高尔夫球表面流体力学

2022-11-22

第一篇:高尔夫球表面流体力学

关于表面活性剂对水基纳米流体特性影响的研究进展论文

在能量传递研究及应用技术方面,纳米流体作为一种新型换热工质已获得关注。目前,关于纳米流体,主要从其制备、稳定性、热物性及传热传质等方面研究。稳定的纳米流体是进行各种研究及应用的基础。由于悬浮于流体中的纳米粒子有热力学不稳定性、动力学稳定性和聚集不稳定性的特点,因此如何保持粒子在液体中均匀、稳定地分散是非常关键的问题。常用的纳米流体分散技术里表面活性剂对纳米流体特性的影响是研究的热点之一。

表面活性剂的分子结构具有不对称性,即亲水性的极性基团和憎水性的非极性基团。根据其在水中能否电离将其分为离子型和非离子型表面活性剂,根据离子型表面活性剂生成的活性基团,又将其分为阴离子和阳离子表面活性剂。纳米流体中表面活性剂的选择主要考虑基液、表面活性剂的种类和浓度。在水基纳米流体中,常见的表面活性剂有阴离子型的十二烷基硫酸钠(SDS)和十二烷基苯磺酸钠(SDBS)、阳离子型的十六烷基三甲基溴化铵(CTAB)、非离子型的辛基苯酚聚氧乙烯醚(OPE)和聚乙烯吡咯烷酮(PVP)。 表面活性剂对纳米流体特性的影响主要从种类和浓度来考虑。针对已有的研究,总结和分析表面活性剂对纳米流体稳定性和热物性影响的实验研究,并从机理对其进行更深层次的研究。同时针对目前的研究现状,提出了未来相应的研究方向。

1 表面活性剂对流体稳定性的影响

表面活性剂对纳米流体稳定性起着重要作用。已发表的文献中,重点研究其种类和浓度对纳米流体稳定性的影响。由于影响纳米流体稳定性的因素非常多,各因素之间的相互影响不同,实验所得的研究结果存在一些差异。

李金平等提出了水基纳米流体中选择表面活性剂的一些建议,研究了表面活性剂聚乙烯醇(PVA)和 SDBS 对 Cu、Ag 和 TiO2纳米粒子悬浮液分散稳定性的影响,得出 PVA、SDBS 及两者的混合能够使 Cu、Ag 纳米流体稳定悬浮,而不能使TiO2纳米流体保持 1h 以上的稳定悬浮。作者分析认为 TiO2纳米流体中粒子吸收光能后,在表面生成的两种化学性质很活泼的自由基抑制了表面活性剂的吸附,即表面活性剂在粒子表面没有发挥作用。PVA 和 SDBS 的混合产生的效果很好,但不清楚其混合比。

李兴等依次制备了无表面活性剂、添加SDBS、CTAB 和 PVP 三种表面活性剂的水基 TiO2纳米流体,静置 24h,进行常温下的粒径和 Zeta 电位测试来表征纳米流体的稳定性,得出纳米流体的稳定性由强到弱的排序,依次是TiO2-SDBS-H2O,TiO2-PVP-H2O,TiO2-H2O 和 TiO2-CTAB-H2O。与李金平等[10]关于SBDS对TiO2纳米流体稳定性的研究结果存在分歧,分析认为可能是纳米粒子的来源、纳米流体的制备方法、稳定性表征的方法及添加的表面活性剂的浓度等之间的差异导致的结果。

郝素菊等采用离心分散法研究 SDBS、CTAB 及乳化剂聚乙二醇辛基苯基醚(OP)对水基碳纳米管纳米流体的稳定性的影响,结果由强到弱依次是乳化剂 OP、CTAB 和 SDBS。同时研究了其浓度对流体稳定性的影响,表明存在最佳的浓度值使得流体的稳定性最佳,SDBS、CTAB 和乳化剂OP 三种表面活性剂的最佳浓度分别为 3.0g/L,1.6g/L 和 1.56g/L。朱冬生等[13]有关SDBS及其浓度变化对水基 Al2O3纳米流体悬浮稳定性的结果与此相似。通过 Zeta 电位和吸光度的表征,得出浓度对流体稳定性有重要影响,最佳的 SDBS 质量分数为 0.1%。林海斌等[14]研究表明纳米粒子 γ-Al2O3对表面活性剂 PEG600 存在一个饱和吸附值,且在该值附近纳米流体的稳定性最好。

程波等研究了表面活性剂OP-10及其浓度的变化对炭黑-氨水纳米流体悬浮稳定性的影响。结果表明,OP-10 及其浓度变化都影响流体稳定性,纳米颗粒的团聚现象随OP-10浓度的增加而改善,加入 2%、3%和 4% OP-10 的纳米流体在 7 天后出现了纳米颗粒沉积,晃动试管后颗粒会重新分散。

Yang 等制备了含表面活性剂 OP-10 的炭黑-氨水纳米流体和含表面活性剂 SDBS 的 Al2O3-氨水纳米流体,用吸光度进行表征,得出随着表面活性剂浓度的增加,纳米流体稳定性先增加后减小,OP-10 和 SDBS 的最佳质量分数依次是 0.3%、0.1%。且表面活性剂 OP-10 对炭黑纳米粒子的吸附存在一个反应时间。

宋晓岚等研究了混合表面活性剂对水基CeO2纳米流体的分散稳定性的影响,混合表面活性剂为 CTAB+Tween80(1∶1),SDBS+Tween80(1∶1)。结果表明,含混合表面活性剂的流体均比只含一种表面活性剂的流体的 Zeta 电位值高,即混合表面活性剂对纳米流体的稳定性影响更 好 , 且 含 SDBS+Tween80 的 溶 液 大 于 含CTAB+Tween80 的溶液的 Zeta 电位绝对值。王赛等[18]的研究也表明混合表面活性剂对纳米流体的稳定性影响更好。

综上所述,表面活性剂的种类和浓度是影响纳米流体稳定性的重要因素,存在最佳浓度值使得所制备的纳米流体分散稳定性最佳。为了得到更加稳定的纳米流体,混合表面活性剂及其混合的比例可以作为一个研究方向。

2 表面活性剂对流体稳定性影响的机理

在实验研究的同时,学者们还深入研究了表面活性剂使得纳米流体分散稳定的作用机理,主要包括静电稳定机理和空间位阻效应,解释如下[25]。

(1)表面活性剂吸附在纳米颗粒表面,增加了粒子之间的距离,减小了Hamaker常数,从而降低纳米粒子之间的范德瓦尔斯引力势能。

(2)表面活性剂吸附在纳米颗粒表面形成双电层,当两粒子的双电层不重叠时,粒子被反离子完全屏蔽,两粒子双电层之间处于静电平衡状态,颗粒之间无任何斥力。当两粒子的双电层发生重叠,粒子不能被反离子完全屏蔽,粒子间的双电层静电平衡状态被破坏,粒子间的双电层斥力增加。

(3)表面活性剂吸附在纳米颗粒表面形成吸附层,吸附层的重叠会产生一种新的斥力势能阻止纳米颗粒发生团聚,这种新的斥力势能称为空间斥力势能,这种稳定作用称为空间稳定作用。

李兴等测量和分析了含表面活性剂的 TiO2纳米流体中纳米粒子表面的吸附层厚度与结构。分析认为, SDBS 和 CTAB 都通过“静电稳定机制”使纳米粒子稳定悬浮于溶液中。SDBS 先在水中电离产生带负电的极性头端,吸附于带正电的 TiO2纳米颗粒表面,疏水尾端指向水基液。然后其疏水尾端相结合,极性头端指向水基液。这种结构增加了颗粒间的静电排斥力,减小了其团聚趋势,使得体系拥有良好的分散稳定性。而CTAB 则以疏水尾端与纳米颗粒表面结合,极性头端指向水基液,在颗粒表面形成不稳定的单层吸附。且体系中 CTAB 的浓度超出了其临界胶束浓度,形成了大量胶束,胶束之间的渗透压作用使得 TiO2纳米颗粒相互吸引,从而大大降低体系的分散稳定性。PVP 通过“空间位阻稳定作用”使 TiO2纳米颗粒分散悬浮于水基液中。PVP分子中疏水性的亚甲基非极性基团将会吸附在 TiO2纳米颗粒表面,而亲水性的内酰胺极性基团会伸展在水中,这种结构使得体系保持较好的分散稳定性。

Yang 等研究了纳米流体中表面活性剂在纳米颗粒表面的吸附形式,即单层吸附和双电层吸附。对于非极性单质纳米颗粒,如 Cu、CNTs、CB,在溶液中不发生电离,其表面吸附形式是单层吸附。图 2(a)为在单层吸附形式下表面活性剂对纳米颗粒的作用。当纳米颗粒添加到无表面活性剂的溶液中时,纳米颗粒的高比表面积和比表面能,布朗运动及范德瓦耳斯力使得粒子碰撞团聚。加入少量的表面活性剂时,其分子的非极性碳氢链吸附于颗粒的表面,此时颗粒通过表面活性剂分子的空间位阻效应而分散在溶液中。然而,由于吸附层的不饱和性,此时溶液是不稳定的。当添加适量的表面活性剂时,表面活性剂分子的亲水端完全垂直地延伸到水相中,在颗粒表面形成稳定的单层吸附。

金属氧化物纳米颗粒,如 Al2O3、Fe2O3、CuO和ZnO,在水中发生电离,与在水中完全电离的离子型表面活性剂相连接,其表面吸附形式为双电层吸附。图 2(b)表示在双电层吸附形式下表面活性剂对纳米颗粒的作用。当添加少量的表面活性剂时,纳米流体的稳定性增强,纳米粒子的表面电荷因吸附表面活性剂而减少。当添加适量的表面活性剂,粒子表面的正负电荷平衡,过量的表面活性剂吸附在疏水端末尾的链表面上,其亲水端进入溶液中,纳米颗粒再一次带电,形成双电层吸附,其强烈的静电阻力使得纳米流体保持稳定分散。

宋晓岚等研究了混合表面活性剂分散纳米CeO2颗粒的协同作用,得出了一个两步吸附理论:①强吸附性离子表面活性剂的极性基团在极性纳米 CeO2颗粒表面的吸附,很大程度上增加 Zeta电位,从而产生静电稳定作用;②非离子表面活性剂吸附在纳米 CeO2颗粒表面,其碳氢链相互作用并延伸到水中产生空间位阻稳定作用。低浓度时,表面活性剂以离子交换或离子对方式在固-液界面上发生单分子吸附,其离子头吸附在固体表面上,疏水的碳氢链则深入到溶液中。添加适量的表面活性剂浓度时,粒子表面的碳氢链与溶液中表面活性剂离子碳氢链间的相互作用产生了疏水吸附,形成双分子层聚集体。随着浓度的增大,混合表面活性剂开始形成胶团,而非离子表面活性剂此时往往是通过形成氢键而吸附。

包楚才等研究了表面活性剂 CTAB、SDBS和 PEG2000 对 CdSSe-H2O 纳米流体稳定性的影响,且提出了 SDBS 在带负电荷的纳米粒子 CdSSe表面的竞争吸附理论。分析认为,阴离子表面活性剂在CdSSe表面是双电层吸附。当表面活性剂浓度较低时,SDBS 负离子会挤占颗粒表面的 Na+位置而吸附在颗粒表面,使得颗粒总体负电位更强,颗粒间的斥力增大,纳米流体实现稳定分散。当阴离子表面活性剂浓度较大时,大量的 Na+被挤进吸附层,与分散剂分子发生竞争吸附,降低悬浮液稳定性。

总的来说,无论一种表面活性剂还是混合表面活性剂,其对纳米颗粒的作用机理都离不开静电稳定机制和空间位阻效应,且已发表文献主要从纳米颗粒类型,表面活性剂种类和浓度三方面进行研究。此外,从分子的微观运动角度出发,可以采用分子动力模拟方法等更深一步的研究表面活性剂对纳米流体的稳定性影响的机理。

3 含表面活性剂的水基纳米流体的热物性

3.1 表面活性剂对纳米流体的热导率的影响

纳米流体的热导率一直是实验研究的焦点。由于纳米粒子的特殊性,纳米流体的热导率受到粒子种类、形状、粒径、浓度、基液和稳定方式等因素的影响。已有的纳米流体热导率数学模型,均基于粒径、粒子形状、布朗运动和界面层等因素而建立。目前,关于表面活性剂对纳米流体热导率的影响的文献比较少。下面是常用纳米流体热导率数学模型的总结和含表面活性剂的纳米流体的热导率的实验研究,为后续的研究者提供参考。

Yang 等研究了不同种类的表面活性剂对纳米颗粒界面层厚度的影响,提出了包含表面活性剂影响的热导率模型,其中当颗粒表面为单分子层吸附时,界面层厚度为分子链长度;当颗粒表面为双电层吸附时,界面层厚度为分子链长度的两倍。虽然在低浓度纳米流体中,计算值与实验值比较一致,但多个变量的存在,使得表面活性剂对纳米流体热导率的影响还需深入研究。

Li Xinfang 等研究的表面活性剂 SDBS 的浓度对溶液热导率的影响,表明 SDBS 对纯水和水基铜纳米流体热导率的影响基本一致。随着SDBS 浓度的增加,溶液的热导率先增加后减小,分界点浓度为 0.03%。Zhou 等的研究结果与 Li Xinfang 一致,溶液热导率最高点对应的 SDBS 的浓度为 0.03%。

Wusiman 等研究了表面活性剂SDBS和SDS对水基多壁碳纳米管流体的热导率的影响。研究表明,在只添加表面活性剂的溶液中,溶液的热导率降低。与纯水相比,在碳纳米管和表面活性剂共存的溶液中,仅添加0.25%SDBS的0.5%CNTs纳米流明 SDS 对纳米流体热导率影响不大,且在低浓度时,溶液热导率最低。分析认为实验结果相反的原因可能是纳米流体的制备方法,稳定性及纳米粒子属性等存在差异。

影响纳米流体热导率的因素非常多,因此研究某种因素对纳米流体热导率的影响对建立模型及实际应用有重大意义。以上文献分别从表面活性剂种类和浓度方面对溶液热导率的影响进行了实验研究,但由于众多因素的存在,实验结果存在分歧。因此,需要更多的表面活性剂对纳米流体热导率影响的实验,为建立更加合适的数学模型做基础。

3.2 表面活性剂对纳米流体的黏度的影响

黏度是流体运输中的另一重要参数,研究纳米流体黏度的变化规律对其在实际的能量运输中的应用非常重要。已发表文献从纳米粒子体积分数、大小、形状及基液属性和温度等方面对流体黏度的影响进行了实验研究,建立的模型。而表面活性剂对纳米流体黏度的影响研究的较少。

Zhou 等研究了表面活性剂及浓度对溶液黏度的影响。PVP 溶液的黏度随着其浓度的增加而增加;SDS 和 SDBS 对溶液黏度的影响趋势一致,质量分数低于 0.05%时,黏度随其浓度的增加而增加,质量分数高于 0.05%时,黏度先减小再增加;溶液黏度随 CTAB 浓度的增加先降低再升高。分析认为分子链的长短及多少是影响流体黏度的因素。高浓度的表面活性剂会形成胶团影响溶液的黏度。

Yang 等研究了表面活性剂 SDBS 和 OP-10的浓度对氨水溶液动力黏度的影响。结果表明,存在最佳的浓度值,使得溶液动力黏度最低。当大于该值时,溶液的动力黏度随表面活性剂浓度的增加而增加。并建立了单层吸附和双电层吸附形式下的动力黏度模型。结果表明,表面活性剂的浓度及类别是影响纳米流体黏度的重要因素。

Li 等研究了表面活性剂 SDBS 对Cu-H2O 纳米流体黏度的影响,表明 SDBS 的浓度影响纳米流体的表观黏度,随着其浓度的增加,纳米流体的黏度轻微的增加。Ghadimi 等关于 SDS对 TiO2纳米流体的黏度的影响有相似的趋势。

以上研究表明,表面活性剂会增加溶液的黏度。随着浓度的增加,不同种类的表面活性剂对纳米流体的黏度影响不一致。关于添加表面活性剂的流体的黏度模型,还需要更多的实验研究。

4 结 语

纳米流体作为一种新型的换热工质,已经成为关注的焦点。本文主要总结和分析了表面活性剂对纳米流体稳定性影响的相关实验研究,及其对纳米颗粒的作用机制。然后总结了纳米流体中热导率和黏度计算的相关模型,及表面活性剂对流体热物性影响的实验。研究结果表明,表面活性剂的种类和浓度对纳米流体的稳定性存在着重要影响。存在最佳的表面活性剂浓度使得纳米流体的稳定性最佳。众多不确定因素,如制备方法,流体稳定性,颗粒属性等,使得有关表面活性剂对纳米流体的稳定性和热物性的实验结果存在分歧,热导率和黏度的理论模型难以确定。因此,对于表面活性剂对水基纳米流体特性的影响,提出以下的建议。

(1)混合表面活性剂对纳米流体的稳定性影响较好,但关于混合的表面活性剂对纳米流体的热导率和黏度的影响没有相关实验研究。因此,可以从混合的表面活性剂的组合及其比例两方面进一步研究含表面活性剂的纳米流体的稳定性和热物性。

(2)运用分子动力模拟等方法,进一步研究表面活性剂对纳米流体稳定性影响的微观机制。

(3)表面活性剂影响纳米流体的稳定性、热导率及黏度。但流体的稳定性和热导率及黏度之间的是否存在一定的关系,是需要解决的问题。

(4)纳米流体中存在着众多不确定因素,实现这些因素的量化分析对表面活性剂对纳米流体的稳定性、热导率和黏度的研究有重大影响。

第二篇:表面工作不会永远

——第三次内务检查有感

拉练过后,踏着疲惫但快乐的步伐回来。途径宣传栏,无意间发现第三次内务评比出来了。

脑子在一阵空白之后跳出四个字:内务评比,闪着大大的问号。

大家一片茫然,这个成绩更使我们哀伤,倒数第三。

脑中浮现出早晨匆忙下楼时留下的场景,凌乱的床褥,凌乱的桌子,凌乱的地板。。。。。。我无法想象检查的教官走到我们寝室时的表情,那个分数的来历。

记得,昨晚,我们还在寝室里胸有成竹的说,每天肯定不会来检查内务了,我们不必整理了,现在回想起来真可笑,以为一切皆在我们掌控之中,却忘记了今天是规定检查的日子。昨日在大家共同努力下获得的第二名还历历在目,而今天却成了倒数。一路上我思索着这些问题竟觉得很讽刺。

是什么使我们从昨日的亚军宝座跌到了最后的位子?

我知道了,我知道。

昨日因为指导员的反复提醒,所以我们记得整理内务。而今天呢,今天的内务检查只在提过一次,因为大家的满不在乎,所以没人记得。知道要检查内务,大家把东西都塞进柜子里,花许多时间整理书桌,将被子叠得跟豆腐块一样。

记得二排长经常说,整齐的内务是美好一天的开始。我相信最初安排内务这项活动的原意是让我们养成良好的内务习惯,让我们变得有纪律,让我们学习军人的生活,让我们更好适应集体生活,让我们在军训时学到一生获益的东西。而我们呢?在检查内务前才开始整理,完全是为了整理而整理,将这件事变得那么形式化,失去了最初的意图。我们在应付别人,争取所谓的成绩,到最后,我们欺骗的还是自己,这种表面化的作风不会长久,就像这次内务检查,赤裸裸的揭露了我们的懒散的本质。正所谓纸包不住火,假象掩盖不了事实。我们可以欺骗别人一时,但我们不能欺骗别人一世。唯有做真实的人,做真实的事,才能打动别人,感动自己。

未来,我们拥有很多机会,一味的表面工作只会吓跑每一次机会,我们要做一个真实的人,尽管我们会时常在角落处:我们要做一个真实的人,尽管我们不太容易被记住。但请相信,日久见人心,一个真实的人,总会是最后微笑的那一个,表面工作不会长久。六连二排三班黄颖

第三篇:地球表面的地形

《地球表面的地形》说课稿

刘志红

一、说教材

《地球表面的地形》一课是教科版小学科学五年级上册第三单元《地球表面及其变化》的起始课。本课的主要教学内容是让学生知道五种主要地形的特点及学会观看地形 图,并根据不同的方法分析判断某个地方属于什么地形。从单元中看本课,本课是本单元学习的基础,将引发学生讨论和交流有关地球表面地形地貌及其变化的一些 话题。激发学生对本单元内容的学习兴趣。为以后学习地球内部运动和外力作用引起的地表变化奠定基础。

二、说教学目标

科学概念:

1、地形包括高原、丘陵、盆地、山地、平原等。

2、地球表面有山地、高原等多种多样的地形地貌,地球表面是高低起伏、崎岖不平的。 过程与方法:

1、观察描述常见地形的特点。

2、会看简单的地形图,能在地形图上指认如高原、平原、沙漠、海洋等的地形。 情感、态度、价值观: 培养对地球表面地形研究的兴趣,能自觉关注和收集相关的信息。

三、 说教学重点和难点

教学重点:

知道典型地形地貌的特点。 教学难点:

从地形图中发现整个地球地表地形地貌的分布和特点,知道并描述各种地形地貌的特点。

四、说教法

这节课采用的主要教学方法有“任务驱动”、“合作探究法”等。在课堂教学中,教师应启发、诱导贯穿始终,充分调动学生的学习积极性,注意调节课堂教学

五、说学法

本节课的教学以学生为中心,学生按“接受任务-探究学习-运用解决”学习路径进行探究学习,学生在学习过程中完成知识的传递、迁移融合,发展学生的能力,训练学生的思维。

六、说教学过程

(一) 激发兴趣,初步感知地形特征:

兴趣是最好的老师。开课伊始,课件出示老师到外地旅游的照片。请学生说说是什么样的地形及特点。教师补充介绍了它的地形及特点。美丽的风景吸引了学生,激发了学生的学习兴趣。学生兴趣盎然地说出自己曾去过哪些地方旅行,有什么特点,知道是什么地形吗?

(二) 说说议议,初步探究地形特征:

科学课堂教学应是对生活中科学知识的探究学习,联系生活学习是最有价值最有效的学习方法,更能激发学生在生活中探究科学的积极性。在这一环节中,请2-4名学生带着照片,把他们亲自去过的地方介绍给大家。请说说地形地貌的类型特征。

(三) 归纳总结,深入探究地形特征:

学生对自己的生活有了初步的认识后,老师及时地讲解帮助学生形成正确的概念。老师出示典型的地形地貌的课件,讲解各种地形地貌的特点。

山地:地势高而崎岖,峰峦高耸

丘陵:海拔不高,山顶浑圆

平原:地平而寛广

高原:海拔较高,地面开阔或有丘陵起伏

盆地:周围山地,高原环绕,中间地势较低

„„

学生对这些典型的地形地貌有了正确的认识后,老师再引导学生来了解自己家乡黄石是什么地形,它有什么特点?并完成书中46页的表格。

完成以上教学任务以后,老师进行归纳小结,并拓展思维板书课题:我国有哪些地形?整个地形表面的地形又是什么样的?

(四) 观察地图,拓展学生视野:

1 出示地球仪,请学生上台观察:你发现了什么?不同的颜色代表了什么? 2 老师讲解地形图的相关知识:

①地形图是用符号和颜色来表示地球表面地形地貌

②图上有比例尺和图例

③不同颜色来表示不同高度地形

3 学生分组观察地形图:

4 小组汇报:

5 老师小结:出示世界地形和中国地形

以上环节的教学拓展了学生的视野,提升了学生探究世界地形、中国地形的学习兴趣,将课堂学习延伸于课堂之外。

(五) 展开讨论,布置学习任务:

通过以上学习,学生已懂得了地形表面的地形特点。再次师生共同讨论:关于地球表面,我们还知道什么?如地球表面还在长高吗?„„

老师小结后布置作业:地球表面的地形会不会发生变化?是什么神奇的力量在使她发生变化呢?请同学们完成以下作业:

① 收集不同地貌的照片和相关资料

② 收集有关火山和地震的资料

七、说教学反思

本节课兴趣引路,学生合作探究,有效地完成了本节课的教学任务。但因教师准备不充分出现了教学失误,而且学生合作探究的实效性还有待提升。

第四篇:表面处理方法

表面处理的概念:

拼音:biaomianchuli,英文:surface treatment

在基体材料表面上人工形成一层与基体的机械、物理和化学性能不同的表层的工艺方法。表面处理的目的是满足产品的耐蚀性、耐磨性、装饰或其他特种功能要求。

对于金属铸件,我们比较常用的表面处理方法是,机械打磨,化学处理,表面热处理,喷涂表面,

钕铁硼磁性材料表面处理,全新的稳定成熟,高效率低成本的处理工艺,优于磷化处理

钕铁硼磁性材料是钕,氧化铁等的合金。又称磁钢。

钕铁硼磁性材料牌号有:N30~N52;30H~50H;30SH~50SH;28UH~40UH;30EH~35EH等。

第三代稀土永磁钕铁硼是当代磁铁中性能最强的永磁铁。它的BHmax值是铁氧体磁铁的5-12倍,是铝镍钴磁铁的3-10倍;它的矫顽力相当于铁氧体磁铁的5-10倍,铝镍钴磁铁的5-15倍,其潜在的磁性能极高,能吸起相当于自身重量640倍的重物。

由于钕铁硼磁铁的主要原料铁非常便宜,稀土钕的储藏量较钐多10-16倍,故其价格也较钐钴磁铁低很多。

钕铁硼磁铁的机械性能比钐钴磁铁和铝镍钴磁铁都好,更易于切割和钻孔及复杂形状加工。

钕铁硼磁铁的不足之处是其温度性能不佳,在高温下使用磁损失较大,最高工作温度较低。一般为80摄氏度左右,在经过特殊处理的磁铁,其最高工作温度可达200摄氏度。

由于材料中含有大量的钕和铁,故容易锈蚀也是它的一大弱点。所以钕铁硼磁铁必须进行表面涂层处理。可电镀镍(Ni), 锌(Zn), 金(Au), 铬(Cr), 环氧树脂(Epoxy)等。

钕铁硼钝化剂,

阻止生锈及产生花斑,

主要成分:金属表面钝化剂、沉膜剂、表面活性剂、缓冲剂、聚和剂等`。

简 称:Royce-799系列

适用范围:适用于钕铁硼材质、铸铁、粉未冶金等多种材质的表面直接钝 化使用

物理化学性质:

物性外观 浅黄色透明液体状物

PH 7.0-9.0

沉膜剂 >20%

钝化剂 >20%

其他活性剂 >4%

特 性:

本产品是昆山瑞仕莱斯公司研发部门专门针对钕铁硼材质的磁性材料开发的新型高效环保型钝化剂指标符合RoHS指令;药剂具特殊的缓冲体系,克服工件表面及内部的腐蚀,钝化效能稳定。

该产品使用简单、方便,具有长时间放置在空气中不生锈的特点,其钝化膜均匀,呈均匀的本色金属光泽膜,其钝化膜为晶格歪曲的平面Υ-Fe3O4。普通钢铁材钝化后可通过盐雾测试96小时,达九级以上。

使用方法:

1. 使用工艺

处理浓度 原液使用

处理温度 常 温

处理方法 浸 泡

处理时间 100-300秒

2.处理流程(参考工艺操作说明)

工件脱脂---------水洗---------酸洗-------水洗----------侵入Royce-799钝化剂(120-180s)--------Royce-789封闭剂(10-20s)----------烘烤。

注意事项:

1. 严禁药剂与酸碱直接接触;

2. 本产品不宜与人体直接接触,详见MSDS;

本品贮存注意:避光、阴凉、干燥。

昆山瑞仕莱斯水处理科技

表面处理的种类

基於不同物质的表面性质有差异,而完成品所需表面新的性质要求也各有不同,所以表面处理过程有很多种类。如:

• 镀(Plating)

• 电镀(Electroplating)

• 自催化镀(Auto-catalytic Plating),一般称为"化学镀(Chemical Plating)"、"无电镀(Electroless Plating)"等

• 浸渍镀(Immersion Plating)

• 阳极氧化(Anodizing)

• 化学转化层(Chemical Conversion Coating)

• 钢铁发蓝(Blackening),俗称"煲黑"

• 钢铁磷化(Phosphating)

• 铬酸盐处理(Chromating)

• 金属染色(Metal Colouring)

• 涂装(Paint Finishing),包括各种涂装如手工涂装、静电涂装、电泳涂装等

• 热浸镀(Hot dip)

• 热浸镀锌(Galvanizing),俗称"铅水"

• 热浸镀锡(Tinning)

• 乾式镀法

• PVD 物理气相沈积法(Physical Vapor Deposition)

• 阴极溅射

• 真空镀(Vacuum Plating)

• 离子镀(Ion Plating)

• CVD 化学气相沈积法(Chemical Vapor Deposition)

• 其他: 表面硬化、加衬......

飞行器制造中常用的表面处理方法

在航空史上,最初用硬铝板材做飞机蒙皮的尝试,因出现晶间腐蚀而失败。在发明并生产出表面包镀纯铝的硬铝板材之后,飞机才有可能采用全金属结构形式。耐热合金叶片表面涂以耐高温涂层,可提高涡轮进口温度,增大发动机的推力和热效率。玻璃表面上镀以透明电热薄膜,可制成防霜、防雾的风挡和观察窗。高强度钢、铝合金、钛合金和镁合金等异种材料,因电偶腐蚀原因不能直接接触使用,但这些材料的零件经过适当的表面处理后便可以装在一起。飞行器制造中常用的表面处理方法大体分为机械法、物理法和覆(镀)层法3类。

机械法 典型的方法是喷丸处理,常用以改变飞行器结构和发动机零件表层的残余应力状态,强化表层金属,提高表层质量,以延长疲劳寿命。

物理法 包括表面淬火和激光表面处理。表面淬火是利用钢的淬硬性,用高频感应电流或激光束将零件表层金属加热到高温,随后冷却使表面硬化。利用激光束也可以使表面极薄的一层金属熔化,表层下的冷基体使表层熔化的金属以极高的速度冷却,形成超微晶粒或非晶结构,从而提高材料对磨损、腐蚀和疲劳的抗力。

覆(镀)层法 这种方法在飞行器制造中应用得最广泛。常用的有:①电镀:各种钢制零件,除形状特别复杂的零件因受镀液分散能力限制不宜电镀外,大都经过电镀。②包镀:硬铝合金板材表面均包覆纯铝。每面包铝层的厚度一般占板材总厚度的2%~4%。③热渗(见热处理):在航天器制造中,纯硅化物与复合硅化物涂层可用于防护难熔金属制件。料浆法涂敷铝化物涂层则适用于铌合金火箭喷管的高温防护。④喷镀(涂):向制件表面喷涂熔化或半熔化的金属、合金、金属间化合物、金属氧化物或有机材料等的颗粒而形成镀层。喷涂锌、铝金属层可防止飞行器钢焊接件的常温腐蚀;喷涂难熔的碳化物、硼化物可防止高温腐蚀和磨损。⑤真空镀:包括物理气相沉积、化学气相沉积和离子镀,在飞行器制造中用于玻璃、塑料零件覆盖镀层,也用于各种钢制和钛制紧固件以及需要与铝、镁合金连接的航天器不锈钢薄壁冷却管的表面镀铝。其防护性能大大超过一般镀层。⑥转化膜:包括铬酸盐处理、磷酸盐处理、氧化等化学转化处理和阳极化处理。化学转化处理简单方便,可以处理形状复杂的零件。黑色金属的发蓝处理常用作航空仪表和光学仪器零件的装饰防护层。铝合金上的阳极氧化膜具有硬度高、耐磨、绝缘、绝热、表层多孔而且吸附能力好和化学稳定性高的优点,所以重要的铝合金零件,如蒙皮、翼肋、框架、接头等,均经过这种处理。硬阳极化处理主要用于飞行器上的各种耐磨铝合金零件,如作动筒和汽缸的内壁、轴承、舱门、地板、导轨等。⑦有机涂层:利用刷涂、浸涂、喷涂、电泳涂覆、静电喷涂等方法将有机涂料或塑料涂敷到零件表面上,经固化后形成连续的薄膜,以达到防护、装饰和伪装的目的。特种涂料还可用于推进系统和高速飞行器表面的高温防护。飞行器上的漆层要尽量的薄。漆膜的厚度由常规的0.1毫米减至0.075毫米时,一架巨型运输机的总重量约可减少1吨。

空间环境要求 航天器的表面处理还必须能耐高真空环境,防止镀层快速升华。锌与镉层升华后冷凝和沉积会导致电器系统短路或光学镜头模糊。铬的熔点比铂高,但升华速率是后者的1010倍,因此,航天器常常不得不采用昂贵的铂作镀层材料。合金镀层因升华速率不同可能导致成分变化,使性能降低。在真空环境中,吸附气体膜不复存在,必须防止轴承或密封装置中紧贴的金属面间发生冷焊。飞船与外界的热交换在真空中只能依靠辐射作用,所以改善表面辐射特性成为控制温度和利用太阳能的唯一手段。此外,同微流星和原子碰撞会使航天器表面粗糙,辐射特性改变,这也是航天器表面处理中需要考虑的因素。

真空镀膜表面处理

通常,在真空镀膜之前,应对基材(镀件)进行除油、除尘等预处理,以保证镀件的整洁、干燥,避免底涂层出现麻点、附着力差等缺点。对于特殊材料,如PE(聚乙烯)料等,还应对其进行改性,以达到镀膜的预期效果。

涂装工艺中的表面处理

表面处理是防锈涂装的重要工序之一。工程机械防锈涂装质量在很大程度上取决于表面处理的方式好坏。

据英国帝国化学公司介绍 , 涂层寿命受 3 方面因素制约 : 表面处理 , 占 60%; 涂装施工 , 占 25%; 涂料本身质量 , 占 15% 。

工程机械行业 , 不同零部件的表面处理方式。

机械清理可有效去除工件上的铁锈、焊渣、氧化皮 , 消除焊接应力 , 增加防锈涂膜与金属基体的结合力 , 从而大大提高工程机械零部件的防锈质量。机械清理标准要求达到 ISO8501 — 1 ∶ 1988 的 Sa2 . 5 级。表面粗糙度要达到防锈涂层厚度的 1 /3 。喷、抛丸所用钢丸要达到 GB6484 要求。

薄板冲压件的表面处理称一般用化学表面处理。工艺流程为 :

预脱脂→脱脂→热水洗→冷水洗→酸洗→冷水洗→中和→冷水洗→表面调整→磷化→冷水洗→热水洗→纯水洗→干燥

上述工艺过程也可根据薄板冲压件的油、锈情况作适当调整 , 或不用酸洗工序 , 或不用预脱脂工序。而脱脂和磷化是化学处理工艺中的关键工序 , 这两道工序直接影响工件化学处理的质量和防锈涂层的质量。有关工艺参数和相关辅助设备也是影响表面处理质量的不可忽视的因素。

昆山瑞仕莱斯水处理科技

冷焊机修补

修补冷焊机历史介绍 修补冷焊机在国际上叫ESD(ELECTRO SPARK DEPOSITION),是由前苏联的专家应用类似于放电加工机Electro Discharge Machining 的电路原理研究开发出来的。主要用途是使用高硬度的碳化钨等材料对模具/金属表面进行涂层加工,提高耐磨性,耐热性,耐烧粘等性能。当初的加工机涂层厚度最大只能达到30üm 左右,因此无法满足修补需要。之后,经过了大量的研究开发,提高了其输出功率,改进了焊枪结构和焊条材料成份。针对以往的前后震动式电极,采用了旋转式电极,并且利用氩气保护来防止熔敷金属的氧化,氮化,实现了连续多层修补堆焊,提高了修补堆焊厚度,从而作为金属工件修复加工机推向市场。对于那些金属制品制造厂家,在工件制品出现毛刺、针孔、气孔、裂纹、磨损,划痕等缺陷时,利用以往的焊接方法来修复工件的话,工件会产生变形,甚至热裂或是易脱落。常常会得不到理想的修补效果,将就用或者直接报废。直接带来很多经济上的成本开支或交货的延迟。

本公司有多年代理德国多功能修补机器的经验。在不断创新改良的基础上,生产出―智能多功能修补王‖。采用国内外资厂家生产的最优质的零配件,在性能上更胜一筹。在市场中俱有相当的性价比。

该机型简介: 此机型为生造智能修补机械设备产品,是我公司针对广大模具业、铸造业、电器制造业、医疗器械、汽车、造船、锅炉、建筑、钢构、桥梁建设等行业改良生产,具有广泛的适用性。在国内是广大中小企业的首选修补设备。

智能冷焊机修补原理:

智能冷焊机是通过微电瞬间放电产生的高热能将专用焊丝熔覆到工件的破损部位,与原有基材牢固熔接,焊后只需经过很少打磨抛光的后期处理。

1.工作原理: 智能修补冷焊机的原理是,利用充电电容,以10-3~10–1秒的周期,10-6~10–5秒的超短时间放电。电极材料与工件接触部位会被加热到8000~25000°C,等离子化状态的熔融金属以冶金的方式过渡到工件的表层。图1所示的是(堆焊,涂层)的示意图及各种特性。A区是堆焊到工件表面的涂层或堆焊层,由于与母材之间产生了合金化作用,向工件内部扩散,熔渗,形成了扩散层B,得到了高强度的结合.

2. 实现冷焊(热输入低): 为什么能实现冷焊呢,如图2所示,放电时间(Pt)与下一次放电间隔时间(It)相比极短,机器有足够的相对停止时间,热量会通过工件基本体扩散到外界,因此工件的被加工部位不会有热量的聚集。虽然工件的升温几乎停留在室温,可是由于瞬时熔化的原因,电极尖端的温度可以达到25000°C左右.

3. 结合强度高: 利用智能修补冷焊机进行修补堆焊时,即然热输入低,为什么结合强度还很大呢?这是因为焊条瞬间产生金属熔滴,过渡到与母材金属的接触部位,同时由于等离子电弧的高温作用,表层深处开成像生了根一样的强固的扩散层。呈现出高结合性,不会脱落。

产品优点:

1、设计合理,自由调节。可根据不同金属材质选用不同档放电频率,以达到最佳修补效果。

2、热影响区域小。堆覆的瞬间过程中无热输入,因而无变形,咬边和残余应力。不会产生局部退火,修复后不需要重新热处理。

3、极小的焊补冲击 ,本焊机在焊补过程中克服了普通氩弧焊对工件周边产生冲击的现象。对没有余量的工件加工面也可进行修补。

4、修复精度高:堆焊厚度从几微米到几毫米,只需打磨,抛光。

5、熔接强高:由于充分渗透到工件表面材料产生极强的结合力。

6、携带方便:重量轻(28公斤),220V电源,无工作环境要求。

7、经济性:在现场立刻修复,提高生产效率,节省费用。

8、一机多用:可进行堆焊,表面强化等功能。通过调节放电功率和放电频率可获得要求 的堆焊和强化的厚度的光洁度。

9、堆焊层硬度及补材多样性:

使用不同的电极棒材料(补材)可获得不同要求的硬度。堆焊修补 层硬度可从HRC 25 ~ HRC 62 。 主机控制系统:采用改进型内置工控微机进行双闭环精密控制。其稳定性和运行能力远远优于同类产品,采用智能IC控制板。 气体保护系统:改为微机控制的同步氩气保护系统,使氩气保护更好,焊接效果更加牢固,美观。同时保持了原有优点--与激光焊机媲美,可以最大限度地节约氩气。 安装条件 及耗材:(28°C) ,湿度: 5% to 75% 不结露220伏50HZ交流电,电压稳定,环境:干净无灰尘或灰尘较少 . 主要消耗:焊丝、氩气、电.

*适应范围:

●冲模 ● 锻模 ●注塑模 ●铸模 ●压铸模 ●金属类产品 ●机器零部件 ●工具

1)适用的材质

●铝质、铝合金 ● 铜质、铜合金 ●碳钢、不锈钢 ●全钢、半钢 ●铸钢、铸铁

2)修复的缺陷

●针孔、气孔 ●毛刺、飞边 ●磕碰、划伤 ●崩角、塌角 ●砂眼、裂纹 ●磨损、内陷 ●制造错误、制造缺陷、焊接缺陷

3)修复的缺陷部位

●尖角、锐边 ●沟槽、侧壁 ●底部、深腔 ●平面、分型 ●生产作业线上现场修复

镀铬知识介绍

◆ 铬的性质

(1) 色泽 : 银白色,略带蓝色 (2) 原子量 : 52 (3) 比重 : 7.14 (4) 熔点 : 1800~1900℃ (5) 硬度 : 800~12OOHV (6) 线膨胀系数6.7~8.4×10^-6 (7) 电化当量:0.324g/AH (8) 标准电位 : 为-0.71V (9) 在潮湿大气中很安定,能长久保持颜色

(10)在碱、硝酸、硫化物、碳酸盐及有机酸和大多数气体中很稳定 (11)易溶于盐酸及热浓硫酸 (13)苛性钠溶液中铬阳极易溶解 (14)铬镀层耐热性佳

(15)铬镀层优点为硬度高、耐磨性好、光反射性强 (16)铬镀层缺点为太硬易脆、易脱落

(17)铬的电位比铁负,钢铁镀铬是属于阳极性保护镀层,而铬本身于大气中易形成极薄的钝态膜,所以耐腐蚀

(18)铬镀层具多孔性,所以对钢铁腐蚀性不很理想,所以一般先镀铜,再镀镍最后再镀一层铬才能达到防腐蚀及装饰的目的

(19)铬镀层广泛应用在提高零件的耐腐蚀性、耐磨性、尺寸修补、反射光,及装饰等用途.

◆ 铬电镀的种类

1.防腐装饰性镀铬 a)普通镀铬 b)复合镀铬

c)快速自动调节镀铬 d)微裂纹铬和微孔铬 2.镀硬铬 3.镀乳白铬 4.松孔镀铬 5.镀黑铬 6.滚桶镀铬 7.无裂铬电镀

◆ 镀铬的特性

(1)须严格控制液温、电流密度、极距等操作条件 (2)均一性差,对复杂形状镀件需适当处理 (3)电流效率很低,须较大电流密度

(4)阳极采用不溶解性阳极,铬酸须通过铬酐补充 (5)电镀过程中不许中断

(6)形状不同镀件不宜同槽处理,须用不同的挂具 (7)镀件预热与液温一致,附着性才会好

(8)镀件要彻底活化,有时要带电入槽,附着性才良好

(9)需用冲击电流(大于正常50-100% ) 在开始电镀较复杂形状镀件,约2-3分钟而后慢慢降至正常电流密度范围内。

◆ 镀铬的影响因素

(l) CrO3浓度与导电性关系:在铬酐小于450g/l的情况下,铬酐浓度越高,导电性越好

(2) 温度与导电性的关系:温度高,导电性好

(3) CrO3浓度与电流效率的关系:铬酐浓度高,则电流效率下降

(4) 硫酸浓度的影响:浓度低时,低电流密度下电流效率高,反的电流效率低 (5) 三价铬的影响

1. 三价铬很少时,沉积速率减慢 2. 三价铬很高时,镀层变暗

3. 三价铬增加,则导电度降低,需较大电压 4. 三价铬愈多,光泽范围愈小 (6) 电流密度及温度的影响

1. 镀液温度升高,电流效率降低 2. 电流密度愈高,电流效率愈高

3. 高电流密度,低温则镀层灰暗,硬度高脆性大,结晶粗大

4. 高温而低电流密度,镀层硬度小,呈乳白色,延性好,无网状裂纹,结晶细致,适合装饰性的镀件

5. 中等温度及中等电流密度,镀层硬度高,有密集的网状裂纹,光亮硬质铬镀层。

(7)杂质的影响

1. 铁杂质,电解液不稳定,光泽镀层范围缩小,导电性变差,电压须增高,去除铁杂质比三价铬还困难,要尽量防止铁污染,不要超过10g/l 2. 铜、锌杂质,含量低时,对镀层影向不大,铜最好不要大于3g/l 3. 硝酸,是镀铬最有害的杂质,镀液须严禁带入硝酸污染

(8) 阳极及电流分布的影响

1. 阳极较大,电流分布较不均匀使镀层厚度不均勺 2. 阳极面积大,三价铬形成较多。

3.复杂镀件,阳极宜用象形电极或辅助电极,使电流分布均匀。 4.阳极的铅易氧化,形成黑色的氧化铅及黄色的铬酸铅。黄色的铬酸铅导电性不良

5.电流因尖端及边缘效应,造成镀层厚度不均,可采用绝缘物遮盖尖端或边缘。

◆ 镀铬的挂具(Rack) 镀铬其镀液均一性极差,电流效率很低,须使用较高电流密度,所以挂具的设计要求对镀铬品质影响很大。其设计要点如下 (l) 不溶解

(2) 导电好,不发熟,需足够截面积 (3) 与镀件接触良好

(4) 结构以焊接方式,导电钩要弯成直角

(5) 非电镀部份要用绝缘物覆盖,以减少电流消耗 (6) 结构要简单、易制造、轻便

(7) 镀件放置位置要使气体自由逸出容易 (8) 应用辅助电极、双极电极 (9) 依镀件的形状、尺寸、数量及镀层用途等因素决定挂架的设计

◆ 镀铬常见缺陷及其原因

(l) 镀层粗糙有颗粒 1. 电流太大

2. 阴极保护不当或末装 3. 阴阳极太近 4. 表面前处理不好 5. 镀液有浮悬杂质 6. 硫酸太少 (2)镀层脱落 1. 前处理不良 2. 中途断电 3. 中途加冷水 4. 预热不够 (3) 局部无镀层 1. 电流太小

2. 镀件互相遮盖

3. 装挂不当,气体停滞 (4) 镀层不均匀 1. 挂具接触不良 2. 气体不易逸出 3. 阳极型状不当 (5) 沉积速度慢 1. 电流太小 2. 三价铬太小 3. 二极间距太大 4. 镀件过大

5. 槽内镀件过多 (6) 镀层暗色 1. 温度太低

2. 硫酸此例太少 3. 三价铬太多 (7) 镀层针孔 1. 前处理不佳

2. 气体停滞镀件表面上 3. 镀件被磁化 4. 浮悬杂质 5. 表面活性剂 6. 镀液有磁性粒子

◆ 镀铬的氢脆性

镀铬的电流效率非常低,所以产生大量的氢气,会引起氢脆,尤其是硬化钢、高强度钢更需注意。 去除氢脆方法有 : (l) 镀前先做应力消除(stress relieving) : 镀铬表面必须没有应力存在,一般镀件经机械加工、研磨,或硬化热处理都有残留应力( residual stress),可加热150至230℃消除残留应力。

(2) 镀后烘箱去氢 : 根据工件大小和镀层厚度确定温度和时间,通常选择的温度为150~250℃,时间0.5~5h。

铬是一种微带天蓝色的银白色金属。电极电位虽然很负,但它有很强的钝化性能,在大气中很快钝化,显示出具有贵金属的性质,所以钢铁零件镀铬层是阴极镀层。铬层在大气中很稳定,能长期保持其光泽,在碱、硝酸、硫化物、碳酸盐以及有机酸等腐蚀介质中非常稳定,但可溶于盐酸等氢卤酸和热的浓硫酸中。

2 铬层硬度高(HV800~110kg/mm),耐磨性好,反光能力强,有较好的耐热性。在500℃以下光泽和硬度均无明显变化;温度大于500℃开始氧化变色;大于700℃时才开始变软。

由于镀铬层的优良性能,广泛用作防护—装饰性镀层体系的外表层和机能镀层。

传统的镀铬工艺,其电镀液以铬酸为基础,以硫酸作催化剂,两者的比例为100:1。工艺的优点为:镀液稳定,易于操作;无论镀光亮铬还是镀硬铬,镀层质量都比较高,具有光亮、耐磨、稳定等优点,所以一直得到广泛的应用。其缺点为:(1)阴极电流效率非常低,一般只有8%~16%,这样,镀速相当慢,消耗的能量也相当大;(2)铬酸浓度高,含铬废水和废气污染大,材料浪费严重;(3)镀液温度较高,能量浪费大;(4)镀液的分散和覆盖能力差,形状复杂的零件必须采用象形阳极、防护阴极和辅助阳极才能得到厚度均匀的镀层。因此,国内外电镀界一直致力于改革高铬传统镀铬工艺,为降低铬酸浓度,减少其危害,提高镀铬效率进行着广泛的研究和探索。现已获得一定的成果。

改善传统镀铬工艺一般都采用在铬酸镀液中加添加剂的办法。这些添加剂可分为四类:(1)无机阴离子添加剂(如、

、F-、

、等);(2)有机阴离子添加剂(如羧酸、磺酸等);(3)稀土阳离子添加剂(如La3+、、Ce3+、Nd3+、Pr3+、Sm3+等);(4)非稀土阳离子添加剂(如Sr2+、Mg2+等)。

在改善传统镀铬工艺的过程中出现了三种较为突出的工艺:(1)以氟化物为催化剂的镀铬工艺;(2)以氯、溴、碘及稳定的羧酸作催化剂的镀铬工艺;(3)以稀土作添加剂的镀铬工艺。

一、镀铬的一般特性

(一)镀铬特点

1.镀铬用含氧酸做主盐,铬和氧亲和力强,电析困难,电流效率低; 2.铬为变价金属,又有含氧酸根,故阴极还原过程很复杂;

3.镀铬虽然极化值很大,但极化度很小,故镀液的分散能力和覆盖能力很差,往往要采用辅助阳极和保护阴极;

4.镀铬需用大电流密度,而电流效率很低,大量析出氢气,导致镀液欧姆电压降大,故镀铬的电压要比较高;

5.镀铬不能用铬阳极,通常采用纯铅、铅锡合金、铅锑合金等不溶性阳极。

(二)镀铬过程的特异现象

镀铬与其它金属电沉积相比,有如下特异现象:

(1)随主盐铬酐浓度升高而电流效率下降;

(2)随电流密度升高而电流效率提高;

(3)随镀液温度提高而电流效率降低;

(4)随镀液搅拌加强而电流效率降低,甚至不能镀铬。

上述特异现象均与镀铬阴极还原的特殊性有关。

二、镀铬层的种类和标记

(一)防护—装饰性镀铬

防护—装饰性镀铬,俗称装饰铬。它具有防腐蚀和外观装饰的双重作用。为达此目的在锌基或钢铁基体上必须先镀足够厚度的中间层,然后在光亮的中间镀层上镀以0.25~0.5μm的薄层铬。例如钢基上镀铜、镍层再镀铬、低锡青铜上镀铬、多层镍上镀铬、镍铁合金镀层上镀铬等等。

在现代电镀中,在多层镍上镀取微孔或微裂纹铬是降低镀层总厚度,又可获得高耐蚀性的防护—装饰体系,是电镀工艺发展的方向。

在黄铜上喷砂处理或在缎面镍上镀铬,可获得无光的缎面铬,是用作消光的防护—装饰镀铬。

装饰性镀铬是镀铬工艺中应用最多的。装饰镀铬的特点是:(1)要求镀层光亮;(2)镀液的覆盖能力要好,零件的主要表面上应覆盖上铬;(3)镀层厚度薄,通常在0.25~0.5μm之间,国内多用0.3μm。为此装饰镀铬常用300~400g/L的高浓度,近些年来加入稀土等添加剂,浓度可降至150~200g/L,覆盖能力、电流效率明显提高,是研究开发和工业生产应用的发展方向。

防护—装饰镀铬广泛用于汽车、自行车、日用五金制品、家用电器、仪器仪表、机械、船舶舱内的外露零件等。经抛光的铬层有很高的反射系数,可作反光镜。

按照国际ISO标准,防护—装饰性镀铬标记方法如下:

分类标记构成:

Fe——基体金属钢铁的化学符号。

Cu——铜的化学符号,数字表示铜镀层最低厚度(μm); Ni——镍的化学符号,数字表示镍镀层最低厚度(μm)。

表示镍镀层类型的符号: b——光亮镍镀层;

p——暗镍或半光亮镍镀层,欲得到全光亮镀层需抛光; d——双层或三层镍镀层; Cr——铬的化学符号。

表示铬镀层类型及其最低厚度的字符: r——普通(标准)铬; f——无裂纹铬; mc——微裂纹铬; mp——微孔铬。

分类标记示例:钢铁上由20μm(最低)铜、25μm(最低)光亮镍和0.3μm(最低)微裂纹铬构成的镀层的分类标记可写成:Fe/Cu20/Ni25b Cr mc0.3 几个术语的解释:

最低厚度——零件主要表面上能被直径20mm的球接触到的任何一处镀层厚度必须达到的最小值。

主要表面——指零件上的某些表面,该表面上的镀层对于零件的外观和使用性能起主要作用。

无裂纹铬(Cr f)——按ISO规定的试验方法检查时不出现裂纹。

微裂纹铬(Cr mc)——按ISO规定的试验方法检查时,有效面所有方向上每1cm长度可有250条以上的裂纹,裂纹呈网孔状结构。

微孔铬(Cr mp)——按ISO规定的试验方法检查时,微孔密度至少为100002孔/cm以上。

(二)硬铬(耐磨铬、工业镀铬)

在一定条件下沉积的铬镀层具有很高硬度和耐磨损性能,硬铬的维氏硬度达2到900~1200kg/mm,铬是常用镀层中硬度最高的镀层,可提高零件的耐磨性,延长使用寿命。如工、模、量、卡具;机床、挖掘机、汽车、拖拉机主轴;切削刀具等镀硬铬。镀硬铬可用于修复被磨损零件的尺寸公差。严格控制镀铬工艺,准确地按规定尺寸镀铬,镀后不需再进行机械加工的则称为尺寸镀铬法。

(三)乳白铬镀层

在较高温度(65~75℃)和较低电流密度下(20±5A/dm2)获得的乳白色的无光泽的铬称为乳白铬。镀层韧性好,硬度较低,孔隙少,裂纹少,色泽柔和,消光性能好,常用于量具、分度盘、仪器面板等镀铬。

在乳白铬上加镀光亮耐磨铬,称为双层镀铬。在飞机、船舶零件以及枪炮内腔上得到广泛应用。

(四)松孔镀铬

通常在镀硬铬之后,用化学或电化学方法将铬层的粗裂纹进一步扩宽加深,以便吸藏更多的润滑油脂,提高其耐磨性,这就叫松孔铬。松孔镀铬层应用于受重压的滑动摩擦件及耐热、抗蚀、耐磨零件,如内燃机汽缸内腔、活塞环等。

(五)黑铬

在不含硫酸根而含有催化剂的镀铬中,可镀取纯黑色的铬层,以氧化铬为主成分,故耐蚀性和消光性能优良,应用于航空、光学仪器、太阳能吸收板及日用品之防护—装饰。

三、镀铬液的种类和特性

(一)普通镀铬溶液

这是应用量大、面广的一种镀液,基本组分是铬酐和硫酸,按铬酐浓度可分为低、中、高浓度三种。

低浓度通常系指铬酐含量为120g/L以下的镀液。具有减少污染、降低成本、电流效率比较高(18%~20%)、镀层光亮度好、光亮电流密度范围宽等优点。缺点是需槽电压较高,镀液覆盖能力较差,适合于零件形状较简单的场合。

中浓度通常系指铬酐含量为180~250g/L的镀液。铬酐250g/L,硫酸根2.5g/L的镀液称为标准镀铬液,多用于镀硬铬。在这类镀液中加入镀铬添加剂,特别是混合稀土金属盐添加剂,镀液性能则有很大改善:①可将铬酐浓度降低到150~180g/L以内,镀液的覆盖能力明显提高,超过高浓度液;②可降低析铬的临界电流密度值,可采用较低电流密度(如8~10A/dm2),而电流效率却能达到20%以上,槽电压低于10V,故有明显的节电效果;③可实现常温电镀,在15~50℃之间均可施镀,有利于节约能源,提高工效。综合经济和环境效益好。这是现代电镀铬工艺的发展方向。

高浓度系指铬酐浓度为300~400g/L的镀液。具有较高分散能力和覆盖能力,主要用于装饰性镀铬。这种镀液带出损失多、对环境污染较严重。电流效率低(8%~13%)。随着稀土等镀铬添加剂的开发和应用,这类镀液已逐渐缩减。

发蓝

钢制件的表面发黑处理,也有被称之为发蓝的。

发黑处理现在常用的方法有传统的碱性加温发黑和出现较晚的常温发黑两种。

但常温发黑工艺对于低碳钢的效果不太好。

A3钢用碱性发黑好一些。

碱性发黑细分出来,又有一次发黑和两次发黑的区别。 发黑液的主要成分是氢氧化钠和亚硝酸钠。

发黑时所需温度的宽容度较大,大概在135摄氏度到155摄氏度之间都可以得到不错的表面,只是所需时间有些长短而已。 实际操作中,需要注意的是工件发黑前除锈和除油的质量,以及发黑后的钝化浸油。发黑质量的好坏往往因这些工序而变化。

金属“发蓝”药液

采用碱性氧化法或酸性氧化法;使金属表面形成一层氧化膜,以防止金属表面被腐蚀,此处理过程称为“发蓝”。

黑色金属表面经“发蓝”处理后所形成的氧化膜,其外层主要是四氧化三铁,内层为氧化亚铁。

一、 碱性氧化法“发蓝”药液 1.配方: 硝酸钠50~100克氢氧化钠600~700克亚硝酸钠100~200克水1000克。

2.制法:按配方计量后,在搅拌条件下,依次把各料加入其中,溶解,混合均匀即可。 3.说明:

(1) 金属表面务必洗净和干燥以后,才能进行“发篮”处理。 (2) 金属器件进行“发蓝”处理条件与金属中的含碳量有关,“发蓝”药液温度及金属器件在其中的处理时间可参考下表。 金属中含碳量%工作温度(℃)处理时间(分)开始终止>0.7135-13714310-300.5-0.7135-14015030-50<0.4142-145153-15540-60 合金钢142-145153-15560-90 (3) 每隔一星期左右按期分析溶液中硝酸钠、亚硝酸钠和氢氧化钠的含量,以便及时补充有关成分。一般使用半年后就应更换全部溶液。

(4)金属“发蓝”处理后,最好用热肥皂水漂洗数分钟,再用冷水冲洗。然后,又用热水冲洗,吹于。

二、酸性氧化法“发蓝”药液

1.配方: 磷酸3~10克硝酸钙80~100克过氧化锰10~15克水1000克 2.制法:按配方计量后,在不断搅拌条件下,依次把磷酸、过氧化锰和硝酸钙加入其中,溶解,混合均匀即可。

3.说明:

(1)金属器件先经洗净和干燥后才能进行“发蓝”处理。

(2)此法所得保护膜呈黑色,其主要成分是由磷酸钙和铁的氧化物所组成,其耐腐能力和机械强度均超过碱性氧化法所得的保护膜。

4.“发蓝”工作温度为100℃,处理时间为40~45分钟。在处理碳素钢时,药液中磷酸含量控制在3~5克/升;处理合金钢或铸钢时,磷酸含量控制在5~10克/升。应注意定期分析药液磷酸的含量。

5.“发蓝”处理后金属器件的清洗方法同上。

发黑工艺

钢制件的表面发黑处理,也有被称之为发蓝的。

发黑处理现在常用的方法有传统的碱性加温发黑和出现较晚的常温发黑两种。

但常温发黑工艺对于低碳钢的效果不太好。

A3钢用碱性发黑好一些。

碱性发黑细分出来,又有一次发黑和两次发黑的区别。

发黑液的主要成分是氢氧化钠和亚硝酸钠。

发黑时所需温度的宽容度较大,大概在135摄氏度到155摄氏度之间都可以得到不错的表面,

只是所需时间有些长短而已。

实际操作中,需要注意的是工件发黑前除锈和除油的质量,以及发黑后的钝化浸油。发黑质

量的好坏往往因这些工序而变化。

金属“发蓝”药液

采用碱性氧化法或酸性氧化法;使金属表面形成一层氧化膜,以防止金属表面被腐蚀,此处

理过程称为“发蓝”。

黑色金属表面经“发蓝”处理后所形成的氧化膜,其外层主要是四氧化三铁,内层为氧化亚铁。

一、碱性氧化法“发蓝”药液

1.配方: 硝酸钠50~100克氢氧化钠600~700克亚硝酸钠100~200克水1000克

2.制法:按配方计量后,在搅拌条件下,依次把各料加入其中,溶解,混合均匀即可。

3.说明:

(1)金属表面务必洗净和干燥以后,才能进行“发篮”处理。

(2)金属器件进行“发蓝”处理条件与金属中的含碳量有关,“发蓝”药液温度及金属器件在其中的处理时间可参考下表。-155合金钢142-145153-15560-90 金属中含碳量% 工作温度(℃)

处理时间(分)

开始

终止

>0.7135 137-143 10-30

0.5-0.7135 140-150 30-50

<0.4142 145-153 40-60

(3)每隔一星期左右按期分析溶液中硝酸钠、亚硝酸钠和氢氧化钠的含量,以便及时补充有关成分。一般使用半年后就应更换全部溶液。

(4)金属“发蓝”处理后,最好用热肥皂水漂洗数分钟,再用冷水冲洗。然后,又用热水冲洗,

吹于。

二、酸性氧化法“发蓝”药液

1.配方: 磷酸3~10克硝酸钙80~100克过氧化锰10~15克水1000克

2.制法:按配方计量后,在不断搅拌条件下,依次把磷酸、过氧化锰和硝酸钙加入其中,

溶解,混合均匀即可。

3.说明:

(1)金属器件先经洗净和干燥后才能进行“发蓝”处理。

(2)此法所得保护膜呈黑色,其主要成分是由磷酸钙和铁的氧化物所组成,其耐腐能力和机械强度均超过碱性氧化法所得的保护膜。

4.“发蓝”工作温度为100℃,处理时间为40~45分钟。在处理碳素钢时,药液中磷酸含量控制在3~5克/升;处理合金钢或铸钢时,磷酸含量控制在5~10克/升。应注意定期分析

药液磷酸的含量。

5.“发蓝”处理后金属器件的清洗方法同上。

第五篇:表面处理工艺

表面处理工艺大全

表面处理工艺:机壳漆

机壳漆金属感极好,耐醇性佳,可复涂PU或UV光油。玩具油漆重金属含量符合国际安全标准。包括CPSC含铅量标准、美国测试标准ASTMF 96

3、欧洲标准EN7

1、EN1122。 表面处理工艺:变色龙

随不同角度而变化出不同颜色。是一种多角度幻变特殊涂料,使你的商品价值提高,创造出无懈可击的超卓外观效果。 表面处理工艺:电镀银涂料

电镀银漆是一款无毒仿电镀效果油漆,适用ABS、PC、金属工件,具有极佳的仿电镀效果和优异的耐醇性。

表面处理工艺:橡胶漆

适用范围:ABS、PC、PS、PP、PA以及五金工件。

产品特点:本产品为单组份油漆,质感如同软性橡胶,富有弹性,手感柔和,具有防污、防溶剂等功能。这种油漆干燥后可得涂丝印。重金属含量符合国际安全标准。包括CPSC含铅量标准、美国测试标准ASTMF 96

3、欧洲标准EN7

1、EN1122。 表面处理工艺:导电漆

适用于各种 PS 及 ABS 塑料制品;导电导磁、对外界电磁波、磁力线都能起到屏蔽作用;在电气功能上达到以塑料代替金属的目的。电阻值可根据客人要求调试。重金属含量符合国际安全标准,包括 CPSC 含铅量标准、美国测试标准 ASTMF-963 、欧洲标准 EN71 、EN1122。 表面处理工艺:UV

高性能UV固化光油

表面处理工艺:珠光粉-ZG001

珠光颜料广泛应用于化妆品、塑料、印刷油墨及汽车涂料等行业。珠光颜料的主要类型有:天然鱼鳞珠光颜料、氯氧化铋结晶珠光颜料、云母涂覆珠光颜料。 表面处理工艺:夜光漆

夜光粉是一种能在黑暗中发光的粉末添加剂;它可以与任何一种透明涂层或外涂层混和使用,效果更显著,晚上发光时间长达8小时! 激光雕刻

用激光雕刻刀作雕刻, 比用普通雕刻刀更方便, 更迅速。用普通雕刻刀在坚硬的材料上, 比如在花冈岩、钢板上作雕刻, 或者是在一些比较柔软的材料, 比如皮革上作雕刻, 就比较吃力, 刻一幅图案要花比较长的时间。如果使用激光雕刻则不同, 因为它是利用高能量密度的激光对工件进行局部照射,使表层材料气化或发生颜色变化的化学反应,从而留下永久性标记的一种雕刻方法。它根本就没有和材料接触, 材料硬或者柔软, 并不妨碍 "雕刻" 的速度。所以激光雕刻技术是激光加工最大的应用领域之一。 用这种雕刻刀作雕刻不管在坚硬的材料, 或者是在柔软的材料上雕刻, 刻划的速度一样。倘若与计算机相配合, 控制激光束移动, 雕刻工作还可以自动化。把要雕刻的图案放在光电扫描仪上, 扫描仪输出的讯号经过计算机处理后, 用来控制激光束的动作, 就可以自动地在木板上, 玻璃上, 皮革上按照我们的图样雕刻出来。同时, 聚焦起来的激光束很细, 相当于非常灵巧的雕刻刀, 雕刻的线条细, 图案上的细节也能够给雕刻出来。激光雕刻可以打出各种文字、符号和图案等,字符大小可以从毫米到微米量级,这对产品的防伪有特殊的意义。激光雕刻是近年巳发展至可实现亚微米雕刻,已广泛用于微电子工业和生物工程。

优点:

1、精美、防伪、永久保存、极大提高产品档次。

表面处理工艺

2、比传统腐蚀精美,没有丝印、移印的图案易被擦掉以至模糊不清的缺点。

3、电脑控制、图文可随意改动。

4、显著增强竞争能力,速度快接近0%的废品率。

5、没有污染、没有化学物质污染产品表面。

6、加工精度可达到0.01mm,保证同一批次的加工效果完全一致 水转印工艺简介

水转印是一项融合了复杂的化学及水压原理而形成的一种转印技术。此技术是针对一般传统印刷及热转印、移印、网印(丝印)表面涂装所不能克服的复杂造型及死角问题所研发出来的一种革命性的转印技术。

特点:

1、水转印工艺适用于任何素材的复杂外形及表面(如塑料ABS、PC、PP、尼龙、木材、金属、玻璃、电木、陶瓷等)

2、 水转印工艺防水不轻易褪色,使美观的外表持久不变。

3、超过数百种的天然花纹。如木纹、石纹、卡通和各种动物图案。也可以设计自己独有的花纹。

适用范围:

1、国防工业类:钢盔、对讲机、枪柄、望远镜等;

2、电器类:电视机外壳、遥控器、电话机、手电筒、电冰箱、洗衣机、抽油烟机、计算机、鼠标等;

3、汽车类:汽车仪表板、后视镜、排档头、茶杯架、剎车板、轮圈盖、水箱护罩等;

4、 家俱类:锁头、把手、开关面板、钢管、沙发扶手、办公家俱等;

5、 鞋类:鞋根、鞋大底、溜冰鞋、运动鞋等;

6、 运动器材类:网球拍、高尔夫球杆、撞球杆、定时器、钓杆、浮标等;

7、 文具用品类:订书机、笔管、激光指示器、印盒、乐器等;

8、 其它类:香水瓶盖、皮箱、珠宝盒、灯罩、花瓶、化妆盒、口红盒、照相机、卫浴设备等

热转印工艺

热转印是通过预热压将热转印花膜图案转印到工件表面。利用热转印膜印刷可将柯色图案一次成图,无需套色,简单的设备也可印出逼真的图案,且色彩鲜艳、亮泽、画面栩栩如生。热转印工艺极富装饰价值,可使产品附加值大增。

★热转印的产品特点:

① 柯色图案一次成形,无需套色。② 设备简单,印工精致。③ 附着力强,耐高温耐磨。④ 色彩鲜艳亮泽,永不褪色。⑤ 符合绿色环保印刷标准,无环境污染

★适用底材:

ABS、PS、PVC、AS、PC、PU、PMMA、PET、PP、PE等塑胶之表面,以及金属、玻璃、木材等材料的涂层面。

★ 热转印技术的优越性:

图案印刷精度高--图案由八色以上大型凹版印刷机,完成以PET薄膜涂布为基材,采用精细的专业铜版,实现高精细度的图形印刷。 拉丝工艺

拉丝可根据装饰需要,制成直纹、乱纹、螺纹、波纹和旋纹等几种。

直纹拉丝是指在铝板表面用机械磨擦的方法加工出直线纹路。它具有刷除铝板表面划痕和装饰铝板表面的双重作用。直纹拉丝有连续丝纹和断续丝纹两种。连续丝纹可用百洁布或不锈钢刷通过对铝板表面进行连续水平直线磨擦(如在有靠现装置的条件下手工技磨或用刨床夹住钢丝刷在铝板上磨刷)获取。改变不锈钢刷的钢丝直径,可获得不同粗细的纹路。断续丝纹一般在刷光机或擦纹机上加工制得。制取原理:采用两组同向旋转的差动轮,上组为快速旋转的磨辊,下组为慢速转动

表面处理工艺

的胶辊,铝或铝合金板从两组辊轮中经过,被刷出细腻的断续直纹。乱纹拉丝是在高速运转的铜丝刷下,使铝板前后左右移动磨擦所获得的一种无规则、无明显纹路的亚光丝纹。这种加工,对铝或铝合金板的表面要求较高。波纹一般在刷光机或擦纹机上制取。利用上组磨辊的轴向运动,在铝或铝合金板表面磨刷,得出波浪式纹路。 旋纹也称旋光,是采用圆柱状毛毡或研石尼龙轮装在钻床上,用煤油调和抛光油膏,对铝或铝合金板表面进行旋转抛磨所获取的一种丝纹。它多用于圆形标牌和小型装饰性表盘的装饰性加工。螺纹是用一台在轴上装有圆形毛毡的小电机,将其固定在桌面上,与桌子边沿成60度左右的角度,另外做一个装有固定铝板压茶的拖板,在拖板上贴一条边沿齐直的聚酯薄膜用来限制螺纹竞度。利用毛毡的旋转与拖板的直线移动,在铝板表面旋擦出宽度一致的螺纹纹路。

手机按键表面的金属拉丝效果,是雷射环状拉丝,有专用设备,原理差不多,更精密。 喷砂

一、功能或用途

1 .工件表面的清理

可用作对金属的锈蚀层、热处理件表面的残盐和氧化层、轧制件表面的氧化层、锻造件表面的氧化层、焊接件表面的氧化层、铸件表面的型砂及氧化层、机加件表面的残留污物和微小毛刺、旧机件表面等进行处理,以去除表面附着层,显露基体本色 , 表面清理质量可达到 Sa3 级。

2 .工件表面涂覆前的预处理

可用作各种电镀工艺、刷镀工艺、喷涂工艺和粘接工艺的前处理工序,以获得活性表面,提高镀层、涂层和粘接件之间的附着力。

3 .改变工件的物理机械性能

可以改变工件表面应力状态,改善配合偶件的润滑条件,降低偶件运动过程中的噪音。可使工件表面硬化,提高零件的耐磨性和抗疲劳强度。

4 .工件表面的光饰加工

可以改变工件表面粗糙度 Ra 值。可以产生亚光或漫反射的工件表面,以达到光饰加工的目的。

二、主要参数

影响喷砂加工的主要参数:磨料种类、磨料粒度、磨液浓度、喷射距离、喷射角度、喷射时间、压缩空气压力等。

三、环保特点

1 .极大地改善了粉尘对环境的污染和对工人健康的危害。

2 .可直接安装在生产线上,节省生产面积 , 有利工件周转。

3 .工作方法灵活,工艺参数可变,能适应不同材质和不同精度零件的光饰加工要求。

4 .在工作过程中磨料循环使用, 消耗量些 

5 .主要零部件使用寿命长,且便于维修。

常用喷砂工艺参数

获得表面结果的三要素:

压缩空气对喷射流的加速作用(喷砂压力大小的调节)P

磨料的类型(S)

喷枪的距离(H)、角度(θ)

1. 压力大小的调节对表面结果的影响

在S、H 、θ三个量设定后,P值越大,喷射流的速度越高,喷砂效率亦越高,被加工件表面越粗糙,反之,表面由相对较光滑。

2. 喷枪的距离、角度的变化对表面结果的影响

在P、S值设定后,此项为手工喷砂技术的关键,喷枪距工件一般为 50-150mm,喷枪距工件越远,喷射流的效率越低,工件表面亦越光滑。喷枪与工件的夹角越小,喷射流的效率亦越低,工件表面也越光滑。

表面处理工艺

3. 磨料类型对表面结果的影响

磨料按颗粒状态分为球形,菱形两类,喷砂通常采用的金刚砂(白钢玉、棕刚玉)为菱形磨料。玻璃珠为球形磨料。在P、H 、θ三值设定后,球形磨料喷砂得到的表面结果较光滑,菱形磨料得到的表面则相对较粗糙,而同一种磨料又有粗细之分,国内按筛网数目划分磨料的粗细度,一般称为多少号,号数越高,颗粒度越小,在P、H 、θ值设定后,同一种磨料喷砂号数越高,得到的表面结果越光滑。

下表为不同材质产品为达到不同的处理目的而通常采用的手段(仅供参考)

上一篇:感恩父母小学主题班会下一篇:高二英语月考质量分析