当前铁路通信如何适应高速发展铁路的要求

2022-09-11

1 我国铁路通信的发展

建国五十年来, 从小到大发展, 进入80年代, 中国铁路通信有了很大发展, 但同国际水平相比, 尚有较大差距, 随着陆续与国外合作, 先后兴建了北京贝尔通信设备有限公司等十余家企业, 产品接近国际先进水平, 有些技术提高到一个新的水平, 技术引进和技术改造使中国铁路通信产品和装备达到了国际90年代初水平, 如多芯光缆、漏泄光缆等。至1999年底, 全路的光缆线路总长达到38985km, 铁路通信网基本形成干线传输、交换网数字化。到了21世纪开始的近几年, 在当前经济全球化和信息化的大背景下, 通信技术的应用范围空前扩大, 全球数字化、网络化、智能化得到进一步发展。比如以GSM-R技术为例, 其是基于成熟、通用的公共移动无线通信系统GSM平台之上, 专门为满足铁路应用而开发的数字式移动无线通信技术。GSM-R是一种基于GSM平台上的、专门为满足铁路应用而开发的数字式的无线通信系统, GSM-R对提高铁路的安全运输和工作效率, 发挥了重要的作用, 我国在青藏铁路通信中采用了专用GSM-R系统, 解决了冻土地带信号传枪问题, 减少了维护工作量, 又比如大秦线是重载运输专线, 山区多。我们在GSM-R网络电路交换业务的基础上, 自主研发了机车同步操控地面应用节点、车载通信的相关设备, 提高了经济效益。胶济线提速工程中GSM-R系统业得到了应用, 并克服了外界干扰, 优化了GSM-R无线基站分布, 创造了在繁忙干线运营GSM-R的新经验。GSM-R的基础GSM系统已经在全世界130多个国家和地区应用, GSM-R能够满足铁路应用对可靠性和安全性的要求, GSM-R与固定通信网的发展是紧密关联的, 与先进的网络技是同步发展的。因此, G S M-R也可以向W C D M A-R平滑演进。在大力建设我国GSM-R网络的同时积极探讨G S M-R网络向3G的演进方案, 随着我国铁路通信科学技术水平不断提高, 通信科技进步在推动我国铁路发展, 提高劳动生产率, 降低运输成本, 相信铁路通信必将对我国铁路现代化发挥更大作用。

2 铁路通信如何适应高速发展铁路的要求

2.1 数字信号处理新技术

数字信号处理技术的出现为铁路信号信息处理提供了很好的解决方法。与模拟信号处理技术相比较, 数字信号处理技术具有更高的可靠性和实时性。数字信号处理的频域分析和时域分析的两种传统分析方法有着各自的优缺点。频域分析的优点是运算精度高和抗干扰性能好, 而缺点是在强干扰中提取信号时容易造成解码倍频现象, 例如将移频的低频11Hz误解成22Hz;时域分析的优点是定型准确, 而缺点是定量精确地剔除带内干扰难度大。随着数字信号处理技术的新发展, 在铁路信号处理中引入了新的实用技术, 如ZFFT (ZOOM-FFT) 、小波信号处理技术、现代谱分析技术等。

2.2 通信技术与控制技术相结合

随着计算机技术、通信技术和控制技术的飞跃发展, 向传统的以轨道电路作为信息传输媒体的列车运行控制系统提出了新的挑战。综合利用3C技术代替轨道电路技术, 构成新型列车控制系统已成必然。用3C技术代替轨道电路的核心是通信技术的应用, 目前计算机和控制技术已经渗透到列控系统中, 称为“基于通信的列车运行控制系统”。其具有以下特点:列车与地面之间有各种类型的无线双向通信。可分为连续式和点式的。其中又可分为短距离传输 (指1m以内) 和较长距离传输 (远至几公里至几十公里) 的移动通信。它们仍然保留闭塞分区, 其中最简易方式CBTC仍采用固定的闭塞分区, 但是闭塞分区的分隔点不是用轨道电路的机械绝缘节或电气绝缘节 (如无绝缘轨道电路) , 而是用应答器或计轴器, 或其他能传送无线信号的装置构成分隔点, 这种简易形式仍然保留固定长度的闭塞分区, 简称为C B T C-M A S。在C B T C中进一步发展的闭塞分区不是固定的, 而是移动的, 简称C B T C-M A S。

2.3 通信信号一体化

从铁路信号系统纵向发展看, 德国已经形成从LZB、FZB发展到ERTMS的发展趋势。LZB利用轨道电缆环线传输列车运行控制系统行车指令和速度指令机车信号, 取消地面闭塞信号机, 保留闭塞分区, 列车按固定闭塞方式运行。FZB是基于无线的列车运行控制系统, 是新一代移动自动闭塞系统, 其目的是实现低成本、高性能的列车运行控制系统, 并已加入E T C S。E R T M S/ETCS (欧洲铁路运输管理系统/欧洲列车控制系统) 是欧盟支持的统一的行车控制系统, 采用G S M-R作为传输系统, 其成功应用将进一步推动铁路通信信号的技术进步, 加快实现铁路通信信号一体化的进程。从信号系统的横向发展来看, 日本新干线在1995年成功开发和投入运行的COSMOS系统, 则是通信信号一体化的又一个成功案例。该系统包含运输计划、运行管理、维护工作管理、设备管理、集中信息管理、电力系统控制、车辆管理、站内工作管理等8个子系统, 以通信信号一体化技术, 实现中心到车站各子系统的信息共享, 并使系统达到很高的自动化水平。另外成功地应用了安全光纤局域网, 使之成为联锁系统、列车运行控制系统的安全传输通道, 达到通信技术与信号安全技术的深度结合, 实现了通信信号一体化。

2.4 接入网

随着铁路现代化改造进程的迅速推进, 从前单一的无线列调系统已经远远不能满足铁路无线通信的需要, 这样就迫切需要建设一套适合于铁路现代化运营指挥需要的先进的无线通信系统。这一系统应该采用小区制, 并完成大三角功能。也就是说, 系统必须可以实现调度中心与车站值班员之间、车站值班员与列车司机之间、列车司机与调度中心之间的通话功能, 必须可以实现线路管理区间的公务移动通信功能, 同时还必须能够实现调度中心与列车司机室之间实时的双向数据通信功能。基于这一想法, 构成铁路无线通信接入网的方式可以采用现有的无线通信方式的集群通信方式、GSM (全球移动通信系统) 移动通信方式、CDMA移动通信方式。集群通信系统是一种功能强大的专用移动通信系统, 是通信与微处理机技术、程控交换技术、计算机网络技术紧密结合的产物。它集交换、控制、通信于一体, 通过无线拨号的方式把一组信道自动最优地动态分配给系统内部用户, 最大限度地利用系统资源和频率资源, 降低系统内呼损, 提高服务质量。

摘要:近年来, 我国铁路通信科学技术水平不断提高, 通信科技进步在推动我国铁路发展, 提高劳动生产率, 保障行车安全。随着科学技术的飞速发展, 铁路通信在铁路运营过程中的作用越来越重要。本文根据我国铁路通信的发展情况, 分析了铁路通信如何适应高速发展铁路的要求。

关键词:铁路,通信

参考文献

[1] 宦志杰.关于铁路通信的几点思考[J].甘肃科技, 2004.

[2] 李家才.铁路通信信息系统的几个环境问题[J].铁道通信信号, 2008.

上一篇:刍议糖尿病皮肤瘙痒的病因下一篇:公交驾驶人负面情绪对行车安全的影响分析及改善措施