城市规划英文翻译

2022-06-24

第一篇:城市规划英文翻译

研究生期间规划 -翻译

选择该专业的理由: I love English and I respect knowledge very much. Being an interpreter or translator is like an encyclopedia.

Ⅰ、自我介绍 Self Introduction

敬爱的XX教授:

您好,在百忙之中打扰您了,我叫 XXX,是2016级翻译专业学生。很有缘分,我能有您这样一位有学识、经经验丰富的院长作为我的导师。

我出生于一个农民家庭,家里有4兄妹,双亲勤劳,质朴。2003年大专毕业(办公自动化与文秘)。2005年自考人民大学本科毕业(工商企业管理)。在上大专期间,开始自学英语,2002年考了CET-4;尽管通过了四级,英语对我来说还是一知半解。 2005年参加了全国研究生考试(人民大学经济学专业),但是数二没有过线;2013年,意外地得知有翻译,不考二外时,燃起了我崇尚那不断进取的灵魂,从14年-16年先后选报了重庆大学,华南理工大学,最后有幸被贵州财经大学录取。我深知:付出了不一定有收获,但不付出,一定没有收获。这是生命的轮回,有太多人会经历这一番煎熬和且行且上的痛苦;但经历了,即使是失败的,也从不会是无益的。

Ⅱ、最近研读过的部分英语(翻译)书籍

《金典100初、高中语法》,《薄冰高级语法》,《实用英语语法》,《赖氏经典语法》等; 《新编汉英翻译教程(第2版) [A New Course book on Chinese-English Translation] 》戴炜栋,陈宏薇,李亚丹 编 ; 《 英汉翻译基础教程》穆雷 著; 《中外翻译理论教程》黎昌抱,邵斌; 《赖世雄美语从头学:初级,中级,高级》; 《新东方考研英语一真题详解》;

《常春藤解析英语杂志精华合集+常春藤生活英语杂志精华合集》附赠MP3光盘赖世雄 著 ;

Ⅲ、研究生计划: 预参加考试项目:

1. CET-6: 2016-12 2. TEM-8: 2017-03 3. 三级翻译专业资格(水平): 2017-05-21 4. 二级翻译专业资格(水平): 2017-11-05 5. 高中教师资格: 2018-03 计划研读的课外书籍:

复习:《赖世雄英语单词4500,6000》、《赖世雄高级美语》 2016.09.01—2016.12.30 学习:《非文学翻译理论与实践》李长栓 2017.01.01—2017.02.28 学习:《常春藤解析英语杂志》 2017.03.01—2017.06.30 毕业规划:提前一年毕业,即2018年6月毕业

15,000 words 翻译实践: 2016.09.01—2018.06.01 毕业论文: 2016.11. — 2018.06

Ⅳ、综合能力计划:

1.Being fluent in daily conversations 2.Can express self opinions precisely on an issue. 3.Can master translating skills in practice. 4.Hoping to translate some materials concerning Economy into Chinese or some Chinese thinking modes into English.

Ⅴ、Daily arrangement: 1.Skim the headlines every morning:take notes or paraphrase them briefly. 2.Finish every teachers’ assignments perfectly. 3.Read other English books and practice oral English as much as possible.

Ⅵ、敬请指导

您好, XXX! 我想提前毕业,我知道这很难,而且没有先例。但从现在开始请您按照一个MTI毕业生的标准去要求我,最后能否叩击目标,who knows ? 因为现实,已让我不再如从前般果敢,不再有破釜沉舟的气魄;或许在境遇最不好,自信心和个性被压到最底层的时候 ,我已顾不上再去想、去犹豫,我必须去做。我要好好活下去,改变现状。我已经顾不上害怕了,我不想再过这种浑浑噩噩的日子,我想让自己在忘我地拼搏中体会生命的意义。如果能提前毕业,也是给学院乃至学校一个范例。

我还有许多未尽事宜敬请雷院指导:比如如何根据自身情况选择研究方向尚不是很明确;以及对将来自己就业方向等事宜都不太确定.

黄 绪 平(Suki )

2016.11.10

附录:基本资料

Basic Information

Name: (Suki) 政治面貌: 团员 学号:

电子邮箱: 性别: 女

民族: 汉 爱好: 读书、运动 身份证号:

联系电话:

考 研 情 况 考研分数:总分:340; 政治:57;英语:62; 翻译:109;百科:114

获 奖 情 况

曾获得国家奖学金(2002年),校、系三好学生,2003年河北省优秀毕业生;优秀学生干部、优秀团员等荣誉称号。

社 会 实 践

 校内:

曾任过班级生活委员,学习委员,宣传委员,校体育部、生活部成员

 校外:

2005.7-2008.8 销售助理 2009.9-2013.8 外贸业务 2013.9-2016.7 初中英语老师

第二篇:景观规划设计专业英文术语

保留地 reserved land 步行街 pedestrian street 仓储区 warehouse district 仓储用地 warehouse land 城市(城镇) city 城市布局 urban layout 城市道路面积率 urban road area ratio 城市道路网 urban road network 城市道路网密度 density of urban road network 城市道路系统 urban road system 城市对外交通 intercity transportation 城市发展方向 direction for urban development 城市发展目标 goal for urban development 城市发展战略 strategy for urban development 城市防洪 urban flood control 城市防洪标准 flood control standard 城市防洪工程 flood control works 城市防空 urban air defense 城市防灾 urban disaster prevention 城市防震 earthquake hazard protection 城市给水 water supply 城市给水工程 water supply engineering 城市给水系统 water supply system 城市工程管线综合 integrated design for utilities pipelines 城市功能分区 functional districts 城市供电电源 power source 城市供电系统 power supply system 城市供热系统 district heating system 城市规划 urban planning 城市规划法规 legislation on urban planning 城市规划管理 urban planning administration 城市规划建设管理 urban planning and development control 城市规划区 urban planning area 城市规划用地管理 urban planning land use administration 城市规模 city size 城市化 urbanization 城市化水平 urbanization level 城市环境保护 city environmental protection 城市环境污染 city environmental pollution 城市环境质量 city environmental quality 城市环境质量评价 city environmental quality assessment 城市基础设施 urban infrastructure 城市集中供热 district heating 城市建成区 urban built-up area 城市交通 urban transportation 城市交通预测 urban transportation forecast 城市结构 urban structure 城市绿地系统 urban green space system 城市绿化 urban afforestation 城市排水 sewerage 城市排水工程 sewerage engineering 城市排水系统 sewerage system 城市群 agglomeration 城市燃气 gas 城市燃气供应系统 gas supply system 城市人口机械增长率 mechanical growth rate of population 城市人口结构 urban population structure 城市人口年龄构成 age composition 城市人口预测 urban population forecast 城市人口增长 urban population growth 城市人口增长率 urban population growth rate 城市人口自然增长率 natural growth rate 城市设计 urban design 城市生态平衡 balance of city ecosystem 城市生态系统 city ecosystem 城市通信 communication 城市通信系统 communication system 城市污水 sewage 城市详细规划 detailed plan 城市消防 urban fire control 城市形态 urban morphology 城市性质 designated function of city 城市用地 urban land

unban planning 城市规划 town planning 城镇规划 act of urban planning 城市规划法 urban comprehensive planning 城市总体规划 urban detailed planning 城市详细规划 Residentiral district detailed planning 修建性详规 regulatory detailed planning 控制性详规 规划类的专业课程

reginal planning 区域规划 urban system planning 城镇体系规划 urban sociology 城市社会学 urban economic 城市经济学 urban geograghy 城市地理学 urban infrastructure planning 城市基础设施规划 (water supply and drainage electricity supply oad building) (城市供水、供电、道路修建)

urban road system and transportation planning 城市道路系统和交通规划 urban road cross-section 城市道路横断面 urban management information system 城市管理信息系统 GIS =geograghy information system 地理信息系统 RS=remote sensing 遥感

Gardening==Landscape architecture 园林=营造景观学 Urban landscape planning and design 城市景观规划和设计 Urban green space system planning 城市绿地系统规划 Urban design 城市设计

·Land-use planning 土地利用规划 The cultural and historic planning 历史文化名城 Protection planning 保护规划 Urbanization 城市化 Suburbanization 郊区化 Public participation 公众参与

Sustainable development(sustainability) 可持续性发展(可持续性) Over-all urban layout 城市整体布局 Pedestrian crossing 人行横道 Human scale 人体尺寸

(sculpture fountain tea bar) (雕塑、喷泉、茶吧) Traffic and parking 交通与停车 Landscape node 景观节点

·Brief history of urban planning Archaeological 考古学的 Habitat 住处 Aesthetics 美学 Geometrical 几何学的 Moat 护城河

Vehicles 车辆,交通工具 ,mechanization 机械化 merchant-trader 商人阶级 urban elements 城市要素 plazas 广场 malls 林荫道

·The city and region Adaptable 适应性强的 Organic entity 有机体 Department stores 百货商店 Opera 歌剧院 Symphony 交响乐团 Cathedrals 教堂 Density 密度 Circulation 循环

Elimination of water 水处理措施 In three dimensional form 三维的 Condemn 谴责 Rural area 农村地区

Regional planning agencies 区域规划机构 Service-oriented 以服务为宗旨的 Frame of reference 参考标准 Distribute 分类 Water area 水域 Alteration 变更 Inhabitants 居民 Motorway 高速公路 Update 改造 论文写作

Abstract 摘要 Key words 关键词 Reference 参考资料

·Urban problem Dimension 大小 Descendant 子孙,后代 Luxury 奢侈 Dwelling 住所 Edifices 建筑群 雅典宪章 Residence 居住 Employment 工作 Recreation 休憩 Transportation交通 Swallow 吞咽,燕子 Urban fringes 城市边缘

Anti- 前缀,反对……的;如:antinuclear反核的 anticlockwise逆时针的 Pro- 前缀,支持,同意……的;如:pro-American 亲美的pro-education重教育的

Grant 助学金,基金 Sewage 污水 Sewer 污水管

Sewage treatment plant 污水处理厂 Brain drain 人才流失 Drainage area 汇水面积 Traffic flow 交通量 Traffic concentration 交通密度 Traffic control 交通管制 Traffic bottleneck 交通瓶颈地段 Traffic island 交通岛(转盘) Traffic point city 交通枢纽城市 Train-make-up 编组站 Urban redevelopment 旧城改造 Urban revitalization 城市复苏

·Urban Function Urban fabric 城市结构 Urban form 城市形体 Warehouse 仓库

Material processing center 原料加工中心 Religious edifices 宗教建筑 Correctional institution 教养院 Transportation interface 交通分界面 CBD=central business district 城市中心商业区 Public agencies of parking 停车公共管理机构 Energy conservation 节 能 Individual building 单一建筑 Mega-structures 大型建筑 Mega- 大,百万,强 Megalopolis 特大城市 Megaton 百万吨

R residence 居住用地 黄色 C commercial 商业用地 红色 M manufacture 工业用地 紫褐色 W warehouse 仓储用地 紫色 T transportation 交通用地 蓝灰色 S square 道路广场用地 留白处理 U utilities 市政公共设施用地 接近蓝灰色 G green space 绿地 绿色 P particular 特殊用地 E 水域及其他用地

(除E外,其他合为城市建设用地) Corporate 公司的,法人的 Corporation 公司企业 Accessibility 可达性;易接近 Service radius 服务半径

·Urban landscape Topography 地形图 Well-matched 相匹配 Ill-matched Visual landscape 视觉景观 Visual environment 视觉环境

Visual landscape capacity 视觉景观容量 Tour industry 旅游业 Service industry 服务业 Relief road 辅助道路 Rural population 城镇居民 Roofline 屋顶轮廓线

风景园林四大要素:landscape plant architecture/building topography water

·Urban design Nature reserve 自然保护区 Civic enterprise 市政企业 Artery 动脉,干道,大道 Land developer 土地开发商 Broad thorough-fare 主干道

·Water supply and drainage A water supply for a town 城市给水系统 Storage reservoir 水库,蓄水库 Distribution reservoir 水库,配水库 Distribution pipes 配水管网 Water engineer 给水工程师 Distribution system 配水系统 Catchment area 汇水面积 Open channel 明渠

Sewerage system 污水系统,排污体制 Separate 分流制 Combined 合流制 Rainfall 降水 Domestic waste 生活污水 Industrical waste 工业污水 Stream flow 河流流量 Runoff 径流 Treatment plant 处理厂 Sub-main 次干管 Branch sewer 支管

City water department 城市供水部门

·Urbanization Spatial structure 空间转移 Labor force 劳动力 Renewable 可再生* Biosphere 生物圈 Planned cities Blueprints 蓝图 License 执照,许可证 Minerals 矿物

Hydroelectric power source 水利资源 Monuments 纪念物 High-rise apartment 高层建筑物 Lawn 草地 Pavement 人行道 Sidewalk 人行道 Winding street 曲折的路

·A view of Venice Metropolis 都市 Construction work 市政建设 Slums 平民窟 Alleys 大街小巷 Populate 居住 Gothic 哥特式 Renaissance 文艺复兴式 Baroque 巴洛克式

第三篇:城市用地分类中英文词汇表

R居住用地————residential

C公共设施用地————commercial and public facilities M工业用地————industrial,manufacturing W仓储用地————warehouse

T对外交通用地————transportation

S道路广场用地————road,street and square U市政公用设施用地————municipal utilities G绿地————green space

D特殊用地————specially designated

E水域和其他用地————water area and others

使用面积:usable floor area; utilization area

建筑面积:floor area; floor space; architectural area

net floor area:建筑净面积;楼层净面积(使用面积)

gross floor area:建筑毛面积;建筑总面积

“占地多少多少,其中建筑面积为多少多少”:

“... covers a total area of ...m2, including ...m2 of floor area.”

第四篇:机器人路径规划毕业论文外文翻译

外文文献:

Space Robot Path Planning for Collision Avoidance

Yuya Yanoshita and Shinichi Tsuda

Abstract — This paper deals with a path planning of space robot which includes a collision avoidance algorithm. For the future space robot operation, autonomous and self-contained path planning is mandatory to capture a target without the aid of ground station. Especially the collision avoidance with target itself must be always considered. Once the location, shape and grasp point of the target are identified, those will be expressed in the configuration space. And in this paper a potential method. Laplace potential function is applied to obtain the path in the configuration space in order to avoid so-called deadlock phenomenon. Improvement on the generation of the path has been observed by applying path smoothing method, which utilizes the spline function interpolation. This reduces the computational load and generates the smooth path of the space robot. The validity of this approach is shown by a few numerical simulations.

Key Words —Space Robot, Path Planning, Collision Avoidance, Potential Function, Spline Interpolation

I. INTRODUCTION

In the future space development, the space robot and its autonomy will be key features of the space technology. The space robot will play roles to construct space structures and perform inspections and maintenance of spacecrafts. These operations are expected to be performed in an autonomous.

In the above space robot operations, a basic and important task is to capture free flying targets on orbit by the robotic arm. For the safe capturing operation, it will be required to move the arm from initial posture to final posture without collisions with the target.

山东建筑大学毕业论文外文文献及译文

The configuration space and artificial potential methods are often applied to the operation planning of the usual robot. This enables the robot arm to evade the obstacle and to move toward the target. Khatib proposed a motion planning method, in which between each link of the robot and the obstacle the repulsive potential is defined and between the end-effecter of the robot and the goal the attractive potential is defined and by summing both of the potentials and using the gradient of this potential field the path is generated. This method is advantageous by its simplicity and applicability for real-time operation. However there might be points at which the repulsive force and the attractive force are equal and this will lead to the so-called deadlock. In order to resolve the above issue, a few methods are proposed where the solution of Laplace equation is utilized. This method assures the potential fields without the local minimum, i.e., no deadlock. In this method by numerical computation Laplace equation will be solved and generates potential field. The potential field is divided into small cells and on each node the discrete value of the potential will be specified.

In this paper for the elimination of the above defects, spline interpolation technique is proposed. The nodal point which is given as a point of path will be defined to be a part of smoothed spline function. And numerical simulations are conducted for the path planning of the space robot to capture the target, in which the potential by solving the Laplace equation is applied and generates the smooth and continuous path by the spline interpolation from the initial to the final posture.

II. ROBOT MODEL The model of space robot is illustrated in Fig.1. The robot is mounted on a spacecraft and has two rotary joints which allow the in-plane motion of the end-effecter. In this case we have an additional freedom of the spacecraft attitude angle and this will be considered the additional rotary joint. This means that the space robot is three linked with 3 DOF (Degree Of Freedom). The length of each link and the angle of each rotary joint are given byliandi(i = 1,2,3) , respectively. In order to simplify the discussions a few assumptions are made in this paper: -the motion of the space robot is in-plane,i.e., two dimensional one. -effect of robot arm motion to the spacecraft attitude is negligible.

- 2

山东建筑大学毕业论文外文文献及译文

2220

(2) 2xyAnd this will be converted into the difference equation and then solved by Gauss -Seidel method. In equation (2) if we take the central difference formula for second derivatives, the following equation will be obtained: 220x2y2(xx,y)2(x,y)(xx,y)

(3) x2(x,yy)2(x,y)(x,yy)y2where x,y are the step (cell) sizes between adjacent nodes for each x, y direction. If the step size is assumed equal and the following notation is used:

(xx,y)i1,j

Then equation (3) is expressed in the following manner: i1,ji1,ji,j1i,j1i,j0

(4)

And as a result, two dimensional Laplace equation will be converted into the equation (5) as below: i,j1i1,ji1,ji,j1i,j1

(5) 4In the same manner as in the three dimensional case, the difference equation for the three dimensional Laplace equation will be easily obtained by the following:

i,j,k1i1,j,ki1,j,ki,j1,ki,j1,ki,j,k1i,j,k1

(6) 6In order to solve the above equations we apply Gauss-Seidel method and have equations as follows: n1i,j1n1nn1i1,jin1,ji,j1i,j1

(7) 41where in,j is the computational result from the ( n +1 )-th iterative calculations of the potential.

In the above computations, as the boundary conditions, a certain positive number 0 is defined for the obstacle and 0 for the goal. And as the initial conditions the same number 0 is

- 4

山东建筑大学毕业论文外文文献及译文

The length of each link is given as follows:

l1 =1.4[m], l2 = 2.0[m], l3 = 2.0[m] , and the target satellite was assumed 1m square. The grasp handle, 0.1 m square, was located at a center of one side of the target. So this handle is a goal of the path. Let us explain the geometrical relation between the space robot and the target satellite. When we consider the operation after capturing the target, it is desirable for the space robot to have the large manipulability. Therefore in this paper the end-effecter will reach the target when the manipulability is maximized. In the 3DOF case, not depending on the spacecraft body attitude, the manipulability is measured by2,3. And if we assume the end-effector of the space robot should be vertical to the target, then all of the joints angles are predetermined as follows:

1160.7o,232.8o,376.5o

As all the joints angles are determined, the relative position between the spacecraft and the target is also decided uniquely. If the spacecraft is assumed to locate at the origin of the inertial frame (0, 0), the goal is given by (-3.27, -2.00) in the above case. Based on these preparations, we can search the path to the goal by moving the arm in the configuration space.

Two simulations for path planning were carried out and the results are shown below. A. 2 DOF Robot In order to simplify the situation, the attitude angle(Link 1 joint angle) is assumed to coincide with the desirable angle from the beginning. The coordinate system was assumed as shown in Fig.2.

1 was taken into consideration for the calculation of the initial condition of the Link 2 and its

- 6

山东建筑大学毕业论文外文文献及译文

the connection of -180 degrees in the 1direction was illustrated. From this figure it is easily seen that over -180 degrees the path is going toward the goal C. B and C are the same goal point.

V. CONCLUSION In this paper a path generation method for capturing a target satellite was proposed. And its applicability was demonstrated by numerical simulations. By using interpolation technique the computational load will be decreased and smoothed path will be available. Further research will be recommended to incorporate the attitude motion of the spacecraft body affected by arm motion.

- 8

山东建筑大学毕业论文外文文献及译文

本文对上述缺陷的消除,提出了样条插值技术。给定的节点作为路径的一部分将被定义为平滑样条函数的一部分。为了捕获到目标,空间机器人的路径规划运用了数字模拟技术,它是通过对势场域求解拉普拉斯函数来实现的,并且从最初的位置到末尾位置的样条插值来产生连续光滑的路径。

2. 机器人模型

空间机器人的模型如图1所示:机器人被安装在航天器和两个旋转接头上,这两个旋转接头可以实现末端执行器的平面运动。这种情况下,我们的航天器的姿态角有一个额外的自由度,我们将这个额外的自由度视为额外的旋转接头。这意味着空间机器人有三个自由度的链接,每个链路的长度和每个旋转关节角度,分别由li和i (i = 1,2,3)表示。为了简化这个讨论,本文做了一些假设: (1)空间机器人的运动是平面的,即二维;

(2)机器人机械臂的运动对航天器姿态的影响是可以忽略的; (3)机器人运动给出了静态几何关系,并没有明确的依赖时间; (4)目标卫星在惯性的作用下是很稳定的;

一般情况下,平面运动和空间运动将分别进行,所以我们可以假设上面的第一个不失一般性,第二个假设来自机械臂和航天器质量比的比较,对于第三个假设,我们专注于生成机器人的路径规划,这基本上是由几何关系的静态性质决定,因此并不依赖明确的时间,最后一个就是合作卫星。

图1 双链路空间机器人

- 10

山东建筑大学毕业论文外文文献及译文

为了解决上述方程,我们应用了高斯赛德尔算法和求解方程,如下:

n1i,j1n1nn1i1,jin1,ji,j1i,j1

(8) 4in,j1表示势场域的迭代计算结果。

在上述的计算中,作为边界条件,定义特定的正数0来表示障碍物和目标。为保证初始条件相同,给所有的自由节点赋同样的数值0。通过这种方法,在迭代计算的边界节点获得的的值将不会改变,而且自由节点的值是不同。我们应用相同的域值作为障碍物,并且按照迭代计算方法,则目标周围较小的势场域会像障碍物一样缓慢的向周围传播,势场域就是根据上述方法建立的。采用4节点相邻的空间机器人存在的节点上的势场,最小的节点选择移动到另一点,这个过程最终引导机器人无碰撞的到达目标的位置。

样条内插法:

通过上述方法给出的路径不能保证能够与另一个目标顺利连接,如果节点上没有给定目标,我们会将栅格划分成的更小,但这将增加计算量和所用时间。为了消除这些弊端,我们提出利用样条插值技术。通过在将节点解给出的通过点的道路上,我们试图获得顺利连接路径与准确获取最初的和最后的点。本文主要是通过MATLAB命令应用样条函数。

配置空间:

当我们在应用拉普拉斯势域的时候,路径搜索只能在当机器人在搜索空间过程中表示成一个点的情况下才能保证实现。配置空间(C空间)中机器人仅表示为一个点,主要是用于路径搜索。将真正的空间转换到C空间,必须执行判断碰撞条件的计算,如果碰撞存在,相应的点在c空间被认为是障碍。本文中,在生成势场域时,所有现实空间的点的生成条件对应于所有的节点都是经过计算的。在构成的机械臂和生成的节点的障碍物出现判断选择时,该节点可以看作是在c空间的障碍点。

数值仿真:

基于上述方法对于捕获目标卫星路径规划的检查是使用空间机器人模型进行的。在本文中,我们假设空间机器人二维和2自由度机械手臂见图1。每个链接的长度给出如下:

- 12

山东建筑大学毕业论文外文文献及译文

初始角度:264.3,390o 目标角度:2166.5,376.5o

在这种情况下,势场域分成180段计算成C空间。图3显示的C空间和计划中的很大一部分的中心是由航天器本体映射的障碍了,左边部分是目标卫星的映射。图4显示的是生成的路径,这是通过利用离散数据点平滑交替生成的样条插值曲线。当我们考虑航天器本体的旋转时,-180度相当于+180度状态,然后,状态超过-180度时,它将从180度再次转到C-空间当中。正是由于这个原因,为了保证旋转的连续性,我们需要充分利用周期性的边界条件。为方便观察路径,航天器机体的映射体积忽略不计。同时为了路径表述的更加简单,附有在1方向上-180度范围的连接的插图,并做了说明。从图中可以很容易看出在-180度的范围内,沿着路径走向目标C,B和C是走向相同的目标点。

图3 两个自由度的C空间

图4 C空间的路径(2个自由度)

- 14

第五篇:CET-4翻译新题型练习:城市化进程

中国城市化(urbanization)将会充分释放潜在内需(domestic demand)。一些经济学家指出,在中国几乎所有的发展中城市都面临 着城市化的进程。这使得许多人的生活水平有所提高,也为人们提 供更多的就业机会。随着越来越多的人向城市迁徙,住房及城市基 础设施建设(infrastructure construction),包括水源等能源的供应将会 成为城市发展的焦点问题。商品与服务的自由、快速流通是城市化 社会的一项基本特征。逐渐扩张的城市需要更多的零售店来满足消 费者的需求。

汉译英:

China’s urbanization will release the full potential of domestic demand. Some economists point out that urbanization is a process that is occurring in nearly every developing city in the country. It will lead to a better quality of life for many people,and provide individuals with more job opportunities. The construction of housing and city infrastructure, in?cluding water and energy supplies, will be a focal point of urban develop?ment as more people migrate to cities. Urbanization means better access to educational and medical resources in the city. But it also predicts less use of personal vehicles and more use of public transportation. The fast, free flow of goods and services is a basic trait of an urbanized society. Ex-panding cities require more retail outlets to serve customers.

上一篇:城市公园设计规范下一篇:初三暑假数学作业

本站热搜