费马大定理的证明

2022-06-28

第一篇:费马大定理的证明

费马大定理的简单证明

李联忠

(营山中学四川营山 637700)

费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程znxnyn当n≥3时无正整数解。

证明:当n=2时,有z2x2y2

∴x2z2y2(zy)(zy)(1)

令 (zy)2m2 则 zy2m2代入(1)得

x2z2y22m2(2y2m2)22m2(ym2)22m2l2

22∴x2mlyl2m2zlm

当n=3时,有z3x3y3

∴x3z3y3(zy)(z2zyy2)(2)

令 (zy)32m3 则 zy32m3代入(2)得

3x3z3y332m[ (y32m3)2(y32m3)yy2]

32m3(3y2332m3y34m6)33m3(y232m3y33m6)

若方程z3x3y3有正整数解,则(y232m3y33m6)为某正整数的三次幂,即

(y232m3y33m6)l3

∴ y(y32m3)l333m6(l3m2)(l23m2l32m4)

则必有 y(l3m)和y3m(l3ml3m),而y,m,l都取正整数时,这两等式是不可能同时成立的。所以(y3my3m)l不成立。即x不可能取得正整数。所以,当n=3时,方程zxy无正整数解。

当n>3时,同理可证方程zxy无正整数解。

定理得证。

nnn3332233632232224

第二篇:“费马大定理”的启示

“设想你进入大厦的第一间房子,里面很黑,一片漆黑,你在家具之间跌跌撞撞,但是你搞清楚了每一件家具所在的位置,最后你经过6个月或者再长些的时间,你找到了开关,拉开了灯,突然整个房间充满光明,你能确切地明白你身在何处。然后,你又进入下一个房间,又在黑暗中摸索了6个月。因此每一次这样的突破,尽管有的时候只是一瞬间的事,有时候是一两天的时间,但它们实际上是之前许多个月在黑暗中跌跌撞撞的最终结果,没有前面的这一切它们是不可能出现的”——1996年3月,维尔斯因证明费马大定理获得沃尔夫奖

作为一个数学老师,数学是大多数学生讨厌的学科,而我们教师更多的只是告诉、教会学生就这么用,就这么做。怎么才能让学生不那么讨厌数学呢?我想应该从尊重数学开始。

当我第二次翻看《明朝那些事》时,我不禁又一次感慨:历史原来可以这样写?历史就应该这样写。本着这样的思维,在严谨的数学叙事中加上事件节点人物的历史,可能更有意思一些,最起码,让学生喜欢读,读的有趣味。从而使学生明白伟大的数学家是怎么影响整个世界的。尊重应该从这里开始。

这个念头一直萦绕脑海,直到我无意中打开选修3-1,才鼓舞起余勇,翻找资料,以费马大定理为主线说说几千年来数学家们前仆后继的历史。

222xyz

首先,我们来看一个公式:。

有人说:“这不就是勾股定理吗?直角三角形的两条直角边的平方等于斜边的平方。谁不知道?”

没错我们中国人知道勾股定理十分久远,公元前1100年,西周开国时期,周公与商高讨论测量时,商高就提到过“勾广三,股修四。径隅五”。这段话被记载于《周脾算经》中。而西方记载勾股定理的是哥伦比亚大学图书馆的泥版“普林顿322”大约公元前1900~公元前1600年的事。

但是中国人说的数学严格的说,应该叫算学。我国古代就有丰富的数学典籍注1,但是你看这些书籍的章节结构,就不难看出它鲜明的特点——实用。比如:《九章》中的方田、粟米、差分、少广、商功、均输等,就字面意思也能看出它就是为了解决实际问题。

我们中国就是一个实用的民族,就比如勾股定理,你拿去用就可以,不用计较为什么这样,这也就是为什么我们的典籍中很少有公理和定律的原因了。所以在世界主流数学史中,我国数学家是没有太多地位的,说起这个就不得不说有一个让国人气愤的事情,1972年,美国数学史家莫里斯·克莱因的《古今数学思想》注2序言里有这么一段话:“为了不让本书内容漫无目的的铺张,所以有些民族的数学我们就自动忽略了,如:日本、玛雅、中国。”他还说:“他们的数学对世界人类的主流思想是没有什么贡献的。”很让人不服气的说法,但是你回到数学历史的主流,不难发现我国的算学,跟世界主流数学的目的就不一样。

言归正传,我们回到古希腊。说道古希腊,就不得不提一个人——毕达哥拉斯。我们引以为豪的勾股定理,在初中的课本中也是用的毕达哥拉斯定理来引入的。毕达哥拉斯定理和勾股定理的区别就在于他们要证明这个结论。从这里你就可以发现东西方数学的区别,西方数学史这种死心眼般的研究精神,完全就是一种剔除了理性的宗教迷狂,是一种不出于实用的目的完全的智力上的比拼竞赛。就是佛教里的“贪嗔痴”!比如那些著名的数学问题:“四色问题”,不就是四种颜色就可以区分出复杂地图的行政区域么,放在我国,知道了就可以,但是在西方就一定要搞清楚为什么?还有“哥德堡七桥问题”,就是不重复的走过七座桥,对中国人来说我们讲究的是说走就走的旅行,神经病才研究这个,有这功夫,走两遍不就观光了吗?这就是实用主义和智力竞赛之间的区别。从一开始就分道扬镳了。

毕达哥拉斯就是前文那个公式的发现者。毕达哥拉斯(约公元前580~约前500)古希腊数学家、哲学家。他的信徒们组成了一个唯心主义学派——毕达哥拉斯学派。这个政治和宗教团体旨在用“数”去描述世间一切,他们从数学中感受到了整个世间那种美妙,他们认为数就是世界的规律。这也难怪,没有手机食物单调,娱乐空乏的年代,人们尤其是那些高智商圣贤智力充裕的人们找到了这个世界上让他兴奋的事情——从事“数”的研究,他的门徒们发现原来世间一切,上帝就是通过“数”来统治世界的。比如:音乐,和音好听,是因为一根弦是另一根弦的整数倍。凡此种种,这不就是天神的暗示么,我们就应该在数中生活啊,我们的一切包括生命就应该奉献、祭祀给这些数。公正的说这个学派早期它推动了数学研究发扬了这种精神,但后期也阻碍了数学的发展,著名的数学史上“第一次数学危机”就是又这个学派成员西帕索斯发现了2,从而颠覆了毕达哥拉斯学派的数学信仰,因为毕达哥拉斯终生的信仰就是,世间一切都是由整数构成,小数是两个整数的比,而西帕索斯发现一个问题:当x=y=1时,z等于什么?现在的初中生都知道是2。,而根据那个时候的数系,这推翻了毕达哥拉斯的世界理论依据。因为根号2是一个无限不循环小数,无法被两个整数表示。我们来证明根号2永远不能化成分数即可。这里又要用到反证法(高中数学课本有证明过程我复制了一下),我们先假设√2=a/b(a,b都是正整数不用说了吧)。现在,我们平方一次,a^2/b^2=2,于是,a^2=2*(b^2),这样一看,a^2就是偶数了,那么,a必然也是偶数。那就设a=2m吧,(2m)^2=2*(b^2),4*(m^2)=2*(b^2),b^2=2*(m^2),再一看,b也成偶数了,好吧,设为2n。现在问题来了,根号2不仅可以化成a/b,还可以化成m/n,而且,后者更简洁。按照同样的方法,可以一直化简下去,而分数必然存在最简形式,不可能无限化简,于是得出矛盾。所以,根号2永远不能化成分数。毕达哥拉斯最后没有办法解决,就像坚持日心说的布鲁诺一样西帕索斯本人也就被同门扔到河里杀害。此后30年数系才进一步扩充到了实数领域。

考虑到希腊文明的数学挺牛的,而这个毕达哥拉斯还不够牛,只是名气比较大而已,所以,我们得让古希腊人多出场几位。接下来,我可以推荐两个与费马大定理有关的重量级人物。

一个是欧几里得,欧几里得最大的贡献体现在几何学,最牛的著作叫《几何原本》。不过,他也有很多数论成就,所以,在费马大定理的故事中,他的名字会反复出现,根号2是无理数是他第一个证的,有无穷多个素数是他第一个证的,算术基本定理也是他第一个证的。罗胖不是提到“比如说我们学平面几何都知道,由那么简单的几个公理,居然可以推出如此缤纷的一个定理的世界”,第一个系统性(这个系统太牛逼了)地干这个事情的人就是欧几里得。至于那么简单的公理到底是几个?这个是有数字的,23个定义,5条公理,5条公设,这是所有推导的基础。当然,《几何原本》也有一些不严谨的地方,却仍然笑傲江湖两千年,直到希尔伯特写出《几何基础》,才算彻底完善了欧几里得几何。不过,欧几里得还是给后人挖了一个坑,就是他的第五公设比较啰嗦,怎么看都不像一个公理而像一个定理。于是,无所牛人前赴后继去证明这个东西,却发现,所有宣称证明了第五公设的人,其证明都陷入了循环论证的陷阱中,换句话说,证来证去只是它自己不同的变形而已。这个第五公设真正的问题在哪里呢?很简单,欧几里得几何叫平面几何,这个第五公设只在平面几何中成立,而别的公理或公设却都是具有普遍适用性的。修改一下第五公设,别的公理不变,非欧几何就诞生了。事实上,非欧几何遇到的最大障碍不是数学家解决这个问题的水平不够,而是来自传统观念的压力。高斯早就研究过非欧几何,但迟迟不敢发表,因为担心遭受各种攻击。还有一个波尔约,研究非欧几何成就斐然,可惜被高斯一盆凉水浇灭了激情。再一个就是罗巴切夫斯基,名气最大的非欧几何创始人,生前遭受各种打击,仍不屈不挠传播罗氏几何,死后多年才被承认,被赞誉为“几何学中的哥白尼”。这三个人不约而同地研究了非欧几何中的双曲几何情形,却留下一种椭圆几何情形,让黎曼捡了个漏。不过,黎曼搞定这种情形可不是凭运气,他从思路上就领先其他人了,其他人都是从公理系统出发研究,黎曼手握微分几何之武器直接玩起了曲率,不仅补充了椭圆几何的情形,还一举统一了欧氏平面几何、罗氏双曲几何和他的椭圆几何。这种牛逼人的牛逼事儿讲起来还是蛮有意思的。

好啦,下一个古希腊人,丢番图。欧几里得写了本《几何原本》,成了几何学的一代宗师,丢番图写了本《算术》,也是数论中的经典之作,他本人也荣登“代数学之父”的宝座。他提出的丢番图方程让无数后人为之奋斗,至今仍有大量问题未能解决。《算术》是本好书,费马有空就抱着读,费马大定理就是读《算术》的心得。

按照时间顺序,下一个该费马出场了。费马这辈子活得可是够值了。官场得意、婚姻美满、家庭幸福、子女争气,更牛逼的是,一个业余爱好让他名垂青史。读读别的数学家的故事,贫困、疾病、家庭不幸,还是来自同行的打击,各种问题层出不穷,简直就是“天才多磨难”,而费马的小日子,滋润得让人嫉妒。而且,费马这人不像同行那么玩命死磕,不就一业余爱好嘛,玩票心态就好了。结果,很多灵感嗖嗖地冒出来,挡都挡不住。后来人们一总结,这家伙比很多职业数学家成就还大:解析几何的发明者之一,对于微积分诞生的贡献仅次于牛顿和莱布尼茨,概率论的主要创始人之一,以及17世纪数论界第一人。不过,费马还是干了一件不厚道的事儿,就是在费马大定理的问题上,他宣称自己有了一个美妙的证法,就是不说,害得数学家们为之死磕了三百多年。

接下来,该欧拉上场了。欧拉是有史以来最多产的数学家,虽然眼睛不好使,但心算能力却是一流,简直是一台人体计算机。成就太多太多,就只好省略了。我们知道几件事就够了。欧拉无比牛逼,却仅仅证明了费马大定理n=3的情形,说明费马大定理真的很难。此外,罗胖提到哥德堡七桥问题,想说明西方人这种琢磨精神和中国人不同,其实,这个论据不充分,论点也不对,中国人也搞出了很多孤立的趣题和难题,这一点,东西方人是相似的。区别在哪儿呢?区别在于西方有欧拉这种数学家,他不是搞明白一个孤立问题就完事儿啦,而是由此出发,上升到理论高度,圆满地解决一类问题,更牛逼的是,一群数学家马上跟进,搞出更多东西,直到形成系统仍在推进,这就是我一直强调的数理系统的可怕之处。其实,这个哥德堡七桥问题本质上就是一笔画问题,中国人恰好也研究过,但中国人只是把它当成一种游戏,从来没想过要搞出一个数学分支。而到了西方人那里,“七桥问题”的研究是图论研究的开端,同时也为拓扑学的起源。顺便说下,“四色问题”和“七桥问题”是同类问题,属于图论,也可以看成拓扑学问题。别看“七桥问题”被欧拉轻松搞定,这个“四色问题”看似简单,却是一道难度绝不亚于费马大定理的难题。爱因斯坦的老师闵可夫斯基就曾经在学生面前夸下海口要证明之,结果失败只好放弃。最后,这个证明是依靠计算机完成的,虽然计算机的证明无法核对,这让很多数学家很不爽,但是,这提供了证明问题的新思路,也标志着计算机将在数学世界中发挥更大的作用,你能说,这种问题的研究没有意义吗?更何况,在证明的过程中,虽然多次失败,数学家们得到的东西可比问题本身多得多,这正是证明难题的意义,它会催生出很多宝贝,从而进一步完善数理体系。

下一个,该讲高斯了。高斯的贡献就不说了,这种神级人物,有多大贡献都是正常的,我讲讲他的两个毛病吧。第一个,就是研究问题时,只发表成熟而完善的证明,却不让别人捕捉到他的证明思路的蛛丝马迹。这非常不好,他的思路会给别人很多启发,反而是证明步骤,可利用价值低多了。另一个就是,高斯本人很牛逼,可是,却没干过什么提携后生的事情,反而不利于别人成长。也不是说他故意打击人家,就是别人觉得他牛逼,想请他指点一二时,他要么压根儿不理睬,要么冷冰冰的。前文提到的阿贝尔,其成果寄给高斯看,让高斯给扔了,伽罗华临死前写的东西也没忘给高斯寄一份儿,估计高斯也没看,波尔约(这次可是他朋友的儿子)研究非欧几何的成果,想得到他的支持,他说自己早就研究过了,波尔约于是心灰意冷。当然,高斯虽然有缺点,但他由于过于牛逼,世人赞扬崇拜唯恐不及,缺点也就没人计较了。

伽罗华肯定也是要谈的,但是,前面讲的伽罗华的故事太多了,这里不再赘述。就说一点,有人认为伽罗华是一个好色之徒,这是不公平的。一来,他是法国人,他只是做了一个正常法国男人会做的事情;二来,他也没有到处沾花惹草;三来,这件事本身就可能是一个圈套,作为一个激进的共和派青年,政府早就想把他弄死。说到底,伽罗华是一个数学天才,但运气不好,他之所以政治上这么激进,也是数学方面处处碰壁郁闷无处发泄造成的。当然了,伽罗华的悲剧也有自身缺点,就是写东西太简洁,年轻人容易浮躁,天才更是年少轻狂,思想本来就已经非常超前了,又不表述清楚,那些前辈们怎么会认真看呢?

前面提到的这些人都是大神,年轻时就很牛逼,然后牛逼了一辈子(虽然有的人一辈子也很短)。事实上,数学这个东西,最牛逼的思想往往是年轻人创立的,年长者只能为数学大厦添个砖加个瓦,却很少再有开山之举。一个数学家,如果到三十岁还没搞出什么成就,这辈子基本上就这样了。所以,数学界的最高奖菲尔兹奖只发给40岁以下的人,放宽到40岁,已经把各种意外都考虑进去了,可是,怀尔斯却是意外中的意外。他年轻时实在不够牛逼,三十多岁还在埋头苦干,到了四十岁却一举成名。我想,与其把怀尔斯的故事看成一个牛逼数学家的创奇,不如看成一个老屌丝逆袭的励志故事。都说数学家成名要趁早,比如他的同行陶哲轩同学,人家7岁进高中,9岁进大学,10岁、11岁、12岁参加国际数学奥林匹克竞赛分别拿下铜奖、银奖、金奖,20岁获得博士学位,24岁当教授,31岁时拿下菲尔兹奖。而31岁的怀尔斯在干嘛,默默无闻。混到33岁时,怀尔斯终于决定要干点什么了,命运也正好给了他一个机会。1985年,德国数学家格哈德·弗赖指出了谷山-志村猜想和费马大定理之间的关系,1986年,美国数学家里贝特证明了这一命题。怀尔斯意识到自己的机会来啦,费马大定理绕了一大圈,竟然和自己现在最擅长的领域椭圆曲线有关,必须赌一把了。于是,怀尔斯开始了长达七年的闭关修炼,当然了,修炼的时候还得偶尔放放风,因为之前不够牛,教授的位置不牢固,不发表论文会下岗的。修炼的过程前面讲过,就不说了,总之,博采众家之长,功力大大加深,七年之后出山,一举震动江湖。但是,数学家对待证明的态度是非常严谨的,数学证明一旦通过就永远正确,他们必须对后人负责,所以,怀尔斯的论文需要经过严格审查。六个顶级数学家开始对怀尔斯天书般的论文进行漫长的死磕,终于有一天,一个叫尼克·凯兹的发现了漏洞。说来也巧,当初怀尔斯论文发表前,想找个人内测一下,找的就是尼克·凯兹,那个时候,这哥们儿没发现问题,这都公开了,却揪出问题了,这让怀尔斯情何以堪:你丫是不是在逗我?事实上,这是个大问题,足以破坏怀尔斯的证明。至此,怀尔斯逆袭受挫,如果漏洞不能修复,不会有人为费马大定理的证明道路上多一个失败者而惋惜。好在这时怀尔斯已经混成了终身教授,不用担心下岗的风险了,宅在家里好好研究就行了。这次,他还找了一个助手,叫泰勒,这人是他之前的学生,一个牛逼而又值得信任的人,又经过将近一年的奋斗,终于填补了漏洞且简化了证明。怀尔斯一跃成为武林泰斗,这一次,地位无人撼动。接下来,我们要给怀尔斯几句颁奖词:他不一定是最聪明的,也不一定有着耀眼头衔,但一定以科学为生命,一定坚韧、谦和并一步一个脚印向前走。 在这里,我还要提一下两个人:谷山丰和志村五郎。志村五郎是一个勤奋的人,很多地方和怀尔斯气质很像,而谷山丰,是一个真正的天才。谷山-志村猜想是费马大定理证明过程中最重要的一环,可是,在怀尔斯享受各种荣誉的时候,却很少有人愿意提及他们(虽然谷山丰在30多年前就自杀了,但志村五郎还在)。数学的世界,有时候,也是只认成功者。讲这件事,也是提醒大家:在费马大定理的故事中,怀尔斯不是唯一的主角,无数人为之奋斗过,他们甘为基石,他们也是英雄。

费马大定理的故事,至此终于可以结束了。

回顾人类解开宇宙奥秘的各个节点,探得进化论,主要靠达尔文;揭示力学原理,主要靠牛顿;艰深的相对论,可能有许多天才不懂,但创建它,也全凭一个爱因斯坦。发现元素周期律,创建精神分析理论,还有宇宙大爆炸、DNA分子结构模型……都只有一个两个人。唯独这个中学生都能看懂的费马大定理,各路英雄好汉,有的退避三舍,有的自愧无力,有的倾尽其力也只抓上一鳞半爪,连万能的计算机也无可奈何。但是,我们不仅仅要看到它的困难,更要看到困难背后的意义,费马大定理是一只“会下金蛋的鹅”(希尔伯特语):因为它,扩展了“无穷递降法”和虚数的应用;催生出库默尔的“理想数论”;促成了莫德尔猜想、谷山--志村猜想得证;拓展了群论的应用;加深了椭圆方程的研究;找到了微分几何在数论上的生长点;发现了伊利瓦金—弗莱切方法与伊娃沙娃理论的结合点;推动了数学的整体发展和研究……费马大定理催生出一批又一批重量级数学家,这是货真价实的事实,也是真正的厉害之处。“一个民族有一些关注天空的人,他们才有希望;一个民族只是关心脚下的事情,那是没有未来的。”

注1我国古代就有丰富的数学典籍,如:前文中的《周脾算经》、东汉末年比美《几何原本》的《九章算术》、公元400年的数学入门读物《孙子算经》,而盛唐时的李淳风,就是那个有名的“推背图”的道学家,他在算学馆整理编注了著名的《算学十书》虽然水平很次,没能培养出什么像样的数学家,但不可否认对盛唐的商业和天文历法有积极推动作用,此后各种不提,直到共济会的利玛窦和我国的徐光启共同翻译了《几何原本》等海外著作。但奇怪的是中国的数学新著往往都出现在乱世和盛世。数学家也星光璀璨,如:祖冲之,秦九韶,刘徽、杨辉,等。

注2《古今数学思想》不仅在科学界,在整个学术文化界都广泛、持久的影响。

第三篇:费马大定理

300多年以前,法国数学家费马在一本书的空白处写下了一个定理:“设n是大于2的正整数,则不定方程xn+yn=没有非零整数解”。费马宣称他发现了这个定理的一个真正奇妙的证明,但因书上空白太小,他写不下他的证明。300多年过去了,不知有多少专业数学家和业余数学爱好者绞尽脑汁企图证明它,但不是无功而返就是进展甚微。这就是纯数学中最著名的定理—费马大定理。

费马(1601年~1665年)是一位具有传奇色彩的数学家,他最初学习法律并以当律师谋生,后来成为议会议员,数学只不过是他的业余爱好,只能利用闲暇来研究。虽然年近30才认真注意数学,但费马对数论和微积分做出了第一流的贡献。他与笛卡儿几乎同时创立了解析几何,同时又是17世纪兴起的概率论的探索者之一。费马特别爱好数论,提出了许多定理,但费马只对其中一个定理给出了证明要点,其他定理除一个被证明是错的,一个未被证明外,其余的陆续被后来的数学家所证实。这唯一未被证明的定理就是上面所说的费马大定理,因为是最后一个未被证明对或错的定理,所以又称为费马最后定理。

费马大定理虽然至今仍没有完全被证明,但已经有了很大进展,特别是最近几十年,进展更快。1976年瓦格斯塔夫证明了对小于105的素数费马大定理都成立。1983年一位年轻的德国数学家法尔廷斯证明了不定方程xn+yn=z只能有有限多组解,他的突出贡献使他在1986年获得了数学界的最高奖之一费尔兹奖。1993年英国数学家威尔斯宣布证明了费马大定理,但随后发现了证明中的一个漏洞并作了修正。虽然威尔斯证明费马大定理还没有得到数学界的一致公认,但大多数数学家认为他证明的思路是正确的。毫无疑问,这使人们看到了希望。

第四篇:从商高定理到费马大定理

勾股定理在初中平面几何课本中就学习过,其内容如下:“在直角三角形中,斜边(弦)的平方等于两直角边(短者叫勾,长者叫股)平方的和”。

对这一定理的研究,我国古代数学家作出了巨大的贡献。约在公元前100年成书的我国现存最古的一部数学典籍《周髀算经》中记载,在公元前1100多年我国数学家商高与周公谈话中就明确提出了“勾广三,股修四,弦隅五”,且在同一书中记载的荣方与陈子的问答中,更谈到由勾股求弦的一般方法是“勾股各自乘,并而开方除之”,可见已给出了普遍的勾股定理。正因为商高首先提出了勾股定理,不少人把该定理称之为商高定理。在商高定理的研究方面作出贡献的除中国古代数学家外,还有许多别的国家和民族的数学家,特别是古希腊、埃及、印度的数学家。公元前六世纪,古希腊数学家毕达哥拉斯(公元前582年一前497年)是西方第一个证明勾股定理的人,国外常称其为毕达哥拉斯定理,相传当毕氏找到证明商高定理的方法后,欣喜若狂,杀了100头牛祭奉庆贺,故西方人亦称之为“百牛定理”,而毕氏的证明早已失传。古今中外有许多人探索商高定理的证明方法,不但有数学家,还有物理学家,甚至画家、政治家。如赵爽(中)、梅文鼎(中)、欧几里德(希腊)、辛卜松(英)、加菲尔德(美第二十届总统)等等。其证明方法达数百种之多,这在数学史上是十分罕见的。

我国古代数学家商高发现了直角三角形勾、股、弦有

3、

4、5的关系,故人们称满足勾股弦的各组正整数为商高数。若以方程的观点来看,方程的正整数解称为商高数。商高数除

3、

4、5外,还有5,12,13;7,24,25;8,15,17;12,35,37;20,21,29等无穷多组。是在什么地方弄错了。

直接证明费马大定理的艰巨困境促使人们按数学解决问题的传统,就是要作变换,把问题转化为已知的或易于解决的领域的新问题去解决。近三个多世纪来,经过包括黎曼、莫德尔等许多数学家艰苦卓绝、前赴后续的工作,把费马大定理与代数曲线上的有理点(坐标都是有理数的点)联系起来。种种转化推动了数学相关领域的发展,也推动了费马大定理的证明进程。英国年轻的数学家维尔斯(A·WIles.1953一)利用19世纪以来研究并发展起来的椭圆函数理论及其研究成果,最终证明了费马大定理。1993年6月维尔斯长达200页的论文评审时,被发现其证明有漏洞,1993年7月他开始修改论文,补正漏洞,1994年9月维尔斯终于克服困难,重写了一篇108页的证明论文,10月寄往美国《数学年刊》,顺利通过审查,1995年5月《数学年刊》的41卷第3期上只登载了他的这一篇论文。维尔斯因此获得了国际上颇有影响的科学奖──1995/1996沃尔夫数学奖,这一成果被认为是“20世纪最重大的数学成就”。

历时几千年的两个定理,牵动着世界上不知多少代亿万人们的心,前人以坚韧

的毅力,开拓创新的精神谱写了科学知识宝库中探宝的光辉篇章,还有许多宝藏等待后人开采。自然无限,创造永恒。同学们要努力学习,提高自身素质,不辜负时代重托,将来为人类作出更大贡献。

第五篇:费马最后定理的历史过程

数学与统计学院1007班廖亚平

被公认执世界报纸牛耳地位地位的纽约时报於1993年6月24日在其一版头题刊登了一则有关数学难题得以解决的消息,那则消息的标题是“在陈年数学困局中,终於有人呼叫„我找到了‟”。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的男人照片。这个古意盎然的男人,就是法国的数学家费马(Pierre de Fermat)(费马小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以“业余王子”之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内容是有关一个方程式 xn + yn =zn的正整数解的问题,当n=2时就是我们所熟知的毕氏定理(中国古代又称勾股弦定理):x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有整数解(其实有很多),例如:x=

3、y=

4、z=5;x=

6、y=

8、z=10;x=

5、y=

12、z=13...等等。

费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法找到整数解。

当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最後定理也就成了数

学界的心头大患,极欲解之而後快。

十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫斯克尔(P. Wolfskehl)在1908年提供十万马克,给能够证明费马最後定理是正确的人,有效期间为100年。其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然如此仍然吸引不少的“数学痴”。

二十世纪电脑发展以後,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确的(注286243-1为一天文数字,大约为25960位数)。

虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终於解决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是利用二十世纪过去三十年来抽象数学发展的结果加以证明。

五○年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,後来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八○年代德国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最後定理也是正确的。这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众

也寄以无限的关注。不过威利斯的证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。

要证明费马最後定理是正确的

(即xn + yn = zn 对n≥3 均无正整数解)

只需证 x4+ y4 = z4 和xp+ yp = zp(p为奇质数),都没有整数解。附录:费马小传

费马(Pierre de Fermat)是十七世纪最伟大的数学家之一,1601年8月20日生於法国南部土鲁士(Toulous)附近的一个小镇,父亲是一个皮革商,1665年1月12日逝世。

费马在大学时专攻法律,学成後成为专业的律师,也曾经当过土鲁士议会议员。

费马是一位博览群书见广多闻的谆谆学者,精通数国语言,对於数学及物理也有浓厚的兴趣,是一位多采多艺的人。虽然他在近三十岁才开始认真专研数学,但是他对数学的贡献使他赢得业余王子(the prince of amateurs)之美称。这个头衔正足以表彰他在数学领域的一级成就,他在笛卡儿(Descartes)之前引进解析几何,而且在微积分的发展上有重大的贡献,尤其为人称道的是费马和巴斯卡(Pascal)被公认是机率论的先驱。然而人们所津津乐道的则是他在数论上的一些杰作,例如费马定

理(又称费马小定理,以别於费马最後定理):apº a(modp),对任意整数a及质数p均成立。这个定理第一次出现於1640年的一封信中,此定理的证明後来由欧拉(Euler)发表。费马为人非常谦虚、不尚名利,生前很少发表论文,他大部分的作品都见诸於与友人之间的信件和私人的札记,但通常都未附证明。最有名的就是俗称的费马最后定理,费马天生的直觉实在是异常敏锐,他所断言的其他定理,後来都陆续被人证出来。有先见之明的费马实在是数学史上的一大奇葩

上一篇:法律效果社会效果下一篇:法律法规知识部分