钢丝缠绕增强塑料复合管技术 (见图4) 加以改进, 采用“密集缠绕技术”, 最大限度地增加缠绕钢丝的数量、甚至层数, 以提高管材的承压能力, 并且已经取得一定的成绩。这种管道以HDPE内管为基体, 高强度涂塑钢丝缠绕网层作为增强骨架, 外面复合1层HDPE保护层, 并且用PE接枝改性树脂将钢丝网骨架与内、外层HDPE紧密地粘接在一起, 使之能够承受较高的压力, 并且塑料和热熔胶保护钢丝不受腐蚀, 这种直接用钢丝进行缠绕增强的一步法工艺, 省去了复杂的制作钢丝增强带的设备和工序。节省了投资和生产成本。但是由于数量很多的钢丝在缠绕中不容易把张力和间距调整成完全一致, 因此, 这种管材不能承受较高的压力。

目前, 国内已经开始开发输水用公称压力0.6~2 MPa、直径500~1000 mm的钢丝增强聚乙烯管, 目的是节约原材料和提高耐压性能。预计比PE100管壁厚减少50%, 成本降低20%~30%。

3 RTP管的生产工艺

缠绕成型工艺是将连续纤维 (或布带、预浸纱) 按照一定规律缠绕到芯模上, 经复合后获得制品。根据纤维缠绕成型时树脂基体的物理化学状态不同, 分为干法缠绕、湿法缠绕和半干法缠绕3种。

3.1 干法缠绕

干法缠绕是采用经过预浸胶处理的预浸纱或带, 在缠绕机上经加热软化至粘流态后缠绕到芯模上。由于预浸纱 (或带) 是专业生产, 能严格控制树脂含量 (精确到2%以内) 和预浸纱质量。因此, 干法缠绕能够准确地控制产品质量。干法缠绕工艺的最大特点是生产效率高, 缠绕速度可达100~200 m/min, 缠绕机清洁, 劳动卫生条件好, 产品质量高。其缺点是缠绕设备贵, 需要增加预浸纱制造设备, 故投资较大, 此外, 干法缠绕制品的层间剪切强度较低。

3.2 湿法缠绕

湿法缠绕是将纤维集束 (纱式带) 浸胶后, 在张力控制下直接缠绕到芯模上。湿法缠绕的优点为: (1) 成本比干法缠绕低40%; (2) 产品气密性好, 因为缠绕张力使多余的树脂胶液将气泡挤出, 并填满空隙; (3) 纤维排列平行度好; (4) 湿法缠绕时, 纤维上的树脂胶液可减少纤维磨损; (5) 生产效率高, 达200 m/min。湿法缠绕的缺点为: (1) 树脂浪费大, 操作环境差; (2) 含胶量及成品质量不易控制; (3) 可供湿法缠绕的树脂品种较少。

3.3 半干法缠绕

半干法缠绕是纤维浸胶后, 到缠绕至芯模的途中, 增加一套烘干设备, 将浸胶纱中的溶剂除去, 与干法相比, 省却了预浸胶工序和设备;与湿法相比, 可使制品中的气泡含量降低。

3种缠绕方法中, 以湿法缠绕应用最为普遍, 干法缠绕仅用于高性能、高精度的领域。

3.4 国产RTP管材生产线一步法生产工艺流程 (见图5)

4 RTP管的市场前景

我国塑料管道的生产和应用从20世纪90年代起, 开始进入一个快速发展时期, 据统计, 2010年我国塑料管道的产量为840.2万t, 同比增长31.1% (见表2) , 已成为世界上最大的塑料管道生产和应用国家[3]。

据中国塑料加工工业协会塑料管道专业委员会预测[3], “十二五”期间, 我国的塑料管道生产量将保持在10%左右的速度增长, 到2015年, 全国塑料管道产量将超过1320万t (见表3) 。塑料管道在全国各类管道中市场占有率超过50%。

《中国塑料管道行业“十二五”期间 (2011~2015) 发展建议》提出了“十二五”期间重点开发、生产新材料类塑料管道、改性与复合类塑料管道、环境友好型塑料管道和新型塑料管道系统。

我国塑料管业对于增强热塑性塑料管RTP一直很积极, 起步也比较早。多年来经过努力探索, 不断发展, 已经打开不小的市场。过去几年可以说是我国RTP的探索期、孕育期, 预期今后几年将是我国RTP的发展期、增长期。

一方面, RTP的优异特性已逐步被市场认同, 在建筑和市政工程市场继续扩展的同时, 不少其它领域的管道用户也在探索应用RTP管。近年我国石油天然气产业对应用RTP很积极, 制定了一批相关的标准, 已经应用于陆地和海上油气田的注水管、集输管等。石油天然气产业特别希望能够把RTP应用到天然气长输管道中, 是因为每年有数万公里的工程量。同时在矿井输水、盐田输卤、军用输油、海底管道、温泉利用等领域RTP都已经有成功应用的实例。另一方面, 国内相关企业通过自主创新, 在引进和吸收国外技术的基础上, 积累了不少经验。目前, RTP管的生产工艺技术、机械装备、专用材料和铺设施工设备都已初步配套, 具备了加快发展增长的基础条件[4]。

此外, 我国油气管网建设任重道远, 尤其是油气资源西部很多在沙漠, 东部很多在沼泽、海滩和海上。可以预计, 我国石油和天然气产业的RTP应用会有较快增长。同时, 相关工业领域对RTP的需求也有很大的潜力。

5 存在问题和建议

目前, 柔性RTP管还没有统一国家标准, 尤其是纤维增强RTP管, 只能参考国内外相关标准和规范来组织生产, 相关标准主要有:

(1) ISO/TS 18226—2006《塑料管材和管件压力4 MPa的气体燃料用增强热塑性管道系统》

(2) DVGW VP642—2004 (德国给水和燃气协会) 《运行压力在16 bar (1.6 MPa) 以上用于天然气的纤维增强PE管 (RTP) 和附带的连接件》

(3) GB/T 20661—2006《石油和天然气工业用于海底和海洋立管的挠性管系统》

(4) ISO 13628—10、API 17k—2001《粘合挠性管的规范》

(5) API 17 J—1999《不粘合挠性管的规范》

(6) ASTM F 2686—10《玻璃纤维增强热塑性塑料管标准规范》

(7) CJ/T 189—2004《钢丝网骨架 (聚乙烯) 塑料复合管》

另外, 目前国内RTP管产品在材料选择、结构设计、规格尺寸等方面各不相同, 因此不同厂家的产品不能互换使用, 这给RTP管的使用带来不便, 也不利于产品的推广。

对于原料厂家来讲, 中间增强层材料的制造会是一个商机, 但目前可能还是一个制约的因素, 可以选择的材料和材料制造厂家还较少。

由于RTP管在国内外都是处在发展探索阶段的新技术。新技术通常处在严格保密或专利保护下, 所以, 我国发展RTP管不太可能如同过去发展常规塑料管那样全套地引进设计、制造、检验、铺设和使用的技术。我们只能在尽量吸收国外技术成果的同时, 更多地依靠自主的试验研究和开发设计。所以, 不可能如同当年发展常规塑料管那样迅速上马, 立刻见效。针对国内RTP管发展和生产情况, 北京塑料工业协会张玉川先生建议有意向发展RTP的企业和研究部门需要对自主开发的艰巨性有充分的认识, 尤其是需要对RTP管不同于常规塑料管的特点有足够的估计, 不能急于求成, 不要把没有经过严密分析和系统试验的“新产品”就投入大量生产和使用[5]。只有在上述问题得到很好的解决后, RTP管的发展才能真正进入快车道。

参考文献

[1]中国管道商务网.预计2015年塑料管道产量超1320万吨[OL].http://www.chinapipe.net/, 2012-07-04.

[2]张玉川.新型RTP耐压管材的发展及应用[J].国外塑料, 2008, 26 (1) :74-77.

[3]中国塑料加工工业协会塑料管道专业委员会.中国塑料管道行业“十二五”期间 (2011-2015) 发展建议[EB/OL].http://www.ppiachina.com/cn/, 2012-06-12.

[4]张玉川, 王德禧, 吴念.增强热塑性塑料 (RTP) 复合管材的发展[J].上海建材, 2007 (1) :20-22.

篇4:常用塑料材料分析

原主人见了别生气呀,资源共亨嘛!

热浸锌法是钢件处理的基础,使钢件受到最基本的保护 而且为下一步喷塑提供更好的载体,下一步就是喷塑,以静电等方法使粉体峙密的分布在工件的表面,形成保护层,这种防腐工艺具有良好的表观和耐侯性

底盘的重点是地面下预埋部分的深度,而底盘面积俺觉得不是主要的

路灯的电器一般包括触发器,镇流器和电容及熔断器,所以安装在灯杆中即可,也不乏光源和电器同时安装在灯头内的一体灯具 当然这样的灯头要有足够容积,要考虑散热

用金属涂布(敷金属)的主要方法有:

──浸于金属或金属合金的熔融液中,例如,热浸镀锌、镀锡、热镀铅及铝涂布;

──电镀(通过电解适当的金属盐溶液,电镀金属在阴极中沉积于待镀产品上),例如,用锌、镉、锡、铅、铬、铬/铬酸盐、铜、镍、金或银电镀;

──浸渍或扩散(将产品加热使其表面覆上一层所需的金属粉末),例如,粉末镀锌(用锌渗镀)、热镀铝(用铝渗镀)及扩散镀铬(用铬扩散);

──喷涂(雾化熔融镀敷金属并直接喷镀在待镀产品上),例如,斯库普法、瓦斯手枪、电弧、等离子体及静电等喷涂法;

──通过在真空中蒸发镀敷金属的敷金属法等;

──用辉光放电离子轰击镀敷金属的敷金属法(离子电镀);

──通过阴极气化电镀法(溅散)。

聚酯粉未喷涂是为了防腐蚀,注意必须是聚胺本酯,环氧基的在室外会粉化.基座形式基本上都是锁螺栓, 但水泥基座的大小与埋入深度必须与灯杆高度及重量(包括灯具)相适应, 这有专用标准的,一般以十二级台风为考量,即风速40m/s以上.所以二三个水泥基座可能会比你家的装修费还贵许多.配电箱也有专业的行业规范, 如果指单个灯具用的,现在多数情况不需要了, 因为灯具一般都把电器装在里面了.如果是给多个灯送电的, 一般可就是个配电房了.旋转成型你指什么? 如指机械加工最多的就是车床 金属成型最多的是指旋压 塑料的就有滚塑 铸造就是离心铸造

有关热镀锌

把钢铁件浸到熔融的锌液,接触面形成锌—铁合金,在外是一层锌,其防腐性能要好于电镀锌。因而是较常用的户外表面防腐工艺。最常见的就是电线杆上扎箍等件,外表灰蒙蒙的。而象路灯、桥梁等则是在热镀锌后有喷了漆,就直接看不见了。有关聚酯粉末

聚酯粉末是塑料粉末喷涂的原料。塑料粉末喷涂也是一种表面处理工艺,它先是在表面喷上一层粉末,然后加热固化形成一层固化膜。户外箱柜等也常采用这种工艺。有关旋转成型

它是将液态的原料滴入正在旋转的模子上,利用离心力的原理使原料随模子的形状分布,然后在极短时间内固化成型,常用于形状复杂零件的制作,有些眼镜镜片就采用这种工艺。有关路灯基座固定

这个我没有杆过,不过,一般这样的东西都采用地脚螺栓来固定,轻的则可以打膨胀螺丝。

有关配电箱的放置

设计过配电箱,不过没有安置过,主要考虑走线和造作方面吧。

灯罩C(聚碳酸酯)耐温在120度左右(改性后会更高),但会发黄,由其是在室外使用,加UV也撑不过5年的,还有就是PMMA(俗称有机玻璃,术语太长记不住), 不过耐温差了些,抗UV性能略略好过PC,主要比PC便宜, 还有就是玻璃了.特殊的有PMMI(聚酰亚胺类).主要的要求是耐温(高低,抗冲击,不易老化,透光率高,加工成型的成本合适.灯杆高的都是钢管加镀锌,低的艺术灯杆才有铸铝的, 其它的材料基本都因为太贵而没人用.灯头的调节因反射器而异, 有很多光学的原理在里面,调节机构实际都很简单,一般也就螺钉加滑槽.转载《羊城晚报》 手机外壳材料“英雄谱”

手机外壳就像衣服一样,面料如何直接影响到手机的外观和功能。早期的手机外壳主要用金属框,如爱立信早期产品388,不但耐摔,抗震性也大为增加,而且使用户至今怀念那种厚重的沉甸甸的感觉。随着手机的发展,轻巧成为人们的挚爱,但是,金属框的“质量”制约了手机的发展,于是新的外壳材料应运而生,ABS合成塑料以其很好的韧性(抗震性)、密封性,很高的机械强度,耐化学腐蚀,拿在手上很有质感的特点受到人们的青睐。以ABS合成塑料作外壳的手机得以一时风靡,在年轻一族装点手机炫耀个性时成为了首选,他们钟爱塑料外壳的透视感,宠爱塑料无限的色彩变幻,因为这代表着他们多彩且无拘束的生活,也是他们能成为都市人流中闪烁亮点的重要标志。

而后,诺基亚将金属漆应用在8810上,采用银色镀铬外壳,在市场上又掀起了金属流行色的热潮,而后新材料的应用似乎停顿了一段时间。但是随着SONY将UV涂层漆用在手机的外壳上,使用户在使用手机的时候感受到不留指纹,光亮如新的美好感觉。

之后西门子6688也披上了“银装”。阿尔卡特ot511采用亮眼的铝金属为外壳,更成为众手机商为金属质感趋之若鹜的榜样。摩托罗拉V60也大胆采用镀铝全金属质感的外壳设计,体现出作为高档手机所拥有的庄重典雅。随之而来的钛金属、镁金属等材料让手机变得越来越“酷”。

在手机外观材料上,中国也作出了自己的贡献,在世界上率先研制出在手机上使用的纳米级“电磁屏蔽材料”。TCL率先将高科技材料纳米材料应用在手机的显示屏保护透明盖上面,为那些因为手机透明盖磨损而痛心的用户看到了问题解决的方向。据TCL称,手机显示屏成功运用当前最先进的纳米材料技术,显示屏表面达到极佳的硬度,耐磨抗裂,即使用刀子在屏幕上任意割划,也不会留下痕迹,更不用说一般的普通磨损了。出于对环保的世界大潮流要求的考虑,绿色材料的应用将成为未来手机材料的主流。目前,位于英国伦敦的布鲁尼尔大学的科学家们已经研制出一款能够在废弃不用之后自动分解的绿色手机。可以预见,在手机未来的发展之路上,新材料的应用将是一把利刃,谁掌握了新材料,谁就将引领手机的潮流。

显示屏“演变史”

显示屏就像手机的眼睛,想想去年以前我们用的手机都还处在黑白世界,而现在彩屏手机在中国已是遍地开花。早在1999年,第一款彩屏手机就已在日本诞生了,她的出现使人们“从黑白世界进入彩色新世界”的梦想成为了可能。就在2000年1月,日本最大的电信运营商NTTDoCoMo推出了第一支正式上市的彩屏手机D502i。2000年4月29日,北京全球薄膜晶体液晶显示器的领先制造厂商三星电子宣布,已成功开发出用于IMT-2000手机的2英寸薄膜晶体液晶显示器,这一显示技术的成熟,使手机显示屏的黑白天下正逐渐被彩色液晶显示屏替代。爱立信t68在博览会上热销很大部分原因是因为它的彩色TFT显示屏,未来手机的显示屏主流也肯定是彩色显示屏。

按显示屏面积的大小,显示屏可分为小屏幕和大屏幕。小屏幕手机因为其显示面积的限制,导致一些大的图片和文字不能完全显示。因此,目前的大多数手机都选择向大屏幕方向发展,看图片、听音乐、看电影、拍照片、玩游戏、即时聊天等等功能的实现,都离不开一个大的手机屏幕,三星A399、三星SGH-N620等都是“大眼妹”,快译通手机PDA的屏幕更宽大,5.6x8cm液晶显示屏提供160x240像素的高显示分辨率,文字图像均能清晰显示。这样的一大作用是可以有效舒缓眼睛疲劳,很好地保护用户视力,充分突出了电子产品追求健康环保的理想。

像素的多少决定显示屏的分辨率和清晰度,目前市场上流行的显示屏像素主要有:128x128,如摩托罗拉V680、三星A399、首信C6288等,可同时显示6行中文,浏览方便;128x160,如三星T108突破了256色显示的限制,达到4096色显示,使文字显示更清晰;112x112,如飞利浦820等,可同时显示5行中文和9行英文,其靓丽的色彩显示、可视面积和机身的超大比例给了用户一个良好的人机交换界面;160x240,如快译通手机PDA,它是目前为止最大屏幕的手机。现在市场上应用的大部分是LCD液晶显示屏,这种显示屏由液晶像素构成,一般由分辨率来标定!这项技术的发展比较缓慢,并没有产生大量的有效显示技术,但是从SONY的z18开始,手机生产厂商就开始应用一种叫多级灰度显示的显示屏,这种显示技术在图像方面具有很强的表达能力,可以很好地体现出立体的图像。除此之外,自从三星A288开创了国内双屏幕显示之先河以来,诸多手机品牌纷纷效仿,双屏彩色手机已经成为了目前手机的潮流。

在未来手机市场的竞争中,外观设计的竞争将占相当大的份额,能否贴近生活,能否把握潮流是手机设计者的根本设计标准,突出的设计可以成为逆转市场的重要因素

转载

塑料也像金属一样,种类繁多,虽然已工业化的主要类别只有五十多种,但每类又有许多品级。如尼龙塑料则包括尼龙

3、尼龙

4、尼龙

6、尼龙

46、尼龙66、尼龙

7、尼龙

8、尼龙

9、尼龙610、尼龙1010、尼龙

11、尼龙

12、尼龙

13、尼龙612,尼龙9T,尼龙13,MC尼龙,尼龙MXD6 尼龙等品种。每一品种还可以通过改性,例如加入填料或增强材料和其它辅助材料,或通过共混制成“合金”;或通过加工工艺如定向拉伸、结晶、发泡等来获得新的性能,以满足使用要求。

塑料的品种既然是如此繁多,它们的性能又具可变性,因此,塑料应用的选材常常要从塑料中许多性能的综合平衡来考虑(包括工艺与成本),而且某些性能数据如磨损性、冲击性尚不能完全预测其使用性,有时又缺乏准确可靠的设计公式,因此,大多数塑料的选材过程是比较复杂的。为了能选择出性能和加工工艺均符合使用要求的、又尽量能恰如其分地量材使用的品种就要求采用系统、综合的分析方法来选材。

一个完整的设计过程,应从构思、草图开始。选材在设计过程中是个关键步骤,对于指定部件的选材,最主要的是考虑部件的功能和决定部件功能的有关材料性能,同时还要考虑诸如部件的特点和禁忌、使用时的外界条件、临界条件、使用寿命和使用方式、维修方法、制品尺寸和尺寸精度、成型加工工艺、生产数量、生产速度、成本、原料来源和经济效益等等。这些因素包括两方面,一方面是使用环境介质和环境条件,如构件承受的负荷和自重,冲击和振动等机械作用的影响;接触的气体、液体、固体及化学药品;曝露的大气环境(气温、湿度、降雨、阳光、冰雪以及有害气体等)的影响;贮存环境条件和长期贮存的的影响;此外,除静态破坏影响外,还要考虑摩擦升温、蠕变、成型收缩等引起的变形、应力松弛以及反复应变而引起的疲劳,高应变率引起的力学性能变化等等。另一方面是搬运、勤务处理或操作时,制品可能遭到外力作用,甚至是意外的外力作用的影响。充分考虑这些因素才能明确所要求的综合性能。

了解生产数量是为了从经济上考虑恰当的成型加工方法。比如所需数量是几个至几十个,就不必要制造模具,可直接用板材或棒材加工;需要数量是几百个左右时,可酌情采用简易模具或树脂-金属模、低熔点合金模等;当需要量更多时则应采用正规的模具成型。比如,设计的部件要急于使用,则考虑材料货源是主要的;如要设计宇航零件,则性能因素是最重要的;如设计通用产品,则应综合考虑性能和成本。下面列举一个典型的选材程序:

(1)零部件的构思:进行初步的功能设计,即部件的形状及其功能元件的形状,并考虑选择基本加工方法。

(2)选材:根据在应力下与使用性能相关的塑料的工程性能和加工性来筛选候选材料,这些应力是部件工作时施加在制品上的。

(3)初步分析设计:利用工程设计性能计算壁厚和零件的其它尺寸。并根据塑料的特点进行制品设计和模具设计。

(4)试制样品:在部件实际使用条件下或模拟零部件的使用条件下进行考验、考核。

(5)重新设计和重新试验:当发现性能不能满足使用要求时,要重新筛选材料或重新设计并试验。

(6)根据试制样品的试验情况和加工零部件的成本,确定最终设计和选材。

(7)确定材料的技术规格和检验方法。

有时上列步骤可以缩短,尤其是在零部件要求简单,或新零件与旧零件的差别很小的时候。然而,有时选材步骤更为复杂,特别是在开发新应用时,或在塑料所承受的应力很复杂的情况下,系统、综合的分析法不仅是可靠的成功办法,而且是节省开发费用的途径。

转载

二、塑料一般选材

设计者绘出零件图后,要对零部件列出使用条件和重要选材因素、然后合理地选材。括以下三个步骤:

(1)跟据应用目的,列出部件的全部功能要求(并不是材料的性能),并尽可能定量化。例如:

①在额定的连续载荷下允许的最大变形量;

②使用和运输过程中所受的应力种类和大小;是否长期受力,是动态或是静态应力;

③最高工作温度;

④在工作温度下允许的尺寸变化;

⑤零部件允许的尺寸公差;

⑥零部件的使用性能要求;

⑦部件是否要求着色、粘接、电镀等;

⑧要求贮存期多长,是否在户外使用;

⑨有无耐燃性要求,等等。

(2)根据部件的功能要求,考虑使用性能数值(工程性能)和设计数据,提出目标材料(部件材料)的性能数值,并通过这些性能要求来选定材料,即使这些性能估计是粗略的,也会大大方便候选材料的筛选,为最终材料的选定提供有益的依据。

选择恰当材料性能是很关键而又复杂的,因为零部件的某一功能常常包含几种性能,例如在尺寸稳定性的要求中除尺寸精度外,还要考虑线胀系数、模塑收缩率、吸水性、蠕变性等等。零件的强度和刚度,除了从材料性能上考虑以外,还要从制品结构设计上(如厚度和加强筋等)加以考虑。材料的成型工艺性、耐久性、经济性等也都是选材时应考虑的因素。有时候,某些使用要求不一定能明确对材料性能的定量要求,如电镀性往往要通过实际试验或已有的经验来筛选。又如塑料炮弹弹带,要求材料经受高速冲击、压缩、扭拧、剪切等复杂的外力作用和高速高温高压气流的影响,很难直接提出材料的定量性能要求,因此,除了通过力学计算外,还可通过模拟试验和探索试验来推算受力情况,提出粗略的性能要求。

(3)最后通过部件工程性能要求与材料性能的比较来确定候选材料。

选择塑料时应注意下面几个问题:

①必须对选用塑料的性能有较全面的了解,然后根据使用条件去考虑配方、工艺和制品设计等。

②塑料一般导热性低,选用和设计时要充分注意。

③塑料的线胀系数一般比金属大,有的易吸水,因此尺寸变化较大,选用和设计时要考虑恰当的配合间隙和公差范围。

④有的塑料有应力开裂的倾向,选用和设计时要尽量减少应力,制品设计要避免应力集中,或作适当的后处理,并要严格控制加工工艺。

⑤有的塑料有蠕变和后收缩或变形的倾向,选用和设计时应充分注意。

⑥各种塑料有-一定的使用强度范围和允许接触的介质以及能承受的压力和速度极限,选用和设计时应该考虑

转载

三、塑料选材的途径

着手选材,可以先进行初选,然后综合评价后进行试验。初选可通过两个途径,一是根据制品用途选材;二是根据制品要求性能选材(利用材料性能表和性能等级分类等);同时还要考虑经济成本和安全卫生等因素。

下面就以一些已工业化的塑料为对象,列举几种简易的选材方法。

1、根据用途选材

用途主要是指制品应用域的归类,此外还包括制品的使用环境、受力类型和作用方式、使用对象等等要素。

(1)使用环境

所谓使用环境是指材料或制品使用时经受周围环境的温度、湿度、介质等,特别是温度和湿度的条件。根据用途的不同,温度条件可由南北极的低温到赤道或沙漠地区的炎热气温,或者是宇航环境的高低温,甚至在火灾时的高温等;湿度条件从在水中长期或间歇浸泡与露天雨淋到冬天的干燥状态(30%RH);有的制品是在特殊气体中使用或者用于接触化学液体或溶液的场合;此外,自然曝露状态下除了风、雨、雾等影响外还受太阳光的曝晒等等。因此,必须考虑待用塑料对使用环境的适应能力。

(2)制品的受力类型和作用方式

根据制品的受力类型和受力状态及其对材料产生的应变来筛选能满足使用要求的材料是很必要的。也就是说,要考虑上述各种环境下的外力作用是拉伸、压缩、弯曲、扭曲、剪切、冲击或摩擦,或是几种力的组合作用。此外,还要考虑外力的作用方式是快速的(短暂)或是恒应力或恒应变的,是反复应力还是渐增应力等等。

用于冲击负荷场合的制品,应选择冲击强度高的;用于恒定应力的场合而且必须防止变形时,应选择蠕变小的材料;用于反应力作用的场合应选择疲劳强度比较高的材料;

(3)使用对象

使用对象是指使用塑料制品的国别、地区、民族和具体使用者的范围。例如。国家不同,其标准规格也不同。如美国的电气部件用的塑料,为保证其对热和电气的安全性,要求必须符合UL规格。另外,对色彩和图案及形状的要求也会因国家、民族的习惯和爱好而不同,应选择合适的色彩和形状。使用者不同,如儿童、老年、妇女用品也各有不同的要求在工业上使用也要考虑使用对象,而选择不同的材料。

(4)按用途进行分类。

按用途分类的方法有多种,有的按应用领域分类。如汽车运输工业用的,家用电气设备用的,机械工业用的,建筑材料用的,宇航和航空用的……等等;有的,按应用功能分类。如结构材料(外壳、容器等),低摩擦擦材料(轴承、滑杆、阀衬等),受力机械零件材料。耐热、耐腐蚀材料(化工设备、耐热设备和火箭导弹用材料),电绝缘材料(电气结构制品)、透光材料……。表中列出一些机械部件采用工程盟栀料的情况。当有几种材料同属一类用途时,应根据其使用特点和材料性能进一步比较和筛选。最好选择2-3种进行试验比较。比如说外壳这类用途就包括动态外壳,静态外壳,绝缘外壳等,因此要求使用不同特性的塑料。动态外壳是经常受到剧烈震动或轻微撞击的容器,要求材料除有刚性和尺寸稳定性外,还要有较好的冲击强度。在室内应用时可采用ABS塑料,在户外使用的应考虑耐老化性能好的材料。如AAS(丙烯睛-丙烯酸酯-苯乙烯共聚物)或MAAS,或用酚醛、环氧或聚的玻璃钢等。静态外壳是用在不活动或少活动的部位,如仪表壳、收音机和电视机外壳等。要求形状和尺寸稳定、美观,一般可采用高冲击强度聚苯乙烯、ABS、聚丙烯等;如要求透明则可采用乙酸丁酸纤维素、聚甲基丙烯酸酯或聚碳酸酯。至于绝缘外壳,除要求绝缘外,有的还要求有高的机械强度和冲击强度,如电动机罩、电动机械外壳等,则可采用玻璃纤维增强聚碳酸酯,玻璃纤维增强聚对苯二甲酸丁二酯(PBTP)或热固性树脂的玻璃钢等

理解工程塑料的性能

塑料在成型加工中有时表现得很奇特。对一个成型问题的解答可能完全不同于另一个成型问题。这也许是因为这些例子中涉及到两种本质上互不相同的塑料树脂。本文将对这些材料的性质以及各种不同材料之间的差异加以讨论,以增进对注塑过程中机理的理解。

(1)结晶型聚合物的特性

许多人熟悉的物质是晶体如食用盐,糖,石英,矿物质和金属,当然还有冰。这些固态物质具有分子排布有序,致密堆积的特性。

其它表现为固态物质,并不形成有规则的晶体排列方式。它们只是冷却成为无序的或随机的分子团,称为无定型聚合物。非晶体物质不是真正的固体,最普通的例子就是玻璃,它们只是过冷的,极端粘稠的液体。(一件玻璃若放置几十年,其底部会逐渐变厚,这是由于很慢的流动引起的。)

塑料树脂可分为无定形或结晶形的。由于很长的聚合物链较大复杂,从而阻止了它们形成象石英那种固体所具有近乎完美的结构和完整的晶体排列次序。聚合物,例如高密度聚乙烯是有点结晶性的,尼龙的结晶性表现得更为强一些,而聚甲醛的结晶性表现得就更强了。左图给出了一些常见的晶体形塑料和无定形塑料。注意到许多工程塑料位于结晶型栏里,如聚甲醛,尼龙和聚酯。这是因为结晶型结构树脂趋向于产生工程应用中所要求的特性,例如:

抗化学物、油、汽油、油脂等。

机械强度和硬度。

在高温下,保持机械的和化学的性能不变。

耐疲劳性和重复的冲击。

半透明性或不透明性。

聚合物金字塔。本图表示不同树脂的分类。

塔底是商品塑料所目的两种特性,塔顶处是高性能塑料,工程塑料处于中间的位置。

PEI:聚醚亚胺 PEEK:聚醚酮 PES:聚苯醚砜 PPS:聚苯硫醚 PAR:聚芳酯 PSU:聚砜 LCP:液晶聚合物 HTN:高温尼龙

PI:聚酰亚胺 PET:聚对苯二甲酸乙二酯 PBT:聚对苯二甲酸丁二酯 PC:聚碳酸酯 M-PPO:改性聚苯醚 Nylon:尼龙 ABS:丙烯睛丁二烯苯乙烯三元共聚物

POM:聚甲醛 TPE:热塑性聚酯弹性体 PS:聚苯乙烯 PP:聚丙烯

PVC:聚氯乙烯 HDPE:高密度聚乙烯 PMMA:聚甲基丙烯酸甲酯(亚加力)LDPE:低密度聚乙烯 SAN:苯乙烯一丙烯晴共聚物 SMA:苯乙烯马来酸酐

一、杜邦结晶型工程塑料

化学名词 简称 杜邦注册商标 聚甲醛 POM Delrin? 聚酰胺 Nylon Zytel? 聚对苯二甲酸乙二酯 PET Rynite? 聚对苯二甲酸丁二酯 PBT Crastin? 热塑性聚酯弹性体 TPE Hytrel? 高温尼龙 HTN ZytelHTN? 液晶聚合物 LCP Zenite?

(II)结晶型与无定型塑料的区别 熔解/凝固

晶体的本质也对成型过程产生影响,因为要破坏熔点时的晶体排列次序需要额外的热量,这热量叫做熔解热。晶体性塑料和无定型塑料熔解热的对比如图之所示。无定型物质的温度随看所加入的热量而增加,而且越来越呈现为液态。当温度上升至熔点以前,结晶型塑料物质能保持强度和硬度不变。熔解时额外所需的热量熔解热破坏了晶体的结构,同时温度保持不变,直到熔解结束。

图2 溶解热(从A到B)破坏晶体结构

随著塑料在模具中冷却,释放出来的熔解热必须由模具向外散掉。然而,随著温度的降低,成型稳定性和硬度迅速地提高,工件可以相当快地从模具中脱出。因此,结晶性塑料较适合应用于短周期成型。

收缩

紧密的结构意味著从熔体到固体的结晶型塑料有一个较大的体积改变。因此,结晶形塑料比无定型塑料有较高的成型收缩率一通常前者大于百份之一,而后者大约有0.5%。结晶形塑料较高的收缩率使得估算型腔尺寸复杂化,但这一优点也有助于工件的脱模。一些典型的成型收缩率的比较列于表二。

二、成型收缩率的比较

结晶形塑料 收缩率 聚甲醛 尼龙66

聚丙烯 2.0 1.5

1.0-2.5

无定形塑料 收缩率 聚碳酸脂 聚苯乙烯 0.6-0.8 0.4

当结晶型塑料熔解时,它们往往变得高度液态化。尼龙树脂因其具有良好流动特性所以在细长和薄截面要求的应用中著称。另一方面,人们也知道它们比许多粘度较高的无定形树脂更容易产生毛边。

水份敏感性

一些塑料是不受水份影响的,尤其是那些烃类(除了碳和氢以外没有其他元素)塑料,如聚乙烯,聚丙烯和聚苯乙烯。其他塑料吸收不同的水份,甚至在室温下也吸收。成型工件在吸收水后会导致尺寸改变,从而水也可看作为增塑剂或韧化剂。

吸收的水份可能在注塑的过程中蒸发,导致水纹和气泡。有些树脂在熔解温度下可能会和水产生反应。这种反应叫做水解,它是降解的一种形式。它使分子量减少,导致熔体粘度减小,冲击强度的损失。

水解的敏感性并不取决于塑料树脂的吸水量多少。实际上,当尼龙树脂达到100%的相对湿度饱和时,它们能吸收高达8%或更多的水分。尼龙在熔解温度下水解比聚酯或聚碳酸酯较慢,而聚酯或聚碳酸酯吸收的水比它少得多。常见的塑料树脂根据它们对水份的敏感性和是否需要乾燥列于表三。

三、水对塑料加工过程的影响

不要求乾燥 通常要求乾燥

只吸收水分 有可能水解 聚甲醛(Delrin? 聚乙烯

聚丙烯

聚苯乙烯

聚氯乙烯

聚甲基丙烯酸树脂 ABS塑料 聚碳酸酯 丁酸纤维素

尼龙(Zytel?

聚对苯二甲酸乙二酯(Rynite?

聚对苯二甲酸丁二酯

聚氨酯

这些有关聚合物结构,结晶性和水分吸收的背景资料将会帮助我们理解为什么工程塑料的注塑操作不同于其它的塑料,而且在某些意义上工程塑料内不同种类亦互不相同。

压克力(acrylic)即为PMMMA(polymethy-methacrylaye)树脂玻璃,是一种不定形的热塑性塑料材料,有很好的光学特性(可象玻璃一样透明,透明度可达到92%)PMMA硬度大,强度适中,很容易划伤,划痕明显,但很容易磨光,在室外,风华和阳光暴晒均不会发生光学和机械变性。工艺上采用 塑料模具制作-注塑-挤出-真空成型

篇5:常用工程塑料的种类及主要特性

一.热塑性塑料

聚乙烯(PE)

主要特性:高压聚乙烯柔软、透明、无毒;低压聚乙烯刚硬、耐磨、耐蚀,电绝缘性较好

用途举例:高压聚乙烯:薄膜、软管、塑料瓶;低压聚乙烯:化工设备、管道、承载不高的齿轮、轴承等

聚丙烯(PP)

主要特性:强度、硬度、弹性均高于聚乙烯,密度小,耐热性良好,电绝缘性能和耐蚀性能优良,韧性差,不耐磨,易老化

用途举例:法兰、齿轮、风扇叶轮、泵叶轮、把手、电视机(收录机)壳体以及化工管道、容器、医疗器械等

聚氯乙烯(PVC)

主要特性:较高的强度和较好的耐蚀性。软质聚氯乙烯,其伸长率高,制品柔软,耐蚀性和电绝缘性良好

用途举例:废气排污排毒塔、气体液体输送管,离心泵、通风机、接头;软质PVC:薄膜、雨衣、耐酸碱软管、电缆包皮、绝缘层等

聚苯乙烯(PS)

主要特性:耐蚀性、电绝缘性、透明性好,强度、刚度较大,耐热性、耐磨性不高,抗冲击性差,易燃、易脆裂 用途举例:纱管、纱绽、线轴;仪表零件、设备外壳;储槽、管道、弯头;灯罩、透明窗;电工绝缘材料等

ABS塑料

主要特性:较高强度和冲击韧度,良好的耐磨性和耐热性,较高的化学稳定性和绝缘性,易成形,机械加工性好,耐高、低温性能差,易燃,不透明

用途举例:齿轮、轴承、仪表盘壳、冰箱衬里以及各种容器、管道、飞机舱内装饰板、窗框、隔音板等,也可制作小轿车车身及档泥板、扶手、热空气调节导管等汽车零件

聚酰胺(PA)(尼龙或锦纶)

主要特性:强度、韧性、耐磨性、耐蚀性、吸振性、自润滑性良好,成形性好,无毒、无味。蠕变值较大,导热性较差,吸水性高,成形收缩率大

用途举例:尼龙610、66、6等,制造小型零件(齿轮、蜗轮等);芳香尼龙制作高温下耐磨的零件,绝缘材料和宇宙服等。应注意,尼龙吸水后性能及尺寸发生很大变化

聚碳酸酯(PC)

主要特性:抗拉、抗弯强度高,冲击韧度及抗蠕变性能好,耐热性、耐寒性及尺寸稳定性较高,透明度高,吸水性小,良好的绝缘性和加工成形性,化学稳定性差

用途举例:垫圈、垫片、套管、电容器等绝缘件;仪表外壳、护罩;航空及宇航工业中制造信号灯、挡风玻璃,座舱罩、帽盔等

聚四氟乙烯(塑料王)(PTFE)

主要特性:优异的耐化学腐蚀性,优良的耐高、低温性能,摩擦因数小,吸水性小,硬度、强度低,抗压强度不高,成本较高 用途举例:减摩密封零件、化工耐蚀零件与热交换器以及高频或潮湿条件下的绝缘材料,如化工管道、电气设备、腐蚀介质过滤器等

聚甲基丙烯酸甲酯(有机玻璃)(PMMA)

主要特性:透光率92%,相对密度为玻璃的一半,强度、韧性较高,耐紫外线、防大气老化,易成形,硬度不高,不耐磨,易溶于有机溶剂,耐热性、导热性差,膨胀系数大

用途举例:飞机座舱盖、炮塔观察孔盖、仪表灯罩及光学镜片,防弹玻璃、电视和雷达标图的屏幕、汽车风挡、仪器设备的防护罩等

二.热固性塑料

酚醛塑料(PE)

主要特性:一定的强度和硬度, 较高的耐磨性、耐热性,良好的绝缘性和耐蚀性,刚度大,吸湿性低,变形小,成形工艺简单,价格低廉。缺点是质脆,不耐碱

用途举例:插头、开关、电话机、仪表盒、汽车刹车片、内燃机曲轴、皮带轮、纺织机和仪表中的无声齿轮、化工用耐酸泵、日用用具等

环氧塑料(EP)

主要特性:比强度高,韧性较好,耐热、耐寒、耐蚀、绝缘,防水、防潮、防霉,良好的成形工艺性和尺寸稳定性。有毒,价格高

用途举例:塑料模具、精密量具、灌封电器、配制飞机漆、油船漆、罐头涂料、印刷线路等

塑料是以树脂(天然的或合成的)为主要组分,加入一些用来改善使用性能和工艺性能的添加剂而制成的。因其通常在加热、加压条件下塑制成型,故称为塑料。

塑料的分类

1.按树脂的性质分类

热塑性塑料:在特定温度范围内能反复加热软化和冷却硬化的塑料。?如聚乙烯塑料、聚氯乙烯塑料。热固性塑料:因受热或其它条件能固化成不熔不溶性物料的塑料。如酚醛塑料、环氧塑料等。

2.按塑料使用范围分类

通用塑料:指产量大、用途广、成型性好、价廉的塑料。如聚乙烯、聚丙烯、聚氯乙烯等。

工程塑料:指能承受一定的外力作用,并有良好的机械性能和尺寸稳定性,在高、低温下仍能保持其优良性能,可以作为工程结构件的塑料。如ABS、尼龙、聚矾等。

特种塑料:般指具有特种功能(如耐热、自润滑等),应用于特殊要求的塑料。如氟塑料、有机硅等。

塑料的基本性能

1.质轻、比强度高。塑料质轻,一般塑料的密度都在0.9~2.3克/厘米3之间,只有钢铁的1/8~1/

4、铝的1/2左右,而各种泡沫塑料的密度更低,约在0.01~0.5克/厘米3之间。按单位质量计算的强度称为比强度,有些增强塑料的比强度接近甚至超过钢材。例如合金钢材,其单位质量的拉伸强度为160兆帕,而用玻璃纤维增强的塑料可达到170~400兆帕。

2.优异的电绝缘性能。几乎所有的塑料都具有优异的电绝缘性能,如极小的介电损耗和优良的耐电弧特性,这些性能可与陶瓷媲美。

3.优良的化学稳定性能。一般塑料对酸碱等化学药品均有良好的耐腐蚀能力,特别是聚四氟乙烯的耐化学腐蚀性能比黄金还要好,甚至能耐“王水”等强腐蚀性电解质的腐蚀,被称为“塑料王”。

4.减摩、耐磨性能好。大多数塑料具有优良的减摩、耐磨和自润滑特性。许多工程塑料制造的耐摩擦零件就是利用塑料的这些特性,在耐磨塑料中加入某些固体润滑剂和填料时,可降低其摩擦系数或进一步提高其耐磨性能。

5.透光及防护性能。多数塑料都可以作为透明或半透明制品,其中聚苯乙烯和丙烯酸酯类塑料象玻璃一样透明。有机玻璃化学名称为聚甲基丙烯酸甲酯,可用作航空玻璃材料。聚氯乙烯、聚乙烯、聚丙烯等塑料薄膜具有良好的透光和保暖性能,大量用作农用薄膜。塑料具有多种防护性能,因此常用作防护保装用品,如塑料薄膜、箱、桶、瓶等。

6.减震、消音性能优良。某些塑料柔韧而富于弹性,当它受到外界频繁的机械冲击和振动时,内部产生粘性内耗,将机械能转变成热能,因此,工程上用作减震消音材料。例如,用工程塑料制作的轴承和齿可减小噪音,各种泡沫塑料更是广泛使用的优良减震消音材料。

上述塑料的优良性能,使它在工农业生产和人们的日常生活中具有广泛用途;它已从过去作为金属、玻璃、陶瓷、木材和纤维等材料的代用品,而一跃成为现代生活和尖端工业不可缺少的材料。

上一篇:坚守诚信为题的作文下一篇:民事诉讼中的管辖问题