事故分析处理范文

2022-05-31

第一篇:事故分析处理范文

工伤事故调查分析处理规定

根据国家《工人职员伤亡事故报告规程》,为了及时了解和研究工人职员的伤亡事故,以便采取消除伤亡事故的措施,保证安全生产,制定了本规定。具体规定如下:

一、 事故发生后,应救护受伤者,采取措施制止事故蔓延扩大。认

真保护事故现场,凡与事故有关的物体、痕迹、状态不得破坏,做好现场标记。

二、记录与事故鉴别有关的材料。发生事故的单位、地点、时间;伤亡者和肇事者的姓名、性别、年龄、文化程度、技术等级、本工种工龄;出事当天,伤亡者和肇事者什么时间开始工作、工作内容、工作量、作业程序、操作时的动作(或位置)。

三、证人材料搜集。要尽快找被调查者搜集材料,对证人的口述材料认真考证其真实数据。

四、事故分析,按受伤部位、受伤性质资料、起因物、致害物、伤害方式、不安全状态、不安全行为七项内容进行分析。

五、要做到“三不放过”:事故原因分析不清不放过,事故责任者和群众没有受到教育不放过,没有防范措施不放过。

六、根据事故调查所确认的事实,通过直接原因和间接原因分析。确定事故中的直接责任者和领导责任者。

七、在直接责任者和领导责任者中,根据其在事故过程中的作用,确定主要责任者。

八、根据事故后果和事故责任者应负的责任提出处理意见,并写出事故调查处理报告。

九、死亡事故(多人伤害事故),由公司负责组织成立事故调查小组,对事故进行调查处理在15日内(特殊情况不超过一月)上报,事故调查处理报告,报当地劳动部门和主管部门批复结案。

十、重伤事故,由项目工程部负责组织对事故进行调查分析,在一周内上报调查处理报告,由公司批复结案。

十一、轻伤事故,由项目负责进行调查、分析,在3日内上报事故处理意见,由项目工程部批复结案。

建筑工程有限公司

年月

第二篇:事故分析报告和处理制度

第一章 总则

第一条 为严格执行《安全生产法》、《企业职工伤亡事故报告和处理规定》等安全生产法律法规,保障职工合法权益,做好事故调查与处理工作,吸取事故教训,提高事故预控能力,保障职工安全与生产稳定,特制定本规定。

第二条 本规定所称特大事故,是指造成特别重大人身伤亡或者巨大经济损失以及性质特别严重、产生重大影响的事故。

第三条 生产安全事故的调查处理必须坚持实事求是、尊重科学的原则。

第二章 事故报告

第四条 本单位员工因生产和工作发生事故或虽不在生产工作岗位上,但在单位生产工作活动场所内,由于车辆(设备)或工作环境、劳动环境不良而引起的伤亡事故,都应该按员工伤亡事故统计和处理。

第五条 伤亡事故登记和报告

一、事故发生后,事故现场有关人员应当立即向公司安委会报告。

二、对发生人员伤亡事故、火灾事故,以及重大水上交通事故、较大道路交通事故、货损机损事故、被盗被骗造成经济损失5万元以上的,须在1小时内向广东公司及当地政府主管部门报告;事故发生24小时之内以书面(含邮件、传真)方式将事故基本情况上报广东公司及当地政府主管部门;政府行政主管部门对事故责任认定后15个工作日内向广东公司报告,20个工作日内提出有效的整改措施;事故处理结案后20个工作日内提交完整的书面报告和处理结果。

三、事故报告内容包括发生的时间、地点、伤亡者和肇事者姓名、年龄、工种和职称,伤害程度(死亡、负残、伤残),事故经过和发生原因。

四、如果发现发生事故隐瞒不报或延迟报告等情况,除责成补报外,有关责任人应该受纪律处分。触犯刑律的,交司法机关处理。

第三章 事故应急处理

第六条 事故发生后,事故发生地的有关单位必须严格保护事故现场。

第七条 公司安委会接到报告后,要根据事故的性质选择启用相关的事故应急预案。其中公司应急预案包括火灾事故应急预案、道路交通事故应急预案、人员伤亡事故应急预案、重大财产设备事故应急预案、防洪防强台风应急预案、治安防盗应急方案、防雷应急救援预案、房屋倒塌应急救援预案、节假日突发事故应急预案、高峰期车辆进出仓应急预案。

第八条 公司安委会在接到事故报告后,应迅速采取有效措施,组织抢救,防止事态扩大,减少人员伤亡和财产损失。并按照伤亡情况有关规定,报告属地政府安全生产监督管理部门,同时报告广东公司。不得隐瞒不报、谎报或者拖延不报,毁灭有关证据。120

第四章 事故责任确定原则

第九条 凡因下列原因造成事故,应先追究有关领导责任

一、员工没按规定进行安全教育和技术培训或未经工种考试上岗的;

二、安全管理制度不健全或安全措施、安全信号、安全标志、安全用具、个人防护用品缺乏或有缺陷的;

三、机械、车辆设备严重失修(带故障)或超负荷工作的。

第十条 凡因下列原因造成事故,应追究肇事者和有关人员责任

一、违章指挥、违章作业、冒险蛮干的;

二、违反安全制度、违反劳动纪律、玩忽职守的;

三、违反安全技术操规程,违章驾驶车辆的;

四、在没有安全保证的情况下指挥操作作业的。

第十一条 事故的直接责任者、主要责任者和主管负责人责任的确定原则

一、其行为与事故的发生有直接因果关系的,为直接责任者;

二、在直接责任者和管理责任者中,对事故发生起主要作用的,为主要责任者;

三、对事故发生负有管理责任的,为管理责任者。

第五章 事故处理

第十二条 发生事故,按照事故处理“四不放过”的原则,查明事故原因,分清责任,严肃处理,并限期整改。

第十三条 发生责任事故,无论责任大小都要严肃处理。

第十四条 任何部门或个人不得干预非法干预安全生产事故的调查工作。

第十五条 事故责任的认定、事故责任单位和有关责任人的经济处罚、有关责任人的行政处分及有关领导的处理,按《公司安全生产管理实施细则》中关于“安全生产的奖罚”的有关要求进行具体执行。

第六章 事故档案

第十六条 公司安全监督部设立生产性事故档案库,负责保存、管理重伤、死亡及以上人身事故和重、特大机电、交通、火灾事故档案。

第十七条 事故处理经批准结案后,事故档案材料应在十天内送交上级主管部门。事故档案材料必有的内容

一、员工伤亡事故登记表;

二、死亡、重伤事故调查报告书及主管部门的批复;

三、现场调查记录、图纸、照片;

四、技术鉴定、试验报告;

五、物证、人证材料;直接经济损失、间接经济损失的有关资料;

六、医疗部门的诊断书;

七、发生事故时的环境条件、操作情况、有关的设计资料;

1

21八、事故调查报告书、有关责任人的检查;

九、对事故有关责任人的处分决定、通报等文件;

十、纠正预防措施及其整改验证材料。

第六章 附则

第十八条 本规定中名词解释

一、生产安全事故是指在本企业生产、经营活动或与其有关的工作中,因各种原因发生的人身伤亡(含急性中毒)事故或由于机电设备、交通、火灾等事故而造成的人员伤亡和财产损坏。

二、轻伤是指造成职工肢体伤残,或者某些器官功能性或器质性轻度损伤,表现为劳动能力轻度或暂时丧失的伤害。一般指受伤职工歇工在一个工作日以上但够不上重伤者,或经劳动能力鉴定劳动功能障碍等级为8至10级的。

三、轻伤事故是指一次事故中只有轻伤的事故。

四、重伤是指造成职工肢体残缺或视觉、听觉等器官受到严重损伤,一般能引起人体长期存在功能障碍,或者劳动能力有重大损失的伤害。凡属国家《职业安全卫生术语》(GB/T15236—94)附录A关于重伤标准所规定的九项情形之一的,或经劳动能力鉴定劳动功能障碍等级为1至7级的,均作为重伤处理。

五、重伤事故是指一次事故中发生重伤(包括伴有轻伤),无死亡的事故。

六、责任事故是指本来可预见、抵御和避免的事故,但由于人为的原因没有采取预防措施,从而造成的事故。

七、非责任事故是指由于自然界的因素而造成的不可抗拒的事故,或由未知领域技术问题引起的伤亡事故。

第十九条 本规定自下发之日起正式实施,最终解释权归公司所有。

122

第三篇:电厂水处理典型事故的分析

电厂水处理典型事故的分析、处理与防范

摘 要 本文对电厂水处理系统常见的各类典型事故进行了分析研究,对各事故提出了分析判断、事故处理的方法,并提出了相应的事故防范措施。

关键词 水处理

事故处理

事故防范

前言

我公司炉外水处理系统基本工艺为:来自市政自来水管网的原水经原水加热器加热到18-25℃之后,进入盘式过滤器(DF)进行预过滤处理,然后经超滤装置(UF)进行深度过滤处理,超滤产水经过反渗透装置(RO)进行预脱盐处理,然后进入混合离子交换器进行二级脱盐处理,二级脱盐水作为该公司锅炉的补给水。炉内水处理基本工艺为协调PH-磷酸盐处理。

在水处理系统运行控制过程中,由于设备种类和水质品种繁多,影响安全运行的因素错综复杂。为指导运行人员合理调整运行参数、全面检查运行状况和安全操作运行设备,笔者对该公司水处理系统各个环节的常见易发事故进行分析研究,提出了事故分析与处理的方法,提出了相应的事故防范措施。

原水加热温度超标事故

2.1

事故后果:加热器出水超温严重时,可能会造成盘滤装置、超滤膜甚至反渗透膜的超温损坏或烧毁事故,引起设备报废。

2.2

事故现象:(1)加热器出水的温度表显示数值偏高;(2)手摸盘滤装置及进出水管道较热。(3)严重时会导致DF、UF、RO产水量迅速下降。(4)严重时超滤水箱、反渗透产水箱顶部冒出热汽。

2.3

事故原因:(1)加热器控制失灵造成加热过量;(2)停运制水装置后忘记停运加热器。(3)加热器进汽阀门关闭不严实,造成蒸汽内漏。

2.4

事故处理方法:(1)发现加热温度过高时应迅速关闭进汽阀门,检查热水串入到了哪些设备,检查热水对系统的影响程度,发现热水串入后续设备且温度高于40℃时应立即放掉或置换掉其内部热水,然后查找超温原因。(2)发现温度稍微偏高时可及时进行调整。

2.5

事故防范措施:(1)制水装置停运之后要及时停运加热器、关闭进汽阀门;加热器启动之前一定要先启动制水装置运行。(2)设备处于停运状态时也要坚持定期对加热器系统进行巡检,以防蒸汽阀门内漏引蒸汽向后串汽,造成设备烧毁。(3)巡检设备时不仅要观看温度计显示值,还要用手摸设备和管道的温度,以防温度计失灵造成误导。

加热器发生水冲击事故:

3.1

事故后果:(1)水冲击严重时会导致加热器设备损坏、泄漏,影响设备的正常使用,影响系统的正常运行。(2)可能会引起管道支架脱落或变形。

3.2

事故现象:(1)现场存在较大的撞击声;(2)管道、设备剧烈振动。(3)压力表指针大幅度摆动。

3.3

事故原因:(1)加热器进汽压力过高;(2)加热器疏水排水不畅。

3.4

事故处理方法:(1)通过关小进汽阀门开度、增加减温水的流量的方法,降低加热器进汽压力。(2)检查加热器疏水排出管道是否通畅。

原水质量恶化事故:

4.1

事故后果:(1)处理不及时会引起超滤膜堵塞,引起超滤产水量迅速下降,不能满足生产要求。(2)超滤膜堵塞后,会进一步导致膜丝断裂,造成产水水质下降。(3)严重时会由于超滤产水水质较差导致反渗透膜污堵。

4.2

事故现象:(1)盘滤反洗排水颜色或浊度明显异常;(2)超滤反洗排水颜色、浊度明显异常;(3)盘滤反洗水箱的水颜色异常或明显浑浊。(4)超滤和盘滤装置的进水、产水压差明显升高。(5)自来水水龙头放出的水较浑浊。(6)超滤浓水流量计处可以看到浓水的颜色或混浊度明显异常。

4.3

事故原因:(1)自来水厂生产运行控制产生异常,导致水质恶化;(2)市政自来水管道发生事故,污染水源。(3)生产返回水补入原水池时,返回水水质可能不合格。

4.4

事故处理方法:(1)如果水源水质很差且除盐水箱液位较高,可以立即停止向原水箱补水;同时汇报值长联系水源主管单位进行处理,并及时了解水源质量变化情况。同时,放掉原水池被污染的水;待水源好转之后及时冲洗原水池、补充质量较好的水源。然后,对盘滤和超滤进行彻底反洗之后投运设备。(2)如果水质轻度污染,或者除盐水箱液位较低不允许停止制水,应采取以下措施:根据除盐水量需要可适当降低系统制水产量,增加盘滤反洗频率,增加超滤反洗频率,开大超滤浓水流量;同时解列两台原水池中的一台放空存水,保持另一台运行。

4.5

防范措施:(1)巡检时要注意观察盘滤和超滤反洗排水,注意观察盘滤反洗水箱中水的颜色。(2)使用自来水的时候发现水质异常要及时汇报并查找原因。

超滤膜断丝事故:

5.1

事故后果:(1)超滤水质恶化,SDI值变差或超标。(2)造成反渗透膜发生污堵,导致反渗透产水率迅速下降。

5.2

事故现象:(1)超滤产水SDI值增大;(2)超滤产水SDI值测试膜片颜色变深。

5.3

事故原因:(1)超滤进水温度过低,导致运行阻力增加。(2)由于原水污染、菌藻过多等原因造成超滤膜污堵。(3)超滤进水流量偏大,大于超滤膜的产水能力。

5.4

事故处理方法:断丝较多、影响产水水质时应当逐台停运修补断丝。

5.5

防范措施:(1)保持加热器正常运行,保证进水温度正常。(2)保持超滤进水量不超过额定流量,及时调整几台原水泵的运行方式。(3)及时对原水水质进行监测,原水恶化时要及时采取有效控制措施。(4)膜丝污堵造成进产水压差大于0.08MPa时对超滤膜进行化学清洗。(5)定期进行杀菌灭藻处理。

超滤产水SDI值超标事故:

6.1

事故后果:(1)造成反渗透膜被污堵,产水率迅速下降。(2)为了消除反渗透污堵,需要对反渗透进行化学清洗,进而引起反渗透脱盐率降低。

6.2

事故原因:(1)超滤膜断丝;(2)原水水质恶化;(3)盘滤运行不正常;(4)测试SDI值时取样管道未进行充分放水冲洗。

6.3

处理方法:(1)超滤补丝;(2)控制原水水质恶化问题;(3)检查盘滤运行不正常的原因并处理;(4)测试SDI值之前先冲洗引水管道。

6.4

防范措施:做好预处理的运行控制。

反渗透产水电导率上升

7.1

后果:(1)导致混床周期制水量减小,引起混床再生消耗的酸、碱、水、电耗增加。(2)更换反渗透膜需要增加较大的生产成本。

7.2

主要原因:(1)反渗透膜被氧化剂所氧化。(2)化学清洗方法不当或过于频繁。(3)反渗透回收率调整得过高,即浓水量调整得过小。(4)还原剂等药剂的投加量过高。(5)原水电导率增大。

7.3

处理方法:(1)当反渗透产水电导率过高、脱盐率达到报废标准要求之后,应当更换反渗透膜。(2)由于药剂投加过多造成电导率加大时,应当合理调整药剂投加量。(3)由于水源原因造成电导率增大时应当查找水源恶化原因,联系处理。

7.4

防范措施:(1)注意加强预处理系统的运行维护与保养,防止反渗透膜被污染。(2)注意合理调整反渗透药剂投加量,特别是严格控制阻垢剂的投加浓度,防止反渗透膜结垢。(3)注意做好反渗透进水余氯的化验检测,发现余氯超标要及时加大还原剂的投加量;当余氯值一直稳定在不超标的范围时,运行人员应当适当减小还原剂投加量,努力降低药剂消耗。(4)化学清洗时注意合理控制清洗用药配方,同时避免长时间用强烈药剂浸泡反渗透膜。

反渗透产水率下降

8.1

后果:(1)产水率降低之后,产水量可能无法满足锅炉需要,影响全厂生产。(2)产水率降低导致系统水耗升高,影响经济运行。

8.2

现象:(1)反渗透产水量小于额定量。(2)反渗透段间压差升高。

8.3

原因:(1)因预处理系统出现问题导致反渗透膜一段受到污染。(2)因阻垢剂投加量控制不当,导致反渗透结垢。(3)反渗透浓水阀被不恰当地开大。

8.4

处理方法:(1)对反渗透进行化学清洗。(2)如果因为浓水阀被不恰当调整,应当重新调整浓水阀开度。

8.5

防范措施:(1)做好预处理系统的运行维护与保养。(2)做好反渗透药剂投加量的调整,定期检查加药系统运行状况。(3)在启动反渗透装置之前要对系统全面、细致检查,具备条件之后再开启反渗透装置。(4)反渗透浓水阀门开度由技术人员调整,运行操作人员不要调整。

混床失效过快

9.1

后果:(1)混床失效过快导致混床再生用的酸碱水电消耗量上升。(2)严重时可能会影响到系统产水能力,影响到水处理装置的安全供水。

9.2

现象:混床周期制水量减少,低于正常制水量。

9.3

原因:(1)混床进水水质恶化,如反渗透产水脱盐率下降、水质变差。(2)混床再生过程中有关参数控制不当,如再生使用的酸、碱量不足,再生自用水量不足或过大等。(3)混床运行流速过快。(4)运行水的温度偏低。(5)离子交换树脂老化、中毒或被污染。

9.4

处理方法:(1)及时查找原因并处理。(2)对失效的混床及时进行再生。

9.5

防范措施:(1)解决混床进水水质恶化的问题。(2)合理调整再生过程中的各项参数,确保再生质量。(3)合理控制运行流速,在不大于额定流速的工况下运行。(4)调整加热器运行,防止水温过低。(5)离子交换树脂出现问题时应对树脂进行清洗、复苏或更换。

混床跑树脂事故

10.1

事故后果:(1)将会降低混床的总交换容量,降低混床产水能力。(2)如果泄漏的树脂进入除盐水箱、随后进入热力系统,会导致锅炉水的PH值迅速降低,处理不及时会造成锅炉酸性腐蚀甚至水冷壁爆管。

10.2

事故现象:(1)从混床视镜处可以观察到混床内树脂层高度降低。(2)底部跑树脂时混床的进口、出口压力表指示的压力值都比正常值有所升高。(3)底部跑树脂量较大时可以从混床产水取样口放出树脂,从树脂捕捉器排污口可以放出树脂。(4)中排跑树脂时可从中排排水中发现树脂。

10.3

事故原因:(1)混床下部水帽存在破裂或水帽丝扣存在松动的情况。(2)离子交换树脂大量破碎。(3)中排装置损坏。

10.4

处理方法:(1)将混床内树脂倒出后更换损坏的水帽。(2)将松动的水帽紧固。(3)如果因为树脂破碎造成跑树脂,应当对树脂进行彻底的大反洗,以清除破碎的树脂。

10.5

防范措施:(1)使用质量可靠的水帽。(2)水帽安装时应当确保每一个水帽紧固适当。(3)防止树脂破碎的措施:混床运行流速不可过高;再生到空气混脂步骤时,混合时间不得任意延长;备用树脂在储存时应当保持不失去水分;使用质量可靠的树脂。

离心水泵振动、温度发生异常:

11.1

后果:(1)如果电机轴承振动异常或温度异常不及时处理,可能会造成温度过高,引起电机过热、电机线圈烧毁。(2)如果水泵轴承振动异常或温度异常不及时处理,可能会造成轴承或水泵进一步损坏。(3)如果水泵泵体振动或温度异常,不及时处理可能会引起水泵严重损坏。(4)如果电机缺相,将会造成电机烧毁或开关跳闸。

11.2

现象:(1)用手摸或用测振仪测试显示振动超标。(2)用手摸或测温仪测试温度偏高。(3)如果轴承损坏严重或密封过紧或叶轮犯卡,则泵的运行电流比正常值升高。(4)如果电机发生缺相,电机运行电流明显过大;各相电流情况是:一相无电流、另两相明显偏高。

11.3

原因:(1)电机轴承振动异常或温度异常原因:轴承质量不合格造成损坏;轴承缺油或油质不合格;电机电源缺相。(2)水泵轴承振动异常或温度异常原因:轴承质量不合格;润滑油缺油或油质变质;盘根或机械密封压得过紧;由于电机振动异常带动泵的轴承振动异常;或电机与泵的找正不当;或底座、地基不牢固。(3)水泵泵体振动或温度异常原因:叶轮损坏或松动、盘根或轴承过紧;水泵汽化不打水;出口管道振动过大;出口管道阻力过大;底座或基础不牢固。(4)如果电机缺相,原因为电气接线错误或接线松动。

11.4

处理方法:(1)因为轴承、盘根、机械密封、底座、基础或油质等原因应当切换备用泵运行然后进行检修。(2)轴承润滑油缺油时应及时补加。(3)水泵汽化时应当停泵检查入口管道是否漏气、前置水箱液位是否过低,然后根据原因处理。(4)发现电机缺相时,应立即停止其运行、检查电机接线。

11.5

防范措施:(1)及时认真巡检,及时发现存在的异常并及时处理。(2)发现油量不足应当及时添加,发现油质不良应当及时更换。(3)保持前置水箱液位处于低液位以上。(4)应当加强设备检修质量,确保设备健康状况。

酸碱系统跑酸、碱事故

12.1

事故后果:由于该公司将水处理系统排放水经过浓水系统输送应用于锅炉捞渣机水封、取样冷却器冷却等用途,因此酸碱泄漏到浓水中后将引起以下后果:(1)跑酸事故发生后将造成浓水系统腐蚀,引起设备腐蚀损坏。(2)跑碱时造成浓水系统结垢,进而堵塞浓水管路和取样冷却器;可能会造成浓水泵叶轮卡涩不转。(3)造成环境污染。

12.2

事故现象:(1)跑酸后取样冷却水有酸味;(2)跑碱后取样冷却水流出白色盐垢,手接触到冷却水后感觉滑;取样冷却水压力、流量降低。

12.3

事故原因:(1)操作人员责任心不强、粗心大意,在向酸碱计量箱进酸碱时人员未在现场看守,造成溢流。(2)酸碱阀门损坏或内漏,酸碱管道泄漏。

12.4

处理方法:(1)迅速关闭酸、碱储罐的出口阀门。(2)跑酸时加入适量的浓碱进行中和至中性,跑碱时加入适量的浓酸中和至中性。(3)处理过程中做好人身防护,一定要防止浓酸、浓碱溅到人身造成人员伤害。

12.5

防范措施:(1)加强操作人员责任心;(2)在计量箱补酸碱时现场应当有专人看护。(3)操作阀门时应当双手平衡用力、缓慢操作,以防将阀门板断。

运行混床串碱事故

13.1

事故后果:(1)造成混床提前失效,使混床产水水质不合格。(2)如果发现不及时会污染除盐水箱水质。(3)碱性水进入热力系统,会造成锅炉水冷壁管碱性腐蚀;严重时引起锅炉爆管。

13.2

事故现象:(1)运行混床的产水PH值急剧上升。(2)混床产水电导率迅速增大。(3)除盐水箱PH值较高及电导率很大。

13.3

事故原因:(1)混床在再生之后手动进碱门未关闭或未关严或手动门内漏,同时进碱气动门关闭不严。

13.4

处理方法:(1)立即停运串碱的混床。(2)立即化验除盐水箱的PH值和电导率,判断除盐水污染程度。根据污染情况决定是否对除盐水箱进行换水。(3)除盐水箱不需要换水时,应当查明原因后投入备用混床运行。(4)除盐水箱需要换水时,应当在保证锅炉安全运行的前提下对两个水箱逐一换水。除盐水箱及给水污染十分严重时,应当请示紧急停炉。

13.5

防范措施:(1)加强运行操作的责任心,混床再生之后及时关闭进碱门。(2)发现混床进碱阀门损坏时应当及时联系检修处理。(3)在混床再生之前和再生过程中应当对不再生的其它混床的阀门状态进行检查,确保进酸门、进碱门处于关闭状态。

运行混床串酸事故

14.1

事故后果:(1)混床串酸之后,酸性水迅速污染除盐水箱。(2)酸性水进入热力系统,会迅速造成锅炉水冷壁管酸性腐蚀,引起锅炉爆管。

14.2

事故现象:(1)运行混床的产水PH值急剧下降。(2)混床产水电导率迅速增大。(3)除盐水箱PH值明显较低、电导率明显升高。

14.3

事故原因:混床在再生之后手动进酸门未关闭或未关严或手动门内漏,同时进酸气动门关闭不严。

14.4

处理方法:(1)立即停运串酸的混床。(2)立即化验除盐水箱的PH值和电导率,判断除盐水污染程度。根据污染情况决定是否对除盐水箱进行换水。(3)除盐水箱不需要换水时,应当在查明原因后方可投入备用混床运行。(4)除盐水箱需要换水时,应当在保证锅炉安全运行的前提下对两个水箱逐一换水。除盐水箱及给水污染十分严重时,应当请示紧急停炉。

14.5

防范措施:(1)加强运行操作的责任心,混床再生之后及时关闭进酸门。(2)发现混床进酸门损坏时应当及时联系检修处理。(3)在混床再生之前和再生过程中应当对不再生的其它混床的阀门状态进行检查,确保进酸门处于关闭状态。

除盐水箱水质污染事故

15.1

事故后果:处理不及时可能会造成锅炉热管发生结垢、酸性腐蚀或苛性腐蚀,引起锅炉爆管。

15.2

事故现象:(1)除盐水箱水质化验结果中硬度或PH值或电导率数值超标或不正常。

15.3

事故原因:(1)混床过度失效。(2)混床串酸。(3)混床串碱。(4)除盐水箱生产返回水水质发生异常。

15.4

处理方法:(1)发现混床失效时,应当立即停止混床运行,投入备用混床运行。(2)判断混床发生串酸或串碱事故时应当按照“14节”方法处理。(3)发现返回水水质异常时应当立即将返回水切换排向原水池或排掉,并查找水质异常原因。(4)除盐水箱需要换水时,应当在保证锅炉安全运行的前提下对两个水箱逐一换水。除盐水箱及给水污染十分严重时,应当请示紧急停炉。

15.5

防范措施:(1)混床接近失效终点时应当增加分析频率,防止过度失效。(2)混床再生之前和再生过程中,应当对不再生的其它混床的阀门状态进行检查,确保进酸门、进碱门处于关闭状态。(3)坚持定期化验返回水水质,发现异常及时处理。

炉水电导率异常

16.1

事故后果:(1)电导率明显偏大时,表明炉水中总的含盐量较大。一般来说,含盐量较大的炉水的腐蚀性和结垢的倾向较大。(2)造成电导率升高现象有多种不同的原因,各种原因造成的后果不尽相同。(3)炉水系统有泄漏或跑水时,将会造成炉水及热量损失。

16.2

事故原因:(1)电导率偏大的原因有:a、取样冷却器内的换热管泄漏;b、炉水加药量过大;c、锅炉排污量过低;d、除盐水、凝结水、疏水、给水等受到污染导致电导率过大。(2)电导率明显偏小的原因有:a、炉水排污量过大;b、炉水系统有泄漏的情况,如水冷壁管泄漏;c、炉水系统阀门未关严,如紧急放水门未不严或定排门未关严等。

16.3

处理方法:(1)应当首先查明是否为取样或化验的原因引起分析结果不正常。(2)电导率过大时,应当加大锅炉排污量、使其降低到正常水平;找出造成异常的原因,并有针对性地处理。(3)电导率过小时,应当查找泄漏或跑水的原因,然后设法排除。

16.4

防范措施:(1)坚持对各种水质按时取样化验,发现异常及时汇报并及时处理。(2)取样、化验方法应当按照化验分析规程要求认真操作。(3)注意加药量、加药泵冲程的日常变化规律,发现加药需求量有异常时应当及时查找原因。(4)要求锅炉人员在操作排污阀、紧急放水阀等阀门时应当确保阀门操作到位,该关闭的一定要关闭严实。(5)根据水质及时合理调整锅炉排污量。

炉水PH 值超标

17.1

事故后果:(1)炉水PH值过高时容易造成碱性腐蚀,引起锅炉结垢和爆管。(2)炉水PH值过低时容易造成酸性腐蚀,引起锅炉爆管。

17.2

事故原因:(1)炉水PH值过高的原因:a、组成给水的某种水的PH值过高,重点怀疑除盐水;b、磷酸三钠投加量过大;c、凝汽器换热管发生泄漏,冷却水漏入凝结水侧。(2)炉水PH值过低的原因:a、组成给水的某种水的PH值过低,重点怀疑除盐水;b、所加药剂中磷酸氢二钠占得比例过大;c、混床新换了离子交换树脂或树脂漏入除盐水箱。

17.3

处理方法:(1)应当首先查明是否为取样或化验的原因引起分析结果不正常。(2)炉水PH值异常应当按照“三级处理值”的要求进行处理。即炉水PH达到一级处理值(9.0-8.5)时,应在72小时内恢复至标准值;水质达到二级处理值(8.5-8.0)时,应在24小时内恢复至标准值;当水质达到三级处理值(<8.0)时,如水质仍不好转,应在4小时内停炉。在异常处理的每一级中,如果在规定的时间内尚不能恢复正常,则应要求采用更高一级的处理方法。(3)认真查找造成炉水PH异常的原因并针对原因进行处理。

17.4

防范措施:(1)坚持对各种水按时取样化验,发现异常及时汇报并及时处理。(2)水处理操作时杜绝跑酸碱事故。(3)合理调整锅炉加药量。(4)合理调整循环水质量,防止换热器腐蚀泄漏。(5)新离子交换树脂应当进行适当的预处理之后方可投入使用。(6)混床内碎树脂过多时应当对混床进行大反洗,将碎树脂反洗出去。

蒸汽品质超标

18.1

事故后果:(1)饱和蒸汽品质异常时,会造成过热器内部积盐,引起换热管局部过热,造成爆管。(2)过热蒸汽品质异常时,会造成汽轮机叶片积盐,影响汽轮机安全经济运行。(3)过热蒸汽品质异常还会引起外供蒸汽品质超标,造成供汽管道内部积盐或腐蚀,引起管道破裂,影响正常供热。

18.2

事故现象:(1)化验蒸汽品质超标。(2)供热管网的疏水的质量异常。(3)严重时,在汽轮机开缸之后可以发现汽轮机叶片有盐类沉积。

18.3

事故原因:(1)由于锅炉排污量过小导致炉水含盐量过高。(2)由于加药量过多导致炉水含盐量过高。(3)由于补给水质量过差导致带入炉水的盐类过多。(4)汽包水位过高或水位波动过大。(5)锅炉负荷过高或负荷波动过大。(6)锅炉汽包内部汽水分离装置发生故障。

18.4

处理方法:(1)首先检查取样、化验分析过程、方法、药剂有无问题,如果确认分析结果正确无误,方可进一步判断异常的原因。(2)如果由于锅炉负荷或水位原因造成异常,应当要求锅炉班组调整锅炉负荷和水位,使之正常。(3)如果由于加药、水质原因造成蒸汽异常,应当加大排污量,同时设法减少带入锅炉的盐类含量。(4)如果确认为汽包内部汽水分离装置存在故障,应当根据蒸汽污染程度请示是否进行停炉处理。

18.5

防范措施:(1)运行人员应当坚持按照化验标准要求正确进行取样、化验。(2)应当按时取样分析各种蒸汽、水样,经常对各种水汽质量及变化趋势进行比较分析,发现问题及时处理。(3)要求合理调整锅炉排污量和加药量。(4)锅炉岗位应当合理调整锅炉负荷和水位,无特殊情况时应当按照规程要求使其控制在额定负荷和正常水位,并且设法保持稳定。(5)利用停炉机会检查汽包内部装置,确保设备完好。

炉水磷酸根浓度超标

19.1

事故后果:(1)磷酸根过高将导致蒸汽品质恶化。(2)磷酸根过低,可能会造成锅炉结垢。

19.2

事故现象:化验结果显示磷酸根异常。

19.3

原因:(1)磷酸根过高的原因:a、磷酸盐加药量过大。b、发生“磷酸盐暂时消失现象”之后,磷酸根突然释放出来。c、锅炉排污量减小后,加药量未及时调小。(2)磷酸根过低的原因:a、磷酸盐加药量过小。b、锅炉炉水存在泄漏,如水冷壁管泄漏、定期排污阀未关严、连排量过大等。c、组成给水的除盐水、凝结水、返回水或疏水中含有硬度,如混床过度失效引起除盐水中有硬度,凝汽器管泄漏导致凝结水中有硬度等。

19.4

处理方法:(1)及时调整加药量,使炉水磷酸根维持在合格范围内。(2水处理岗位发现磷酸根浓度持续降低时(即使不低于下限),应当及时通知锅炉岗位查找炉水系统泄漏情况,为锅炉岗位争取事故处理有利时机。(3)磷酸根过低或降低速度较快时,应立即化验检查除盐水、凝结水、返回水、疏水等是否存在硬度,发现之后针对硬度来源进行处理。(4)磷酸根浓度过高时应当加大锅炉排污量、减小药剂投加量。

19.5

防范措施:(1)及时对炉水、给水、除盐水等进行化验分析,以便及时发现问题、争取处理时机。(2)正确合理地调整加药量和炉水排污量。(3)防止混床过度失效。(4)防止凝汽器换热管腐蚀泄漏。

疏水硬度超标

20.1

事故后果:(1)造成炉水磷酸根浓度迅速下降。(2)严重时造成锅炉水冷壁结垢。

20.2

事故现象:炉水磷酸根浓度异常下降。

20.3

事故原因:(1)进入疏水箱的疏水硬度超标,如采暖换热站、浴室换热站换热管泄漏造成疏水被污染。(2)锅炉给水平台的疏水接水槽处有人倒入茶水或污水。

20.4

处理方法:(1)放掉硬度超标的水。(2)查找污染源头予以消除。(3)向炉水中及时补充磷酸盐,维持磷酸盐浓度合格。

20.5

防范措施:(1)及时化验分析,发现异常及时处理。(2)不要向疏水接水槽内倾倒污水。

21

结语

在生产实践中,针对具体的生产工艺特点,对各种可能发生的事故进行分析研究,总结出相应的事故分析、处理的方法,提出事故防范措施,可对生产运行管理提供一定的指导作用。

第四篇:论地铁屏蔽门事故分析与处理

重庆交通大学继续教育学院毕业设计(论文) 重庆交通大学继续教育学院毕业设计(论文)

论地铁屏蔽门事故分析与处理

摘要:地铁屏蔽门事故时有发生,屏蔽门安全系统的建设以及使用情况受到人们密切关注。通过对地铁屏蔽门典型事例以及事故分析,针对存在的隐患,提出了如何从作业流程、人员培训、安全教育等方面有效地预防此类事故的发生。

关键词:屏蔽门系统事故典例整改措施

一、屏蔽门系统概述

(一)屏蔽门的定义

地下站在站台边缘设置有屏蔽门,高架站在站台边缘设置有安全门,在轨道与站台公共区域之间提供安全可靠的屏蔽门系统。屏蔽门由滑动门、固定门、端门、应急门组成。其中,车站的站台端部,设置向站台内侧开启的端门,供司机、车站管理人员及区间事故疏散人员用。屏蔽门(安全门)驱动装置采用电动驱动,其电源为一级负荷,且备用电源的容量,能使屏蔽门(安全门)控制系统1小时内对每侧滑动开/关操作5次。

(二)屏蔽门的分类

1.封闭式安全门:安装于地铁车站,全封闭,具有封密性能的轨道交通站台安全门系统,通常被称作屏蔽门。屏蔽门安全门系统是一道自上而下的全封闭玻璃隔断墙,沿着车站全站台边缘设置,将站台区域与列车区域分开。

2.开放式安全门:开放式安全门分为全高安全门和半高式安全门,全高安全门安装于地铁、轻轨等交通车站,门体结构超过人体高度,门体顶部距离站厅底面之间有一段不封闭空间,不具有封密性能的轨道交通站台安全门,其总体高度2050mm,与屏蔽式安全门系统相比较,两者的结构形式基本相同,只是全高安全门系统的上部不封闭,门体的下部可以根据需要设置通风口;半高安全门主要安装于地铁、轻轨等轨道交通地面或高架车站,门体结构不超过人体高度,不具有封密性能的轨道交通站台安全门,其总体高度为1500mm,半高安全门的高度一般为1.2~1.7m,安装在站台边缘,将站台区域与轨道区域分隔开来,主要目的就是提高安全性。

(三)屏蔽门的功能

1.提高了乘客的候车安全性

屏蔽门可以防止乘客或物品因车站客流拥挤或其他原因落入轨道,从而杜绝因此引发的 第1页共1 页 重庆交通大学继续教育学院毕业设计(论文) 重庆交通大学继续教育学院毕业设计(论文)事故、延迟运营与增加额外成本;避免非工作人员进入隧道;更好的管理乘客:当列车停靠在正确的位置上,乘客才进入列车或站台;在火灾或其他故障模式下,可以配合相关系统进行联动控制。

2.改善了车站的站台环境

减少列车运行噪声及活塞风对站台候车乘客的影响,改善乘客候车环境;减少站台区与轨道区之间气流的交换,通过对地下车站通风空调制式的改变(由闭式系统转为开式系统),降低通风空调系统的运营能耗;屏蔽门可采用一体化的信息、广告显示屏,达到资源的最大利用化,同时对车站整体空间布置进行简化。

总体来说,站台屏蔽门系统在很大程度上提高了乘客的候车安全性,改善了车站的站台环境,并可节约地铁运营成本,提高运营效率。

二、屏蔽门系统典型事故案例 案例一

2007年7月15日下午3时半,上海地铁1号线体育馆站的站台上,一名30多岁的男乘客在蜂鸣器响与屏蔽门灯光频闪的情况下挤车,被卡在列车与屏蔽门中间,并在列车启动后受挤压坠落隧道身亡。事故发生后,车站立即拨打急救电话,将这名男子送往医院前已经死亡。 案例二

2010年7月5日6时16分,上海地铁二号线中山公园站往浦东方向的一趟列车在进行关门作业时,一名中年女子将手伸进门中,欲强行上车,车门夹住其手腕,女子被启动的列车带动后,与站台上安全护栏撞击,不幸身亡。 案例三

2014年11月6日晚18:57,北京地铁5号线惠新西街南口站一女性乘客在乘车过程中卡在屏蔽门和车门之间,列车启动后掉下站台,车站工作人员立即采取列车紧急停车和线路停电措施,迅速将受伤乘客抬上站台,由120急救车送往中日友好医院。该乘客经医院全力抢救无效后于20:20死亡。

三、屏蔽门典型事故案例分析

(一)事件一分析

1.据上海地铁运营有限公司给出的回应:“当时,列车蜂鸣器与屏蔽门灯光已经发出警示,列车即将开动。在这种情况下,这名乘客仍强行上车,由于车内拥挤,他未能挤进车厢。这时,屏蔽门已经关闭,列车正常启动,这名男子遂被挤压坠落隧道”。可以了解到该时段, 第2页共2 页 重庆交通大学继续教育学院毕业设计(论文) 重庆交通大学继续教育学院毕业设计(论文)地铁内相当拥挤,且该名乘客严重缺乏安全意识。(车门、屏蔽门联动开始关闭,“灯闪铃响”,但乘客仍然违规冲门,强行登车)

2.据目击者描述“我当时在出事车门的隔壁第二个车厢,突然听到车厢内有乘客在高声地叫喊,列车启动后又停了下来,这才看到屏蔽门上都是血。”可以了解到车内有乘客看到了该乘客被夹,但却仅仅只会尖叫,未做出任何有效措施,直至最后酿成悲剧。另外各媒体、微博、微信都曾发表过多起其他城市车门夹人动车、屏蔽门与车门间隙夹人动车的事件,均导致乘客不同程度的夹伤,给地铁运营安全带来极大的安全隐患。(被夹乘客无自救能力,其他目击乘客未采取任何措施,未及时通知司机、站务人员)

(二)事件二分析

1.2010年7月5日晚6时16分,事发时正值下班高峰期,站台客流量大。车站未及时在付费区采取措施控制站台乘客数量。

2.据报道:“站台服务员发现后,立即上前帮助该乘客向外拽拉,但未果,此时列车启动,并带动该乘客,造成其与安全护栏撞击跌落在站台上。事发后,车站立即拨打120急救车送医院抢救,后经抢救无效死亡”。车站工作人员及时作出反应,但由于抢救措施不当,未能避免悲剧的发生。

(三)事件三分析

1.2014年11月6日是星期四,晚18:57正值工作日下班高峰,根据记者现场采访、目击者“人特别多,“一个门排两队,”微博描述:都差不多排到对面站台了”,每队都排了20多个人。都可以了解到案发时站台拥挤,站台候车乘客过多。(站厅厅巡未能控制进入站台乘客数量,未能合理采用限流措施)

2.据资料显示事发时正值APEC会议召开的第二天。为力保北京的蓝天,北京、天津和河北三地实施车辆限行措施,地铁乘客明显增多。由于节假日或地铁周边举行大型活动造成地铁客运量骤增,但却未看到北京地铁做出相应的应急防范措施。(车站相关负责人未能根据相关客流数据进行大客流预测及制定相关应急处置程序)

3.据目击者微博描述“死者被夹在安全门和车门之间,地铁门和安全门都是关闭的,站在车外的人就开始拍安全门,七八个人就使劲地拍打安全门,然而,就一两秒钟车子就开走了,在我的视线中,车子开出去了,开没了”。“人群非常惊慌,有很多人拍打安全门,但是车辆还是开走了”。(可以了解到有很多人看到了该乘客被夹,但却由于不懂得如何自救、他救、互救,错过了最佳的救人时机)

四、屏蔽门系统典型事故处理

(一)屏蔽门、车门关闭过程中的人———机联动

第3页共3 页 重庆交通大学继续教育学院毕业设计(论文) 重庆交通大学继续教育学院毕业设计(论文)

1.司机在确认乘客上下车完毕,屏蔽门与车门之间无乘客活动后,与站务员联控,操作关闭车门;站务员收到关车门信息后,引导站台候车乘客退出安全线外,防止有乘客冲门、抢上抢下。

2.同时屏门、车门门头灯闪烁,发出关门提示音;屏蔽门、车门关好,司机再次与站务员联控,确认屏蔽门与车门之间安全、无异物后,进入驾驶室做动车准备。

3.站务员确认屏蔽门门头灯灭,站台安全后,到“紧急停车按钮”处立岗,观察列车、站台情况;列车动车、离站。站务人员继续引导候车乘客、接发后续列车。

(二)人的不安全行为导致事故发生的处理措施

1.车门、屏蔽门联动开始关闭,“灯闪铃响”,但乘客仍然违规冲门,强行登车。站务员严格按照作业标准,杜绝此类现象的发生。

2.列车车门或屏蔽门夹人、夹物,或者有乘客或物品夹在车门、屏蔽门间隙,同时车门、屏蔽门防夹人夹物功能失效,车门、屏蔽门未及时弹开。定期检查车站安全门的功能性是否完好,是否有安全隐患,有安全隐患时及时消除隐患。

3.司机在确认间隙时应及时发现缝隙有异物。有异物时应清除异物后在发车。

4.站务员应及时发现缝隙有异物或发现异物能实施有效措施:(1)及时实施紧急停车操作;(2)及时通知司机。

5.被夹乘客无自救能力,其他目击乘客未采取任何措施,未及时通知司机、站务人员。地铁公司多宣传地铁相关资料,提高乘客乘车的警惕性,了解相关紧急情况下的自救措施,例如被夹车门后,在车门内部有紧停按钮,可让乘客了解其作用和重要性。

(三)对于以上典型事故防范整改措施

1.大客流早预想、早防控地铁车站应针对节假日、工作日上下班高峰时段、车站周围举办大型活动等可能引发车站大客流的情况提前做好预想,及时采取防控措施,加强车站乘客引导,优化乘客走行路线,避免站内人流对冲、交叉,以出站优先的原则,让出站乘客尽快离开车站。并视客流情况在出入口、进闸机、扶梯等安全关键点设置控制点,控制进站、进闸乘客数量,以确保能够及时将站台候车乘客的数量控制在安全值内。另外根据站台压力,增派站台岗位专职负责扶梯、楼梯口等乘客聚集、安全风险较大的车门,防止乘客抢上抢下,引导乘客到人少的车门候车。

2.乘务人员作业标准化,统一流程,标准操作规范乘务人员站台作业标,严格执行手指口呼,与车站做好呼唤应答,车门、屏蔽门关闭过程中持续关注缝隙,关好门好再次确认屏蔽门、车门关好且缝隙无异物。

3.站务人员严格遵守站台岗作业流程,做好与司机的呼唤应答。

第4页共4 页 重庆交通大学继续教育学院毕业设计(论文) 重庆交通大学继续教育学院毕业设计(论文)

4.车站按照属地管理职责,实时掌握车站设备状态、乘客群体的特的准备工作。

5.完善设备功能,加强设备检查设备部门与厂家完善屏蔽门、车门联动,真正实现列车停稳、启动时先开关屏蔽门,后开关列车车门。这可以较有效地降低抢上抢下、冲门乘客被夹在缝隙间。加强设备的定检及不定期巡检工作,定期、对屏蔽门系统进行检查、测试及维护保养,不定期对定检成效进行巡检、复检,确保设备保持良好的工作状态。

6.加强应急培训,锻炼员工应急处理能力管理部门定期组织车站、乘务员工进行各项应急情况的培训,加强员工业务、扎实本岗位应急操作能力。并不定时下站进行应急情况演练,做到在员工不知情的情况下,尽量模拟真实场景,锻炼员工心理素质,进一步锻炼员工应急能力。当班员工加强班前预想,熟悉本岗位应急操作能力。

7.人性化人员管理管理部门做好关键岗位员工工作状态跟进工作,了解员工生活、身体、心理状态。及时帮助有困难的员工。防止由于员工身体、心理问题造成的安全隐患。

8.多渠道、多形式的安全教育,提高乘客安全意识,培养乘客自救能力。 总结

论文围绕屏蔽门事故以下几个方面分析研究:

1.通过分析设置地铁屏蔽门的重要性及其特点,体现出地铁对现今社会发展的重要性。 2.通过分析典型的屏蔽门事故案例,得出地铁屏蔽门潜在的危险性主要源自屏蔽门、乘客和站台管理人员等三方面。

3.通过利用事故分析法对地铁屏蔽门事故分析得出,事故的原因和各事件的详情,并据此提出了有关方面的防范整改措施。为确保地铁安全运行,防患于未然,建议地铁等管理部门建立健全相关的安全管理制度,增加从事安全管理工作相关人员。在今后的运行过程中,严格遵守国家规定的法律法规、标准、规章、规范等,认真执行安全管理制度,保证其安全有效的运行,为我们每一位人营造一个安全、舒适的乘车环境。 参考文献

[1]邓远华,2010宋瑞刚.地铁站台“二门系统”防夹人事故措施探讨[J].沿海企业与科技,(10)(总第125期). [2]劳运敬.地铁屏蔽门控制系统的研究[D].广州:华南理工大学,2011. [3]侯欣然.地铁屏蔽门事故分析及风险控制研究[D].唐山:华北理工大学矿业工程学院,2015 . 0 [4]刘承东.屏蔽门系统在地铁中的应用[J].城市轨道交通研究,2009,(1):43-45. [5]卢昌仪.防止地铁屏蔽门与列车间隙夹人方案[J].都市快轨交通,2008,21(5):82-84.

第5页共5 页

第五篇:建筑工程事故分析与处理读书报告

——混凝土结构碳化研究

摘要

混凝土碳化是影响混凝土结构耐久性的重要原因之一,本文通过对混凝土碳化的机理的分析,从影响混凝土碳化的因素、碳化对混凝土的影响、混凝土碳化深度的测试方法、混凝土碳化深度的预测模型等方面着手进行研究,并提出了防止混凝土碳化或放慢碳化速度的相关措施,以提高混凝土耐久性。

关键词

混凝土,碳化机理,影响因素,测试方法,预测模型,预防措施

正文

1.碳化机理分析

空气、土壤或地下水中酸性物质,如CO

2、HCl、SO

2、Cl2深入混凝土表面,与水泥石中的碱性物质发生反应的过程称为混凝土的中性化。空气中混凝土的碳化是混凝土中性化最常见的形式,它是水泥石中的水化产物与空气中CO2发生分解反应,使混凝土成分、结构和性能发生变化,使用功能下降的一种很复杂的物理化学过程。

1.1碳化反应

在充分水化的水泥石中,水化硅酸钙约占70%,氢氧化钙约占20%,钙矾石和单硫型水化铝酸钙约占7%。混凝土中可碳化成分主要是Ca(OH)2,此外还有水化硅酸钙(3CaO·2SiO2·3H2O)以及在有水状态下未水化的硅酸三钙(3CaO·SiO2)和硅酸二钙(2CaO·SiO2)。有资料显示,硬化水泥石中的Ca(OH)2和C-S-H分别与CO2反应的自由焓最小,因此最易碳化,其碳化反应式为:

Ca(OH)2H2OCO2CaCO32H2O

(G29874.75kJ/mol)

03CaO2SiO23H2O3H2CO33CaCO032SiO26H2O

(G29874.7kJ/mol)

混凝土碳化速度主要取决于以下3个方面:①化学反应本身的速度;②CO2向混凝土内扩散的速度;③混凝土孔隙中可碳化物质,主要是Ca(OH)2的扩散速度。 1.2碳化过程

混凝土是一个多孔体,内部存在许多大小不一的毛细孔、孔隙、气泡,甚至缺陷,形成的水泥石结构是一个含固相、液相和气相的非均匀质体。空气中的CO2通过这些固有缺陷渗透到混凝土的孔隙和毛细管中,溶解于孔隙液相中形成H2CO3后发生碳化反应,由此可以看出,混凝土的碳化是在固相、液相和气相中进行的一个复杂的多相物理化学连续过程。反应后,毛细孔周围水泥石中的羟钙石补充溶解为Ca2+和OH-,反向扩散到孔隙液中,与继续扩散进来的CO2反应,一直到孔溶液中的pH值降为8.5~9.0时,这层毛细孔才不再进行这种中和反应,即所谓“已碳化”。碳化是一个由表及里、缓慢向混凝土内部扩散的过程,在混凝土完全碳化区之后形成部分碳化区和未碳化区。从理论上讲,未碳化混凝土的pH值约为12.5,完全碳化的混凝土的pH值为7,因此以pH值来划分不同的碳化区域。pH≥12.5的区段为未碳化区,pH=7的区段为完全碳化区,而7

2.影响混凝土碳化的因素

2.1外部因素

2.1.1环境温度

对于一般化学反应,温度每升高10℃,反应速度约增加2~3倍。温度升高将导致CO2扩散速度,离子运动速度提高。如新加坡地区常年气温偏高(日平均气温27℃),而欧洲地区的日平均气温仅为8~9℃,相同时间,相似的混凝土建筑物在新加坡的碳化深度要比欧洲地区明显加大。实验证明:环境温度对混凝土碳化速度的影响高于环境相对湿度。环境相对湿度不变,随着环境温度的升高,混凝土碳化速度明显增大,比如,对应70%的相对湿度,环境温度从10℃提高到50℃,混凝土的碳化速度提高了近3倍。在工程中也发现了由于温度过高而造成碳化速度明显加快的实例,如某企业食堂,1999年5月竣工,2000年5月发现该食堂厨房间两道梁(未做水泥砂浆抹面)底部出现沿梁长方向的裂缝,局部有混凝土脱落现象。该工程为两层框架结构,现场搅拌混凝土施工,检测中发现该裂缝梁的混凝土表面测试强度较低,设计要求保护层厚为35mm,实测保护层厚度为20mm左右,已完全碳化。分析原因,该梁处于高湿高温的环境中,再加上其保护层厚度不满足设计要求,致使CO2和水蒸气很容易穿过不密实的混凝土表面到达钢筋,钢筋表面锈蚀产生膨胀,形成向外张力,拱裂混凝土保护层。

2.1.2环境相对湿度

CO2只有溶于水后形成H2CO3方能和Ca(OH)2发生反应,但由于混凝土碳化本身即是一个释放水的过程,环境湿度过大造成CO2扩散速度变慢会抑制碳化。在对沿海地区的房屋进行调查后发现,在房屋上部碳化深度明显比下部大,主要原因为下部相对湿度较上部大。湿度过小时,混凝土处于较为干燥或含水率较低的状态,虽然CO2气体的扩散速度较快,但由于碳化反应所需水分不足,故碳化速度较慢,这就是为何我国内陆地区较沿海地区碳化明显的原因:文献认为相对湿度在55%时碳化速度最快;我国规范规定加速碳化试验的相对湿度是70%。虽然对于混凝土碳化速度较快的相对湿度范围看法不尽相同,但集中在50%~70%之间。

2.1.3 CO2浓度 CO2是引起碳化的最直接原因,对于CO2的影响,学者们提出了多达几十种观点,其理论模式大多基于Fick第一扩散定律,即

x2Dq/at

其中,x为碳化深度;D为CO2渗透系数;q为空气中CO2浓度;a为单位体积混凝土吸收CO2能力的系数。上式表明混凝土碳化深度与碳化时间的平方根成正比。即

x1x2q1q2

式中q

1、q2分别为相对于碳化深度为x

1、x2外界CO2气体的浓度

尽管这一公式考虑的影响因素较少,但是它抓住了碳化进程的主要特征,此后,不少学者又提出了许多公式,但是二者成正比这一点得到了实验验证。需要强调的是,在自然界CO2浓度一般为0.03%,在室内一般为0.1%。自然界中的碳化深度是最符合本身规律的,不过观测碳化深度的时间需要几年甚至几十年,现在普遍的做法是人工碳化,试验所采用的CO2浓度因国家而异。瑞典用3%,澳大利亚用4%,日本用5%或10%,我国用20%,也有的甚至用50%。人工气候中CO2的浓度远远大于自然环境下的浓度,其碳化的机理也就相应的存在着很大差异,碳化所经历的时间和碳化时混凝土所处的龄期差别也很大,两种方法形成的碳化过程的差别和相关性是人们普遍关心的。张令茂等在长达10年的自然碳化试验的基础上,作了对应的人工碳化试验,证明两种方法下的混凝土碳化规律基本符合公式初步建立了人工碳化和自然碳化速率的相关式,说明混凝土在自然条件下的碳化Dt,是可预测的。 2.1.4荷载的影响

混凝土中微裂缝是CO2向混凝土扩散的快速通道,而荷载往往是引起裂缝产生和发展最重要的因素之一,因此混凝土结构所受荷载的形式和大小必然影响混凝土的碳化速率。施加预应力能够控制混凝土裂缝的发展、消除或限制裂缝的宽度,从而延长结构的耐久性。东南大学的涂永明等人通过试验证明:拉、压应力分别加快和减缓了混凝土的碳化速率,且应力越大,碳化速率的改变越大;袁承彬采用受拉杆对试件加载的方法,研究了压应力和拉应力作用下混凝土的碳化特性,发现在压应力小于0.7fc范围内,应力的增大会降低混凝土的碳化速率。

但也有相反的研究,金祖权通过试验认为,施加荷载后混凝土的抗碳化能力显著劣化,荷载增加,混凝土受到的外力增大,加剧了混凝土内部原有微小裂隙尖端应力的集中,促使了微裂纹的扩展,混凝土内部裂纹增加,CO2的扩散系数提高,因此混凝土的碳化深度也随之增加。文章还发现当荷载在0~25%变动时混凝土的碳化深度增值小于荷载率在25%~50%变动时碳化深度增值。其原因在于:当荷载率较小时,混凝土先密实后开裂,且裂隙较小,混凝土的碳化产物CaCO3等甚至可以填充部分裂隙,使混凝土致密度增加,碳化深度增加较小;当荷载较大时,混凝土的内部裂隙宽度大幅提高,其碳化产物不足以密实裂隙,且其膨胀应力还导致了裂隙尖端应力集中,裂缝宽度迅速增加,CO2扩散系数提高,从而使碳化速度大幅提高。

2.1.5风压的影响

风环境中CO2等酸性气体在混凝土中的运动是扩散和渗透同时进行的,扩散的驱动力是浓度梯度,所有暴露在空气中的混凝土表面均有扩散发生;渗透的驱动力是压力梯度,外界风压作用于混凝土表面引起气体在混凝土多孔介质中流动,引起的碳化深度可由达西定律进行计算。风压加速空气中酸性气体在混凝土介质中的渗透,具体表现在一方面单位时间内流过流场微元体中的酸性气体质量通量增加。另一方面酸性气体在外压力梯度作用下溶于孔隙水的速度和向介质内部的流动速度加快。大气环境下混凝土结构耐久性通常都受到风的影响,集中体现在风压会加速混凝土的碳化,引起构件截面耐久性不等。前苏联学者古谢耶夫对巴库地区混凝土高压输电塔碳化情况的调查资料表面,长期受强风影响的迎风面和背风面的碳化深度是其它各面的1.5~2.0倍;目前,风压对混凝土碳化影响的研究还处于探索阶段。

2.2内部因素

2.2.1水泥种类

水泥种类不同,碳化速度有明显的差异。(1)在相同的水泥用量、水灰比条件下,水泥中CaO含量越高,硬化的水泥石中生成的Ca(OH)2量越多,混凝土的碱度降低的越慢,所以硅酸盐水泥混凝土的碳化速度慢于掺用活性混合料的水泥混凝土。相同水灰比条件下混凝土碳化速度之比为普通水泥∶早强水泥∶矿渣水泥(30%矿渣) ∶矿渣水泥(60%矿渣) ∶粉煤灰水泥(20%粉煤灰)=1∶0.6∶1.4∶2.2∶1.9。可见混合材料含量越多,碳化速度越快。但是,如果在掺用混合材料的同时另掺入减水剂降低水灰比,情况又有不同。减水剂是一种表面活性材料,加入混凝土中,对水泥颗粒其扩散作用,把水泥凝聚体中的游离的离子释放出来。从而保持混凝土的工作性能不变而显著的减少水泥用量。掺加优质的减水剂可以大大改善混凝土的和易性,降低水灰比,提高抗渗性,制成密实的混凝土使碳化减慢。(2)混凝土的碳化还与CO2气体的渗透性有关。经过大量的实践证明:在相同湿度情况下,火山灰水泥或粉煤灰水泥混凝土的渗透速度要比硅酸盐水泥混凝土的渗透速度大。(3)混凝土的碳化与石灰的溶出速度密切相关。石灰的溶出速度取决于水中是否存在影响Ca(OH)2溶解度的物质,如水中含有Na2SO4及少量Mg2+时,石灰的溶解度就会增加,如水中含有Ca(HCO3)2或者Mg(HCO3)2,对抵抗溶出侵蚀十分有利。

2.2.2水灰比

混凝土硬化后,多余的水分蒸发或残留在混凝土中,会提高混凝土内部毛细孔的含量,渗透性提高,因此,CO2气体在混凝土毛细孔中的扩散速度加快,从而将加快混凝土的碳化速度,使混凝土碳化区的碳化深度提高。国内外学者进行了大量的快速碳化实验和长期暴露试验来研究水灰比与混凝土碳化速度的关系。颜承越通过长期暴露试验研究了混凝土碳化速度与水灰比的关系,此关系大致呈线性关系;山东建科院在济南、青岛、佛山进行了室外长期暴露试验及快速试验,得到碳化速度系数与水灰比的关系,并根据济南地区暴露试验给出了碳化速度系数与水灰比的表达式

k12.1w/c3.2

李果等的研究表明,水灰比分别为0.35,0.42,0.55,0.59,0.63,0.74的混凝土,在温度为20℃,相对湿度为70%的条件下,碳化240h,碳化深度分别是8.592mm,11.492mm,13.667mm,15.125mm,20.375mm,22.667mm。可以看出随着水灰比增大,碳化深度明显增加,水灰比从0.35增大到0.74,其碳化速度提高了2.8倍。这是因为混凝土凝固时,水占据的空间会变成微孔或毛细管孔,水灰比越大,混凝土中孔隙越多,越有利于CO2的扩散。

2.2.3水泥用量

目前,水泥用量对混凝土碳化速度的影响,学术界的观点比较统一,增加水泥用量不但可以改变混凝土的和易性,提高混凝土的密实性;另一方面还可以增加混凝土的碱性储备,直接影响混凝土吸收CO2的量,所以水泥用量越大,其碳化速度越慢。蒋利学等人在水灰比均为0。5,温度为20℃,相对湿度为75%,CO2浓度为20%的情况下对水泥用量分别为200 kg/m3,300kg/m3,500 kg/m3的混凝土进行了50d碳化,碳化深度分别是36.6mm,21mm,15.9mm。

2.2.4混凝土强度等级

目前建立的碳化模型大多数都是以水灰比作为反映混凝土品质的主要参数,由于混凝土水灰比与混凝土碳化的物理化学过程有密切联系,因此,碳化速度与混凝土水灰比的相关性很好。其不足之处为:(1)水灰比是决定混凝土性能的一个主要参数,但不能全面反映混凝土的质量;(2)工程技术人员熟悉的是混凝土抗压强度,而在实际工程中,混凝土抗压强度容易测定,但是水灰比很难确切得到。混凝土抗压强度是反映混凝土力学性能的合理指标,它综合反映了混凝土水灰比、水泥品种、骨料品种、水泥用量,施工质量及养护条件等对混凝土品质的影响,混凝土强度高,其密实性好,抗碳化能力强。因此,以混凝土抗压强度为随机变量,建立碳化预测模型更具实际意义。牛荻涛收集了国内外长期暴露试验与实际工程调查的碳化数据64组,将实测数据换算成同一标准环境,以抗压强度为主要参数,建立了便于应用的碳化计算模型。随着混凝土强度的提高,混凝土的碳化深度显著的降低。因为混凝土强度等级越高,混凝土则越密实,CO2的扩散速度则降低,从而使混凝土碳化速度随之降低,混凝土抗碳化能力得到提高。

2.2.5水泥含碱量

水泥含碱量越高,孔溶液pH值越高,碳化速度越快。这是因为:(1)含碱量越高,水泥石中的C-S-H结构越不均匀,毛细孔增多,水泥石中粗大的孔隙增多;(2)含碱量越高,孔溶液中OH-离子浓度越大,碳化后沉积的碳酸钙溶解度减少,即孔溶液钙离子浓度减少,补充钙离子浓度的氢氧化钙晶体得以溶解,加速混凝土碳化。即混凝土的含碱量越高,碳化速度越快。

2.2.5骨料种类

由于粗骨料的形成或生产条件不同,其内部孔隙结构差别很大。普通粗骨料一般为水成岩,火成岩和变质岩经加工而成,其结构致密,吸水性小;天然轻骨料(如浮石、火山渣等)属喷出岩,其结构多孔,称海棉或蜂窝状,吸水率较大;人造轻骨料(如陶粒)孔隙率较大,但多为圆形封闭孔,吸水率较小。总的来说天然砂,砾石,碎石比水泥浆的透气性小,但是轻骨料的透气性大,有利于CO2在混凝土中的扩散。同等条件下,普通混凝土的碳化速度约为轻砂,天然轻骨料混凝土的0.56倍。并且在水灰比相同时,使用粒径大的骨料比使用粒径小的骨料容易碳化。这是由于大石子底部容易产生净浆的离析、沉淀,从而增加了渗透性。

2.2.6氯离子浓度

在钢筋混凝土结构的实际使用中,混凝土的碳化和氯离子的侵蚀是交织在一起的。在含有氯离子的混凝土中,混凝土的碳化深度随氯离子含量增加而下降,游离氯离子与Ca(OH)2作用形成CaCl2,CaCl2具有高吸湿性,将使混凝土内部保持较高的湿度,阻碍碳化的进行,但是研究同时表明:氯离子虽有阻碍混凝土碳化的作用,但在碳化和氯离子共同作用下会使钢筋遭受更为严重的腐蚀。

2.2.7施工质量 混凝土浇筑和养护质量是影响混凝土密实性的一个重要原因。施工因素对混凝土的影响主要是指混凝土搅拌、振捣和养护条件的影响,施工因素主要是通过影响混凝土的密实性来影响混凝土碳化。施工良好的混凝土比较密实,碳化速度小,而施工不良的混凝土由于振捣不密实,养护不善或养护时间不足,会造成混凝土内毛细孔粗大,且混凝土蜂窝麻面比较多,为大气中CO2,水,氧等气体的渗透提供了条件。特别是构件的棱角部位和预应力构件的底部。此外空洞,裂缝,施工缝等也会造成混凝土局部碳化严重。一般来说施工缝下部混凝土碳化速度大于上部混凝土碳化速度,这是由于泌水作用施工缝下层混凝土表面水灰比较大,结构疏松所致。

2.2.8含泥量

混凝土中骨料体积约占混凝土体积的70%左右,骨料质量的好坏对混凝土性能具有十分重要的影响。含泥量就是骨料众多性能指标中的一项,粘土、石粉等微物质是常见的泥分。他们可能引起需水量增加、减弱混凝土性能或更容易被风化、阻碍水泥与骨料胶结的充分发展、妨碍水泥的正常水化或与水泥中成分进行化学反应。大多数骨料中含有一种或几种杂质,其中以粘土和石粉最为常见。它们在混凝土中以种种不同的形式起作用。对混凝土的强度、收缩、徐变、抗渗、抗冻、耐磨等性能往往都会产生不利的影响。

2.2.9外掺加剂

混凝土中掺加减水剂,能直接减少用水量,而引气剂使混凝土中形成很多封闭的气泡,切断毛细管的通路,两者均可以使CO2有效扩散系数显著减小,从而大大降低混凝土的碳化速度。

2.2.10覆盖层

在工程结构中所用的覆盖层一般为可以碳化的砂浆、石膏等,另外还有不含碳化物质的覆盖层,如沥青、涂料、瓷砖等,同济大学的刘亚芹,张誉等通过实验分析了覆盖层对混凝土碳化的影响机理,从理论上推导出考虑覆盖层影响的碳化深度计算公式,并分析了覆盖层各参数对碳化延缓效果的影响。Hart Young Moon等人通过实验证明了覆盖层不但能很好的起到延缓碳化的作用,而且对比有无覆盖层的混凝土发现有覆盖层的混凝土弹性模量也高于无覆盖层混凝土。蒋利学等人在同等条件下分别对无覆盖层混凝土,10mm厚石狄砂浆覆盖层,16mm厚石灰砂浆覆盖层进行了50d碳化,碳化深度分别是17.5mmm,15.1mm,13.5mm。

3.碳化对混凝土的影响

混凝土碳化既会造成混凝土自身物质结构、力学性能的改变,同时也破坏钢筋表面碱性保护膜,导致钢筋锈蚀,从而降低整个结构或构件的耐久性。

3.1对钢筋锈蚀的影响

碳化对钢筋混凝土结构来说最大的危害是由于混凝土pH值的降低破坏钢筋表面的钝化膜使钢筋产生锈蚀。混凝土的护筋机理是,混凝土由于水泥水化,产生了大量的Ca(OH)2等碱性水化产物,混凝土pH值高达12.5~13.5,钢筋表面形成200~1000µm厚的钝化膜,有效地保护了混凝土中的钢筋不被锈蚀。随着碳化反应的进行,pH值逐渐降低,混凝土中的钢筋脱钝,产生锈蚀。过去一直认为碳化要进行到混凝土中钢筋表面时,钢筋才脱钝产生锈蚀,因此常把CO2扩散到钢筋表面的时间作为预测钢筋混凝土结构寿命的一个重要手段。英国著名学者Parrott最先通过试验验证了部分碳化区的存在,很好地解释了在碳化未到达钢筋表面之前钢筋已开始锈蚀的现象,为更好地认识钢筋锈蚀与混凝土碳化之间的关系提供了依据。从碳化对钢筋锈蚀速度的影响来看,当pH>11.5时钢筋处于钝化状态,不发生锈蚀,pH≤9时锈蚀速度不再受pH值的影响,只有当9

3.2对孔结构的影响

碳化时混凝土的孔径和总孔隙率均减少。随着碳化时间的延长,碳化使混凝土的孔隙率降低,早期降低迅速,后期缓慢,且低强度的混凝土更为显著。碳化反应造成了混凝土孔隙率下降,在一定程度上堵塞了部分毛细孔隙,抑制水分侵入,但另一方面使混凝土微观结构重分布,破坏了混凝土基体原先的过滤机制,使得有害物质更容易侵入到混凝土内部。

3.3对腐蚀因子迁移的影响

混凝土碳化使Friedel复盐和硫铝酸盐分解产生的Cl-和SO42-向未碳化区迁移产生浓缩,使得这两种离子在碳化区浓度显著降低,碳化前沿的浓度显著升高,同时混凝土中的Na+、K+等碱金属离子向Cl-和SO42-相反方向迁移和浓缩,致使碳化未到达钢筋表面时钢筋已经开始锈蚀。

3.4对收缩的影响

混凝土碳化时产生较大的收缩,其原因是在干缩产生的压应力下的Ca(OH)2晶体溶解和CaCO3在无压力处沉淀所致,此时加大了水泥石的可压缩性。碳化收缩的诸多影响因素中湿度的影响最大。

3.5对强度的影响

碳化增加了混凝土的质量,使混凝土的强度增大,这是由于混凝土碳化时生成的CaCO3密实了混凝土结构。也有资料表明,碳化对混凝土强度的影响必须分期考虑,碳化在一定程度上改善了混凝土中水泥石的孔结构,使其密实程度得到了一定的提高,其作用在早期超过了水泥的水化作用,致使标准碳化状态下混凝土的早期强度增长很快,但从长期的利益来看,碳化使混凝土产生了一定程度的收缩,造成后期强度发展变得缓慢;一般来说,加速碳化时混凝土始终处于良好的养护环境,而实际的混凝土常常处于干湿循环等恶劣环境中,因此加速碳化时强度有所增加,而实际混凝土结构的强度有所下降。

4.混凝土碳化深度的测试方法

4.1酚酞溶液喷洒方法

目的:简便和迅速测定碳化深度。

概述:劈裂面上喷洒1%酚酞溶液测定碳化深度。

特点:通过测定pH值,间接反映碳化程度,简单方便。

存在问题:劈裂时对构筑物有一定损伤,而且只能判断pH值小于8.6,不能确定混凝土中性化原因。

4.2钻孔法

目的:对构筑物损伤较小,可以迅速测定碳化深度。 概述:电钻钻孔时的粉末洒布于涂刷酚酞溶液的滤纸表面,测定滤纸呈粉红色时的削孔距离。

特点:通过测定pH值,间接反映碳化程度,同时可以在施工现场进行。钻孔孔径10mm就可以,对构筑物损伤小。

存在问题:同喷洒法,不能准确判断混凝土中性化的原因。

4.3热分析法

目的:评价水化物的碳化程度。

概述:用热分析装置将样品从常温加热到1000℃时测定水化产物中的Ca(OH)2和CaCO3的含量。

特点:直接反映水化矿物的碳化程度,可以评价未完全碳化区间碳化程度。 存在问题:只能评价Ca(OH)2的碳化,不能评价C-S-H的碳化。使用石灰岩类骨料或混合材料时,难以确定碳化生成CaCO3的含量。

4.4 X射线物相分析法

目的:测定碳化前后的矿物种类。

概述:用试样对X射线进行衍射,得到发生衍射的晶面距和相对强度,与衍射图谱集卡片对照进行匹配检索,判断碳化前后矿物的结构和名称。

特点:直接反映水化矿物的碳化程度,可评价未完全碳化区碳化程度。 存在问题:定量精度差。

4.5电子探针显微分析法

目的:测定微区碳化状态。

概述:利用EPMA试验装置测定水化物中碳元素分布。 特点:彩图表示碳元素的分布状态,可测定微区碳化状态。

存在问题:适用于截面尺寸小于5cm的样品,试样表面浸渍树脂研磨时,测定的碳含量包括树脂中的碳元素,应予以考虑。

5.混凝土碳化深度的预测模型

近30多年来,混凝土碳化深度的预测模型一直是混凝土材料和结构界研究的热点问题,国内外的学者纷纷提出了各种碳化预测模型,多达数十种。这些模型基本上可以归为三种类型:基于扩散理论建立的理论模型;基于碳化试验建立的经验模型;基于碳化理论与试验结果的碳化模型。

5.1基于扩散理论的理论模型

该类模型都做了如下的基本假设:CO2 在混凝土的孔隙中的扩散遵守Fick第一定律JDdCdt。CO2 从混凝土表面向混凝土内部扩散,其浓度呈线性降低。忽略部分碳化区内混凝土的碳化影响,即假定存在一个碳化界面,界面两侧物质的浓度是常量。

5.1.1阿列克谢耶夫模型

前苏联的阿列克谢耶夫等人在深入分析碳化的多相物理化学过程后,认为控制混凝土碳化速率的是CO2 在混凝土孔隙中的扩散过程。根据Fick第一定律以及CO2在多孔介质中的扩散和吸收特点,得到如下的混凝土碳化理论数学模型

XKt2DCO2CCO2MCO2t

式中:X为碳化深度,K为碳化速率系数,t为碳化时间,DCO2为CO2在混凝土中的扩散系数,CCO2为混凝土表面的CO2的浓度,MCO2为单位混凝土能吸收的CO2的量。

5.1.2 Papadakis模型

希腊学者Papadakis等人在分析研究碳化的整个物理化学过程后,根据CO2及各可碳化物质(Papadakis 认为Ca(OH)

2、C-S-H、C2S 和C3S 都是可碳化物质)在碳化过程中的质量平衡条件,建立了偏微分方程组,经适当的简化,得到

X2DCO2CCO2CCa(OH)23CCSH3CC3S2CC2S

式中:CCa(OH)2,CC-S-H,CC3S,CC2S分别为Ca(OH)2,C-S-H,C2S,C3S的初始浓度。

5.2基于碳化试验建立的经验模型

5.2.1基于水灰比的经验模型

日本学者岸谷孝一基于碳化试验和自然暴露试验,提出了预测公式

ωc>0.6时,Xrcrars-

1c10.2510.3(1.153c)4.6c1t,

ωc≤0.6时,Xrcrars-1

1.76t,

7.2式中:ωc-1为水灰比,rc为水泥品种影响系数,ra为骨料品种影响系数,rs为混凝土掺加剂影响系数。

5.2.2基于水灰比和水泥用量的经验公式

由于基于水灰比的经验公式只考虑了水灰比的影响,而没有考虑可碳化物质含量的影响,一些学者提出了考虑水灰比和水泥用量的经验公式。

黄士元等提出了预测公式

ωc-1>0.6时,x104.27kkcωc-1≤0.6时,x73.54kkc0.54kw0.47t, t,

0.83kw0.43式中:k为水泥品种影响系数,普通硅酸盐水泥取1.0,矿渣水泥取1.43,掺粉煤灰硅酸盐水泥取1.56,掺粉煤灰矿渣水泥取1.78,kc,kw分别为水泥用量和水灰比影响系数,kc=(-0.0191C+9.311)×10-3,kw=(9,844wc-1-2.982)×10-3。

5.2.3基于混凝土强度的经验模型

Lesache de Fontenay C研究了混凝土外加剂、混凝土组成和暴露条件对碳化的影响,得到了混凝土强度与碳化深度之间的关系

X[6800(F2825)1.56]t, 式中:F28为28d抗压强度9MPa。 Smolczyk的经验公式

X250(Rc121Rg2)t,

式中:Rg为假定不碳化混凝土的极限强度,Rg=625kg/cm2,Rc为混凝土的抗压强度。

5.2.4基于扩散理论与试验的预测模型

同济大学的张誉等人在Papadakis碳化机理的基础上,推导出碳化深度预测的实用数学模型,然后通过试验验证与修正,得到一个将扩散理论和试验数据结合起来的预测公式

X839kRHkCO2kTkS(1RH)1.1(cc)10.34HDccCCO2t,

式中:kRH为环境湿度影响系数,kCO2为环境CO2浓度影响系数,kT为环境温度影响系数, γHD为水泥水化程度修正系数,90d养护取1.0,28d取0.85,γc为水泥品种修正系数,硅酸盐水泥取1.0,其他取1.0为掺合料含量,ks为应力状态影响系数。

5.3预测碳化深度的随机模型

混凝土碳化是个复杂的物理化学过程,由于建筑物所处环境和混凝土本身质量都有很大的随机性,因此混凝土的碳化深度也具有很大的随机性。因此,又有人提出了混凝土碳化的随机模型。

统计研究表明,混凝土的碳化深度服从正态分布,混凝土的一维概率密度函数可以表示为

fx(x,t)12x(t)exp{[xx(t)]2[x(t)]22},

式中:μx(t)为混凝土碳化深度的平均值函数,σx(t)为混凝土碳化深度的标准差函数,t为碳化时间。

混凝土碳化的随机模型

xkmckjkCO2kpkskckft,

式中:kmc为计算模式不定随机变量,主要反应碳化模型计算结果与实际测试结果之间的差异,同时也包含其他一些在计算模型中未能考虑的随机因素对混凝土碳化的影响,kj为角部修正系数,角部取1.4,非角部取1.0,kCO2为CO2浓度影响因素,kp为浇注面影响系数,主要考虑混凝土在施工过程中振捣、养护和拆模时间对碳化的影响,对浇注面取1.2,ks为工作应力影响系数,受拉取1.1,受压取1.0,kc为环境因子随机变量,主要考虑环境温度和相对湿度对碳化的影响,kf为混凝土质量影响系数。

6.混凝土碳化的防治措施

6.1碳化混凝土的处理

碳化会对混凝土结构产生很大的危害,对于已碳化或正在碳化的混凝土要根据混凝土的碳化程度进行处理,使之正常服役。

对于碳化程度不同的混凝土的处理方法也不一样,对碳化深度过大,钢筋锈蚀严重,危及结构安全的构件应该进行拆除重建;对于碳化深度小于钢筋保护层厚度的混凝土结构,可以用优质涂料进行封闭处理;对于碳化深度大于钢筋保护层厚度或碳化深度虽然小但是疏松脱落的,应该凿去碳化层,再浇注高强度等级混凝土;对于钢筋锈蚀严重的,应在修补前除锈或加筋。

6.2碳化预防措施

混凝土碳化主要是由于混凝土中碱性物质受到来自外界的酸性CO2 气体的侵蚀后造成的,因而预防混凝土碳化的措施也主要是阻断CO2 入侵混凝土碱性介质的途径。

目前常用的混凝土碳化防护措施主要有以下方面:

6.2.1涂保护层

在混凝土表面涂一层密封层,例环氧基液涂层、聚脲弹性体等,使得混凝土不与空气及水接触,可以有效的防治混凝土的碳化。

6.2.2严格控制水灰比

水灰比小的混凝土水泥浆的组织密实,透气性小,即有较好的抗渗性,因而碳化速度慢。所以在拌制混凝土时,在满足设计要求和施工要求的情况下,尽量降低水灰比,减少用水量,增加密实度,提高混凝土的抗渗性。为此,可掺引气型的高效减水剂,一方面使混凝土内部产生均匀、稳定、互不连通的微小气泡,阻止了CO2的渗透,另一方面也大大减少了混凝土的用水量,增加了混凝土的密实度,提高了抗渗性。

6.2.3严格选材

在选择原料时严格控制原材料的质量,施工时要选择生成Ca(OH)2多的水泥,以减慢混凝土的碳化速度。

6.2.4控制施工质量

混凝土浇筑与养护质量是影响混凝土碳化的重要因素,混凝土浇筑不规范,振捣不密实,以及养护方法不当、养护时间不足,都会造成混凝土内部毛细孔道粗大,使水、空气、侵蚀性化学物质进入混凝土内部,从而加速混凝土的碳化和钢筋腐蚀。严格控制施工质量,可以有效地减缓混凝土碳化速度,提高耐久性。密实度好的混凝土其抗碳化能力也越高。

7.结语

经过广大专家和科研院所的不断努力,人们已经开始重视混凝土碳化问题并有了一定的认识,为进一步推动混凝土碳化的研究,针对其中存在的问题提出几点看法:(1)研究中缺乏系统性和整体性,重复性研究过多,基础性和理论性研究没有重大突破;(2)混凝土碳化问题牵涉很广,有必要进行无机非金属材料、力学和数学等专业的合作研究;(3)现行的混凝土碳化数学模型大多存在缺陷,适用范围窄,必须重新建立综合考虑影响混凝土碳化因素的数学模型,用来预测混凝土碳化问题;(4)对部分分歧较大的混凝土碳化研究成果,尚需进一步验证研究。

上一篇:诗歌鉴赏饮酒范文下一篇:十个十个的数范文