平面解析几何教学设计

2023-01-28

第一篇:平面解析几何教学设计

《高中数学平面解析几何教学研讨》学习小结

一、对“解析几何”数学知识的深层次理解

(一)感悟解析几何的学科特点

解析几何学科的特点是运用代数的方法来研究几何图形的性质.具体的说:过去研究两条直线是否平行,我们通常是使用平行线的判定定理:同位角相等,则两直线平行;内错角相等,则两直线平行;同旁内角互补,则两直线平行.在解析几何中,判断两条直线的位置关系,则是依据两条直线的斜率,当两条直线的斜率存在时,依据斜率与截距就可以判断两条直线是否平行;再例如,过去判断直线与圆是否相切,依据切线的判定定理;现在则可以通过联立直线与圆的方程,通过解方程组,得出方程组的解得个数确定直线和圆的位置关系. 平面直角坐标系不仅能够使平面上的点与有序数对建立一一对应的关系,还可以将曲线与方程之间建立一一对应的关系,这种关系可以进一步将图形的几何性质和一些数量之间的关系建立起一种对应的、必然的、因果的关系.

(二)“解析几何”知识结构

解析几何是17世纪数学发展的重大成果之一,是高中数学的经典内容.其实质是用代数方法研究图形的几何性质,体现数形结合的重要思想.高中解析几何的学习大致分成三个阶段:学生在高一阶段的必修2中学习“平面解析几何初步”,进入高二年级,在选修1-1或2-1中学习“圆锥曲线与方程”.理科还要学习选修 4-4“坐标系与参数方程”,高三阶段,我们还对这些构成解析几何的经典内容进行系统的梳理和复习.可以看出,对解析几何的学习不是一步到位的,体现了循序渐进的原则,符合认知规律的螺旋上升.那么,贯穿解析几何的教学的主线在每个学段如何体现?如何让学生从接触解析几何的第一天起,就感受到其内容的核心与精华,了解这段内容的学习方法和研究方法?通过学习《高中数学解析几何教学研讨》这门课程后,我学到很多理论,并结合平日的教学实际,对以上的几个问题我有了更深层次的想法。

二、“解析几何初步”的教学策略以及学生学习中常见的错误与问题的分析与解决策略

(一)重视曲线与方程的教学

曲线与方程的概念是解析几何学科的理论基础.这部分内容在教材中的位置是发生过变化的.课标之前的教材基本上是将这部分内容安排在直线的方程之后.学生对曲线与方程的概念有了初步的直观的认识之后再提出理论上的要求.新的课程标准是将这部分移到选修 2列.这样的做法目的有两个,首先是让学生增加了直观感受,在正式学习概念之前,有大量的实例作铺垫.在学习了直线和圆的方程之后,才接触曲线方程的概念.这样学生在理论上认识曲线与方程的概念之前就已经有两种曲线的感性的认识.认识的基础比以前更加雄厚了.第二个目的就是改变了文、理科学生相同的要求的现象.课程标准之前的教学大纲对文科、理科的学生在这方面的要求是相同的.现在文科学生的选修 1-1 中删去了曲线与方程的内容,一方面不影响文科学生对圆锥曲线的研究,另一方面体现了文科、理科学生在数学学习上要求的差异.对于理科学生从理论上尽可能的完善,而对文科学生的要求则侧重在具体的曲线特性的研究. 曲线与方程的概念一共两句话,曲线上每一个点的坐标都适合方程;以方程的任一组解为坐标的点都在曲线上.在学习曲线与方程的概念的时候,教师一般都会注意纯粹性与完备性,会从各个不同的角度设计例题,来巩固落实概念.然而在结合具体的曲线学习的时候,教师对曲线与方程的概念的强调会有不同程度的削弱.

(二)体会用代数的方法研究几何图形的过程

前面已经提到教师可以适当增加平面几何问题的解析法证明.有一些教师因为工作需要一直在高中任教,缺乏对整个中学教材的全面了解.在对教材的把握上很难做到得心应手,翻转自如的境地.特别是数学的许多内容,初中、高中的教学内容有千丝万缕的联系,把握不好,教学中教师就陷入被动的地步.例如:初中阶段学生已经学习了一次函数、反比例函数、二次函数的知识,对于上述函数的图像已经比较熟悉,如果我们在高中讲解直线方程的几种形式时,把学生的认知基础当成零来处理教材,显然是不恰当的. 如果我们适量的引入一些几何证明的问题,学生会觉得亲切,与以往的知识建立了联系.如果题目选的恰当,恰当的标准是所选的题目使用传统的、学生熟悉的演绎推理的方法很难解决,但是使用解析法很简单,想要做到这一点,需要教师研究初中的教材,积累相应的资料,才能在教学中得心应手.

三、通过课例来谈谈不同学段对解析几何思想方法的探究实践

我们重温了课标对解析几何的教学要求,在此基础上讨论了教材体系和教学内容与过去大纲版的变化。如教材的分层设计,这种处理方式体现了循序渐进的原则,关注学生初高中的衔接.我们认真揣摩各学段的教学要求,在此基础上,以解析几何的思想方法为主线,以课例为载体,增加一线教师操作的可行性和实效性,对各学段解析几何的教学内容、要求、教法进行具体、深入的探索研究.把理性的思考和具体的课例结合起来,开展了此次校本教研活动.三个年级的研究课题是的课题分别为:高一:直线与圆的位置关系;高二:直线与圆锥曲线;高 三:解析几何专题研究

设计例说:

课例1:直线与圆的位置关系 研究教材:

“平面解析几何初步”的重点是帮助学生初步体会解析几何的思想历程:将几何问题代数化——处理代数问题——分析代数结果的几何含义——解决几何题.在平面直角坐标系中,点、直线和圆都有了代数形式,我们就可以用代数的方法来研究几何问题了.这与初中阶段我们直接借助几何图形来研究其形状、大小、位置关系不同.实际上我们是在用代数方法研究平面几何问题.另一方面,用代数方法研究问题也不是全新的、没见过的,初中已经将点和有序实数对建立了一一对应关系,只是没有系统地接触解析几何的思想方法罢了.在这里体现了初高中在知识上的的衔接.

教法学法分析:

在本章的前半部分,学生已经学习了直线与圆的方程,知道在直角坐标系中,直线和圆可以用方程表示,(从形到数).通过方程,我们研究了直线间的位置关系,点到直线的距离等,(用数研究形).这些处理问题的方法的共性是都需要把几何问题代数化,先用方程表示直线和圆,然后再通过代数运算解决有关问题.结合对例题的讲解分析,我们突出用坐标方法解决几何问题的“三步曲”:第一步:建立平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论.对解析几何的思想方法有了初步体验.这是我们继续研究直线与圆的位置关系的基础.

作为承上启下的部分,这也是后面学习圆锥曲线的基础.由于学习内容由低到高有递进关系,我们希望前一层级的学习对后一层级有积极影响,即学生遇到新问题时,能在已有知识的基础上展开探究,找到新旧的联系,主动解决后面问题.

主要教学环节:

1、对解析几何的研究对象、研究方法的回顾:

让学生初步体验解析几何的研究方法,为以后学习圆锥曲线奠定基础.

2、设置情境、问题新知:

(1)在初中,怎样判断直线和圆的位置关系?

这个问题是与初中知识的衔接,回忆平面几何中如何判定直线与圆的位置关系的.

(2)通过直线和圆的方程怎样判断它们的位置关系?

让学生认识到我们是用代数方法研究几何问题.有利于保持学生知识结构的连续性,同时开拓视野,激发学生的学习兴趣.也让学生体验研究位置关系的方法的多样性.平面直角坐标系成为沟通平面几何、解析几何的纽带,对同一个问题可以从不同的角度去认识. 我们总结出两种判断方法:

从几何角度,圆心到直线的距离与半径的大小关系刻画直线与圆位置关系;这样把几何位置关系转化为距离的代数计算.

从方程观点.利用直线与圆的方程组是否有解研究曲线间的位置关系. 本质上说,两种方法都是用坐标法解决问题.

我们认为两种方法无所谓优劣,强调在掌握共性(方程的方法)的基础上注意个性(圆心距与半径的关系).前者更好地挖掘了圆特有的几何特征,简化了代数运算,比联立方程组的方法快捷.可以看出用解析法解几何题时,对几何对象的几何特征的不同挖掘,转化的代数形式不尽相同,带来的解法是互异的,这在学生的后续学习中体现得更明显.联立方程组的解法有着很好的认知基础和可持续发展性.学生可以根据求两条直线交点问题的经验,想到判断直线与圆的交点个数也可以通过研究方程组的解来解决.把形的问题(求直线和圆的交点)转化为方程组的实数解的问题(数的问题).充分体现了解析几何中利用代数方法解决几何问题的思想方法.这个解法又成为后续研究直线与圆锥曲线位置关系的“通法”.

所以这里的讲授突出了两点:几何要素(确定直线和圆的几何要素、确定直线与圆位置关系的几何要素)以及在几何要素引导下的代数变形,最终要回到几何上,体现对几何问题的研究.例题围绕这两点设计:

3、例题研究: 例1.(1)直线:(2)直线:(3)直线:围

对于(3),分析优解:直线与圆恒有公共点圆上或圆内.突出对图形的认识.

本题的设计意图是让学生熟知直线和圆中参数的几何意义体会参数对求法的影响.强调画图.不是纯代数的推导.

我们还可以引导学生思考:围绕直线和圆,还会产生哪些新问题(如求切线、弦长等)如何解决等.

课例2:直线与圆锥曲线的位置关系 研究教材:

我们继续采用高一学段研究直线与圆所用的坐标法,通过方程组研究直线与圆锥曲线的位置关系.直线和圆的位置关系作为直线和圆锥曲线的位置关系中的一种,在必修学段已经做了比较系统的研究,其研究方法、研究思路、研究内容等可以类比、借鉴,用来处理直线与其他圆锥曲线的位置关系.

椭圆作为三种圆锥曲线的重要代表,直线与椭圆的位置关系更是解析几何的经典内容.由于它的几何性质比圆更复杂,所以直线与椭圆的位置关系比直线与圆的位置关系更难把握.

鉴于高三阶段我们还要对这部分知识做系统的复习和提炼,所以这节课肩负着承上启下的任务.

研究学生:

在学习了平面解析几何初步的基础上,学生已经掌握了直线和圆的几何要素和它们的代数表示.掌握了确定这些基本图形位置关系的几何要素,以及如何运用代数的方法讨论这些图形之间的位置关系,学生积累了一定的用坐标法研究几何图形的经验.

直线经过的定点(0,1)在

和和

和C:C:

C:

,判断直线与圆的位置关系. 的位置关系 (

)恒有公共点,求m的范在本模块中,学生完成了椭圆、双曲线、抛物线的标准方程、基本性质的学习,再次体验了几何要素代数化的过程.体会了几何直观带来的好处.

主要教学环节:

1、回顾复习,唤醒回忆:

(1)在必修2中我们研究了直线与圆的哪几种位置关系?如何判断直线与圆的位置关系呢?

前一学段的学习是后一学段的基础,前面的知识会在后续学习中得到巩固、拓展和深化.学生的学习就是在这种多次反复、螺旋上升中完成的.

(2)用解析几何的方法研究问题的思路是什么?

一节数学课应该体现知识的核心内容,包括思想方法的渗透,也是数学作为一种理性文化的核心所在.上述流程图是解析几何最核心的部分,理应沉淀下来并在后续的学习中体现认识的螺旋上升.

2、例题选讲与练习:

我们拟从直线与封闭曲线(圆、椭圆)、直线与非封闭曲线(抛物线、双曲线)两方面探索直线与圆锥曲线的位置关系.

1、已知直线:位置关系.

,椭圆:,试判断直线和椭圆的意图1:体会几何特征是怎样转化成代数形式的;

意图2:通过实例总结判断直线与圆锥曲线交点个数的方法: 直线与圆锥曲线交点个数

直线与圆锥曲线组成的方程组解的个数.最终转化为一元二次方程的根的个数问题.

练习:已知直线

,椭圆

的长; (1)试判断直线和椭圆的位置关系;(2)若相交,求弦分析: (1)点(0,-2)在椭圆上.与高一的课例1中,处理圆的相关问题类似.说明直线与圆锥曲线的位置关系还可以利用数形结合、以形助数的方法来解决.体现衔接.

(2)方法1:求出交点坐标,用两点间距离公式求弦长 方法2:设对交点设而不求,简化运算.

回顾处理圆中弦长问题的方法:由于椭圆没有圆的完美对称性,故在圆中利用半径、半弦、边心距组成的直角三角形求弦长的方法失效了.但弦长公式也适用于求与圆有关的弦长.

,推导弦长公式,弦长

=

,例2:已知直线中点为

,椭圆 ,相交于A、B两点,若弦的,求中点P的轨迹方程.

思考1:如果是直线与双曲线或抛物线,位置关系如何判断? 思考2:对例2的进一步研究.如,直线和椭圆的方程不变,继续提问: (2)若(3)若弦为坐标原点,且的中点为

,且

,求直线的方程; ,求直线的方程. (4)当k=1时,问椭圆上是否存在一点,它到直线的距离的最小?最小距离是多少?

设计意图:再次体会如何用代数方法研究几何问题.以点带面,解决多种相关问题.

课例3:直线与圆锥曲线复习 背景分析:

高三的复习是在高

一、高二学习基础上的再认识.本节课的教学设计应从整体、系统的高度把握知识,注重知识之间的联系,建构自己的认知结构.我们可以以专题研究的方式避免复习在低思维层次上重复:

专题1:几何对象如何代数化

分析体验对几何特征的不同角度的挖掘,转化成的代数问题不同,解决问题的难易程度也不同.2010年北京高考题就是很好的示范. 专题2:化解代数运算的常见思路

思想方法的学习是一个“渐悟”的过程,经过前两个学段润物细无声的渗透,力求高三阶段有所“顿悟”.以专题的形式突破难点,彻底解决学生“听得懂、想不到”、见到解析几何题就联立方程组,算到最后无疾而终的问题.让学生在实践中体会解一道解析几何题,如何在前面的流程图的指引下,不仅知道该做什么,更知道怎样做!效果立竿见影。

总之,解析几何是高中数学的重点内容,对它的研究时,我们应该关注学生的学习起点和生长点,强调教学资源的整合和教学目标层级要求的落实,这样才能使学生真正掌握好此块内容。

第二篇:《平面向量加法运算及其几何意义 》教学设计

〖教学目标〗

(1) 知识与技能:理解掌握向量加法运算,能够运用向量加法三角形法则和平行四边形法则求任意两个向量的和向量;初步尝试用向量方法解决几何问题及实际问题;

(2) 过程与方法:经历概念的形式过程,提高数学建设模能力;通过自主探究活动,体验数学发现和创造的过程,提高概括、分析归纳,数学表达等基本数学思维能力; (3) 情态与价值:通过师生互动,生生互动的教学活动,形成学生的体验性认识,体会成功的愉悦,提高学习数学的兴趣。形成锲而不舍的钻研精神和合作交流的科学态度。

〖教学重点、难点〗

教学重点:理解向量加法的意义,掌握向量加法三角形法则和平行四边形法则; 教学难点:向量加法概念的形成过程;

〖教学方法与教学手段〗 教学方法:启发探究式教学 教学手段:多媒体辅助教学

〖教学过程〗

一、 设置情境、尝试探求 1.设置问题情境

今年夏天,我国某些地区洪灾泛滥,某城外有一条东西流向的大河,河两岸高筑堤坝 ,河宽4km, 水深10km,当时河水流速为4km/h, 有一天,三名巡防队员在巡逻中发现正对岸堤坝有一处决口,情急之下,三人跳上船以8km/h 的速度直向决口处驶去,同学们想一想,如果船不改变方向,他们能否准确、及时到达出事地点?

2、学生自主探究与研讨 学生会直观猜测:不能及时准确及时到达(有了猜测就有探式的欲望)

V船

V

教师引导学生:能否运用你所学的知识进行说明;

V水

学生得出:船的实际速度应是船行驶速度和水的速度的合成。如图

教师小结:速度是一个看矢量,矢量的合成与数量相加不同,要同时考虑方向。 提问,根据已有知识你还能举出一些有关矢量合成的例子吗?

3、师生共同探究

学生举例:(1)位移的合成(2)力的合成; (1)如图:某对象从A点经B点到C点,两次位移点的位移 结果相同。

的结果,与A点直接到C

(2)如图:表示橡皮条在两个力F

1、F2的作用下,沿GE的方向伸长了EO,与力F的作用结果相同。

教师:两个既有大小又有方向的量的合成运算,物理上叫做矢量的合成,在数学上叫做向量的加法。

二、 形成概念,归纳方法。

向量的加法:求两个向量和的运算,叫做向量的加法

1、提问:对于平面上任意两个向量,如何定义它们的加法? 同学们任意作出两个向量试一试。

2、学生自主探究 学生可能答案:

(1) 共起点的两个向量相加,用平行四边形法则;

(2) 首尾相接的两个向量相加,模仿位移的合成,作出和向量; (3) 任意两个向量相加,先平移到共点,再作出和向量; (4) 共线的两个向量相加(同向或反向)

3、交流、研讨、辩析 投影同学们的研究成果,引导学生对几种作图方法进行辩析,它们有什么共同和不同之处?如何理解“任意”?和向量的方向和大小有何变化?能否对作图过程进行语言表达。

4、归纳总结

在师生、生生的互动交流中,形成以下共识:

一、 向量加法的定义

1、三角形法则:

已知非零向量a、b.在平面内任取一点和,记作a+b,即 a+b

,作

=a,

=b,则向量

叫做a与b的

a

a+b b

b

a

位移合成可以看作向量加法三角形法则的物理模型

2平行四边形法则

以同一点O为起点的两个已知向量a、b,为邻边作平行四边形OACB,则以O为起点的对角线就是与的和。

力的合成可以看作向量加法平行四边形法则的物理模型。 对于零向量与任一向量我们规定:

提问:你能从向量加法的几何意义,说明规定的合理性吗?

思考:当在数轴表示两个共线向量时,它们的加法与数的加法有什么关系? a a

b b

a+b

a+b

探究:|+|与||+||的大小关系:

当向量与不共线时,|+|<||+||; 一般的有:|+|≤||+|| 思考:、处于什么位置时,

(1)|+|=||+|| (2)|+|=||-||(或|+b|=||-||)

三、实践探索 形成能力

1、探究:数的加法满足交换侓和结合侓,即对任意a、b a+b=b+a (a+b)+c= a+(b+c) 任意向量、的加法是否也满足交换侓和结合侓? (1)让学生通过画图探索验证:+=+ (2)提问:你能否验证:

(+) +=+ (+)

小结:向量的加法满足交换律:+=+ 向量的加法满足结合律:(+) +=+ (+)

2、练习P93

3、4题

3、例2:长江两岸之间没有大桥的地方,常常通过轮渡进行运输,如图2.2-12所示,一艘船从长江南岸A点出发,以5km/h的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h。

(1)试用向量表示江水速度、船速以及船实际航行的速度(保留两个有效数字); (2)求船实际航行的速度的大小与方向(用与江水速度间的夹角表示,精确到度) (引导学生正确理解题意,把问题化归为向量的加法运算。注意规范学生的解题格式。)

4、巩固作业

(1)P103习题2。2:第2,3,4(1)(2)(3)题 (2)选做题:在△ABC中,求证:

四、归纳小结:内化知识

通过本节课的学习,同学们谈谈自己体会最深刻的是什么?

1、向量加法的几何意义; 2、交换律和结合律;

3、注意:|+| ≤ || + ||,当且仅当方向相同时取等号.

第三篇:有关平面解析几何的心得体会(xiexiebang推荐)

心得体会 有关平面解析几何

上周六有幸听张老师老师的课,感悟颇深。虽然自己一直研究的是数学,但并没有真正思考如何在教学中灌输给学生数学思维。同时也发现自己的知识处于一种混乱的状态,虽然每次都能把题解出来,但仔细一想其实不然。当自己不是一个学生,而是教学生如何学习数学,如何解决一道数学题甚至是一道高考题的时候,自己更应深入思考数学带给我们什么,难道仅仅是解对一道题而已吗?数学到底是什么?当意识到这个问题后,再次面对数学题的时候,我们更应该关注的是题目背后的内容,当某天不在为了解决一道数学题的时候,我们收获了什么?

在自己之前的教学中学生不乏出现这样的情况:哎呀,这道题昨天还会解呢,今天就忘了;这个知识点怎么不记得了......,而且有时自己碰到一时想不起如何解题的时候,也会这么问自己,听了张鹤老师的课后,顿然大悟—数学不应该是用记得,是需要理解的,不存在忘与不忘的问题,只有理解与不理解的问题。当一个知识点彻底的搞明白原理和涉及到的数学思维时,无论碰到什么样的变式题,都应该做到万变不离其宗的境界,当然了,这个境界对学生来讲是很高的。目标很高,难道我们就不去做了吗?不然,学生的学习和思维过程是一个循序渐进的过程,在教学过程中,我们应该不断的灌输给学生的是数学思想和思维,让学生明白的不仅仅是这个知识点可以解决什么类型的题,而且更应该明白的是这个知识点为什么这样呈现,它所呈现的思维特点和方法是什么。

拿平面解析几何来说,它的基本思想是用代数方法解决几何问题。何为代数方法?就是将如直线、圆、椭圆、抛物线、双曲线等这些基本的几何对象代数化,在平面直角坐标系中建立它们的方程,从几何特征转化到代数计算。在这个基本思想指导下,学生学完平面解析几何后,遇到题目,脑子里第一闪过的不应该是联立方程,解方程这种机械的解决方法,而应该是归纳概括出要解决的几何对象的几何特征,从几何背景、几何图形的特征入手,然后在考虑下一步。回到实际情况中,要想让学生熟练的归纳出要解决几何对象的几何特征,不像说这句话这么容易。在实际教学中,常常会出现这样的情况:学生知道要这么做,要这么思维,在草稿纸上罗列了一堆几何特征,可就是想不出解决问题所需要的几何特征!这个问题暴露出来的就是做题量不够,要想熟练掌握数学思维,不能仅仅知道有什么数学思维就行了,更重要的是在实践中感悟这种思维,在题目中它是怎么体现的,这需要学生做大量的题,从实践中自己归纳出来,这才是最重要的。

第四篇:平面几何练习题 初一

1.在△ABC中,∠C-∠B=90°,AE是∠BAC的平分线,求∠AEC的度数。

2.试说明:∠A+∠B+∠C+∠D+∠E+∠F=360°

问题补充:

3.已知:三角形ABC中,BC=2AB,角B=2角C,AD是BC边上的中线。求证三角形ABD是等边三角形。

请大家把过程写清楚,有些人在过程中说AD=DC,是怎么来的呢?

4.已知:ED为△ABC中边AC的垂直平分线,且AB=10,△BCE的周长为16,则BC=?

5.已知:∠1和∠2互余,∠2和∠3互补,∠1=63°,求:∠3=?

6.在△ABC中,AD平分∠BAC,DG⊥BC于G, DE⊥AB于E,DF⊥AC于F, 且BE=CF.

(1)试说明BG=CG的理由

(2)如果AB=a, AC=b, 求AE, BE的长

7.如图,BO、CO分别平分∠ABC和∠ACB,

(1)若∠A=60°。求∠Q

(2)若∠A=100°、120°,∠Q又是多少?

(3)由(1)、(2)你发现了什么规律?当∠A的度数发生变化后,你的结论仍成立吗? (提示:三解形的内角和等于180°)

第五篇:初中平面几何重要定理汇总

1、勾股定理(毕达哥拉斯定理)(直角三角形的两直角边分别是a、b,斜边是c;则a*a+b*b=c*c)

2、射影定理(欧几里得定理)(直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 公式Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)^2;=BD·DC, (2)(AB)^2;=BD·BC , (3)(AC)^2;=CD·BC 。 等积式 (4)ABXAC=BCXAD(可用面积来证明))

3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分

4、四边形两边中心的连线的两条对角线中心的连线交于一点

5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

6、三角形各边的垂直一平分线交于一点。

7、三角形的三条高线交于一点

8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL

9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。

10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,

11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上

12、库立奇*大上定理:(圆内接四边形的九点圆)

圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半

14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点

15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)

16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2

17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD

18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上

19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD

20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,

21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。

22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。

23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1

24、梅涅劳斯定理的逆定理:(略)

25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。

26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线

27、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.

28、塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M

29、塞瓦定理的逆定理:(略)

30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点

31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。

32、西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)

33、西摩松定理的逆定理:(略)

34、史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心。

35、史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上。这条直线被叫做点P关于△ABC的镜象线。

36、波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2∏).

37、波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点

38、波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点。

39、波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点

40、波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点。

41、关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。

42、关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。

43、卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线。

44、奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线

45、清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线

46、他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW与边BC、CA、AB或其延长线的交点分别为ED、E、F,则D、E、F三点共线。(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)

47、朗古来定理:在同一圆同上有A1B1C1D14点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上。

48、九点圆定理:三角形三边的中点,三高的垂足和三个欧拉点[连结三角形各顶点与垂心所得三线段的中点]九点共圆[通常称这个圆为九点圆[nine-point circle],或欧拉圆,费尔巴哈圆.

49、一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点。

50、康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点。

51、康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松的交点在同一直线上。这条直线叫做M、N两点关于四边形ABCD的康托尔线。

52、康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点。这个点叫做M、N、L三点关于四边形ABCD的康托尔点。

53、康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上。这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线。

54、费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切。

55、莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。

56、牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线。

57、牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。

58、笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。

59、笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。

60、布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C和F,则这三线共点。

60、巴斯加定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和FA的(或延长线的)交点共线。

上一篇:普通话比方言更有魅力下一篇:贫民窟的百万富翁分析

本站热搜