通信基站防雷方案

2022-07-17

一项工作不能盲目的开展,在开展前必须要进行详细的准备,这就是方案存在的意义,那么要如何书写方案,才能达到预期的效果呢?以下是小编整理的关于《通信基站防雷方案》,供需要的小伙伴们查阅,希望能够帮助到大家。

第一篇:通信基站防雷方案

完善移动通信基站防雷保护的措施

完善移动通信基站防雷保

护的措施

张坚

(安徽省芜湖市气象局芜湖241000)

摘要通过防雷安全检测工作的实践经验,总结了通信基站防雷施工中容易忽略的几个问题,并根据规范要求提出相应的建议,以便在检测报告中有针对性地提出整改措施和要求。

关键词移动通信基站防雷问题整改措施

引言

移动通信基站的天线大多安装在铁塔等较高地点,相对周围环境,形成突出的目标,以至雷击概率增大。国家和信息产业部已经颁发了移动通信基站防雷保护规范。如果在实际施工中不按规范操作,即使有完备的防雷设计方案,也将会导致整个防雷系统质量大大下降,留下安全隐患。通过从事基站检查积累的经验,本文分析了防雷施工中容易忽略的方面,以利于在检测报告中提出正确的整改措施和建议,从而,完善移动通信基站的防雷措施,增强基站的防雷能力。

1接地排设置的正确方法

接地排分为室内接地排和室外接地排。室内接地排主要用于室内设备保护地和直流电源工作接地汇流点;室外接地排主要用于天馈线防雷接地以及微波防雷接地。关于接地排的设置,YD5068-2000作了简单介绍,从实际检测的情况看,接地排在安装中存在的主要问题是两个引入点的间距不符合规范要求,有的站直接将两点连在一处,有的站两点间距远小于5m。

基站铁塔避雷针接闪雷击后,雷击能量将沿引下线至直击雷保护地泄放到大地中。如果室内外接地排引入点的间距过小,引下线上的雷击电流可能来不及完全泄放到大地,其中一部分就会窜进室内接地排引线,造成反击。在实际检查中发现由于接地排安装不正确,导

致B级避雷器或附近设备遭雷击损坏的情况每年都有不少。2006年芜湖市有一基站的B级避雷器及其地线在雷击后呈焦黑状,说明室内接地排引线上具有相当大的雷击能量。在实际设计和施工时必须严格区分室内、外接地排。

1.1接地排

室内接地排应从非雷电引下线(铁塔或机房建筑物的四周)或非避雷针引下线的位置引出;室外接地排通常与大楼的防雷引下线相接或直接从地网引出。两引入点间距应在5m以上,严禁室内外接地排通过各种铁件构成电气回路。若不符合间距要求,必须重新开挖接地网焊接引入,入地引线接地头最好采用铜鼻头与镀锌扁钢满焊模式,同时要注意处理好铜鼻头压接管内进水等腐蚀问题。

1.2室内接地排的设置

可根据需要设置2个室内接地排。如室内只设一个接地排,必须将此接地排设置在交流电引入同一侧,以确保此接地点与B级防雷器安装位置之间的距离小于1m,B级防雷器与接地排连线的截面积应为大于70mm2的多股铜线。

2基站机房的等电位连接

基站空间一般都比较小,满足安全距离的要求不可能达到。当发生雷击时,基站内各设备之间存在电位差。在直击雷与接闪装置发生闪络的刹那,电位差会达到相当高的数值,巨大的电位差会使设备损坏。

基站设备损坏主要原因之一就是由于机房内的不带电金属导体没有处于同等电位。在所检查的基站中,等电位连接大都没有做彻底。如各金属导体没有完全连接成等电位系统;导体和导体之间的连接导线过细;设备和导线的连接点没有固定好或锈蚀。由于设备没有做好等电位连接并有效接地,导致电位抬高并通过配电PE线反击损坏设备的现象每年都会发生。规范明确指出,基站的防雷安全是建立在联合接地基础上的等电位连接,并给出了等电位连接的基本原则。在实际连接时还要做到:

2.1基站接地参考点以配电箱旁交流电源B级保护器附近新设接地排为参考点,所有室内设备的保护接地和工作地均以此电位为基准参考点进行等电位连接。

2.2将基站机房内所有机架、走线架、机壳(包括电池金属架、空调机、光缆接线盒、监控接线盒等类似设备和金属防盗门)接地线汇集到室内接地排。设备的机壳接地线可采用16mm2铜线;监控模块盒、光缆进线盒可采用截面积为10mm2铜线作接地线;电池架、综

合机架以及安装在综合机架上供架内设备机壳接地使用的接地排的接地线应为35 mm2铜芯线;空调机机壳、室外配电箱接地线可以采用16 mm2铜芯线。

3基站信号线、电源线等布放

基站机房是一个设备集中、线路密集的场所,交流电源线、直流电源线、接地线、信号线并存。基站各种线路不规范布放,随意连挂的现象非常普遍。芜湖市有一个基站曾发生严重的雷击事故,造成多台交换机、接收机同时损坏。经过现场检查发现,该站布线混乱,电源线和信号线长长地拖在地上,仅用短棍隔开,时间一长,两组线就缠绕在一起。在强大的雷击中,输电线遭受雷击,雷电流不仅在电源线上传输,同时雷击感应过电压将屏蔽层击穿一个洞,过电压窜入信号线,将电源线和信号线两端的设备击坏。

保持隔离是雷电安全的基本原则之一。为了防止相互干扰,各类线在布放时必须保持安全距离。根据基站走线架的宽度,各种信号线、电源线等之间的布放间隔要满足规范要求(一般相隔300mm),不能捆扎在一起。注意拆除废弃的天馈线和传输引入线,准备留用的线要做好防雷接地处理,将放置在走线上的零星设备集中安放到综合机架内,一并作好接地连接。布线应该安全整齐、间隔均匀合理;每条线的两端应设有明显标识。以交流电源线与信号线间隔距离最大(分两侧绑扎)为准,按照规范要求,实施 “四线分离”:交流电源线、直流电源线、接地线、信号线分别绑扎。防雷泄流线以远离弱电、禁忌平行、最短入地为原则布设。

4防雷电波侵入的保护

雷电电磁脉冲的防护采用滤波、屏蔽和接地等技术措施。虽然接地可以分流掉大部分雷电流,也是防雷电波侵入的主要手段,但是完备的防范措施还包括安装浪涌保护器。在设计安装基站SPD时,应该注意:

4.1由于基站开关电源设备设计安装了C级通流能力为40kA的SPD,不少基站总配电箱或总配电柜缺少多级保护中的B级SPD保护,这不符合规范要求。基站雷电防护应为B级防护,按照规范要求以及多级保护、逐级限压的原则,为了将雷电过电压限制在设备能够承受的水平上,宜在低压系统安装2-3级SPD进行保护,对于多雷区电源B级保护器要提高一个等级。

4.2虽然规范条款中建议设置专用电力变压器,但目前郊区型、山区型基站都没有专用变压器,没有采用TN-C-S供电方式,而是采用TT供电方式。由于TT方式在供电发生故障

时仍可带电工作,它的故障电压能使普通SPD发生燃烧。为了防止这种情况出现,基站应采用3+1方式的放电管类SPD产品,安装时注意PE线和N相不能接反。

4.3注意市电引入防雷器的配置容量、内部防雷模块单元容量、内部防雷模块的连接组成形式以及B级与C级防雷器之间的配合,主要是泄流残压值和耐压值参数的配合,凡发现参数配置不当,必须重新调整、更换。同时还要做好音频引入、2M/S引入端口、基站天线、微波天线、寻呼天线和光缆等引入端口的防雷保护措施。

5地网焊接

地网的焊接好坏直接影响到接地的质量和接地阻值的大小。焊接质量不高,容易造成连接松弛,导致接地线和接地极脱离,由于埋在地下,发生雷击事故时不易找出原因。一个接地系统建成后,如果在短时间内接地阻值发生较大的变化,在排除气象和土壤变化因素外,可以断定接地系统的连接出了问题。

接地网扁铁、接地极角钢一般采用40×4mm和5×50×50mm-2.5m热镀锌材质。焊接质量在规范中没有详细说明。根据经验,焊接时接地网扁铁搭接、双面满焊焊接长度应不小于10cm;单面满焊焊接长度不小于20cm;扁铁与角钢焊接,四面满焊焊接长度不小于5cm;焊接要做到平整饱满,要有足够的机械强度,无灰渣、咬肉、裂纹、虚焊、气孔等缺陷,焊接点采取二层沥青二层麻丝等防腐措施,并将其深埋于自然地面70cm以下。接地铜鼻头(35mm以上采用管式)、连接螺丝所用的镀锌件、垫片、弹簧垫圈要齐全,接地汇接线和接地排连接处要涂凡士林进行保护。

第二篇:移动通信基站节能方案

据估算,2007年中国仅GSM基站耗电量将接近32亿千瓦时,基站电费将接近20亿元,这还不包括空调、变电、传输等能耗。

电能在通信企业能源消耗中占有绝对比重,节能在电信行业势在必行。在国内电信市场日益饱和、杀手级业务缺失的压力下,降低能耗节约开支实乃摆脱困境、提升利润的有效途径。

移动通信基站能耗构成

从移动通信网络设备的能源消耗分布来看,无线基站部分的能耗约占到90%,核心网和网管等其它设备比重不足10%。

通常来讲,移动通信基站由BTS设备、天馈系统、传输设备、整流器、蓄电池组、交流配电屏、变压器、空调、环境监控等组成。根据消耗主体的不同,移动通信基站能耗主要包括:

(1)通信设备用电:通信设备用电主要取决于在网设备数量及其功耗,同时也受限于网络负荷水平。统计数据发现,通信设备用电占机房总用电量的30%左右。其中,天馈系统及传输设备耗电相对较小,绝大部分来自于BTS设备。

(2)配电系统用电:电能经过配电系统的传输过程中会产生线损电量,可分为技术线损和管理线损。技术线损电量是在传输过程中直接损失在配电设备上的电量,可以通过采取相应的技术措施予以降低。管理线损电量则是在计量的统计管理环节上造成的,需要采取必要的组织措施与管理措施来避免和减少。

(3)机房环境用电:基站机房对设备运行环境的温度、湿度、洁净度有一定要求。为保障通信设备的正常运行和使用寿命,必须采取必要的温控措施来平抑因用电设备散热、室外热传导以及维护人员热辐射而引起的机房温度升高。空调是基站机房的主要耗电设备,能耗比重约占40%~50%。

(4)维护及其它用电:基站维护过程中将产生照明、检修或施工用电,蓄电池组维护则涉及充放电容量试验带来的能耗。

基站节能应重点放在通信设备、机房环境两大方向上。配电系统节能与机房建筑节能也同样不容忽视。

基站节能的基本原则

移动通信基站节能必须满足以下基本原则:

(1)系统可靠性。节能决不能以牺牲通信系统的安全作为代价。基站机房环境一般应保持常年温度10℃~35℃、湿度10%~90%、洁净度达B级。简单地通过改变机房工作环境来降低能耗并非明智之举,通信设备与电力设备、蓄电池组的使用寿命都会因此而大打折扣。

(2)技术可行性。节能降耗实现途径多种多样,各有其优缺点和适用范围。在实施过

程中,要因地制宜,综合考虑设备要求、机房布局和地理位置等诸多因素,合理选择可行的节能技术,以实现节能效率的最大化。

(3)技术有效性。开源与节流相辅相成。所谓开源,就是寻求常规能源的替代品,如太阳能、风能等可再生能源;节流是节能降耗,提高能源利用效率。理论上讲,节流是有限的,开源是无限的。业界当前大多以节流为主,随着可再生能源利用的成熟,最终实现常规能源向可再生能源利用的平稳、安全过度。

(4)经济合理性。节能应兼顾经济效益增长,切勿矫枉过正。用先进节能的产品更新替换老旧、高能耗设备固然合理,但在很大程度上受限于企业资本力量和网络发展能力,孰优孰劣不置可否。实施前期要作好试点工作,关注节能方案的投资回收期。

(5)效果可测性。节能技术使用后是否达到预期目标、效率如何,都必须有一套健全、可行、有效的评测机制。定性分析相对容易,定量评估则有些难度。

基站节能技术方案

1.通信设备节能

通信设备运行过程中消耗的能量,除少量以电信号方式传输外,绝大部分转化为热量散发出来;空调耗电则源于维持通信设备正常工作的机房环境,在很大程度上取决于通信设备的发热量。

基站节能应从源头抓起。根据粗略估算,通信设备的功耗每下降1kW,配套通信电源系统和机房空调设备的建设投资费用可减少约2万元,其相关的运行和维护成本中仅电费一项一年就可节约1.5万元。

传统基站采用独立模拟功放技术,功放模块功耗约占总体功耗的60%,然而功放效率通常却低于10%。功放的核心问题是线性化和高效率。数字预失真(DPD)技术和Doherty技术相互配合应用时,功放效率可提高至27%以上。

基站设备耐高温工作能力的增强将降低对冷却系统的要求,整体能耗相应会减少。分布式基站和模块化基站应用前景广阔。

针对话务闲时开展智能节电技术可大幅降低基站能耗。利用软件实时统计分析载波与信道的负荷程度,将承载的业务进行疏导,在保障通信服务提供能力的前提下,尽可能减少同时工作的TRX或TCH数量,通过自适应开关实现智能化节能控制。

良好的网络结构对基站节能大有裨益,这也体现在网络规划与建设的有效性上。蜂窝基站布局合理,基站发射功率会有所限制,可以避免覆盖空洞,最重要的是降低额外建站需求的概率,减少能耗风险。

2.机房环境节能

对于移动通信基站而言,机房环境节能主要体现在冷却系统即空调上。

变频技术是利用变频器改变空调压缩机的供电频率,通过调节压缩机的转速达到控制室温的目的,有利于降低空调耗电量和延长使用寿命。然而,应注意其对通信电源低压配电系统以及通信设备的电磁干扰。

新风节能利用室外的自然环境作为冷源,采用空气质量交换和能量交换原理,将基站内的热量迅速向外迁移,实现室内散热、降温,从而减少空调使用时间,包括自然通风与热交换两种形式。自然通风系统一般适用于温差大、空气质量好的地区,热交换节能系统则主要适用于室内外温度差较大的环境。

空调自适应节能就是通过模糊控制技术,根据室内环境温度的变化情况,灵活调节空调的工况参数,优化控制空调的运行状态,通过自动控制来满足机房环境要求。自适应节能系统具有高可靠性、安装方便、易维护等优点。

基站空调应选用专用产品,一般来讲无需除湿、加热等功能。室外机安装时要求周边无靠近障碍物,影响空调散热。室内机安装要考虑设备排列、建筑结构、线缆走向等因素,合理优化空调气流组织。

3.配电系统节能

配电系统节能可以从提高用电效率与质量、优化配电系统负载效率、引入新型清洁能源、加强用电系统管理等方面入手。

4.机房建筑节能

在保证使用功能、建筑质量和室内环境要求的前提下,机房建筑节能与建筑材料、体形系数、朝向、地理环境及气候条件等有密切联系。使用节能材料与外墙保温技术是机房建筑节能的主要实现方式。

机房外围护结构的热传导会导致室内冷量的损失,从传热耗热量构成来看,外墙和屋面所占比例约为60%以上。外围护结构的传热系数直接取决于材料类型及其厚度。外墙采用隔热保温材料的夹芯板,更利于防止热量的散失。屋面不宜选用容重大的保温材料,以防屋面重量及厚度过大;也不宜选用吸水率较大的保温材料,以防施工后水分不易排出,从而降低保温效果。

外墙外保温不会产生冷热桥现象,外保温材料置于主体结构外侧,减少外界温度、湿度、各种射线对主体结构的影响,且不占用机房使用面积、易于施工。

外围护结构的传热量与其传热面积是成正比的。在其他条件相同情况下,建筑物耗热量指标随体形系数的增长而增长。体形系数应尽可能地小,在满足使用要求的前提下,不应随意增加机房的层高、进深。

机房朝向宜采用南北向或接近南北向。机房所有进出孔洞、门窗应作密封或遮光处理。

机房门宜选择夹芯材料为聚苯板或矿棉板的不锈钢门。

结束语

移动通信基站节能是一项长期、复杂的系统工程,贯穿于规划建设、日常维护、技术改造等各环节,必须处理好网络安全与节能效果、投入成本与节能回报率等多方面的关系。盲目增加节能产品未必能达到理想的节能效果。移动运营企业应深入了解整个网络设备的实际运行状况和能耗构成,对不同条件下设备运行数据实行有效跟踪分析,摸索行之有效、成本效益俱佳的解决方案。

第三篇:通信基站节能减排4套方案

基站空调节能技改(已小代大)方案

及实测效果的报告

节能减排工作是一项意义重大,落实起来难度非常大的工作,在过去几年的维护工作中,在公司各级领导的耳闻目染细心指导下,对节能减排工作的意义,有了更深的理解。在维护工作中去思考一些如何节能的方法,并前后形成了几套方案。在两年多的时间里,进行试验取得了相关数据,对各个方案进行实验、排除、完善。经多次反复,最后确定了本方案。在以上工作中,维护部袁军主任在基站站房环境、安全和以后维护工作中的便利性,提出了具体的要求和指导性建议。

要完成并达到节能减排的目标,对基站的基本情况、基站设备对工作环境的要求,有清晰的了解:

一.基站站房情况:砖混结构站房,房间大,安全性和密封保温性较好。彩钢夹芯板房,因其结构,安全性和密封保温性较差一点,房间大小差别较大。

二. 基站设备情况:基站设备多少,情况差别较大。设备的发热量差别较大,空调工作时间的长短和启动频次差别较大。

三. 基站空调情况:基站空调基本上分三种,单相3P(3.5KW)、三相3P(3.5KW)、三相5P(6.8KW)。

基站节能技改方案:通过以小代大,通风换气通风降温系统保障基站设备工作的温度环境,大幅度降低用电量。采用智能系统,自动控制双风机的开关和百叶窗的开关并加装两道防尘网,保障基站设备工作的卫生环境。如遇风机不工作,智能管理程序会自动启动空调,保障基站设备工作的温度环境。通过机房监控可看到,空调启动了,就证明通风降温系统有故障。就可及时处理该系统故障。

基站节能技改方案实测效果:通过对三种空调挂表实测,取得了三种空调耗电量的精确数据。通过对各基站高频电源柜直流负荷的统计。该技改方案:节能减排效果显著,节能30%—48%。适用范围宽:适用所有基站。性能可靠,并能满足基站设备对工作环境、安全和以后维护工作中的便利性等要求。

本方案是针对装供电部门的复费率表计基站的,并不具有节能新疆奎屯市繁星科技发展有限公司

联系人:王先生

电话:09923312899 /15609924671

装复费率表基站节费方案

效果。但是,对于通信企业降低电费成本有非常直接且明显的效果。

本方案是在基站用电量不变的情况下,通过调整用电时间,错开峰时的高电价,多用谷时段低电价的电。从尔达到降低电费成本的目的。经测算,每站可减少电费支出23%-29%。本方案适用装复费率表计的所有基站。

本方案的另一个作用,可以改善蓄电池因长期只充电不放电,在蓄电池内形成大量的氧化物沉积(该氧化物会直接影响蓄电池充·放电电流的流量,使蓄电池电压快速下降,甚至造成断电,进尔直接影响通信设备的正常运行),降低和减缓氧化物的形成和在电极附近的堆积。保护蓄电池,延长蓄电池的使用寿命。

室内分布·w-lan节能方案及测试报告

随着我国社会经济的快速发展,通信运营商为广大客户提供更好更优的服务,已投入大量人力·物力·财力,在已有的公共服务设施·商业服务设施及高层住宅,已经建立运行了大量的室内分布系统·w-lan系统。随着经济的快速发展,还会不断投入继续建设室内分布系统·w-lan系统,其产生的电费,给通信运营商带来很大的成本压力。但是,可以根据以上各类设施对通信信号需求时间段的不同,采取分时段停送电,运行设备。可幅度不同的降低设备用电量,达到降低电费成本的目的。

经过实际测试,各类不同设施,可减少电费支出:16%--56%。节能效果非常好,本方案适用室内分布系统·w-lan系统。且安全可靠。

基站(-48V)直流电池组保温套系统

基站蓄电池组保温套系统,主要适用于我国黄河以北广大地区的通信基站。

由于我国通信运营商运营商,基站所使用的都是铅酸蓄电池(300AH.500AH.800AH.1000AH),铅酸蓄电池友好使用环境,是在避光环境下,温度在+25度,其处于最佳的工况。而实际情况是,北方的冬天,气温都在零下或更低。这样的使用环境下,蓄电池放电电新疆奎屯市繁星科技发展有限公司

联系人:王先生

电话:09923312899 /15609924671 流不稳定,电压快速下降。充电时电压虚高,蓄电池达不到满蓄。使蓄电池的使用寿命快速下降,增加企业因提前更新蓄电池的成本。

基站蓄电池组保温套系统,可以改善蓄电池组在冬季使用环境下,使蓄电池组环境温度保持在10度到25度之间。使蓄电池放电电流平稳,电压下降平缓。充电时电压稳定,蓄电池达到浮充。最大限度的保护蓄电池,延长蓄电池的使用寿命。

新疆奎屯市繁星科技发展有限公司联系人:王先生 电话:09923312899 /15609924671

第四篇:高速公路通信、监控、收费系统的防雷方案

一、概述

当今社会电子计算机技术、微波通信技术日益发展,各类电子设备大量应用,雷击电感应到附近的导体中形成过电压,可高达几千伏,对微电子设备的危害极大。LEMP的主要侵入通道有电源线路、各类信号传输线路、天馈路线和进入系统的管、缆、桥架等导体侵入设备系统,造成电子设备失效或永久性损坏。因此,雷击脉冲的防护是在入侵通道上将雷电流泄放入地,从而达到保护电子设备的目有。其主要方法是采用隔离、等位、钳位、均压、滤波、屏蔽、过压过流保护、接地等方法将雷电过电压、过电流及雷击电磁脉消除在设备外围,从而有效地保护各类设备。目前主要采用气体放电管、放电间隙、高频二极管、压敏电阻、瞬态二极管、晶闸管、高低通滤波器等元件根据不同频率、功率、传输速率、阻抗、驻波、插损、带宽、电压、电流等要求,组合成电源线、天馈线、信号线系列电涌保护器(SPD)安装在微电子设备的外连线路中,地线按共用接地原则接入系统的地线,才不至于造成地电位反击。只要设计合理、安装合格,电涌保护器就能有效的防御雷电。

因此,采用完善的综合防雷手段构成一套完整的防雷体系,这就是现代防雷的新理论:综合防雷理论。目前高速公路建设发展迅速,为了使高速公路畅通无阻,保证高速公路通信、监控、收费系统正常运行,将雷电灾害降低到最低限度,防雷工程技术人员应对系统进行全面规划、综合治理、制定完善的综合防雷设计方案。

二、高速公路综合防雷设计方案的依据

高速公路综合防雷在设计时主要采用以下标准,供设计时参照。

1、 IEC61024《建筑物防雷》

2、 IEC61312《雷电电磁脉冲的防护》

3、 ITU K25《光缆的防雷》

4、 ITU K27《电信大楼内的连接结构和接地》

5、 GB50057-94《建筑物防雷设计规范》

6、 GB50343-2004《建筑物电子信息系统防雷技术规范》

7、 GB50174-93《电子计算机机房设计规范》

8、 GB50198-94《民用闭路监视电视系统工程技术规范》

9、 GB/T50311-2000《建筑与建筑群综合布线系统工程设计规范》

10、YD5078-98《通信工程电源系统防雷技术规范》

11、XQ3-2000《气象信息系统雷击电磁脉冲防护规范》

三、高速公路通信、监控、收费系统的基本组成

1、每一条高速公路在其管理的区间内均设有一监控中心大楼。监控中心一般设在高速公路的出、入口处,也有设在管理区间的中心部位。中心一般设置有大型地图板和监控电视系统,并配有多画面切换控制设备、视频监视器、低速录象设备及自动转换装置。中心配备有计算机网络系统、负责管理各收费站的收费信息、紧急电话的控制、公路出入口及中间各大型电子显示屏的控制和公路沿线的小型电子提示牌的控制等。中心大楼内还有程控交换机系统、中心控制台、光缆通信的两个或四个8Mbit/s接口的光端机、电端机及上网设备、无线电话系统、UPS供电系统等多种电子设备。

2、在每个收费站配备有光缆通信设备,收费用的计算机局域小网,收费站信号灯控制系统,监视、摄像、记录系统,控制操作台,站内电话控制台、无线对讲电话等。

3、在每个收费亭内配备有收费计算机网络系统工作站专用计算机,收费票据打印机,收费指示板,指示灯,车道控制机,自动栏杆,语音提示系统,车辆过境自动计数器,对讲电话和空调及供电系统等设备。

4、在公路沿线及收费站广场设置了多个监控摄像头,将摄像头的视频信号通过光缆、同轴电缆、对称电缆或通过微波传输系统,将视频信号或语音信号传到中心监控室,以利控制中心掌握公路沿线的车辆行驶运行情况,便于指挥调度。

5、道路LED指示牌。LED指示牌发布高速公路即时信息,位于空旷的环境中,其控制信号线一般由光纤组成,系统电源采用就地变压(主要是使用开关电源)的措施,由电源引起的雷击事故较为普遍。

四、高速公路的综合防雷原则

高速公路的综合防雷设计应考虑环境因素、雷电活动规律、系统设备的重要性、发生雷灾后果的严重程度,分别采取相应的防护措施。

1、在进行综合防雷设计时,应坚持全面规划、综合治理、优化设计、多重保护、技术先进、经济合理、定期检测、随机维护的原则,进行综合设计及维护。

2、高速公路综合防雷系统的防雷设计应采用直击雷防护、等电位连接、屏蔽、合理布线、其用接地系统和安装电涌保护装置等措施进行综合防护。必须坚持预防为主,安全第一的指导方针。

3、高速公路综合防雷系统应根据所在地区雷暴等级、设备放置在雷电防护区的位置不同,采用不同的防护标准。为确保防雷设计的科学性、先进性,高速公路建设工程在设计前宜做高速公路沿线现场雷电环境评估。

五、高速公路建筑物直击雷防护措施

1、监控中心大楼一般设置在高速公路的出入端或控制管理区域的中心位置。由于周围地形比较空旷,楼层一般都在六层以上,高度超过20m且楼顶还安装有各类通信天线、有的还架设有铁塔,这些都是直击雷的重要目标。由于楼内有大量实时运行的电子、微电子设备,又是整个机场的指挥高度中心,根据GB50057-94《建筑物防雷设计规范》的规定,可定为二类防雷建筑。按滚球法(滚球法半径45m)设计避雷针。设计方法请参照《建筑物防雷设计规范》附录四的要求,决定避雷针的数目、布局、高度,在设计时应考虑避雷针抗当地30年最大风的抗风强度,并留有一定余量。

2、为了减少避雷针的维护,防止酸雨对避雷针的腐蚀,应在监控中心大楼楼顶安装不锈钢避雷针,其高度和数量根据滚球法计算其保护范围能覆盖整幢中心大楼的天面和各类天线,使其能有效防止直接雷击以保护大楼的楼顶和各类通信天线的安全。

3、在公路沿线安装监控摄像头的云台杆顶、收费站广场云台杆顶以及LED指示牌顶各安装一套不锈钢避雷针,以保护云台摄像头等设备免遭直击雷危害。

4、在高速公路收费站钢架屋顶上和大型室外电子显示屏顶端左右对称各安装一套不锈钢避雷针,以保护收费站钢架屋顶和电子显示屏框架结构免遭直击雷危害。

5、避雷针的引下线最好利用钢结构柱做泄流线,条件不允许时,也可以单独用25mm2以上的铜绞线穿镀锌钢管屏蔽,并做绝缘处理,从避雷针尖直接以最短路径入地,以减少泄流时的雷击电磁脉冲辐射而损坏微电子设备和室外大型电子显示屏编码控制系统。

六、雷击电磁脉冲(LEMP)的防护措施

雷击电磁脉冲(LEMP)所产生的感应电动势通过侵入通道叠加在线路信号上产生瞬间高电压,击毁各类用电设备和微电子芯片,因此在实施防雷工程时必须将感应雷击作为重点,进行有效的防御。在设计综合防雷时,应从以上通道进行重点防护,同时做好等电位连接和共用接地系统。

1、电源系统的防雷措施

在监控中心大楼的总配电盘上安装一套雷电通流容量Iimp≥25kA(波形10/350μs);响应时间Ta≤50ns的三相电涌保护器SPD1,型号为:REP-XEL385B25,作为一级保护。

在楼层分盘上安装一套雷电通流量Imax≥40kA(波形8/20μs);响应时间Ta≤25ns的三相电涌保护器SPD2,型号为:REP-D380M2,作为二级保护。

在UPS电源前安装一套雷电通流容量Imax≥20kA(波形8/20μs);响应时间Ta≤50ns的单相电涌保护器SPD3,型号为:REP-D216,作为三级保护。 在UPS电源后或设备前安装一套雷电通流容量Imax≥10kA(波形8/20μs);响应时间Ta≤50ns的单相电涌保护器SPD4,型号为:REP-D220CK,作为四级精细保护。

在强雷区应设SPD1-SPD4。四级防护;在多雷区和高雷区可选择SPD

1、SPD2和SPD3三级作为电源系统防护选择标准;在少雷区可选择SPD1和SPD3二级作为电源系统防护选择标准。

SPD连接导线应短而直,SPD连接导线不宜大于0.5m,当长度大于0.5m时应适当加粗线径。当SPD1~SPD2的线距小于10m、SPD2~SPD3的线距小于5m、SPD3 ~SPD4的线距小于5m时,应在两SPD间加装退耦装置。为防止SPD老化造成短路,要求SPD安装线路上应有过流保护装置,应选用有劣化显示功能的SPD(如下图)

在收费亭内的供电线路上各安装一套雷电通流量Imax≥20kA(波形8/20μs);响应时间Ta≤25ns的单相电涌保护器SPD,型号为:REP-D116,保护各亭收费计算机、票据打印机、收费指示板、指示灯、自动拦杆、车道控制器、语音提示系统、对讲机等电源线路安全。

广场摄像头头部低压直流供电线路两端各安装一只通流容量In≥5kA(波形8/20μs);响应时间Ta≤25ns的低压电涌保护器SPD,以保护低压直流供电线路安全,型号为:GVD-220VAC。

在公路沿线的云台摄像头供电线路配电盘输出端各安装一套雷电通流量Imax≤40kA(波形8/20μs);响应时间Ta≤25ns的单相电涌保护器SPD1,型号为:REP-D220M2,作为一级保护。在直流整流供电设备前安装一套雷电通流量Imax≥20kA(波形8/20μs);响应时间Ta≤25ns的单相电涌保护器SPD2,型号为:REP-D220CK,作为二级保护。在摄像头直流供电线路上安装一只通流容量Imax≥5kA(波形8/20μs);响应时间Ta≤25ns的低压电涌保护器SPD3以保护摄像头供电线路安全,型号为:GVD-220VAC。

在进、出高速公路两端和中间的大型电子显示屏电源线路配电盘上各安装一套雷电通流量Imax≤40kA(波形8/20μs);响应时间Ta≤25ns的单相电涌保护器SPD1,型号为:REP-D220M2,作为一级保护;在稳压整流器设备前安装一套雷电通流量Imax≥20kA(波形8/20μs);响应时间Ta≤25ns的单相电涌保护器SPD2,型号为:REP-D220M3,作为二级保护;在未级设备供电处安装防雷插座,通流容量Imax≥15kA(波形8/20μs);响应时间Ta≤25ns的单相电涌保护器SPD3,型号为:REP-D220CK,作为三级电源保护。

2、视频信号传输线路的防护措施

(1)在广场摄像头到控制中心和收费亭车道的监控摄像头到控制中心的视频传输电缆两端应安装视频信号SPD各一只,型号为:REP-CCTV,以保护摄像头。

(2)在公路沿线云台的摄像头上各安装一只视频信号电涌保护器,型号为:REP-CCTV,以保护摄像头。

(3)在收费电脑视频卡视频输入、输出BNC端口安装视频信号SPD各1个,型号为:REP-CCTV,保护收费电脑。

3、收费系统信号线的防护措施

(1)在监控中心机房计算机网络服务器至网络交换机(HUB)间安装一只计算机网络信号SPD,型号为:REP-X06-RJ45E100,以保护服务器。

(2)在监控中心机房网络交换机至收费亭的微机间的数据线两端各安装一只计算机网络信号SPD,型号为:REP-X06-RJ45E100,以保护网络交换机和收费亭微机网络端口。

(3)在电子显示屏的光、电端机编码器之后至控制器两端各安装一只数据线SPD,型号为:REP-X04-ZX,以保护光、电端机、编码器和控制器。

(4)收费亭与监控中心有线对讲系统两端各安装音频信号避雷器1个,通流容量5KA(波形8/20μs),型号为:REP-X04-AU。

(5)宜在程控电话和紧急电话传输线两端安装程控电话电涌保护器,其标称导通电压为Un≤1.5Uc ;雷电通流量Ia≥5kA(波形8/20μs);响应时间Ta≤50ns 的程控电话SPD,型号为:REP-X02-ZX。

七、屏蔽措施

1、屏蔽是减少电磁干扰的基本措施,宜采取以下措施:外部屏蔽措施、线路敷设于合适的路径、线路屏蔽,这些措施宜联合使用。

为改善电磁环境,所有与建筑物组合在一起的大尺寸金属部件都应等电位连接在一起,并与接地装置相连。屋顶为金属表面、立面金属表面、混凝土内钢筋和金属门窗框架,都必须进行等电位连接后接地。

在需要保护的空间内,当采用屏蔽电缆时其屏蔽层至少在两端并宜在雷电防护区交界处做等电位连接。当微电子设备系统要求只在一端做等电位连接时,可将屏蔽电缆穿金属管引入,金属管在一端做等电位连接。

建筑物之间的连接电缆应敷设在金属管道内,这些金属管道从一端到另一端应全线电气贯通,并连到各建筑物的等电位连接带上。电缆屏蔽层也应连到这些带上。

2、实践中建筑物或房间的大空间屏蔽是由金属支撑物、金属框架或钢筋混凝土的钢筋这些自然构件组成的。这些构件构成一个格栅形大空间屏蔽。穿入这类屏蔽的导电金属物应就近与其做等电位连接后接地。

3、监控系统设备机房位置应选择在LPZ最高级区和避免设在建筑物的顶三层内;当建筑物天面部分的避雷网格尺寸不符合系统抗干扰的要求时,应在天面加装屏蔽层。使用非屏蔽电缆,入户前应穿金属管并埋入地中水平距离10m以上。如受条件限制无法穿金属管埋地入户,则应加长入户屏蔽管或栈桥长度,金属管或栈桥的两端以及在雷电防护区交界处要做等电位连接和接地。

4、监控系统设备为金属外壳时,应用最短的导线将其与等电位连接带连接。如是非金属外壳,当设备所在建筑物屏蔽未达到设备的电磁兼容性要求时,应加装金属网或其它屏蔽体对设备屏蔽,金属网应与等电位连接带进行等电位连接。

5、计算机、通信、监控机房的设备应与建筑物外墙保护1m左右距离。以防止大楼遭到直击雷时沿外墙泄流入地的引下线周围产生较强的电磁场而损坏微电子设备。

八、等电位连接与共用接地

1、等电位连接是现代防雷技术重要的防护措施之一。将进入监控中心大楼的各类管线的屏蔽层、机架等在进入大楼前进行等电位连接后接地。在进入设备前再进行二次等电位连接后接地。将广场摄像头输出的同轴电缆的外层和其它管线外层在进入大楼前进行等电位连接后接地。

2、将分开的外导电装置用等电位连接导体连接后接地,以减少系统设备所在的建筑物金属构件与设备之间或设备与设备之间因雷击产生的电位差。利用钢筋混凝土结构的建筑物内所有金属构件的多重连接建立一个三维的连接网络是实现等电位连接的最佳选择。为方便等电位连接施工,应在一些合适的地方预埋等电位连接预留件。

进入系统所在建筑物的各类水管、采暖和空调管道等金属管道的金属外层在进入建筑物处应做等电位连接,燃气管道入户后应在法兰盘连接处插入一块绝缘两端用开关型SPD连接后户内金属管道可参加等电位连接,并与建筑物组合在一起的大尺寸金属件连接在一起,按GB50054的要求做总等电位连接之后,接向总等电位连接带,并可靠连通接地。

3、在建筑物入口处,即LPZ0B与LPZ1区交界进行总等电位连接后接地,在后续的雷电防护区交界处按总等电位连接的方法进行局部等电位连接,连接主休应包含系统设备本身(含外露可导电部分)、PE线、机柜、机架、电气和电子设备的外壳、直流工作地、防静电接地、金属屏蔽线缆外层、管道、屏蔽槽、电涌保护器SPD的接地等均应以最短的距离就近与这个等电位连接带直接连接。连接基本方法应采用网型(M)结构或星型(S)结构。网型结构的环行等电位连接带应每隔5m经建筑物墙内钢筋、金属立面与接地系统连接。当采用S型等电位连接网络时,系统的所有金属组件除在接地基准点,即ERP处连接外,均应与共用接地系统的各组件有足够的绝缘(大于10KV, 1.2/50μs)。

4、宜利用建筑物的基础钢筋地网作为共用接地系统。如建筑物没有基础钢筋地网,宜在建筑物四周埋设人工垂直接地体和水平环型接地体。接地体的接地电阻不宜大于4Ω。原则上应在各雷电防护区界面处做等电位连接,但由于工艺要求或其它原因,被保护设备的安装位置不会正好设在界面可能发生的电涌电压时,电涌保护器安装在被保护设备处,而线路的金属保护层或屏蔽层宜首先在界面处做一次等电位连接接地。

5、埋于土壤中的人工垂直接地体宜采用角钢、钢管或圆钢;埋于土壤中的人工水平接地体宜采用扁钢或圆钢。圆钢直径不应小于10mm扁钢截面不应小100mm²,其厚度不应小于4mm;角钢不应小于40 X 40 X 4mm;钢管壁厚不应小于3.5mm。人工垂直接地体的长度宜为2.5m。人工垂直接地体间的距离及人工水平接地体间的距离宜为5m,当受条件限制时可适当减小。人工接地体在土壤中的埋设深度不应小于0.5m,在冻土区人工接地体应埋设在冻土层以下。接地体应远离由于砖窑、烟道等高温影响土壤电阻率升高的地方。

6、在高土壤电阻率地区,降低接地装置接地电阻宜采用下列方法: A、采用多支线外引接地装置,外引长度不应大于60m; B、为了有效降低接地电阻,可适当使用降阻剂; C、换土法。

7、在监控中心大楼周围应做一环型闭合接地电阻小于4Ω的复式混合地网,浇灌长效降阻剂,以保证地阻常年稳定。此地网主要用于监控中心大楼和收费亭的安全保护接地。并与大楼并网作为共用接地系统。该地网引出极应用40 X 4mm镀锌扁钢制作,用截面积大于50 mm²和BR铜线从引出极引出至各收费亭供接地专用。一根以最短路径引入主机房接地母排上供机房接地专用。

在公路沿线云台杆下面各做一个小于4Ω的联合地网,每个地网做两个引出极,极间距宜大于5m,一根引出极作为防直击雷接地,一根引出极作设备安全接地用。每根地线穿1.5英寸镀锌钢管屏蔽后,引到云台杆顶和设备间供两种接地用。各分散的地网通过电源系统的安全保护地连通全线达到等电位连接的目的。

十、运行维护

(1)避雷器安装之后,应检查所有接线是否正确安装,然后运行测试,看系统和设备是否正常工作,有无异常情况,如有,应及时检查,直至整个系统均正常运作。

(2)每年雷雨季节前应对接地系统进行检查和维护。主要检查连接处是否紧固、接触是否良好、接地引下线有无锈蚀、接地体附近地面有无异常,必要时应挖开地面抽查地下蔽部分锈蚀情况,如果发现问题应及时处理。

(3)接地网的接地电阻宜每年进行一次测量。

(4)每年雷雨季节前应对运行中的避雷器进行一次检测,雷雨季节中要加强外观巡视,如检测发现异常应及时处理。

十一、竣工验收

(1)防雷工程施工单位须按设计要求精心施工,工程建设管理部门应有专人负责监督。对于隐蔽工程应实行随工验收,重要部位应进行拍照和专用设备项记录。

(2)设计资料和施工记录应由相应的防雷主管部门妥善存档备查。 十

二、销售服务及质量保证

(1)由本公司销售的产品和施工的工程均由保险公司承担产品质量和工程责任保险。

(2)工程中所使用的防雷器件,从工程验收合格之日起一年内免费保修,超过保修期两年内维修只收取工本费,终身负责维修。

(3)根据用户需求,免费提供防雷知识或防雷技术讲座;

(4)保修期内,若防雷系统出现故障,公司技术人员在接到通知后的24小时内赶到现场。

第五篇:移动通讯基站防雷接地技术分析

【摘要】现代化移动通信基站是一个快速发展的行业,防雷接地对基站有重要作用。本文根据移动通讯基站防雷接地的重要性,介绍了移动通信基站系统防雷设计和几点综合防雷措施。

【关键词】移动通信基站防雷接地雷电感应

引言:21世纪是一个网络信息化时代,尤其近几年移动通信网络覆盖范围不断扩大,已经深入影响到现代化信息建设,通讯基站承担着大量的通信传输任务。由于移动通信频段采用甚高频和特高频段,其电波为直线传播,要求基站建立在位置较高的地方,且基站大部分设备组成为微电子设备,电磁兼容性低,抗雷击、干扰能力弱,增加了雷击风险性。根据移动通信基站现实行的规范为《通信防雷与接地工程设计规范》要求,基站的接地电阻应小于5Ω,一旦发生雷击,不仅会造成通信设备损毁,还给附近居民的生活各方面带来不便,因此必须重视移动基站防雷接地,掌握防雷接地技术,确保基站长期安全运行。

1.移动通讯基站防雷接地的重要性

1.1基站位置增加雷击风险

当前移动通信技术的发展速度较快,一般架设的BTS天线位于室外高处,带电的云层会在天线上产生感应电荷。若天线与地面之间有直流通路,感应电荷可泄流入大地,不会因为高电位差产生放电。在干燥条件下砂土与天线的摩擦之间产生静电,通过接地可以减少雷击破坏,因此防雷是BTS设备安装设计中的一个重要问题。

1.2雷电通过架空管线进入

移动通信基站的架空管线是引起雷击的重要途径,雷云放电产生在空间内形成强大电场,架空的管线靠近终端时,电场中突出的物体易出现感应电荷的集中,从而增强了电场周围的强度,架空管线易在尖端发生放电被雷电击中,雷击的同时还可能烧坏基站的通讯设备。

1.3雷电电磁感应

接闪器在接闪过程中受强大雷电流影响,在接闪器周围和引下线周围产生较大瞬间电磁场,强磁场的作用下,处于磁场内的导体产生过高电压,易造成通信设备的损坏。

2.移动通信基站系统防雷设计

2.1移动通信基站组成系统和基本防雷接地要求

基站系统一般由GSM无线蜂窝基础设施,BSS通过无线接口与移动台直接连接,主要负责无线路径上发送、接收和管理的设备。规范的GSM结构和BSS系统包括基站收发台(BTS)和基站控制器(BSC)。基站收发台包括无线发射和接收设备、天线及无线接口特有的信号处理部门。任何一部分组成都包含有大量弱电子电路设备,抗雷击能力较低。

防雷接地系统是由大地、接地电极、接地引入线、地线汇流排及接地配线五个部分组成。其中大地具有大容电量;接地极用于泄流;接地引线用在接地电极和室内地线汇流之间起连接作用;地线汇流排为汇集接地配线所用的母线铜排;接地配线是连接设备到地线汇流排的导线,每一个组成都对应各自防护功能。整个接地系统的要求包括各种接地电阻(土壤电阻、地电极自身电阻等),不同设施对电阻的要求不同,要对其正确规划,规范参数。另外是联合接地要求,联合接地需要建立电源、工作地等公共地线连成电气一体化的公共防雷地网。在基站中,防雷接地采用泄流接地;工作接地为直流电源接地;保护接地为室内设备机壳接地。

2.2移动通信基站地网防雷设计

移动通信基站地网设计的目的是为了降低雷电流路径上的接地电阻,确保阻值在最低范围内,接地电阻计算公式:。式中,R为接地电阻(Ω),C为接地体电容(F),p为大地电阻率(Ω.m),εt为大地的相对介电系数,ε为εt大地的介电系数(F/m)。接地网的电阻和接地网面积有关,可根据接地网和冲击半径的具体情况设计发挥接地作用。任何接地网的面积在工频时都可以看成等位面,若多根接地体在地中构成网状接地体,在冲击电流作用下,土壤电阻率和介电系数一定的情况下,接地网的冲击等效半径是一个常数,且比接地网面积等值半径小;工频时接地电阻和接地网面积的平方根为反比,接地体被得到充分利用。接地网的电位受接地体电感作用影响出现不均匀,离开雷电流引入点越远其接地体电位越低,只有雷电流引入点附近的一块接地网起到分流作用,且分流大小与所处面积成正比。

对移动通信地网优化设计时,需要根据基站所处的位置和环境,控制接地网大小在400m?内,可提高雷击冲击等值半径利用率。若大地电阻率低于500Ω.m时,地网可小于400m?。通过外引水平接地体,可增强地网利用率;另外在冲击等值半径处打入一圈垂直接地体,可起到集中接地散泄雷电流作用。

引外接地法可有效保护一定通信基站的设备和人身安全,利用岩石间多缝隙,外引山下电阻率较低的土壤不仅节约投资,还可有效降低接地电阻。但要注意引外接地最大长度问题,避免影响接地效果。工频时分布在接地体上的电位较均匀,使接地体得到充分利用,但在雷电流作用下,增大了冲击电阻,接地引线越长,冲击电阻越大,且引线的电感作用,阻碍了雷电流引外接地体后半部分的泄放,增强了电阻。在对通讯基站进行引外接地优化设计时可利用公式正确估算引外接地线长度。当雷电流波头时间为3?s时,引外接地引线长度;当雷电流波头时间为6?s时,。

3.移动通信基站综合防雷措施

3.1铁塔防雷与接地

移动通讯基站的铁塔应有完善的放直击雷及二次感应雷装置,可在铁塔顶部天线平台处、塔身中和塔基处设预留接地孔,若该两处接地点间距从大于60m时,可在网点间增设1个接地点,有利于分流。铁塔为落地塔时,铁塔地网与机房地网间每隔3~5m互旱接通,铁塔四脚与就近地网焊接。天线铁塔设有避雷针与铁塔焊接,确保避雷针良好接地,天线处于避雷针防护范围内。对于使用交流电的航空标志灯,其电源线可采用有金属外壳保护的电缆,并在机房入口处外侧就近接地。

3.2天馈线系统防雷与接地

基站馈线屏蔽层应在塔顶、馈线离开机身至机房转弯处上方0.5~1.0m处以及进入机房入口内侧3点妥善接地。若馈线及其他同轴电缆长度大于60m时,可在中间增加接地点,室内走线每隔5~10m接地一次。同轴馈线引入机房后,应与通信设备连接处安装馈线避雷器,防止自天馈线引入的感应雷。室内安装避雷器应紧靠馈线进建筑物的入口处。

3.3供电系统防雷与接地

按照电力电缆埋设要求,低压电力电缆进入基站机房埋地长度为15m,高压电力电缆埋地长度不小于200m;高压电力电缆架空时,对直击雷发生率高的山区,采用每隔3~5杆做简易地网接地。

参考文献

[1] 张雪中浅谈移动通信基站的防雷与接地

[2] 李大伟对移动通信基站中通信防雷分析

[3] 吕业华移动通信基站防雷接地关键点探讨技术与市场 2011-06

[4] 艾喜臣边登程周子富移动通信基站防雷规范要点浅析

第一作者简介:李宁春,(1965.6),男,汉族,陕西岐山人,大专学历,通信助理工程师,从事气象通信等工作。

上一篇:同学联欢会主持词下一篇:他为什么不关心我