污水处理厂用什么工艺

2023-03-15

第一篇:污水处理厂用什么工艺

污水处理厂工艺设计

3 污水厂设计计算书

3.1污水处理构筑物设计计算 3.1.1中格栅

3.1.1.1设计参数:

3设计流量Q=60000m/d 栅前流速v1=0.6m/s,过栅流速v2=1.0m/s 栅条宽度s=0.01m,格栅间隙e=25mm 栅前部分长度0.5m,格栅倾角α=60°

333单位栅渣量ω1=0.06m栅渣/10m污水

3.1.1.2设计计算

(1)设过栅流速v=1.0m/s,格栅安装倾角为60度则:栅前槽宽B12Qmax20.91.01.34m 栅前水深hB121.3420.67m

v2(2)栅条间隙数nQmaxehvsin20.9sin600.0250.671.055.6(取n=58) (3)栅槽有效宽度B=s(n-1)+en=0.01(58-1)+0.025×58=2m (4)进水渠道渐宽部分长度L1角)

(5)栅槽与出水渠道连接处的渐窄部分长度L2(6)过栅水头损失(h1)

因栅条边为矩形截面,取k=3,则h1kh0kv22gsin32.42(0.010.0254BB12tan121.342tan200.9m(其中α1为进水渠展开

L120.45m

)31229.81sin600.094m

(0.08~0.15)

4/3其中ε=β(s/e)

h0:计算水头损失

k:系数,格栅受污物堵塞后,水头损失增加倍数,取k=3 ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42 (7)栅后槽总高度(H)

取栅前渠道超高h2=4.3m,则栅前槽总高度H1=h+h2=0.67+4.3=4.97m 栅后槽总高度H=h+h1+h2=0.67+0.094+4.3=5.06m (8)格栅总长度L=L1+L2+0.5+1.0+1.1/tan=0.9+0.45+0.5+1.0+1.1*4.97/tan60°=6m (9)每日栅渣量ω=Q平均日ω1=

3600000.061000

3=3.6m/d>0.2m/d 所以宜采用机械格栅清渣 (10)计算草图如下:

图2 中格栅设计简图

3.1.1.1设计参数:

3设计流量Q=60000m/d 栅前流速v1=0.6m/s,过栅流速v2=0.8m/s 栅条宽度s=0.01m,格栅间隙e=10mm 栅前部分长度0.5m,格栅倾角α=60°

333单位栅渣量ω1=0.06m栅渣/10m污水

3.1.1.2设计计算

(1)设过栅流速v=0.8m/s,格栅安装倾角为60度则:栅前槽宽B12Qmax20.90.81.5m 栅前水深hB121.520.75m

v2(2)栅条间隙数nQmaxehvsin20.9sin600.010.750.8139.6(取n=140) 设计两组格栅,每组格栅间隙数n=70条

(3)栅槽有效宽度B=s(n-1)+en=0.01(70-1)+0.01×70=1.39m 所以总槽宽为B=1.39×2+0.15=2.93m(考虑中间隔墙厚0.15m)

L1BB12tan12.930.752tan202.99m3m(4)进水渠道渐宽部分长度(其中α1为进水渠展开角) (5)栅槽与出水渠道连接处的渐窄部分长度L2(6)过栅水头损失(h1)

因栅条边为矩形截面,取k=3,则h1kh0kv22gsin32.42(0.010.014L121.5m

)30.81229.81sin600.21m

其中ε=β(s/e)

h0:计算水头损失

k:系数,格栅受污物堵塞后,水头损失增加倍数,取k=3 ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42 (7)栅后槽总高度(H)

取栅前渠道超高h2=0.3m,则栅前槽总高度H1=h+h2=0.75+0.3=1.05m 栅后槽总高度H=h+h1+h2=1.05+0.21+0.3=1.26m (8)格栅总长度L=L1+L2+0.5+1.0+1.1/tan=3+1.5+0.5+1.0+1.1*1.05/tan60°=6.67m (9)每日栅渣量ω=Q平均日ω1=

34/3

600000.0810003

=4.8m/d>0.2m/d 所以宜采用机械格栅清渣 3.1.2污水提升泵房

本设计采用干式矩形半地下式合建式泵房,它具有布置紧凑、占地少、结构较省的特点。集水池和机器间由隔水墙分开,只有吸水管和叶轮浸没在水中,机器间经常保持干燥,以利于对泵房的检修和保养,也可避免对轴承、管件、仪表的腐蚀。

在自动化程度较高的泵站,较重要地区的雨水泵站、开启频繁的污水泵站中,应尽量采用自灌式泵房。自灌式泵房的优点是启动及时可靠,不需引水的辅助设备,操作简便;缺点是泵房较深,增加工程造价。采用自灌式泵房时水泵叶轮(或泵轴)低于集水池的最低水位,在高、中、低三种水位情况下都能直接启动。泵房剖面图如图2所示。

图3 污水提升泵房设计简图

3.1.2.1设计概述

选择水池与机器间合建式的方形泵站,用6台泵(2台备用),每台水泵设计流量:Q=1390L/s,泵房工程结构按远期流量设计

采用AAO工艺方案,污水处理系统简单,对于新建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。污水经提升后入平流沉砂池,然后自流通过厌氧池、缺氧池、曝气池、二沉池及计量堰,最后由出水管道排入受纳水体。

各构筑物的水面标高和池底埋深见高程计算。

3.1.2.2集水间计算

选择水池与机器间合建的半地下式方形泵站,用6台泵(2台备用)每台泵流量为:Q0=1390/4=347.5L/s 集水间容积,相当与1台泵5分钟容量

3W=0.35560=105m

2有效水深采用h=2m,则集水池面积为F=105/2=52.5m 3.1.2.3水泵总扬程估算

(1)集水池最低工作水位与所需提升最高水位之前的高差为:

21.8(13.910.60.12.0)9.4m

(2)出水管线水头损失

每台泵单用一根出水管,共流量为Q0=1390/4=347.5L/s选用管径为600mm的铸铁管,查表得v=1.66m,1000i=5.75m,设管总厂为30m,局部损失占沿程的30%,则总损失为:

30(10.3)5.7510000.20m

(3)泵站内的管线水头损失假设为1.5m,考虑自由水头为1.0m (4)水头总扬程为H21.8-13.90.21.51.010.3m取11m 3.1.2.4校核总扬程

泵站平面布置后对水泵总扬程进行校核计算 (1)吸水管路的水头损失 每根吸水管的流量为350L/s,每根吸水管管径为600mm,流速v=1.66m/s,只管长度为1.65m。

沿

1.655.751000i0.01m

直管部分长度1.65m,进口闸阀一个(0.609)Dg600350偏心管一个(0.2) 局部损失

2

2(0.5+0.609)1.66/2g+0.24.88/2g=0.41m 吸水管路总损失为:0.01+0.41=0.42m (2)出水管路的水头损失:管路总长度取25m,渐扩管1个(0.609)90度弯头四个(1.01)

沿程损失 255.75/1000i=0.14m

22局部损失(0.3+0.609+41.01)1.7/2g+0.24.88/2g=0.94m 出水管路总损失为 0.14+0.94=1.08m (3)水泵所需总扬程为

21.8-13.9+1.5+0.42+1.08=10.9m。

取11m。采用6台长沙水泵厂制造的56LKSB-10立式斜流泵,两台备用。该泵单台提升流量340L/s,扬程11.3m,转速370r/min,功率500kW

2污水泵房设计占地面积120m(12*10)高10m,地下埋深5米。

3.1.3、沉砂池

采用平流式沉砂池 3.1.3.1 设计参数

设计流量:Q=1157L/s(设计1组,分为2格) 设计流速:v=0.25m/s 水力停留时间:t=40s 3.1.3.2设计计算

(1)沉砂池长度: L=vt=0.25×40=10.0m (2)水流断面积:

22A=Qmax/v=1.39/0.25=5.56m 取5.6m。 (3)池总宽度:

设计n=2格,每格宽取b=3.5m>0.6m,池总宽B=2b=7m (4)有效水深:

h2=A/B=5.6/7=0.8m (介于0.25~1m之间)

(5)贮泥区所需容积:设计T=2d,即考虑排泥间隔天数为2天,则每个沉砂斗容积

V1Q1TX2K1015110523521.2102.5m

3(每格沉砂池设两个沉砂斗,两格共有四个沉砂斗)

353其中X1:城市污水沉砂量3m/10m, K:污水流量总变化系数1.2 (6)沉砂斗各部分尺寸及容积:

设计斗底宽a1=2m,斗壁与水平面的倾角为60°,斗高hd=0.5m,则沉砂斗上口宽:

a2hdtan60a120.5tan6022..6m

沉砂斗容积:

Vhd6(2a22aa12a1)20.56(22.6222.6222)2.66m(略大于

23V1=2.6m3,符合要求)

(7)沉砂池高度:采用重力排砂,设计池底坡度为0.06,坡向沉砂斗长度为L2L2a210.021.123.9m

则沉泥区高度为

h3=hd+0.06L2 =0.5+0.06×3.9=0.734m 池总高度H :设超高h1=0.3m, H=h1+h2+h3=0.3+0.5+0.73=1.46m (8)进水渐宽部分长度: L1BB12tan2073.52tan205.4m

(9)出水渐窄部分长度: L3=L1=5.4m (10)校核最小流量时的流速:

最小流量即平均日流量:Q平均日=Q/K=1390/1.2=1157L/s 则vmin=Q平均日/A=1.157/5.6=0.21>0.15m/s,符合要求 (11)计算草图如下:

进水出水

图3 平流式沉沙池设计计算草图

图4 平流式沉砂池计算草图3.1.4、初沉池

3.1.4.1.设计概述

3本设计中采用中央进水幅流式沉淀池两座。则每座设计进水量:Q=25000m/d采用周边传动刮泥机。

3232表面负荷:qb范围为1.5-3.0m/ m.h ,取q=2/mh 水力停留时间(沉淀时间):T=2h 3.1.4.2.设计计算

(1)沉淀池面积: 按表面负荷计算:AQ2qb10000022241042m

2(2)沉淀池直径:D4A410423.1436m16m

有效水深为:h1=qbT=2.02=4m Dh1302.512(介于6~12)

(3)贮泥斗容积:

本污水处理厂设计服务人口数为80万人。贮泥时间采用Tw=4h,初沉池污泥区所需存泥容积:

VwSNT1000n0.50801044100022433.33m

3设池边坡度为0.05,进水头部直径为2m,则: h2=(R-r)×0.05=(18-1)×0.05=0.85m 锥体部分容积为:

V13h(R2Rrr)2130.85(1821811)96.9m333.33m3(4)

二沉池总高度:

取二沉池缓冲层高度h3=0.4m,超高为h4=0.3m 则二沉池总高度

H=h1+h2+h3+h4=4+0.85+0.4+0.3=5.55m 则池边总高度为

h=h1+h3+h4=4+0.4+0.3=4.7m (5)校核堰负荷:

径深比

Dh1h53040.46.8

介于6-12之间,符合要求。 堰负荷

QnD11573.143625.12L/(s.m)2L/(s.m)

要设双边进水的集水槽。

(6)辐流式初沉池计算草图如下:

出水进水排泥图6 辐流式沉淀池出水55004700进水850

图4 幅流式初沉池设计计算草图

3.1.5、厌氧池

3.1.5.1.设计参数

3设计流量:最大日平均时流量Q=1.39m=1390L/s 水力停留时间:T=1h 3.1.5.2.设计计算

(1)厌氧池容积:

3V= Q′T=1.39×1×3600=5004m

(2)厌氧池尺寸:水深取为h=4.5m。 则厌氧池面积:

2A=V/h=5004/4.5=1112m

池宽取50m,则池长L=F/B=1112/50=22.24。取23m。 设双廊道式厌氧池。

考虑0.5m的超高,故池总高为H=h+0.3=4.5+0.5=5.0m。 3.1.6、缺氧池计算

3.1.6.1.设计参数

3设计流量:最大日平均时流量Q=1.39m=1390L/s 水力停留时间:T=1h 3.1.6.2.设计计算

(1)缺氧池容积: V=Q′T=1.39×1×3600=5004m

(2)缺氧池尺寸:水深取为h=4.5m。 则缺氧池面积:

2A=V/h=5004/4.5=1112m

池宽取50m,则池长L=F/B=1112/50=22.24。取23m。 考虑0.5m的超高,故池总高为H=h+0.3=4.5+0.5=5.0m。

33.1.7、曝气池设计计算

本设计采用传统推流式曝气池。 3.1.7.1、污水处理程度的计算

取原污水BOD5值(S0)为250mg/L,经初次沉淀池及缺氧池、厌氧段处理,按降低25%*10考虑,则进入曝气池的污水,其BOD5值(S)为: S=250(1-25%)=187.5mg/L 计算去除率,对此,首先按式BOD5=5(1.42bXCe)=7.1XCe计算处理水中的非溶解性BOD5值,上式中

Ce——处理水中悬浮固体浓度,取用综合排放一级标准20mg/L; b-----微生物自身氧化率,一般介于0.05-0.1之间,取0.09; X---活性微生物在处理水中所占比例,取值0.4 得BOD5=7.10.090.420=5.1mg/L. 处理水中溶解性BOD5值为:20-5.1=14.9mg/L 去除率=187.514.9187.50.92

3.1.7.2、曝气池的计算与各部位尺寸的确定

曝气池按BOD污泥负荷率确定

拟定采用的BOD-污泥负荷率为0.25BOD5/(kgMLSS·kg)但为稳妥计,需加以校核,校核公式:

Ns=k2Sef

MLVSSMLSSK2值取0.0200,Se=14.9mg/L,=0.92,f=代入各值,

Ns0..75

0.020014.90.750.920.242BOD5/(kgMLSS·kg) 计算结果确证,

Ns取0.25是适宜的。

(2)确定混合液污泥浓度(X)

*11根据已确定的Ns值,查图得相应的SVI值为120-140,取值140 根据式 X=106SVIR1Rr

X----曝气池混合液污泥浓度 R----污泥回流比

取r=1.2,R=100%,代入得: X=106SVIR1Rr=10614011.2114286mg/L 取4300mg/L。

(3)确定曝气池容积,由公式VV100000187.50.25430017500m

3QSNsX代入各值得:

根据活性污泥的凝聚性能,混合液污泥浓度(X)不可能高于回流污泥浓度(Xr)。

106rSVIr1061401.28571.4mg/L X

按污泥龄进行计算,则曝气池容积为:

VQCY(SSe)XV(1Kdc)105140.5(187.514.9)4300(10.0714)0.7518900m

3其中

3Q----曝气池设计流量(m/s)

c----设计污泥龄(d)高负荷0.2-2.5,中5-15,低20-30 Xr---混合液挥发性悬浮固体平均浓度(mgVSS/L)Xv=fx=0.75*4300mg/L

3根据以上计算,取曝气池容积V=18000m (4)确定曝气池各部位尺寸 名义水力停留时间

tmvQ18000241054.32h 实际水力停留时间

tsv(1R)Q1800024(11)103

52.16h 设两组曝气池,每组容积为18000/2=9000m

2 池深H=4.5m,则每组面积 F=9000/4.5=2000m池宽取B=8m,则B/H=8/4.5=1.8 ,介于1-2之间,符合要求。 池长 L=F/B=2000/8=250m 设五廊道式曝气池,则每廊道长: L1=L/5=250/5=50m 取超高0.5m,则池总高为 H=4.5+0.5=5.0m 3.1.7.3、曝气系统的计算与设计 本设计采用鼓风曝气系统 (1)、需气量计算 每日去除的BOD值:

BOD5100000(87.520)10001.6810kg/d

4理论上,将1gNO3-N还原为N2需碳源有机物(BOD5表示)2.86g.一般认为,BOD5/TKN比*11值大于4-6时,认为碳源充足。

原污水中BOD5含量为150-250mg/L,总氮含量为45-55mg/L,取BOD5为200mg/L,氮为50mg/L,则碳氮比为4,认为碳源充足。

+-AAO法脱氮除磷的需氧量:2g/(gBOD5),3.43g/(gNH3-N),1.14g/(gNO2-N),分解1gCOD--*12需NO2-N0.58g或需NO3-N0.35g。

+-++因处理NH4-N需氧量大于NO2-N,需氧量计算均按NH4-N计算。原水中NH3-N含量为+35-45 mg/L,出水NH4-N含量为25mg/L。

+平均每日去除NOD值,取原水NH4-N含量为40 mg/L,则:

NOD=100000(4025)=1500kg/L

1000100000(4525)=2000kg/L

1000日最大去除NOD值:

NOD=日平均需氧量:

7O2=BOD+COD=2×1.68×1000+4.57×1500×1000=4.0455×10㎏/d 4取4.1×10㎏/d,即1710㎏/h。 日最大需氧量:

7O2max=BOD+COD=2×1.2×1.68×1000+4.57×2000×1000=4.946×10㎏/d 即2060㎏/h。

最大时需氧量与平均时需氧量之比:

O2(max)O2206017101.2

3.1.7.4、供气量的计算

本设计采用网状膜型中微孔空气扩散器,敷设于距池底0.3米处,淹没水深4.2米,计算温度定为30摄氏度。

*14选用Wm-180型网状膜空气扩散装置。

其特点不易堵塞,布气均匀,构造简单,便于维护和管理,氧的利用率较高。每扩散器服务面积0.5㎡,动力效率2.7-3.7㎏O2/KWh,氧利用率12%-15%。查表*得: 水中溶解氧饱和度 Cs(20)=9.17mg/L, Cs(30)=7.63mg/L. (1)空气扩散器出口的绝对压力(Pb):

3Pb=P+9.8×10H

5其中:P---大气压力 1.013×10Pa H---空气扩散装置的安装深度,m 533Pb=1.013×10Pa+9.8×10×4.2=1.425×10Pa (2)空气离开曝气池面时,氧的百分比:

Ot21(1EA)7921(1EA0)0 其中,EA---空气扩散装置的氧转移效率,一般6%-12% 对于网状膜中微孔空气扩散器,EA取12%,代入得:

Ot21(10.12)7921(10.12)0018.43%

(3)曝气池混合液中平均氧饱和度(按最不利温度条件30摄氏度),即:

Csb(T)CS(Pb2.026105Ot42)

其中,CS---大气压力下,氧的饱和度mg/L 得Csb(30)7.63(1.425102.026105518.4342)7.63(0.70340.4388)8.71mg/L (4)换算为在20摄氏度的条件下,脱氧轻水的充氧量,即:

R0RCS(20)T-20[CSB(T)-C]1.024

取值а=0.85,β=0.95,C=1.875,ρ=1.0; 代入各值,得:

R01.7109.170.85[0.951.08.71-1.875]1.02430-202236.9kg/h 取2250kg/h。

相应的最大时需氧量为:

R0(max)20609.170.85[0.951.08.71-1.875]1.02430-202694.kg/h 取2700kg/h。

(5)曝气池的平均时供氧量: GSR0A0.3E10022500.3121006.2510m/h

43(6)曝气池最大时供氧量:

GS(max)

3RmaxA0.3E10027000.3121007.510m43/h

(7)每m污水供气量:

6.251010000042415m空气/ m污水

333.1.7.5、空气管系统计算

选择一条从鼓风机房开始最长的管路作为计算管路,在空气流量变化处设设计节点,统一编号列表计算。

按曝气池平面图铺设空气管。空气管计算见图见图5。 在相邻的两廊道的隔墙上设一根干管,共5根干管,在每根干管上设5对配气竖管,共10条配气竖管,全曝气池共设50根曝气竖管,每根竖管供气量为:

362500501250m3/h

曝气池总平面面积为4000m。

3每个空气扩散装置的服务面积按0.49m计,则所需空气扩散装置的总数为:

40000.499000508164个

为安全计,本设计采用9000个空气扩散装置,则每个竖管上的空气扩散装置数目为:

180个

6250090006.95m3每个空气扩散装置的配气量为:/h

将已布置的空气管路及布设的空气扩散器绘制成空气管路计算图进行计算。 根据表4计算,得空气管道系统的总压力损失为:

(h1h2)61.609.8603.68Pa

网状膜空气扩散器的压力损失为5.88kPa,则总压力损失为:5880+603.68=6483.68Pa 为安全计,设计取值9.8kPa。

空气扩散装置安装在距曝气池底0.3米处,因此,鼓风机所需压力为:

P(4.50.31.0)9.850.96kPa

鼓风机供气量:

最大时供气量:7.1×10m/h,平均时供气量:6.25×10 m/h。

根据所需压力和供气量,决定采用RG-400型鼓风机8台,5用3备,根据以上数据设计鼓风机房。

3.1.7.6、回流污泥泵房

取回流比R=1,设三台回流污泥泵,备用一台,则每台污泥流量为

Q0*1

343

43115712578.5L/s

选用螺旋泵的型号为LXB-1000。据此设计回流污泥泵房。

3.1.8、二沉池

3.1.8.1.设计概述

3本设计中采用中央进水幅流式沉淀池六座。则每座设计进水量:Q=25000m/d采用周边传动刮泥机。

3232表面负荷:qb范围为1.0—1.5 m/ m.h ,取q=1/mh 水力停留时间(沉淀时间):T=2.5h 3.1.8.2.设计计算

(1)沉淀池面积: 按表面负荷计算:AQ4qb1000001624694m

2(2)沉淀池直径:D4A46943.1430m16m

有效水深为:h1=qbT=1.02.5=2.5m<4m Dh1302.512(介于6~12)

(3)贮泥斗容积:

为了防止磷在池中发生厌氧释放,故贮泥时间采用Tw=2h,二沉池污泥区所需存泥容积:

Vw2Tw(1R)QR(12R)n22(11)11571(12)6514m

3设池边坡度为0.05,进水头部直径为2m,则:

h4 (R-r)×0.05=(15-1)×0.05=0.7m 锥体部分容积为:

V13h(R2Rrr)2130.7(1521511)56.23m3

另需一段柱体装泥,设其高为h3,则:

h351456.231520.65m

(4)二沉池总高度:

取二沉池缓冲层高度h5=0.4m,超高为h2=0.3m 则二沉池总高度

H=h1+h2+h3+h4+h5=2.5+0.3+0.65+0.7+0.4=4.55m 则池边总高度为

h=h1+h2+h3+h5=2.5+0.3+0.65+0.4=3.85m (5)校核堰负荷: 径深比

Dh1h5Dh1h3h5302.50.4302.50.650.410.34

8.45

均在6-12之间,符合要求。 堰负荷

QnD11573.143062.05L/(s.m)2.9L/(s.m)

符合要求,单边进水即可。

(6)辐流式二沉池计算草图如下:

出水进水排泥

图6 辐流式沉淀池出水45503850进水700650

图6 幅流式二沉池设计计算简图

3.1.9计量堰设计计算

本设计采用巴氏计量槽,主要部分尺寸:

L10.5b1.2(m)

L2=0.6m L3=0.9m B1=1.2b+0.48(m) B2=b+0.3(m) 应设计在渠道直线段上,直线段长度不小于渠道宽度的8-10倍,计量槽上游直线段不小于渠宽2-3倍,下游不小于4-5倍,喉宽b一般采用上游渠道水面宽的1/2-1/3。

当W=0.25-0.3时,

HH10.70为自由流,大于为潜没流,矩形堰流量公式为QM0bH(2gH)1/2

*16其中m0取0.45,H为渠顶水深,b为堰宽,Q为流量。查表得; Q=1389L/s 则 H1=0.70m,b=1m 则 L10.5b1.2(m)=0.5×1+1.2=1.7m L2=0.6m L3=0.9m B1=1.2b+0.48(m)=1.2×1+0.48=1.68m B2=b+0.3(m)=1.3m 取H2=0.45m,则HH10.450.70.640.7为自由流。

计算简图如图7:

图7 巴氏计量堰设计计算简图

3.2 污泥处理部分构筑物计算 3.2.1污泥浓缩池设计计算:

污泥含水率高,体积大,从而对污泥的处理、利用及输送都造成困难,所以对污泥进行浓缩。重力浓缩法是利用自然的重力沉降作用,使固体中的间隙水得以分离。重力浓缩池可分为间歇式和连续式两种,我们选用间歇式重力浓缩池。如图8所示:

图8 污泥浓缩池设计简图

3.2.1.1浓缩污泥量的计算

XY(SaSe)QKdVXV

其中,X— 每日增长(排放)的挥发性污泥量(VSS),㎏/d; Q(Sa-Se)— 每日的有机污染物降解量,㎏/d;

Y— 污泥产率,生活污水0.5-0.65,城市污水0.4-0.5; VXV----曝气池内,混合液中挥发性悬浮固体总量,㎏,XV=MLVSS; Kd——衰减系数,生活污水0.05-0.1,城市污水0.07左右

4343取Y=0.5,Kd=0.07,Sa=187.5mg/L,Se=20mg/L,Q=12.01×10m/d,V=2×10m,则:

XV=f×MLSS=0.75×4300/1000=3.225㎏/L XY(SaSe)QKdVX0.5187.520100043V41050.072103.225

0.3910m/d剩余污泥量:QSXfXr

1RRXfXrXrX111390043008600mg/L

QS0.758.6

3604.65m3/d

采用间歇式排泥,剩余污泥量为604.65m/d,含水率P1=99.2%,污泥浓度为8.6㎏/ 3m;浓缩后的污泥浓度为31.2g/L,含水率P2=97%。 3.2.1.2浓缩池各部分尺寸计算

(1)浓缩池的直径

采用两个圆形间歇式污泥浓缩池。有效水深h2取2m,浓缩时间取16h。 则浓缩池面积

ATQ24H16604.65242201.42m3

则其污泥固体负荷为:

MQCA604.658600201.4225.8kg/md

3浓缩池污泥负荷取20-30之间,故以上设计符合要求。 采用两个污泥浓缩池,则每个浓缩池面积为:

A0=201.42/2=100.71㎡

则污泥池直径:

D4A04100.713.1411.33m

取D=12m。 (2)、浓缩污泥体积的计算

VQ(1P1)1P2604.65(199.2%)197%

3161.24m/d

3则排泥斗所需体积为161.24×16/24=107.5m (3)、排泥斗计算,如图,其上口半径r2D26m

其下口半径为0.5,污泥斗倾角取45度,则其高h1=2.5m。 则污泥斗容积

V13h1(r1r1r2r2)184.7m>107.5m

2233(4)、浓缩池高度计算:

H=h1+h2+h3=2.5+2+0.3=4.8m 排泥管、进泥管采用D=300mm,排上清液管采用三跟D=100mm铸铁管。浓缩池后设储泥罐一座,贮存来自除尘池的新污泥和浓缩池浓缩后的剩余活性污泥。贮存来自初沉池污泥333400m/d,来自浓缩池污泥161.24 m/d。总污泥量取600 m/d。设计污泥停留时间为16小时,池深取3m,超高0.3m,缓冲层高度0.3m。直径6.5m。

3.2.2 储泥灌与污泥脱水机房设计计算

采用带式压滤机将污泥脱水。选用两台

机房按照污泥流程分为前后两部分,前部分为投配池,用泵将絮凝剂加入污泥。后面部分选用7D—75型皮带运输机两台,带宽800毫米。采用带式压滤机将污泥脱水,设计选用两台带式压滤机,则每台处理污泥流量为:

Q60024212.5m3/h

选用DY—2000型带式压滤机两台,工作参数如下: 滤带有效宽度2000毫米; 滤带运行速度0.4-4m/min 进料污泥含水率95-98%,滤饼含水率70-80% 产泥量50-500kg/h·㎡ 用电功率2.2kW 重量5.5吨

外形尺寸(厂×宽×高):4970×2725×1895 根据以上数据设计污泥脱水机房。

第二篇:有色金属企业污水处理厂污水处理工艺

引言

某有色金属企业是集采矿、选矿、冶金、化工为一体,生产镍、铜、钴及相应的盐类产品的大型有色金属企业。该企业现有污水处理设施已处于超负荷运行 状态。为此,该企业拟新建污水处理厂处理来自该企业各生产单位排出的多种污水,污水总量为1 940 m3 / d。该项目建设目标是:一方面污水经过处理后,达到企业回用标准进行回用;另一方面对污水中重金属镍等资源进行回收利用,为企业降低运行成本。

1 废水水质分析及回用水质要求

1. 1 废水水质、水量情况

各生产单位废水水量、水质情况如表1 所示。依据废水分质处理的原则,可以将各生产单位排出的废水分为4 大类:1) 高浓度氨氮废水,包括公司1 及公司2 废水;2) 高浓度含砷废水,包括废酸处理后液及公司1 废水;3) 酸性废水,包括场面污水、废酸处理后液及电炉脱硫废水;4) 其他生产废水,包括共6 个生产单位排出的废水,这6 种废水的水质比较相似,主要污染物为镍等重金属及悬浮物( SS)。

1. 2 回用水水质、水量要求

根据各生产单位对回用水水质的要求,可将回用水分为三种。各种回用水的水质如图2所示io

2 废水处理工艺

2. 1 废水预处理工艺

2. 1. 1 高浓度氨氮废水预处理

该企业排出的废水中含高浓度氨氮污水有两种,合计废水量Q = 100 m3 / d,混合后pH 值为12. 28,ρ(NH3 -N) 为2 582 mg /L,如不进行单独脱氮预处理, 直接与该企业其他生产单位排出的含有高浓度Ni、Cd 等重金属的废水混合,重金属离子与氨氮将生成稳定的金属络合离子[1],为其处理带来一定困难。所以需对上述两个生产单位排出的废水进行单独脱氮预处理。本项目采用三级氨氮蒸汽、空气吹脱法去除废水中的氨氮,通过清水淋洗吸收吹脱出来的氨气来回收氨水。在

二、三级吹脱前采用石灰乳碱化废水,控制pH 值> 11,使水中的氨氮基本上以NH3的形式存在,同时废水中的SO2 -4与石灰乳中Ca2 + 反应生成CaSO4沉淀,去除了废水中大部分SO2 -4,以减小SO2 -4对氨氮吹脱的影响[2],提高了氨吹脱效率。在石灰乳碱化废水过程中产生的CaSO4沉渣,可用来回收石膏。 由于公司1 废水中不仅含有高浓度的氨氮,而且含有高浓度的砷(123 mg /L) ,所以经脱氨处理后的废水还需要与其他高浓度含砷废水混合进行除砷。

2. 1. 2 高浓度含砷废水预处理

砷及其化合物是毒性极强的污染物,对于有色金属冶炼行业排放的含高浓度砷的废水安全再利用,除砷是不可缺少的关键环节[3]。将高浓度含砷废水进 行单独预处理后,再与该企业其他生产废水混合进行下一步处理,可提高回收有色金属的品位,防止砷在系统中循环积累。根据石灰铁盐法的原理[4],结合本

项目中废酸后液废水中铁离子含量较高( ρ( Fe) / ρ(As) 为33) 的特点,因此采用三段中和- 铁盐混凝法处理含砷废水工艺。一段中和,加入CaCO3将废酸后液废水pH 调至2. 5,使CaCO3与原水中SO2 -4反应,生成CaSO4沉淀,去除废水中大部分SO2 -4 。在pH 值为2. 5 的条件下,废水中的铁和三价砷基本不会形成沉淀,只有少量五价砷会形成难溶性盐而进入沉渣中。所以,可以利用产生的CaSO4沉渣来回收石膏。二段中和,用石灰乳调pH 值至10. 5,鼓风搅拌,利用废水中同时含有砷和铁,且铁砷比较高的特点,使废水中的砷生成溶解度很小的砷的铁盐沉淀。另外Fe3 + 的水解产物Fe(OH)3胶体,可以吸附并与废水中的砷反应,生成难溶盐沉淀而将其除去。因此本阶段可以去除废水中全部五价砷,大部分三价砷及铁离子。三段中和,用石灰乳调pH 值至9. 5,并加入FeSO4控制ρ( Fe) / ρ(As) 为15,鼓风搅拌,进一步去除废水中的三价砷。

2. 1. 3 酸性废水预处理

需进行预处理的酸性废水包括场面污水和电炉脱硫废水,其中场面废水中含有大量的粉尘等无机颗粒杂质,因此先将其进行絮凝沉淀,然后再将其与电炉脱硫废水混合,加入CaCO3将混合废水pH 调至2. 5,使CaCO3与原水中SO2 -4反应,生成CaSO4沉淀,去除废水中大部分SO2 -4,沉渣可用于回收石膏。在pH 值为

2. 5 的条件下,废水中的镍基本不发生沉淀,可以减少本阶段预处理镍的损失,以便下一步对其进行回收处理。

2. 1. 4 其他生产废水预处理

其他生产废水在去除重金属并回收镍之前对其进行除悬浮物( SS) 预处理,以利于镍的回收。聚丙烯酰胺( PAM) 是一种有机高分子絮凝剂,由许多CH2 = CH—CONH2结构单元联结而成,通过其高分子的长链把污水中的许多细小颗粒吸附后缠在一起而形成架桥。与无机絮凝剂相比,PAM 具有用量少、絮凝能力高、效果好、絮凝体粗大、沉降速度快,废水中共存离子及pH 值影响较小等优点[5]。目前该企业废水处理站悬浮物去除率在80% 左右,并可同时去除部分COD。

2. 2 石灰法分级沉淀处理

先将经预处理的全部11 种污水混合,然后采用石灰法分级沉淀回收镍并去除重金属离子。石灰法分级沉淀是利用不同金属氢氧化物在不同pH 值下沉淀析出的特性,依次沉淀回收各种金属氢氧化物。沉淀法处理重金属废水具有流程简单,处理效果好,操作管理便利,处理成本低廉的特点[5],是目前应用最为广泛的一种处理重金属废水的方法。混合废水中主要重金属Ni、Pb、Cd 的氢氧化物溶度积(Ksp) 分别为2. 0 × 10 -

15、1. 2 × 10 -

15、2. 2 ×10 - 14 ,混合废水经PAM 絮凝处理后ρ( Ni)、ρ( Pb)、ρ(Cd) 分别为:10,0. 3,0. 15 mg /L。一级沉淀用石灰水调pH 值至8. 0,可以去除80% 以上的Ni,其他重金属离子Pb、Cd 等由于其溶度积、浓度及羟基配合作用的关系,基本不发生沉淀。二级沉淀用石灰水调pH 值至11,并加入FeSO4,鼓风搅拌,去除大部分剩余的镍及其他重金属。

2. 3 废水深度处理工艺

2. 3. 1 臭氧氧化去除有机物

臭氧氧化去除有机物的基本原理是:O3在高pH值溶液中,离解成HO -

2,该离子与O3反应诱发产生多种自由基,尤其是氧化能力强的HO·,使溶解或分 散于水中的有机物氧化成新的HO·,成为引发剂,诱发后面的链反应[6]。臭氧作为一种强氧化剂,能与废水中存在的大多数有机物和微生物以及无机物迅速发生反应,因此可用于除去水中的色度、难降解的有机物,且具有杀菌消毒的作用[5]。本项目废水经预处理及分级沉淀去除重金属后,ρ(COD) 为200 mg /L 左右,其中有毒物质及难降解有机物含量较高,且废水pH 值较高,所以适合采用臭氧氧化法处理。

2. 3. 2 活性炭吸附处理

本阶段主要是利用活性炭吸附废水中剩余的悬浮物、重金属、有机物等污染物。活性炭吸附后再经微滤设备过滤,出水可达表2 中回用水2 的水质要求。

2. 3. 3 膜过滤除盐处理

本阶段是将经过活性炭吸附的出水,利用反渗透膜进行过滤,除去Na + 、SO2 -4等离子,使出水电导率达0. 2,符合回用水1 的水质要求。分离出的浓水,符合回用水3 的水质标准。

2. 4 泥渣处理

污水处理过程中产生的污泥、镍渣、砷渣和重金属渣,分别用板框压滤机进行脱水处理,其中镍渣脱水处理后的泥饼回用冶炼。CaSO4沉渣,经浓缩机和离 心分离机脱水处理后,回收石膏。

3 工艺设计方案

3. 1 工艺流程

工艺流程如图1 所示。

3.2 工艺参数

1) 普通沉淀:沉淀表面负荷1 m3 / (m2·h)。

2) 絮凝沉淀: 混合时间1 min,絮凝反应时间30 min,沉淀表面负荷1 m3 / (m2·h)。

3)过滤:过滤设备自动控制反冲洗,反冲洗水来自回用水池,反冲洗排水至废水调节池。滤速8 m/ h。

4) 三级氨吹脱、吸收法脱氨: 一级氨吹脱,废水pH 值为12. 28;

二、三级氨吹脱,加入石灰乳通过pH计自动控制,将pH 值控制在11,气液比为2 900 ~3 600,水力负荷为6 m3 / (m2·h)。

5) 三段中和- 铁盐混凝法除砷:一段中和,加入CaCO3将原水pH 值调至2. 5;二段中和,用石灰乳调pH 值至10. 5,ρ( Fe) / ρ(As) 为30 左右,鼓风搅拌;三段中和,用石灰乳调pH 值至9. 5,并加入FeSO4控制ρ( Fe) / ρ(As) 为15,鼓风搅拌。混合时间为3 min,反应时间为30 min,沉淀表面负荷1 m3 / (m2·h)。

6) 中和沉淀: 加入CaCO3将原水pH 值调至2. 5,混合时间3 min,反应时间30 min,沉淀表面负荷1 m3 / (m2·h)。

7) 石灰法分级沉淀除重金属:一级沉淀调pH 值至8;二级沉淀调pH 值至11,加入FeSO4鼓风搅拌。混合时间3 min,反应时间30 min,沉淀表面负荷1 m3 / (m2·h)。 4 结论

1)根据废水分质处理的原则,对高浓度氨氮废水、含砷废水等进行单独预处理,降低了混合废水处理难度,并提高了镍的回收率。

2) 采用三级氨氮吹脱、吸收工艺处理高浓度氨氮废水,提高了去除氨氮的效率和稳定性。并对污水中氨及污水处理过程中产生的副产品CaSO4进行了回收利用。

3) 根据石灰铁盐法的基本工作原理,结合本项目中酸性含砷废水中铁离子含量较高的特点,设计了三段中和- 铁盐混凝法处理含砷酸性废水工艺。在投加铁盐量很少的情况下,达到了较高的除砷效率,同时去除了废水中大部分铁及SO2 -4 。

4) 采用石灰法分级沉淀处理混合废水中重金属离子,在去除大部分重金属离子的同时还可以回收金属镍,为企业降低了运行成本,并且防止了二次污染。

5) 根据各单位对回用水质的不同要求,采用了活性炭和活性炭加膜过滤两种污水末端处理方式,使污水处理后全部回用,达到了污水零排放的目的,不仅节约了大量水资源,降低了企业的运行成本,而且防止了对该地区水体及地下水的污染。

第三篇:污水处理厂清洁生产工艺

城市污水处理厂的清洁工艺

着经济的发展和环境要求的提高,清洁生产成为了环境保护的重要组成部分。

城市是一个工业和人口,能流和物流高度密集的人工生态系统。在这个系统中,水污染治理成为城市生态物质代谢循环的重要前提,也是保护城市水质资源和居民生活环境的重要条件,因而城市污水处理厂成为城市的一个重要的市政基础设施[1]。清洁生产是将整体预防的环境战略持续应用于生产过程、产品和服务中,以增加生态效应和减少对人类及环境的风险[2~5]。城市污水厂的清洁生产可通过采用先进的工艺技术与设备、加强质量管理,合理利用原料,充分利用废弃物资源,提高资源、能源利用率,减少或避免污染物产生,降低污染物的排放[6]。 某城市污水处理厂的污水处理系统服务城市面积50余平方公里,服务人口60余万,占地约110000m2,建筑面积约17000m2,设计处理能力约20万m3/d。一期工程含:污水处理厂、与之相配套的28公里截污干管及沿线5座泵站。总投资约10亿元人民币。2001年12月动工建设,2003年10月底基本建成,2004年5月启动污水运行。根据国家制定的清洁生产的相关法规以及相关方面[7,8]的要求,该厂于2006年开展包括2005年在内的清洁生产审核工作,本文介绍该审核工作情况、采取的措施及实施成果。 1 污水水量、水质

水处理厂的废水主要来源于生活污水,最终都进入污水处理系统进行处理,日处理水量达20万吨。其中主要的污染物监测参数包括:bod

5、cod、ss、t-p、nh3-n、t-n、大肠杆菌数,根据2005年统计各种污染物的平均浓度分别为:bod5:99·5mg/l、cod:167mg/l、ss:119mg/l、t-p:2·79mg/l、nh3-n:19·4mg/l、t-n:26·39mg/l、大肠杆菌数6623个/l,且每日变化幅度大,极为不稳定,主要波动范围为:bod5:21·9~263mg/l、cod:39~454mg/l、ss:36~683mg/l、t-p:1·06~6·01mg/l、nh3-n:1·3~30·8mg/l、t-n:5·7~41·8mg/l、大肠杆菌数:2950~13800个/l。

2 水处理工艺

该污水厂处理工艺见下图,主要为改良a2/o工艺。污水被泵打入均衡池后先经过格栅,去除污水中颗粒直径大于5mm的悬浮物,防止堵塞后续单元的机器、水泵或工艺管线。再泵入涡流沉砂池,涡流式沉砂池为圆形结构,污水从切线方向进入池中,进水渠道的末端设有向下倾斜的斜坡,与水流的切线方向保持一致,在池内产生了螺旋状的环行水流。在重力及离心力的作用下,砂子沉入池底的集砂坑中,而比重较轻的有机物则在叶轮与水流双重作用下与砂分离,上浮到沉砂池表面随水流流出。污水经过物理处理后,进入核心的生物反应池,采用改良的a2/o工艺,利用生物降解水体有机污染物并除磷脱氮。最后,在二沉池中,利用重力的作用使活性污泥与处理后的污水分离,并使污泥得到一定的浓缩,池体采用中进周出幅流式二沉池。此外,采用紫外消毒系统对处理水进行消毒,杀灭其中的病菌和病毒。经消毒后的处理水排入河中。

数据统计表明各种污染物的综合排放达标率为95%。不达标的主要有t-p、大肠杆菌。 3 主要污染源分析

针对该厂的整个污水处理过程进行分析,主要可能产生污染的情况有水、气、声、固废等四方面的来源。。

水处理厂的废水主要来源于生活污水和废水处理过程中产生的污水,最终都进入污水处理系统进行处理,其中主要的污染物是bod

5、cod、ss、t-p、nh3-n、t-n·进厂废水每日变化幅度大,极为不稳定。主要水质特征同第一节的水质特征。水处理厂的废水通过水处理装置处理达标后外排入河流。2005年该厂各种污染物的综合排放达标率为:95%。不达标的主要有t-p、大肠杆菌、cod。分析得出不达标的原因有:(1)污水处理厂进水的污染物浓度变化范围太大,在短时间内输送到厂内产生超负荷冲击,对处理阶段的工艺控制带来严重的影响。(2)污水处理厂因不规范操作,在没有监控的情况下,为节约运行成本而有段时间没有开动紫外消毒系统,导致大肠杆菌等超标。废气污染源主要为各泵站、运行班、脱水机房范围内的污水、污泥产生少量含有胺类,硫化氢,甲基吲哚等化学成分的臭气,具体情况见表3,排放方式为无规律排放。

固体废物最大的来源是脱水机房的脱水污泥、生活垃圾等。 4 确定审核重点

对于污水处理厂的清洁生产来说,确定备选审核重点的原则[2]及应考虑的因素有:(1)污染物产生量大,排放量大的环节;(2)废水中病菌毒性危害水体的环节;(3)一旦采取措施,容易产生显著环境效益与经济效益的环节;(4)物流进出口多、量大、控制较难的环节;(5)公众反映强烈,投诉最多的问题;(6)在区域环境质量改善中起重大作用的环节。

目前水处理厂的物耗暂时没有清洁生产的国家和行业标准,清洁生产审核只能依据相关类似法规。虽然该城市污水处理厂一期工程每天处理的废水达20万吨,处理的量比较大,但由于水处理厂的工艺和设备都较为先进,经过2005年1~3月的调试后,水处理厂排放的经处理的废水持续稳定达标率较为稳定,由2005年的95%变为2006年首季度的100%,迄清洁生产审核期为止已连续达标排放212天。

但同时也存在一些问题需要改进。2005年还有5%的不达标的废水排入花地河中,造成了一定程度上的污染;消毒对于饮用水是必不可少的处理工艺,对废水而言,虽然不是必需的,但对某些废水的安全排放或回用,消毒处理已经成为了必须考虑的工艺之一。因此,紫外光消毒系统的长期运行是保证处理出水细菌达标的保障。另外水处理厂每年产生的污泥数量特别大,污泥的处置也是清洁生产的审核重点之一;目前我国有部分先进的水处理厂已经将部分废水处理后达到中水回用的水平,作为水资源紧张的我国,如此大量的废水若能得到进一步的治理利用,将对城市的循环经济和可持续发展做出有益的贡献,因此,污水处理厂将部分废水处理后达到中水回用也是该厂的一项长期目标。 5 确定清洁工艺方案

清洁生产方案的数量、质量和可实施性直接关系到企业清洁生产审计的成效,是审计过程的一个关键环节,因而应广泛发动群众征集、产生各类方案。通过前面污水处理厂污染源,审核重点的分析,清洁生产提出了如下建议和方案: 5·1 3个体现技术工艺改造的方案 增加化学除磷处理工序;污泥无害化、减量化研究方案;同时硝化反硝化生物脱氮与工艺优化。(1)化学除磷处理工序[11~13]。根据进水水质和处理水排放标准,为了达到出水磷酸盐的浓度不大于1·0mg/l的二级标准,建议在工艺流程中加入化学除磷设施来控制处理水的磷酸盐浓度。确保了出水磷酸盐按照相应的ⅱ级标准达标排放,对排放的河流和相关流域的水质情况将有大幅改善。(2污泥无害化、减量化[14,15]研究方案。开展絮凝剂的研究,最大限度的降低污泥的含水率并提高污泥的脱水性能是大幅降低污水处理厂的运行费用的办法。减轻污泥对环境的不良影响,减少污泥填埋厂的处理用地。大幅降低处理厂的运行费用。(3同时硝化反硝化生物脱氮与工艺优化。对生化池进水水质进行计量学优化[16,17]控制、调控溶解氧浓度与分布,造成局部好氧与厌氧环境,使之实现硝化与反硝化的动力学平衡。该新建工程建成投产后,确保了出水t-n值按照相应的ⅱ级标准达标排放,对周边排放河流及相关流域的水质情况将有大幅改善。

5·2 3个设备维护和更新的方案

安装节能灯;安装照明设备;紫外消毒装置的维护和运行。(1)安装节能灯。在条件允许的情况下,在需要的道路安装节能灯,节约用电。(2安装照明设备。在生物反应池边安装节能照明设备,以适应晚上工作的需要,节约用电,保障安全。(3)紫外消毒装置的维护和运行。长期开启紫外消毒装置,保证出水的病原菌指标达到有关规定的要求,保证出水的各项指标以及病原菌含量的达标排放,产生良好的环境效益,对于改善周边环境、净化河道,保护水资源等起到了相当积极的作用。

5·3 3个过程优化控制的方案

减少风机的输送风量;加装隔音设备;设置合理的报警上限。(1)减少风机的输送风量。合理控制工艺的运行,将do值控制在一个合适的范围,在保证出水合格的条件下减少空气的输送量减少电力消耗,节约用电。(2)加装隔音设备在鼓风机房装隔音设备,减少噪音污染。(3)设置合理的报警上限。在进出水口设置的检测仪表上设置合理的报警上限,当进出水接近设计值时,工艺人员能够及时调整工艺,使出水及格,提高出水合格率。 5·4 4个废物回收利用和循环使用的方案

回用水系统安装;一水多用;污泥消化处理污泥资源化利用。(1)安装回用水系统,使回用水用于绿化等方面,节约用水,减少水费支出(2)一水多用,食堂在工作时候,尽量做到一水多用,节约用水量,可以减少水费的开支。(3污泥消化处理。在浓缩与脱水这两个步骤中间增加消化处理过程(稳定处理),进一步减少污泥量使污泥量大幅减少,为后续的脱水及最终处理大幅减少处理数量和成本,且可以消灭病原菌、蠕虫和大量杂草种子,减少污泥处理费用。(4)对污泥进行资源化利用,制成颗粒肥施用农田,有效利用资源并防止污泥的二次污染的产生。 5·5 9个加强管理的方案

调节脱水机的运行参数节省用电;采用合适的絮凝剂浓度;延长污泥浓缩时间减少药耗;降低药耗;化学药品的合理利用;处理有毒化学药品;合理用空调;建立相关认证体系;加强绿化工作(1)调节脱水机的运行参数节省用电。在降低脱水污泥含水率的情况下,采用合适的絮凝剂浓度合理调节脱水机的运行参数(带速、网带张紧压力、调偏压力等),降低投药量,可以节约用电和降低药耗,达到节能减耗的目的。(2)采用合适的絮凝剂浓度,不但可以节省絮凝剂,节约资源;而且可以避免滤带堵塞致使冲洗水用量增加、滤带损耗大等危害。(3)控制排泥速度,与脱水机班密切配合,延长污泥浓缩时间,降低脱水前污泥含水率,减少药耗,节约资源。(4)加强脱水机的加药系统设备的管理,降低药耗,将费用控制在一个最佳的比例,节约资源,降低药耗。(5)确定化学品合理贮存量,定期进行材料使用跟踪,减少不同牌号和不同等级化学品的用量,减少化学品过期损耗,节约药品支出。(6)增加仪器分析,在实验中减少或杜绝使用有毒化学品,在试验最后一步时,处理或降解废物毒性;使有害废物流分离,减轻化学药品对环境的污染。(7)在室内开空调时室内和室外的温差在5℃以内,没有人在的时候注意及时关闭,节约用电。(8)厂区建立质量管理体系、环境管理体系、职业健康安全管理体系———管理体系(又称三合一体系),并通过第三方认证,使环境管理系统化,有利于企业全方面的控制和预防环境污染,增强竞争能力,提高企业形象。(9)加强厂区绿化工作,提高厂区绿化率,美化环境。 6 持续清洁生产

清洁生产是一个动态的、相对的概念,是一个连续的过程,因而以原工厂原管理层中抽调人员组成一个固定的机构、稳定的工作人员来组织和协调这方面工作,确保清洁工艺各步骤均在规范化要求下实施,以巩固已取得的清洁生产成果,并使清洁生产工作持续地开展下去。建立和完善清洁生产组织、明确任务、落实归属、确定专人负责;建立和完善清洁生产管理制度,把审计成果纳入企业的日常管理、建立和完善清洁生产激励机制;制定持续清洁生产计划清洁生产并非一朝一夕就可完成,因而应制定持续清洁生产计划,使清洁生产有组织、有计划地在企业中进行下去。通过管理层的监督、清洁生产激励机制的建立,对企业的严格管理,从而防止一些不规范操作的发生,使整个企业进行可持续的清洁生产。

第四篇:污水处理工艺

普通]制浆造纸废水生物技术处理及其研究进展

(时间:2008-5-8 9:15:37 共有 人次浏览)

制浆造纸产生的废水若不经处理直接排放,将会造成严重的水体污染事件。实践表明,仅仅 依靠单段或单级处理不能达标排放,如单级混凝工艺只能去除45%-55%的CODcr,在此基础上,利用生物技术处理废水的特点在混凝处理后再增加生物处理的工艺也就应运而生。

文章主要介绍了生物技术在制浆造纸废水处理中的应用,希望能够引起造纸行业及其他相关行业对生物技术关注和重视,使造纸工业能够在防治水污染的同时,走可持续发展道路。 1好氧生物处理法

好氧生物处理法是在氧参与的条件下,利用好氧微生物降解污染物质的方法。对于污染物浓度较低的废水一般采用好氧生物处理。 1.1活性污泥法

活性污泥法自20世纪初开始应用以来,已成为世界各国应用最为广泛的一种二级生物处理工艺。活性污泥法净化废水主要是依靠好氧的能形成絮凝物的菌胶团属为主,在有氧条件下有效地把有机化合物氧化,生成CO

2、H2O和细胞物质,这些细胞物质再用沉淀的方法从悬浮液中分离出来,一部分回用,剩余部分则加以处理。最早使用的活性污泥法称作普通曝气池法,亦称传统法。 随着现代造纸工业的迅速发展,废水中难降解有机物的种类和数量不断增加,如存在耐水量和水质变化的冲击力小,运行不够稳定;曝气池中生物浓度低,曝气时间长,氧气利用率不高;构筑物占地面积大,基建费用高;易产生污泥膨胀,且污泥产量大等问题。为适应废水处理发展的要求,许多研究工作者对传统活性污泥法进行了大量的改进和强化,高效内循环生物反应器就是其中的一种,在造纸废水处理方面效果明显。此反应器将活性污泥法和硫化床结合起来,运用了高速射流曝气、物相强化传递、素流剪切等技术。因此其空气氧的转化率高,反应器的容积负荷大,水力停留时间短。

FB硫化床是从流动床和改进的活性污泥工艺演变而来的,是一种改良的活性污泥工艺,有研究表明采用FB硫化床对原有的污水处理厂进行改造后,排放负荷CODcr降到4kg/t成品浆。

陕西科技大学杨卿等人研究了HCR处理碱法麦草浆中段废水,结果表明,在水里停留时间为55min时,CODcr去除率达到85%,BOD5去除率达到80%。在试验过程中当进水BOD5在3 10-360mg/L的范围内波动时,去除率稳定在75%-85%。某纸厂废水采用HCR艺处理,其中BOD5和CODcr的去除率均在80%以上,悬浮物去除率和脱色率均在95%以上,与传统活性污泥法相比,HCR工艺在充氧速率、容积负荷、污泥负荷、沉淀池表面负荷、剩余污泥产率、水力停留时间等方面具有明显优势。

加拿大的几个工厂成功运用SBR艺处理制浆造纸废水,运行数据表明,所有系统BOD5去除率都能达90%以上,所有系统都能满足TSS的排放要求。有研究者采用混凝-SBR-吸附法处理制浆造纸废水,结果表明,采用-SBR-艺处理混凝后的制浆造纸废水,在生物处理时间为10h的情况下,可使CODcr总去除率达到94%以上。C.Q.Yang等人根据SBR技术特点,结合传统活性污泥法技术,研究开发了一种更为理想的污水处理技术--MSBR法。MSBR采用单池多格式化,既不需要初沉池和二沉地,又能在反应器全充满并在恒定液位下连续进水运行,通过生产应用证明MSBR法是一种经济有效、运行可靠。易于实现计算机控制的污水处理工艺。广西钦州竹国有限公司采用氧化沟结合水解工艺处理造纸废水,实践表明,该工艺处理效果良好,CODcr去除率达95%以上。

1、2生物膜法

与活性污泥法不同,生物膜法的微生物处于固着生长状态,是利用附着于填料表面上的生物粘膜氧化分解废水中的有机污染物质,从而使废水得到净化。生物膜法具有泥龄长、硝化效果好、管理简单、无污泥膨胀、剩余污泥量少、耐冲击负荷和耐毒性等优点,因此得到越来越广泛应用。 近年来,序批式生物膜反应器(SBBR)在污水和工业废水处理中的应用,引起了国内外广大学者、专家的研究兴趣,并取得了不少成果。汕头职业技术学院的陈壁波等人采用SBBR处理制浆中段废水,研究结果表明,中段废水经SBBR生化处理后,CODcr、BOD5去除率均达到75%以上,AOX去除率也达到55%以上。制浆中段废水经生化-混凝处理后,CODcr、BOD

5、色度、TSS和AOX去除率均达到90%左右,可达标排放。四川理工学院的李文俊等采用混凝—MBBR法对某厂造纸中段废水进行了处理,结果表明,在水里停留时间8 h,曝气气水比为4:l,CODcr容积负荷为2.7kg/(m3·d)时,经强化混凝—MBBR法处理的废水CODcr和SS的去除率分别可达92.l%和93.3%。 目前,许多地方环保部门对造纸企业制定了更严格的废水排放标准,其CODcr要求在100mg/L以下,实践证明仅通过物化处理的废水往往达不到排放标准,其主要原因是废水中存在可溶性的COD,而生化处理可有效去除可溶性的CODcr。华南理工大学万金泉等人研制开发了一体化废水处理技术,其技术主要是采用混凝沉淀与吸附过滤相结合的方法,在特效废水处理器中对废水进行处理,再经接触氧化二级处理,在6h的曝气时间下最终COD cr。可以达到50mg/L。用该一体化反应器处理硫酸盐浆含氯漂白废水,当水里停留时间15h时,CODcr、BOD

5、AOX、有毒物质去除率分别为88.l%、81.0%、98.4%、92.0%。 2厌氧生物处理法

厌氧生物处理法是在没有氧参与的条件下,通过厌氧生物对有机物进行酸性发酵和碱性发酵两个阶段的厌氧分解,完成代谢过程。随着各种高效新型厌氧处理装置的发展,厌氧生物处理法不仅可以用于高浓和中浓有机废水的处理,而且也适用于低浓有机废水的处理。其与好氧生物法相比,不需曝气,只需少量或不需补充营养物;产生的污泥量少,污泥稳定,易于脱水;反应器负荷高,体积小,占地少;规模灵活,操作方便。对于操作控制较为复杂且安全措施要求严格的废水处理,厌氧法常作为好氧处理前的处理,以达到更好的处理效果。

清华大学徐华等人通过对草浆中段废水混凝沉淀—厌氧—好氧生物处理组合工艺的试验研究得出,当FeSO4和PAM投加量分别为30mg/L和10mg/L时,COD和SS去除率分别为40%和95%;垂直折流板式厌氧污泥床在负荷为3.1-4.3kgCOD-(m3·d)时,COD去除率约为55%;接触氧化池负荷为l.5-2kgCOD(m3·d)时,COD去除率为50%,可以使出水达到国家排放标准。 以UASB(上流式厌氧污泥床)为代表的新一代高负荷厌氧处理技术已广泛应用于各国制浆造纸废水处理工艺中。荷兰Papierfabried Roermond造纸厂,是以废纸为原料生产挂面纸板和瓦楞原纸的工厂,该厂对废水采用厌氧—好氧处理,在进水CODcr为3g/L时,通过UASB处理后,CODcr去除率为75%,为后续好氧处理的效果和稳定性奠定了基础。

20世纪90年代由荷兰帕克公司开发的专利技术内循环厌氧反应器(IC反应器),成为厌氧新技术的佼佼者。IC反应器的负荷相当于UASB的2-3倍,反应器高度是UASB的3倍多,因此具有占地少、体积小、效率高的特点,因而在废水处理中可取代UASB作为厌氧处理系统的关键设备。福建南纸股份有限公司引进荷兰帕克公司先进的厌氧技术进行厌氧—好氧处理高浓制浆混合废水,结果表明,该生产线具有自动化程度高、人员少、占地面积小、电耗低、处理效果好、处理成本低、工艺运行稳定等特点。Youngseob Yu等人实验表明,在高温制浆废水中,加人葡萄糖强化酸化水解木素的嗜温菌和嗜高温菌是可行的可提高厌氧处理的效率。 3利用特种微生物处理法

利用特种微生物对制浆造纸废液进行净化处理是一个颇具前途的研究方向。已有研究表明,白腐菌是现阶段对木素及其衍生物降解最具潜力的菌株。王宏勋等人报道了产酸白腐菌的产酸性能与降解作用同时存在,去除黑液COD的能力与其自身的产酸效能紧密相连,因此产酸白腐菌在碱性黑液中可以发挥产酸与降解双重功能,可用于造纸黑液的生物处理。R.Nagarathna等利用Ceriporiopsis subvermispora CZ--3对牛皮纸浆废水进行脱氯研究,发现添加1g的葡糖糖,在温度30℃-35℃及PH值4.0~4.5,48h,降低45%的COD,降解木素62%,分解32%的AOX及36%的EOX。Messner将白腐菌P.chrysosporium BKM-1767固定在滴滤器的多孔泡沫载体上(MY-COPOR工艺),停留时间6~12h,其AOX去除率、COD去除率及脱色率分别达到80%、40%及87%。 4人工湿地处理技术

所谓人工湿地(constructed wetland)是指通过模拟天然湿地的结构与功能,选择一定的地理位置与地形,根据人们的需要人为设计与建造的湿地。其处理造纸废水机理为,利用基质一微生物一植物这个复合生态系统的物理、化学和生物的三重协调作用,通过共沉、过滤、吸附、离子交换、植物吸收和微生物分解来实现对造纸废水的高效净化,同时通过营养物质和水分的生物地球化学循环,促进绿色植物生长并使其增产,实现废水资源化和无害化。

江苏射阳双灯造纸厂建造的人工湿地是以芦苇湿地植物和射阳丰富的滩涂资源为主体建造起来的。该厂废水经厂内生化预处理后,流入滩涂湿地生态处理场,对芦苇田进行灌溉,并充分利用芦苇湿地植物的生命活动代谢作用、地表系统自然净化功能、土地吸收和吸附作用,对厂内生化预处理后的废水进行深度处理,使之达到造纸废水排放标准,同时芦苇又可作为造纸原料,从而实现了污染物在系统内净化。 5结语

为了我国国民经济可持续发展,防治水污染作为全国性重点,相应的环保法规将更细,要求更严。为此,制浆造纸废水的处理技术正不断改进和完善。造纸厂应本着清洁生产和零排放的目的,立足于本厂的具体废水特征及其实际条件,选择经济可行见效果好的处理工艺。

第五篇:城市污水处理厂工艺调试方法简述 - 污水处理

城市污水处理厂工艺调试方法简述 来源:网络

发布日期:2006-07-23 浏览次数: 15568 摘要:当前,城市污水处理厂工艺调试的重要性还没被普遍认识和接受,不少污水厂建成后没有进行工艺调试,这就产生了要么运行不起来,要么运行起来水质达不到设计要求,运行成本偏高等现象。事实上,工艺调试是污水厂投产前的一项重要工作,其重要性表现在以下几个方面:一是发现并解决设备、设施、控制、工艺等方面出现的问题,使污水厂投入正常运行;二是实现工艺设计目标,即出水各项指标达到设计要求;三是确定符合实际进水水量和水质的各项控制参数,在出水水质达到设计要求的前提下,尽可能的降低运行成本。

关键词:城市污水处理厂 工艺调试方法

当前,城市污水处理厂工艺调试的重要性还没被普遍认识和接受,不少污水厂建成后没有进行工艺调试,这就产生了要么运行不起来,要么运行起来水质达不到设计要求,运行成本偏高等现象。

事实上,工艺调试是污水厂投产前的一项重要工作,其重要性表现在以下几个方面:一是发现并解决设备、设施、控制、工艺等方面出现的问题,使污水厂投入正常运行;二是实现工艺设计目标,即出水各项指标达到设计要求;三是确定符合实际进水水量和水质的各项控制参数,在出水水质达到设计要求的前提下,尽可能的降低运行成本。

一、调试内容及目的

调试的主要内容有:第一,带负荷试车,解决影响连续运行的各种问题,为下一步工作打好基础;第二,活性污泥培养,主要是积累处理所需微生物的量;第三,活性污泥驯化,其目的是选择适应实际水质情况的微生物,淘汰无用的微生物;第四,确定符合实际进水水质水量的工艺控制参数,在确保出水水质达标的前提下,尽可能降低能耗;第五,编制工艺控制规程,以指导今后的运行。

二、调试方法

(一)准备工作

1.人员准备:

a.工艺、化验、设备、自控、仪表等相关专业技术人员各一人。

b.接受过培训的各岗位人员到位,人数视岗位设置和可以进行轮班而定。

2.其他准备工作:

a.收集工艺设计图及设计说明、自控、仪表和设备说明书等相关资料。

b.检查化验室仪器、器皿、药品等是否齐全,以便开展水质分析。

c.检查各构筑物及其附属设施尺寸、标高是否与设计相符,管道及构筑物中有无堵塞物。

d.检查总供电及各设备供电是否正常。

e.检查设备能否正常开机,各种闸阀能否正常开启和关闭。

f.检查仪表及控制系统是否正常。

g.检查维修、维护工具是否齐全,常用易损件有无准备。

h.购置絮凝剂。

(二)带负荷试车

开启水处理设施、管道中所有阀门和闸阀,启动进水泵送水,根据各构筑物进水情况,沿工艺流程适时启动其他设备。在此过程中应做好以下几方面工作:第

一、检查进线总电流是否符合要求,变配电设备工作是否正常,各种设备工作情况是否正常以及能否满足设计要求,仪器仪表工作是否正常,自控系统能否满足设计要求。第

二、用容积法校核进出水、回流以及剩余污泥流量计计量是否准确,校核各种仪表,检测进水水质,测量流速,测量并记录设备的电压、电流、功率和转速。第

三、及时解决试车过程中发现的问题。第

四、编制设备操作规程。

(三)活性污泥培养

活性污泥培养的实质就是在一段时间内,通过一定的手段,使处理系统中产生并积累一定量的微生物,其培养方式主要有连续式和间歇式。

1.连续式培养:连续式培养是指在连续进水、连续出水的情况下进行的活性污泥培养方式。选择该种培养方式的条件是要有足够的进水,即日进水量至少可以满足一台进水泵24小时的水量,连续式培养的优点是培养时间短,微生物所需驯化时间短。其具体操作方法是根据来水量的大小确定进水泵开机台数和生物池开启组数,格栅机、沉砂池、二沉池全开,开启外回流泵(若有内回流泵,选择不开),回流量控制在大于100%,曝气区溶解氧大于2mg/l,生物池流速平均不小于0.3m/s,绝对流速不小于0.2m/s,连续运行。在此过程中,每天做好各项水质指标和控制参数的测定。当sv%达到10%以上时,活性污泥培养即告成功,此时的出水BOD

5、SS、COD等指标一般可达到设计要求。

2.间歇式培养:间歇式培养是按进水、曝气、沉淀、撇除上清液等四个阶段往复循环的培养方式,是在进水量小不能满足连续运行的一种培养方式。其特点是微生物积累周期长,驯化时间长,操作工作量大。其具体操作方法是同时开启进水泵、格栅机、沉砂池,待生物池充满水后开始曝气,同时停止进水,定时测量生物池,当COD、SS明显小于进水时停止曝气,沉淀2小时后再进水,同时撇除上清液。在此过程中的水质指标和控制参数的测定及完成的标志同连续式培养。

(四)活性污泥驯化

驯化的目的是选择适应实际水质情况的微生物,淘汰无用的微生物,对于有脱氮除磷功能的处理工艺,通过驯化使硝化菌、反硝化菌、聚磷菌成为优势菌群。具体做法是首先保持工艺的正常运转,然后,严格控制工艺控制参数,DO在厌氧池控制在0.1mg/l以下,在缺氧池控制在0.5mg/l以下,在好氧池控制在2-3mg/l,好氧池曝气时间不小于5小时,外回流比50%~100%,内回流比200%~300%,并且,每天排除日产泥量30%~50%的剩余污泥。在此过程中,每天测试进出水水质指标,直到出水各指标达到设计要求。

(五)工艺控制参数的确定

设计中的工艺控制参数是在预测的水量、水质条件下确定的,而实际投入运行时的污水厂其水量水质往往与设计有较大的差异,因此,必须根据实际水量水质情况来来确定合适的工艺控制参数,以保证运行的正常进行和使出水水质达标的的同时尽可能降低能耗。

1.工艺参数内容:

需确定的重要工艺参数有进水泵房的控制水位、沉砂池排砂周期、生物池溶解氧DO及氧化还原电位ORP、污泥回流比R、污泥浓度MLVSS,污泥沉降比SV%、污泥指数SVI、污泥龄SRT、剩余污泥排放周期及日排放量、二沉池泥面高度等,其中影响能耗大小的主要因素是进水水位的高低和污泥浓度MLVSS的大小,影响脱氮除磷效果的主要因素是溶解氧DO和污泥龄SRT。

2.确定方法:

进水泵房水位在保证进水系统不溢流的前提下尽可能控制在高水位运行。用每天排除大海量的体积与集砂容积对比来确定排砂周期,排砂量体积小于集砂容积。生物池DO及ORP根据厌氧池放磷情况、缺氧池反硝化情况、好氧池吸磷和硝化情况来确定,一般情况下厌氧池的DO小于0.1mg/l,缺氧池的DO小于0.5mg/l,好氧池的DO控制在2~3mg/l之间,厌氧池ORP小于-250mv,缺氧池ORP在-100mv左右,好氧池ORP大于40mv。回流比R的大小应根据污泥在二沉池的停留时间和磷的释放来确定,一般情况下80%左右较合适。污泥浓度MLVSS通过污泥负荷来确定,脱氮除磷工艺的污泥负荷一般在0.12kgBOD5/(kgMLVSS*d)左右较合适。污泥龄SRT要考虑设计水质的要求,对脱氮除磷工艺而言,其一般控制在8天左右。

(六)工艺控制规程:

工艺控制规程主要是用来指导生产运行的,是工艺运行的主要依据,其主要包含以下几方面的内容:第一,各构筑物的基本情况;第二,各构筑物运行控制参数;第三,设施设备运行方式;第四,工艺调整方法;第五,处理设施维护维修方式。工艺控制规程应在工艺参数确定后编制。

(七)调试中的其他工作:

污水厂要正确运行,还应有一套完善的制度,其主要包括管理制度、岗位职责、操作规程、运行记录、设备设施档案等,在调试过程中可分步完成上述工作。

三、应注意的问题

1.通过前对所有设施、管道及水下设备进行检查,彻底清理所有杂物,以避免通水后管道、设备堵塞和维修水下设备影响调试的顺利进行。通水后进行水下设施设备的维护困难相当大,主要是因为维修需将水池放空,而水池的容积小则几千个立方,大则上万立方,放空一次相当费时费工,特别是有活性污泥后,水往哪放本身就是个问题,放出去会发生污染事故,放到别的池子往往又装不下。因此,在通水前一定要认真检查、清理。

2.对进水水质严格进行监控,尤其是PH,超过要求时应立即采取相应措施,否则会使培菌工作前功尽弃。

3.培菌初期,曝气池会出现大量的白色泡沫,严重时会堆积两三米高,污染走道和现场仪器仪表,这一问题是培菌初期的必然现象,只要控制好溶解氧和采取适当的消泡措施就可以解决。

4.自来水水量和压力大小往往容易被大家忽视,在调试过程中,化验室和污泥脱水的一些仪器、设备对水量和水压有严格的要求,若达不到要求,这些仪器、设备将无法使用。污水厂一般远离城市,处于自来水的管网末梢,水量水压通常很小,因此,应设置一定的装置以提高水量水压。

四、建议:

工艺调试是关系到污水处理厂能否正常运行及效益能否充分发挥的重要工作,它有技术性强、难度高等特点,需要具备污水处理知识和长期运行经验的专业人员或专业机构来实施,因此,建议有关部门将工艺调试列入项目,并安排足够的资金,以保证调试工作的有效开展。

上一篇:网上举报公司拖欠工资下一篇:污水处理工程监理报告