基于PLC的污水处理系统设计市场调研报告

2024-05-07

基于PLC的污水处理系统设计市场调研报告(精选6篇)

篇1:基于PLC的污水处理系统设计市场调研报告

基于PLC的污水处理系统设计市场调研报告

严晓峰

(江苏大学京江学院 电气工程及其自动化 江苏.镇江)

摘要:本文介绍了近年来全国污水排放情况、国内外污水处理方面的相关技术及其发展,重点关注了采用西门子S7-300的污水处理控制系统。针对我国目前污水处理自动化控制系统自动化程度较低的现状,本文对基于西门子S7-300PLC 的污水自动处理控制系统进行了设计研究,简要给出了自动控制系统的体系结构,对于进一步提高污水处理自动化程度具有很好的借鉴意义。

关键字:污水处理 PLC控制 自动控制系统

0 引言

水是生命之源、生产之要、生态之基。新中国成立以来特别是改革开放以来,水资源开发、利用、配置、节约、保护和管理工作取得显著成绩,为经济社会发展、人民安居乐业作出了突出贡献。但必须清醒地看到,人多水少、水资源时空分布不均是我国的基本国情和水情,水资源短缺、水污染严重、水生态恶化等问题十分突出,已成为制约经济社会可持续发展的主要瓶颈。地球上的水

地球上水的总储量为13.86亿立方公里,我们通常说的水资源主要是陆地上的淡水资源,淡水只占0。9%;而其中人类比较容易利用的淡水资源约占全球淡水总储量的0。3%(全球总储水量的7/100000),其中大部分以冰雪的形态在南、北极储存。而对人类生活最密切的湖泊,河流和浅层地下的淡水仅占淡水总储量的0。02%。污水排放情况

2008年全国废水排放量约为572亿吨,排放达标率约为72%,其中工业废水排放达标率为92%,城镇生活污水排放达标率约为57%。

2009环境统计公报,共589.2亿吨,其中工业234.4亿吨。

2010年,全国废水排放总量617.3亿吨,比上年增加4.7%。工业废水排放量237.5亿吨,比上年增加1.3%;工业废水排放量占废水排放总量的38.5%,比上年有所降低。生活污水排放量379.8亿吨,比上年增加7.0%;生活污水排放量占废水排放总量的61.5%,高于上年。

自2001年以来,废水排放总量呈持续上升趋势。其中,生活污水排放量始终呈增长趋势,而工业废水排放量近年来总体上稳中有降。

表1全国废水及其主要污染物排放量年际对比

项目 废水排放量(亿吨)化学需氧量排放量(万吨)氨氮排放量(万吨)

年度 合计 工业 生活 合计 工业 生活 合计 工业 生活 2001 433.0 202.7 230.3 1404.8 607.5 797.3 125.2 41.3 83.9 2002 439.5 207.2 232.3 1366.9 584.0 782.9 128.8 42.1 86.7 2003 460.0 212.4 247.6 1333.6 511.9 821.7 129.7 40.4 89.3 2004 482.4 221.1 261.3 1339.2 509.7 829.5 133.0 42.2 90.8 2005 524.5 243.1 281.4 1414.2 554.7 859.4 149.8 52.5 97.3 2006 536.8 240.2 296.6 1428.2 542.3 885.9 141.3 42.5 98.8 2007 556.8 246.6 310.2 1381.8 511.0 870.8 132.4 34.1 98.3 2008 571.7 241.7 330.0 1320.7 457.6 863.1 127.0 29.7 97.3 2009 589.7 234.5 355.2 1277.5 439.7 837.8 122.6 27.3 95.32010 617.3 237.5 379.8 1238.1 434.8 803.3 120.3 27.3 93.0 增长率(%)

4.7 1.3 6.9-3.1-1.1-4.1-1.9 0-2.43 污水处理技术

现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。

一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。

二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。

三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂率法,活性炭吸附法,离子交换法和电渗分析法等。

整个过程为通过粗格删的原污水经过污水提升泵提升后,经过格删或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。

目前国内大中型城市污水处理厂经常采用的污水处理工艺有传统活性污泥法、A2/O、SBR、氧化沟等。生物处理(活性污泥法)中采用的处理工艺有:氧化塘法:Carrousel.交替式.Orbal.Phostrip法.Phoredox法.SBR法、AB法、生物

流化床法、ICEAS法、DAT-IAT法、CASS(CAST,CASP)法、UNITANK法、MSBR法、A/O法、A2/O、A3/O、UCT法、VIP法、UASB法、一体化生化法、集成生化加过滤法、增加流动载体法、深井曝气法、生物滤池法、生物转盘法、塔式生物滤池的生物膜法等等的城市污水一级、二级、深度处理法。其余相关污水处理工艺有:循环间歇曝气污水处理工艺、旋转接触氧化污水处理工艺、连续循环曝气系统工艺。

污水处理设备有许多,但最主要的有以下几种: 1.离心机 2.污泥脱水机 3.曝气机 4.微滤机 5.气浮机等。

国外发展情况:

国外一些发达国家,如美国、日本、西欧等国,由于这些国家经济发达,并较早的实现了工业现代化。环境问题特别是水资源污染的严重性也较早的体现出来,对污水的处理更先进一些,同时也得到了这些国家政府的重视,投入了大量的人力、物力进行油田污水处理的研究。这些国家在研究水处理新理论和工艺的同时,也重视污水处理自控系统的研究。先后投资研究高效型、智能型、集约型污水处理设备和自动化控制仪表。一些发达国家经过几十年的努力,污水处理率已经达到80%~90%,成功地解决了来自于工业的点源污染问题。同时一些国家开始重视污水的回用,如以色列的污水回用率达到了90%。

由于控制技术、网络通信技术以及现场总线技术的飞速发展,国外的污水厂很早就实现了网络控制,如DCS、FCS系统。同时国外较早的SCADA技术引入到了给排水工程当中,并取得了良好的经济效益与社会效益。国外同时注重水处理中PLC的开发,相继研制出了一些智能、稳定、小巧的控制单元,如AB公司的SLC系列、Siemens的S7系列、Schneider的TSX Quantum系列。同时国外也很重视在线仪表的研制,如德国E+H公司,美国的哈希公司相继研制了溶解氧DO(Dissolved Oxygen)、化学需氧量COD(Chemical Oxygen Demand)分析仪。国外污水处理自控系统主要存在以下特点:

(1)采用集散控制系统DCS和现场控制系统FCS。按照厂区的自身情况和工艺段来划分若干个控制站,站与站之间可以平级关系也可以是上下级关系,站与站之间一般独立运行。设立中控室,中控室友操作员站和工程师站,负责全厂的数据管理与记录、报表等工作。

(2)大量采用在线监测的水质分析仪表对全厂的水质进行实时监测,并有上位机记录下来,提高了测量精度。

(3)生产过程中不同程度上采用了智能控制,可以根据水质和水源的变化自动的调整相应的控制方式。

(4)大量采用遥测、遥控设备,并开始有效地利用社会信息资源,如电话网络、移动电话网络、国际互联网、气象信息等。

国内发展情况:

随着工业的发展,各项先进、成熟的污水处理技术逐渐引进、应用于现场生产。主要污水处理设备及配套没备基本实现了国产化,并逐步形成了系列化、规模化,如用于不同条件下的过滤设备、气浮选、压力除油、液—液旋流除油等除油处理设备、药剂投加设备等。水处理的自动化程度有了提高。过滤处理、污泥脱水、气浮装置、加药装置等实现了PLC集成面板自动控制;流量、液位、以及

悬浮周体含量等水质指标也实现了实时在线监测。水处理更加重视工艺和化学的有机结合。水处理剂的品种增多、效能提高。水化学的研究手段增强、水平提高。特别是针对污水达标外排处理的要求。开展了水微生物学的研究,发展应用了生化处理技术,特别是开展生化处理以后,水微生物学的研究从无到有逐步发展,开始建立用于污水、污泥处理的菌种库,适应了达标外排处理的需要。污水自动化处理控制系统总体设计

现代化的污水处理系统需要实现管理与控制一体化、实现办公自动化。控制系统不仅与下层控制设备有良好的接口, 而且具有与上层管理系统集成的接口, 同时具有可扩展性。所以现代化污水处理系统要求在底层采用现场总线或者工业以太网等技术, 上层则选用优秀的监控组态软件。为了加强系统的可靠性, 使整个系统长时间无故障地运行, 需要采用冗余和容错技术。根据全集成自动化(To tally In tegrated Automation)的思想, 将污水厂控制系统分为管理级、控制级、现场级。

4.1 管理级—中央控制室

管理级是系统的核心部分, 完成对污水处理过程各部分的管理和控制, 并实现厂级的办公自动化。管理级提供人机接口, 是整个控制系统与控制部分信息交换的界面。管理级的各台计算机具有相互通信功能, 实现数据交换和共享。考虑到管理层功能结构的层次性和可分割性, 采用客户/服务器的体系结构。服务器选用大型的网络关系数据库,满足开放、分布式数据库管理方法的要求。由服务器、管理部门计算机等站点的计算机组成计算机办公局域网。中央监控计算机及车间级现场控制站组成厂区工业控制网, 完成对各车间范围内的生产过程、仪表、设备的监控与控制;系统采用研华公司生产的两台工业计算机(操作员站及工程师站)互为备用, 它们之间的通信协议是TCP / IP。

4.2 控制级—现场控制站

控制级是实现系统功能的关键, 也是管理级与现场级之间的枢纽层, 其主要功能是接收管理层的参数或命令, 对污水处理生产过程进行控制, 同时将现场状态送到管理层。控制器是整个系统的核心, 选用西门子S7-300作为控制器, 该控制器配置一个TCP / IP通信模块接口, 并通过I/O 模块连接,与现场设备和传感器通信。

共设两个分布控制站,各站实现功能如下:

1)PLC1站

(1)对粗格栅的监控,对细格栅的监控;(2)对提升泵(含变频器)控制,进水井闸阀状态的读取;(3)对污泥泵的监控,污泥流量的监测,积算;(4)对脱水机的监控,压榨机的调节控制。

2)PLC2 站

(1)曝气池内氧含量的读取;(2)鼓风机的起停控制,设置溶解氧定值用于鼓风机的自动调节;(3)鼓风机的温度、压力信号的读取及对鼓风机的过热保护;(4)回风阀及冷凝水电磁阀的状态读取;(5)对刮稀泥机的监控。

4.3 现场级—现场控制箱及仪表

现场级是实现系统功能的基础。现场级主要由一次仪表、控制设备组成。其功能主要是完成其范围内的生产过程、仪表、设备的监视与监测并把监测到的数据上传;接收控制级的指令对执行机构进行控制。基于西门子PLC的污水自动处理控制系统的设计与实现

污水处理厂自动控制方式有三种:就地手动控制、远程手动控制、远程自动控制,其控制级别按此顺序由高到低排列。远程控制又包括手动控制和自动控制。当现场控制站上的状态选择开关打到“远程”档时,远程控制起作用。在上位机的监控画面上设置“远程手动”、“远程自动”按钮。当设备处于“远程手动”时,操作人员可通过中央监控室的监控画面对现场设备进行启停、开关控制。远程手动控制一般用于测试单个设备的工作是否正常、测试通信网络的畅通与否、并辅助“自动控制”在自动控制出现故障时及时调节设备运行。当设备处于“远程自动”时,整个系统无需工作人员的参与,设备的运行完全由各现场控制站的PLC根据污水处理厂的实际工况及生产要求进行控制。我们控制的最终目的就是在保证生产质量即出水水质达标的前提下,实现不需要人为干预的远程自动控制。结语

污水已成为制约经济可持续发展的主要原因之一。污水处理的自动化监控系统的研究可以为污水处理工艺的开发研制和创新提供理论基础,也可以为污水处理厂的技术改造提供科学的方法。

[参考文献]

[1]刘欣凯.国内外城市污水处理现状及展望[J].防灾博览.2005.[2]徐孝斌.广西博世科环保科技股份有限公司.广西南宁530007.[3]姚传峰.山东交通职业学院机械系.山东潍坊 261206.[4]陈忠平.西门子S7—300/400系列PLC自学手册.人民邮电出版社.[5]金兆丰.污水处理组合工艺及工程实例.化学工业出版社.

篇2:基于PLC的污水处理系统设计市场调研报告

电气工程及自动化

基于PLC的电机故障诊断系统设计

一、综述本课题国内外研究动态,说明选题的依据和意义

电机在工农业生产中应用广泛,为各种工农业设备提供原动力,是电气控制系统中的重要环节,给人们的生活带来了极大的便利。电机故障诊断是一种了解和掌握机器在运行过程的状态,确定其整体或局部正常或异常,早起发现故障及其原因,并能预报故障发展趋势的技术。

电机故障一旦发生,对工作人员的生命财产将会造成很大的损失和严重的后果,在一些特殊的行业甚至会对国家的经济、军事、政治等造成严重后果。同时由于电机是应用于多行业的复杂系统,尽管在设计、研制阶段已经考虑了诸多因数、采取了有力措施,但由于设计、研制、加工工艺水平等因数等客观条件的影响,甚至还要工作在无人值守、恶劣环境下,难免会发生电机故障。因此如何提高电机工作的可靠性和安全性已经成为诸多行业关注的热点问题。电机故障诊断系统正是适应这一需求而发展起来的。

PLC,可编程逻辑控制器,作为一种数学运算操作的电子系统,专为在工业环境应用而设计的。它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,技术与算术操作等面向用户的指令,并通过数字或模仿式输入/输出控制各类型的机械或生产过称。

基于PLC的电机故障诊断系统应运而生。PLC是现在应用最多最广泛的一种控制装置,利用PLC丰富的内部资源和强大的功能指令,编制故障检测报警程序,不仅可以替代继电器实现相应功能,还可以提高工作的可靠性和系统的灵活性。PLC以被应用到机械制造、冶金、矿业、轻工等各个领域,大大推进了机电一体化的进程,被人们称为现在工业控制三大支柱之一。

PLC作为一种控制器,具有成熟稳定可靠的性能,到目前为止其已经在工业控制中得到广泛的应用。PLC系统的设计直接影响着工业控制系统的安全可靠运行。一个完善的PLC系统除了能够正常运行外,满足工业控制的要求,还必须能在系统出现故障时及时进行故障诊断和故障处理。故障自诊断功能是工业控制系统的智能化的一个重要标志,对于工业控制具有较高的意义和实用价值。

现在,已经研发出了性能比PLC更好更优越的DCS

FCS

两种控制系统,并且PLC

控制系统也终将会被先进的控制系统--

FCS

--所取代,但是从现在的情况来看,今后相当长的一段时间内,PLC

控制系统还是会与先进的控制系统

DCS

FCS

共同存在,其原因主要有以下几方面:(1)

企业的发展方向和需求。现在大多数的企业都在朝着自动化、信息化、开放化的方向发展,但这并不等于要将现有PLC控制系统推倒重来。由于现代企业已经投入了大量的人力和财力才形成的PLC

控制系统已经成型,如果要完全推倒重来再建立新的DCS

FCS

控制系统,不仅是重新需要大量资金的投入,还照成原来可利用资源的巨大浪费。(2)

市场需求来决定。由于目前市场的需求,很多软件厂商都在考虑如何将现在已经成型的PLC控制系统以及新建的厂级网络,以及开发控制系统所使用软件,来满足企业实现工厂自动化、信息化,从而可以为企业或工厂提供控制系统与管理网络的集成。(3)PLC的功能和优点来决定。PLC具有可靠性搞、抗干扰能力强、通用性强、灵活性好、功能齐全、编程简单、使用方便、模块化结构、安装简便、调试方便等优点,PLC的功能增强、结构优化,IO

模块趋向智能化和分散化,编程工具和编程语言更具标准化和高级化。(4)

PLC的联网通信能力比较强,正在向高速化、层次化、信息化、可靠化及开放化的方面发展。(5)

现在的PLC

系统与

DCS

技术、现场总线IO技术相结合,结构开放、扩展方便、技术先进、价格低廉。由以上分析可以预见,未来

PLC

正在向着功能化、集成化、智能化、标准化、开放化等多方面方向发展,故

PLC

虽然面临其它先进自动化控制系统的挑战,但与此同时PLC控制系统也在吸收它们的优点,彼此间互相融合,不断创新,在今后可预见的一段时间内PLC控制系统将与其它先进控制系统共同存在,共同发。

电机故障诊断系统建立在基于PLC和上位计算机组成的控制系统上。PLC在故障诊断系统中的功能主要是完成设备故障信号检测、预处理,转化存储并传输给上位计算机。上位计算机由于具有强大的科学计算功能,利用专家知识和专家库,完成从故障特征到故障原因的识别工作。并通过人机界面,给出故障位置,报告和解释故障诊断结果,并为操作员给出相应的排除故障的建议。

国外对电机设备故障诊断技术的研究始于60年代。虽然各国都很重视,但直到7O一8O年代,随着传感器、计算机、光纤等高新技术的发展与应用,设备在线诊断技术才真正得到迅速发展。加拿大、日本、前苏联等国陆续研制了变压器、发电机的局部放电、泄漏电流等在线监测系统,其中少数己发展成为正式产品。

我国对电机设备故障诊断技术的重要性也早己认识,60年代就提出过不少带电试验的方法,但由于操作复杂,测量结果分散性大而未得到推广,直到80年代开始出现电机设备故障在线诊断技术的研究,在近1O多年来得到迅猛发展。除解析模型法外,基于信号处理和专家知识的故障诊断技术占很大成分,其中有相关函数高阶统计量、频谱分析等。然而这些分析方法局限于电机设备稳态运行的故障诊断,对于起动、加速、制动等动态运行条件下实时诊断出电机设备的故障己越来越引起重视。信号处理方法中的热点小波技术,具有良好的时频局部化特征,能准确抓住瞬变信号的特征,因此在动态信号的分析上有着明显的优势。另外,专家知识方法的神经网络具有自学习和能拟合任意连续非线性函数的能力,以及并行处理的能力,使它在处理非线性问题和在线估计方面有很强的优势。

二、课题的主要内容和要求

(1)了解PLC的分类、发展现状和应用前景。

(2)分析电机各种故障产生的原因、现象以及发生故障时采取的措施。

(3)根据电机故障后果严重性将各种故障分为两个等级。

(4)根据电机的故障等级,设计出基于PLC的电机故障诊断系统,包括硬件部分和软件部分。

三、研究步骤、方法及措施:

步骤及方法:

(1)了解PLC应用于电机故障诊断系统的发展状况。

(2)了解PLC的发展、原理并分析PLC的构成。

(3)PLC的选取以及系统框图设计。

(4)电机故障诊断系统的设计。

(5)得出结论。

措施:

图书馆查找相关的书籍、期刊、杂志等,通过上网寻找相关的一些资料,查看当代对该技术的研究成果和最新的动态。然后通过对这些资料的学习和研究进一步的熟悉和理解设计所需的相关知识。在设计过程中及时与指导老师探讨,对不了解的问题及时向老师请教。

四、参考文献

[01]张进秋.可编程控制器原理及应用实例.机械工业出版社[M],2005.[02]李名雨.电机与电器.北京理工大学出版社[M],1998.[03]高和.可编程控制器应用技术与设计实例.人民邮电出版社[M],2004.[04]韩常.PLC编程及应用.机械工业出版社[M],2005.[05]郝鸿安.常用模拟集成电路应用手册[M]

.人民邮电出版社,1991.[06]童诗白.模拟电子技术基础[M]

.高等教育出版社,2001.[07]陆坤,奚大顺.李之权等著,电子设计技术[M]

.电子科学出版社,1997.[08]姜德谭,范茂军等.新编电子电路大全[M]

.计量出版社,1985.[09]曲学基,吴永章等.常用电子电器电路600例[M]

.电子工业出版社,1990.[10]王有春,孙萌等.电子报.成都大学科技出版社[J],1992.[11]周东华,孙优贤.控制系统的故障检测与诊断技术[M]

.清华大学出版社,1994.[12]王卫兵,高俊山.可编程序控制器原理及应用[M]

.机械工业出版社,2002.[13]杨叔子,丁洪.基于知识的诊断推理[M]

.清华大学出版社,1993.[14]虞和济.设备故障诊断技术的现状极其发展[M]

.基础自动化,1996.[15]陈克兴,李川奇.设备状态监测与故障诊断技术[M]

篇3:基于PLC的污水处理系统设计

在经济开发过程中, 我国环境污染越来越严重, 尤其是污水处理问题亟需解决。当前我国水资源正处于紧缺状态, 而且污染严重, 人们意识到了水资源的重要性, 进而增强了对水环境的保护意识。我国中央政府以及地方政府相继出台了诸多有益于解决水污染问题的法律法规, 并加大了资金投入和技术支持的力度, 以此来防治水污染问题, 我国水污染自动化处理水平正在不断提高。本文设计了一种基于PLC控制的污水处理系统。PLC控制系统一般采用的是PID控制方法, 随着科技的发展, 模糊控制法也被逐渐应用于控制系统中。

2 基于PLC的污水处理系统的工艺设计要求

基于PLC的污水处理系统会设计一个启动按钮, 启动按钮被按下之后, 污水通过进水阀进入到污水处理系统内部。粗格栅除污机会对污水进行初次过滤, 然后将其送入到初级过滤池进行处理, 最终实现污水的初级过滤。然后抽水水泵将初级过滤池中的污水送入下一个处理管道, 由细格栅除污机对送进来的污水进行二次过滤, 过滤之后将污水送入到次级过滤池当中, 经过污水的二次过滤可以将污水与污水中杂物进行分离。之后将处理后的污水送入到集水池当中, 此时由开始工作的搅拌电机对污水进行搅拌, 将污水搅拌均匀之后, 酸碱度检测设备对集水池中的污水进行p H值检测, 酸碱度检测设备会将检测结果通过通讯工具实时传送给酸碱控制设备。酸碱控制设备会根据检测结果来控制酸泵酸液和碱泵碱液的加入情况, 以此来确保污水p H值达到要求标准。污水经过p H值调控之后, 被送入SBR池中, 使其经过无氧、曝气、沉淀等一系列处理过程。在设计之初, 要为SBR池预先设定一个液位标准, 在水泵的作用下, 集水池的污水进入到SBR池中。当SBR池的污水液面达到预设的液位时, 停止向SBR池供应污水的操作。经过搅拌电机和鼓风机的作用, 污水的溶解氧增多, 为好氧微生物提供了生存环境, 进而污水中的有机物质在好氧微生物的作用下得到分解。经过分解之后, 为污水提供一个温度、湿度等外界条件适宜的环境, 以便于为污水中的厌氧微生物营造一个良好的生存环境, 使厌氧微生物能够更好地分解污水中的有机物。在这一污水处理过程中所产生的污泥在重力作用下沉降到SBR池的底部, 通过相关操作可以将污水的上清液与杂质污泥分离开来, 这一操作是由滗水器、排泥电机共同完成的。先通过滗水器引出污水的沉淀, 之后由排泥电机将池底残存的污泥清理干净。经过以上处理后的污水还要进行活性炭的吸附处理, 此时的污水只残存了一些有毒物质、不易被分解的有机物和一些无机物等, 基本上达到了污水排放的要求标准。在以上一系列操作之后, 系统会将进水阀自动打开, 进入新一轮的污水处理工序当中, 循环控制污水的处理过程。

3 基于PLC的污水处理系统的硬件设计

3.1 系统污水过滤过程的设计

启动按钮按下之后, 粗格栅除污机的进水阀打开, 经过一个污水处理周期之后, 该除污机的进水阀可以自动启动, 开启新一轮的除污操作。粗格栅除污机会在以下情况自动停止污水处理工作:按下了停止按钮, 或者是初级过滤池等储水池的液位达到了最高液位设定值。

为初级过滤池设定进水时间, 时间到达后细格栅除污机会自动启动进入工作状态, 此外, 细格栅除污机在初、次级过滤池分别到达最高、最低限位时也会自动启动进入工作状态, 其方式和原理与粗格栅除污机类似。皮带传送机在粗格栅除污机开始工作后立即进入工作状态。污水处理系统包含3台水泵, 它们主要负责将前一级设备中的污水传输到下一级设备当中。

3.2 污水系统SBR池、集水池的设计

集水池设计的重点是其控制部分, 由系统自动控制酸碱液的排放阀门, 以此来调控污水的p H值达到设定标准。污水在SBR池首先要进行曝气处理, 再由第三个水泵将集水池中的污水运输到SBR池当中。污水到达设定的液位后, 第二个搅拌电机和鼓风机开始工作, 之后为SBR池提供温度、湿度条件适宜的环境, 使污水在无氧条件下保持一段时间, 时间的控制由时间继电器负责。

3.3 污水处理系统的总控设计和报警设计

液位报警装置是基于PLC污水处理系统的重要组成部分, 系统中要有完善的液位报警装置。液位报警装置会在液位处于最低或是最高限位时发出报警信号, 装置的指示灯以闪烁形式报警。在发出报警信号后, 系统会自动采取相应的调控措施, 对液位进行高度调整, 将其控制在设定范围内。基于PLC的污水处理系统中还设计了一个总控按钮, 按下总控按钮之后, 系统所有设备处于工作停止状态。系统的输入由L1-L15表示, 中间继电器由M0.0-M1.7表示, 系统输出由Q0.0-Q2.3表示, 接地端由M表示。

摘要:本文设计了一种基于PLC控制的污水处理系统。PLC具有通用性良好、可靠性较高、编程控制快捷便利、安装较为简单等优点, 被应用于多种领域。污水处理系统在设计过程中主要用到了触摸屏监控系统、PLC控制系统等技术, 并与自然科学、生物工程等学科知识相结合。基于PLC污水处理系统的设计能够大大提高我国的污水处理能力, 有效促进污水的循环再生利用。

关键词:PLC,污水处理,系统,设计

参考文献

[1]李凤新.基于PLC的污水脱盐处理自动控制系统的设计与实现[D].电子科技大学, 2013.

篇4:基于PLC的污水处理系统设计市场调研报告

作者简介:徐龙艳(1983—),男,湖北巴东人,实验师,研究方向:汽车装备自动化。

通讯联系人,E-mail:longtian1119@163.com

文章编号:1003-6199(2014)03-0052-03

摘 要:本课题是基于西门子PLC的污水处理厂监控系统的设计。根据污水处理厂的特点,本控制系统采用目前国内外普遍应用的基于PLC的二级分布式集散控制系统。控制系统由设在综合房的中央控制室控制站和分布在现场3个PLC控制站组成,现场控制站由3套西门子PLC组成,通过PROFIBUS总线相互通信。本次设计主要完成对现场流程进行控制以及实现对整个系统的远程监控,通过现场PLC对各种电气设备的进行控制,通过变频器对提升泵的变频控制,利用wincc组态网实现对整个污水处理流程的监控。

关键词:PLC;PROFIBUS;监控;以太网

中图分类号:TP29 文献标识码:A

Design and Implementation the Control System

of Sewage Treatment Plant Based on PLC

XU Long-yan,ZHAI Ya-hong

(School of Electrical & Information Engineering,Hubei University of Automotive Technology,Shiyan,Hubei 442002, China)

Abstract:This topic is based on Siemens PLC's sewage treatment plant monitoring system design. According to the characteristics of sewage treatment plant, the control system uses the current domestic and universal application of two distributed based on PLC distributed control system. Control system consists of integrated housing in the central control room control station and distributed at the site 3 PLC control station, site controller composed by three sets of Siemens PLC, communicate with each other via PROFIBUS. The design process was completed for the on-site control and the realization of the entire system for remote monitoring through a variety of on-site PLC electrical equipment to be controlled through the drive to enhance the pump frequency control, use wincc configuration of the entire sewage network process flow monitoring.

Key words:PLC;PROFIBUS;monitor;ethernet

1 前 言

花果污水处理厂新建的3万吨/日城镇一级污水处理厂及实现2万吨/日中水回用及配套管网建设工程,建立该系统。该控制系统基于集中管理、分散控制的思想,全厂控制系统由中央控制室和现场控制站组成,现场控制站由3套西门子PLC站,通过PROFIBUS总线相互通信。PLC站与中控室采用环形光纤以太网通讯方式。上位机采用WINCC软件来进行监测。

2 系统分析

本系统利用PROFIBUS总线将PLC与现场总线模块相联接,由成套设备上的自控装置和检测仪表等组成信号采集系统,将采集到的现场信息传到PLC中,完成PLC对现场信息的读取。通过与自控装置中设定信息的比较,发出相应的控制指令,从而实现相应的控制目的。通过工业以太网将各个plc站的信息送回总控室,由总控室进行监控。

2.1 系统结构分析

本监控系统监控的部分主要包括粗格栅机、污水泵、细格栅、STCC生化池、污泥浓缩脱水机、紫外消毒渠等。污水处理从集水井开始,集水井对污水进行提升,使污水能够借重力依次流过后续处理筑物,以保证污水处理厂的正常运转。进入集水井的污水会先流经粗格栅,去除污水中的较大漂浮物,并拦截直径大于20mm的杂物,以保证潜水泵的正常运行。从粗格栅出来的污水再流进细格栅,进一步去除污水中较大的漂浮物,如丝状、带状漂浮物,以保护后续处理构筑物的正常运行。然后流经旋流沉砂池,去除污水中≥0.2 mm的无机砂粒,保护后续管道及水处理设备,并减少污泥中的砂粒。经沉砂池流出后再经配水井,向STCC净化池均匀配水,均衡的发挥各组STCC净化系统运行能力,保证其经济有效的运行。流入STCC净化池的污水,通过净化池完成有机物、悬浮物及氮磷等污染物的去除,主要由厌氧池、缺氧池、生化池、反应池、斜管沉淀池、微曝气滤池、接触过滤池等7段组合而成。经净化池净化后污水流入紫外线消毒渠及巴氏计量槽,杀灭水中的细菌、病毒及其他微生物,以保证最终出水中粪大肠菌群数达标(≤103个/L),然后排出厂外[1,2]。另外还设有鼓风机房及配电间,为生物反应池提供氧气,提供排泥空气及反冲洗时的空气,保证生物系统正常运行。除此之外还有对污泥进行处理的污泥浓缩脱水机房,该部分主要由加药部分和污泥浓缩及脱水部分组成,加药部分为污水处理厂STCC池斜管沉淀段提供药剂,当出水不能稳定达标时,向反应池中投加絮凝剂;污泥浓缩及脱水部分将污泥通过浓缩脱水机进一步脱水,降低含水率,以减少污泥体积,便于污泥储存、运输及综合利用。整个工艺流程图如图1所示。 2.2 系统控制主要内容及要求

本监控系统通过现场PLC站的PLC采集相关信号数据,经由现场总线PROFIBUS传输,通过工业以太网连接,将采集到的信号送到中央控制室处理,然后由中央控制室发出相应的控制信号,控制系统的正常运行。系统要求粗格栅机定时开停机,运行时间间隔及运行时间可调。污水泵3台潜水泵的变频运行,在全自控状态,根据泵房液位高低和各自累计工作时间多少决定自动开停顺序。细格栅机根据设定的时间运行,时间间隔及运行时

间可调。排沙设备控制桨叶分离连续运行,由plc控制电磁阀定时开关吸砂,砂水分离器与电动开关阀同步运行。STCC生化池分为四格,每格设溶解氧分析仪一台,检测DO值,与设定值比较,调节可调电动阀,控制曝气量。4台回流泵变频运行,控制到目标回流。鼓风机连续运行,PLC通过检测总出风管压力调节风机频率,达到恒压输出,风机房轴流风机与鼓风机联动。污泥浓缩脱水机为一体化机组,中控室通过通讯读取设备状态。污泥脱水间设备主要采用联动控制方式,污泥脱水机组联动控制的设备包括浓缩压滤机、空压机、进泥泵、加药泵、冲洗泵和絮凝制备系统。变配电间plc通过RS-485通信采集变配电间高压进线柜智能仪表电量参数。紫外消毒渠及出厂水质检测自带控制系统,中控室只监不控。根据需要控制消毒设备的开停,根据出水水量控制灯管启动数量[3,4]。

3 系统设计

本课题是基于西门子PLC的监控系统,通过3个PLC实现现场控制并采集相应的信号,通过现场总线和工业以太网将采集的信号送回中央控制室,由中央控制室进行监控。

PLC1为西门子S7-200系列224 PLC,完成粗格栅间、集水井等工艺参数和设备状态的采集并发送至控制中心。在远程状态下接受控制中心对各工艺设备的控制命令。

PLC2主要是完成风机房、细格栅涡流沉砂池等工艺参数和设备状态的采集并发送至控制中心。PLC3的主要工作是完成STCC净化池、污泥处理间、紫外消毒渠、出水计量等工艺参数和设备状态的采集并发送至控制中心,并在远程状态下接受控制中心对各工艺设备的控制命令。均选择西门子200系列CPU226的PLC。

EM235是西门子PLC中最常用到的模拟量扩展模块,它拥有4个模拟量输入和1个模拟量输出功能。此次设计主要用到的模拟量输入有温度、流量、频率、压力等。设计中所选用的温度传感器、流量传感器、压力传感器都可以输出标准模拟信号(4-20mA、1-5V、0-20mA、1-10V),因此传感器输出信号可以直接与EM235模块相连接。

通过EM277 PROFIBUS-DP扩展从站模块,可将 S7-200CPU 连接到 PROFIBUS-DP 网络。EM 277 经过串行 I/O 总线连接到S7-200 CPU 。作为DP从站,EM 277 模块接受从主站来的多种不同的I/O配置,向主站发送和接收不同数量的数据。EM 277 能读写 S7-200 CPU中定义的变量数据块。这样,使用户能与主站交换任何类型的数据。首先将数据移到 S7-200 CPU中的变量存储器,就可将输入、计数值、定时器值或其它计算值传送到主站。类似地,从主站来的数据存储在S7-200 CPU中的变量存储器内,并可移到其它数据区。 EM 277 PROFIBUS-DP 模块的DP端口可连接到网络上的一个DP 主站上,但仍能作为一个MPI 从站与同一网络上如SIMATIC 编程器或S7-300/S7-400 CPU 等其它主站进行通信。

系统中污水提升泵(PLC1)和鼓风机(PLC2)中用到变频控制。变频器采用西门子的MM400系列。

在过滤阶段如果需要反冲洗滤池则需要进入手动反冲洗过程,等待反冲洗过程的四步完成后,继续进入自动的工作流程。工作过程,如图2所示。4 结 论

在设计过程中,充分考虑到系统的安全可靠。从硬件和程序方面设计了多重保护,使系统能够长时间安全稳定运行。整个监控系统实现了远程的监视和控制,根据各部分返回的参数变化,在终端对整个流程进行控制。通过生产检验,该系统运行安全可靠设计符合要求。

参考文献

[1] 《污水综合排放标准》GB8978-96[S].

[2] 《城市污水处理厂污水、污泥排放标准》CJ3025-93[S].

[3] 高超,韩丹.污水处理厂电气设计若干问题探讨[J].黑龙江科技信息,2009(23):52-56.

[4] 蒋兴加. 现场总线变配电系统在智能建筑中的应用设计[J]. 低压电器,2007,(10):43-47.

本监控系统通过现场PLC站的PLC采集相关信号数据,经由现场总线PROFIBUS传输,通过工业以太网连接,将采集到的信号送到中央控制室处理,然后由中央控制室发出相应的控制信号,控制系统的正常运行。系统要求粗格栅机定时开停机,运行时间间隔及运行时间可调。污水泵3台潜水泵的变频运行,在全自控状态,根据泵房液位高低和各自累计工作时间多少决定自动开停顺序。细格栅机根据设定的时间运行,时间间隔及运行时

间可调。排沙设备控制桨叶分离连续运行,由plc控制电磁阀定时开关吸砂,砂水分离器与电动开关阀同步运行。STCC生化池分为四格,每格设溶解氧分析仪一台,检测DO值,与设定值比较,调节可调电动阀,控制曝气量。4台回流泵变频运行,控制到目标回流。鼓风机连续运行,PLC通过检测总出风管压力调节风机频率,达到恒压输出,风机房轴流风机与鼓风机联动。污泥浓缩脱水机为一体化机组,中控室通过通讯读取设备状态。污泥脱水间设备主要采用联动控制方式,污泥脱水机组联动控制的设备包括浓缩压滤机、空压机、进泥泵、加药泵、冲洗泵和絮凝制备系统。变配电间plc通过RS-485通信采集变配电间高压进线柜智能仪表电量参数。紫外消毒渠及出厂水质检测自带控制系统,中控室只监不控。根据需要控制消毒设备的开停,根据出水水量控制灯管启动数量[3,4]。

3 系统设计

本课题是基于西门子PLC的监控系统,通过3个PLC实现现场控制并采集相应的信号,通过现场总线和工业以太网将采集的信号送回中央控制室,由中央控制室进行监控。

PLC1为西门子S7-200系列224 PLC,完成粗格栅间、集水井等工艺参数和设备状态的采集并发送至控制中心。在远程状态下接受控制中心对各工艺设备的控制命令。

PLC2主要是完成风机房、细格栅涡流沉砂池等工艺参数和设备状态的采集并发送至控制中心。PLC3的主要工作是完成STCC净化池、污泥处理间、紫外消毒渠、出水计量等工艺参数和设备状态的采集并发送至控制中心,并在远程状态下接受控制中心对各工艺设备的控制命令。均选择西门子200系列CPU226的PLC。

EM235是西门子PLC中最常用到的模拟量扩展模块,它拥有4个模拟量输入和1个模拟量输出功能。此次设计主要用到的模拟量输入有温度、流量、频率、压力等。设计中所选用的温度传感器、流量传感器、压力传感器都可以输出标准模拟信号(4-20mA、1-5V、0-20mA、1-10V),因此传感器输出信号可以直接与EM235模块相连接。

通过EM277 PROFIBUS-DP扩展从站模块,可将 S7-200CPU 连接到 PROFIBUS-DP 网络。EM 277 经过串行 I/O 总线连接到S7-200 CPU 。作为DP从站,EM 277 模块接受从主站来的多种不同的I/O配置,向主站发送和接收不同数量的数据。EM 277 能读写 S7-200 CPU中定义的变量数据块。这样,使用户能与主站交换任何类型的数据。首先将数据移到 S7-200 CPU中的变量存储器,就可将输入、计数值、定时器值或其它计算值传送到主站。类似地,从主站来的数据存储在S7-200 CPU中的变量存储器内,并可移到其它数据区。 EM 277 PROFIBUS-DP 模块的DP端口可连接到网络上的一个DP 主站上,但仍能作为一个MPI 从站与同一网络上如SIMATIC 编程器或S7-300/S7-400 CPU 等其它主站进行通信。

系统中污水提升泵(PLC1)和鼓风机(PLC2)中用到变频控制。变频器采用西门子的MM400系列。

在过滤阶段如果需要反冲洗滤池则需要进入手动反冲洗过程,等待反冲洗过程的四步完成后,继续进入自动的工作流程。工作过程,如图2所示。4 结 论

在设计过程中,充分考虑到系统的安全可靠。从硬件和程序方面设计了多重保护,使系统能够长时间安全稳定运行。整个监控系统实现了远程的监视和控制,根据各部分返回的参数变化,在终端对整个流程进行控制。通过生产检验,该系统运行安全可靠设计符合要求。

参考文献

[1] 《污水综合排放标准》GB8978-96[S].

[2] 《城市污水处理厂污水、污泥排放标准》CJ3025-93[S].

[3] 高超,韩丹.污水处理厂电气设计若干问题探讨[J].黑龙江科技信息,2009(23):52-56.

[4] 蒋兴加. 现场总线变配电系统在智能建筑中的应用设计[J]. 低压电器,2007,(10):43-47.

本监控系统通过现场PLC站的PLC采集相关信号数据,经由现场总线PROFIBUS传输,通过工业以太网连接,将采集到的信号送到中央控制室处理,然后由中央控制室发出相应的控制信号,控制系统的正常运行。系统要求粗格栅机定时开停机,运行时间间隔及运行时间可调。污水泵3台潜水泵的变频运行,在全自控状态,根据泵房液位高低和各自累计工作时间多少决定自动开停顺序。细格栅机根据设定的时间运行,时间间隔及运行时

间可调。排沙设备控制桨叶分离连续运行,由plc控制电磁阀定时开关吸砂,砂水分离器与电动开关阀同步运行。STCC生化池分为四格,每格设溶解氧分析仪一台,检测DO值,与设定值比较,调节可调电动阀,控制曝气量。4台回流泵变频运行,控制到目标回流。鼓风机连续运行,PLC通过检测总出风管压力调节风机频率,达到恒压输出,风机房轴流风机与鼓风机联动。污泥浓缩脱水机为一体化机组,中控室通过通讯读取设备状态。污泥脱水间设备主要采用联动控制方式,污泥脱水机组联动控制的设备包括浓缩压滤机、空压机、进泥泵、加药泵、冲洗泵和絮凝制备系统。变配电间plc通过RS-485通信采集变配电间高压进线柜智能仪表电量参数。紫外消毒渠及出厂水质检测自带控制系统,中控室只监不控。根据需要控制消毒设备的开停,根据出水水量控制灯管启动数量[3,4]。

3 系统设计

本课题是基于西门子PLC的监控系统,通过3个PLC实现现场控制并采集相应的信号,通过现场总线和工业以太网将采集的信号送回中央控制室,由中央控制室进行监控。

PLC1为西门子S7-200系列224 PLC,完成粗格栅间、集水井等工艺参数和设备状态的采集并发送至控制中心。在远程状态下接受控制中心对各工艺设备的控制命令。

PLC2主要是完成风机房、细格栅涡流沉砂池等工艺参数和设备状态的采集并发送至控制中心。PLC3的主要工作是完成STCC净化池、污泥处理间、紫外消毒渠、出水计量等工艺参数和设备状态的采集并发送至控制中心,并在远程状态下接受控制中心对各工艺设备的控制命令。均选择西门子200系列CPU226的PLC。

EM235是西门子PLC中最常用到的模拟量扩展模块,它拥有4个模拟量输入和1个模拟量输出功能。此次设计主要用到的模拟量输入有温度、流量、频率、压力等。设计中所选用的温度传感器、流量传感器、压力传感器都可以输出标准模拟信号(4-20mA、1-5V、0-20mA、1-10V),因此传感器输出信号可以直接与EM235模块相连接。

通过EM277 PROFIBUS-DP扩展从站模块,可将 S7-200CPU 连接到 PROFIBUS-DP 网络。EM 277 经过串行 I/O 总线连接到S7-200 CPU 。作为DP从站,EM 277 模块接受从主站来的多种不同的I/O配置,向主站发送和接收不同数量的数据。EM 277 能读写 S7-200 CPU中定义的变量数据块。这样,使用户能与主站交换任何类型的数据。首先将数据移到 S7-200 CPU中的变量存储器,就可将输入、计数值、定时器值或其它计算值传送到主站。类似地,从主站来的数据存储在S7-200 CPU中的变量存储器内,并可移到其它数据区。 EM 277 PROFIBUS-DP 模块的DP端口可连接到网络上的一个DP 主站上,但仍能作为一个MPI 从站与同一网络上如SIMATIC 编程器或S7-300/S7-400 CPU 等其它主站进行通信。

系统中污水提升泵(PLC1)和鼓风机(PLC2)中用到变频控制。变频器采用西门子的MM400系列。

在过滤阶段如果需要反冲洗滤池则需要进入手动反冲洗过程,等待反冲洗过程的四步完成后,继续进入自动的工作流程。工作过程,如图2所示。4 结 论

在设计过程中,充分考虑到系统的安全可靠。从硬件和程序方面设计了多重保护,使系统能够长时间安全稳定运行。整个监控系统实现了远程的监视和控制,根据各部分返回的参数变化,在终端对整个流程进行控制。通过生产检验,该系统运行安全可靠设计符合要求。

参考文献

[1] 《污水综合排放标准》GB8978-96[S].

[2] 《城市污水处理厂污水、污泥排放标准》CJ3025-93[S].

[3] 高超,韩丹.污水处理厂电气设计若干问题探讨[J].黑龙江科技信息,2009(23):52-56.

篇5:基于PLC的污水处理系统设计市场调研报告

电气工程及自动化

基于PLC的变频恒压供水系统设计

一、综述本课题国内外研究动态,说明选题的依据和意义

水是人类生活、生产中不可缺少的重要物质,在政府及社会倡导节水节能现实条件下,我们这个水资源和电能都及其短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水、小区供水等方面技术一直比较落后,自动化程度低,但是随着社会经济的飞速发展,住房制度改革的不断深入,城市建设规模的不断扩大,人口的增多和人们生活水平的不断提高,对城市供水的数量、质量、经济、稳定、可靠性提出了越来越高的要求,也直接体现了城市小区物业管理水平的高低。

传统的小区供水方式有:恒速泵加压供水、水塔高位水箱供水、气压罐供水、液力藕合器和电池滑差离合器调速的供水方式、单片机变频调速供水系统等方式。传统的小区供水方式普遍不同程度的存在浪费水力、电力资源;效率低;可靠性差;自动化程度不高等缺点,严重影响了居民的用水和工业系统中的用水。寻求供水与能耗之间的最佳性价比,是困扰企业的一个长期问题。目前各供水厂的供水机泵设计按最大扬程与最大流量这一最不利条件设计,水泵大多数时间在设计效率以下运行。导致电动机与水泵之间常常出现大马拉小车问题。因此,如何解决供水与能耗之间的不平衡,寻求提高供水效率的整体解决方案,是各个供水解水企业关心的焦点问题之一。随着人们对供水质量和供水系统可靠性要求的不断提高,需要利用先进的自动化技术、控制技术以及通讯技术,要求设计出高性能、高节能、能适应供水厂的复杂环境的恒压供水系统成为必然趋势。

随着科学的发展,变频器的使用也越来越广泛,不管是工业上还是家用电器上都会用到变频器。可以说,只要有三相异步电动机的地方,就有变频器的存在。也随着变频技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统以其环保、节能和高品质的供水质量等特点,广泛应用于多层住宅小区及高层建筑的生活、消防供水中。变频恒压供水的调速系统可以实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压的恒定来满足用水要求,是当今最先进、合理的节能型供水系统。

变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。在早期,由于国外生产的变频器的功能主要限定在频率控制、升降速控制、正反转控制、起制动控制、压频比控制及各种保护功能上。应用在变频恒压供水系统中,变频器仅作为执行机构。为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制。从查阅大量的资料的情况来看,国外的恒压供水工程在设计时都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,因而投资成本较高。随着变频技术的发展和变频恒压供水系统的稳定性、可靠性以及自动化程度高等方面的优点以及显著的节能效果被大家发现和认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水功能的变频器。

目前国内有不少公司在做变频恒压供水的工程,大多采用国外的变频器控制水泵的转速,水管管网压力的闭环调节及多台水泵的循环控制,有的采用可编程控制器(PLC)及相应的软件予以实现,有的采用单片机及相应的软件予以实现。但在系统的动态性能、稳定性能、抗干扰性能以及开放性等多方面的综合技术指标来说,远远没能达到所有用户的要求。

在实际应用中如何充分利用专用变频器内置的各种功能,对合理设计变频恒压供水设备、降低成本、保证产品质量等有着重要意义。变频恒压供水方式与过去的水塔或高位水箱以及气压供水方式相比,不论是设备的投资,运行的经济性,还是系统的稳定性、可靠性、自动化程度等方面都具有无法比拟的优势,而且具有显著的节能效果。目前变频恒压供水系统正朝着高可靠性、多品种系列化、全数字化微机控制的方向发展。追求高度智能化、标准化、系统化是未来供水设备适应城镇建设中成片开发、网络供水调度和整体规划要求的必然趋势。

变频恒压供水系统能适用于生活水、工业用水以及消防用水等多种场合的供水要求,该系统具有如下几个特点:

(1)供水系统的控制对象是用户管网的水压,是过程控制量,同其他一些过程控制量(如:温度、浓度、流量等)一样,对控制作用的响应具有滞后性。

(2)用户管网中因为有管阻等因素的影响,同时又由于水泵自身的一些特有的特性,使水泵转速的变化与管网压力的变化成正比,因此变频调速恒压供水系统是一个线性系统。

(3)变频调速恒压供水系统要具有广泛的通用性,面向各种各样的供水系统,而不同的供水系统管网结构、用水量和扬程等方面存在着较大的差异性,因此其控制对象的模型具有很强的多变性以及不确定性。

(4)在变频调速恒压供水系统中,由于有定量泵的加入,而定量泵的控制是时时发生的,同时定量泵的运行状态直接影响供水系统的模型参数,使其不确定性地发生变化。所以认为变频调速恒压供水系统的控制对象是时时变化的。

(5)用变频器进行调速,用调节泵和固定泵的组合进行恒压供水,节能效果十分显著,对每台水泵进行软启动,启动电流可从零到电机额定电流,减少了启动电流对电网的冲击同时减少了启动惯性对设备的大惯量的转速冲击,延长了设备的使用寿命。

(6)当出现意外的情况(如突然停水、断电、泵、变频器或软启动器故障等)时,系统能根据泵及变频器或软启动器的状态,电网状况及水源水位,管网压力等工况点自动进行切换,保证管网内压力恒定。在故障发生时,执行专门的故障程序,保证在紧急情况下的仍能进行供水。

二、研究的基本内容,拟解决的主要问题:

研究的基本内容:

1)

基于PLC的变频恒压供水系统的系统组成以及工作原理。

2)

基于PLC的变频恒压供水系统的PLC程序的设计。

3)

状态循环转换控制的电气设计方案。

4)

上、下位机的通信模块。

拟解决的主要问题:

1、掌握基于PLC的变频恒压供水系统的工作原理。

2、基于PLC的变频恒压供水系统的硬件和软件设计。

3、PID算法在变频调速恒压供水系统中的应用。

4、完成上、下位机的通信设置,通过通信模块实现对供水系统的远程监控和故障报警。

三、研究步骤、方法及措施:

步骤及方法:

(1)了解国内外PLC的变频恒压供水系统的发展动态。

(2)掌握基于PLC的变频恒压供水系统的工作原理。

(3)重点讨论PLC的变频恒压供水系统的硬件和软件设计、PID算法在变频调速恒压供水系统中的应用以及上、下位机的通信设置,通过通信模块实现对供水系统的远程监控和故障报警。

(4)

设计一套由PLC、变频器、远传压力表、多台水泵机组、计算机、通信模块等主要设备构成的全自动变频恒压供水及其远程监控系统。

(5)得出结论。

措施:

图书馆查找相关的书籍、期刊、杂志等,通过上网寻找相关的一些资料,查看当代对该技术的研究成果和最新的动态。然后通过对这些资料的学习和研究进一步的熟悉和理解设计所需的相关知识。在设计过程中及时与指导老师探讨,对不了解的问题及时向老师请教。

四、参考文献

[1]蔡美琴,张为民.MCS-51系列单片机系统及其应用(第二版)[M].高等教育出版社.2009.1.[2]顾绳谷,姚守秋.电机及拖动基础[M].机械工业出版社.2008.8.[3]徐科军,马修水,李晓林.传感器与检测技术(第二版)[M].电子工业出版社.2009.2.[4]夏德钤,翁贻方.自动控制理论(第三版)[M].机械工业出版社.2009.1.[5]邵玉森,戴先中.过程控制工程(第二版)[M].机械工业出版社.2010.1.[6]吴志敏,杨胜峰.西门子PLC与变频器、触摸屏综合应用教程[M].中国电力出版社.2009.7.[7]孙凯.基于PLC的变频恒压供水系统的设计[J].中国制造业信息化.2010.[8]熊幸明.变频调速技术的应用与发展[J].长沙大学学报(自然科学版).2005.[9]任琪.基于PLC变频调速恒压供水控制系统设计[J].信息系统工程.2009.[10]崔玉川,傅涛.我国城市给水发展现状与特点[J].中国给水排水.1999.[11]杨凌云.PID调节器在恒压供水系统中的应用[J].微机算计信息,2001.[12]蒋艺,杨俊生.变频调速器在供水系统中的应用[J].山东冶金.1999.[13]姜学军,刘新国,李晓静等.计算机控制技术(第二版)[M].2009.7.[14]黄金波,郭丽春.可编程控制器在自动给水系统中的应用[J].辽宁工程技术大学学报(自然科学版),2002.[15]云飞.变频调速水泵的能耗分析[J].流体机械,2001.12.[16]Raymond

G,Jacquet.Modern

control

system,1981.[17]Power,Robert

B.Pump

up

your

energy

saving.Chemical

Engineering.New

York.Feb

1994.[18]林俊赞,李雄松,尹元日.PLC在恒压供水控制系统中的应用[J].电机电器技术.1999.[19]Szychta,Leszek.System

for

optimizing

pump

station

control-Part[J].World

篇6:基于PLC的污水处理系统设计市场调研报告

污水处理厂自控系统是整个污水处理工程的重要组成部分,其设计好坏与控制设备选择是否适当,不仅关系着自控系统的性价比的高低而且对以后整个污水处理厂运行维护的难易有着重要影响。笔者以某市污水处理厂这个实际工程为例,对污水处理厂自控系统的设计进行详细阐述。

一、污水处理厂概况

该污水处理厂位于市中区,为日处理能力为5万吨/天的污水处理厂,出水排入黄海,水质达到国家一级排放标准。

本工程采用水解-AICS处理工艺。其具体流程为:污水首先分别经过粗格栅去除粗大杂物,接着污水进入泵房及集水井,经泵提升后流经细格栅和沉砂池,然后进入水解池。水解池出水自流入AICS进行好氧处理,出水达标提升排入黄海。AICS反应器为改进SBR的一种。其工艺流程如下图1所示:

污水处理厂处理工艺流程

二、污水处理厂自控系统设计的原则

从污水处理厂的工艺流程可以看出,该厂的主要工艺AICS反应器是改进SBR的一种,需要周期运行,AICS反应器的进水方向调整、厌氧好氧状态交替、沉淀反应状态轮换都有电动设备支持,大量的电动设备的开关都需要自控系统来完成,因此自控系统对整个周期的正确运行操作至关重要。而且好氧系统作为整个污水处理工艺能量消耗的大户,它的自控系统优化程度越高,整个污水处理工艺的运行费用也会越低,这也说明了自控系统在整个处理工艺中的重要性。

为了保证污水厂生产的稳定和高效,减轻劳动强度,改善操作环境,同时提高污水厂的现代化生产管理水平,在充分考虑本污水处理工艺特性的基础上,将建设现代化污水处理厂的理念融入到自控系统设计当中,本自控系统设计遵循以下原则:先进合理、安全可靠、经济实惠、开放灵活。

三、自控系统的构建

污水处理厂的自控系统是由现场仪表和执行机构、信号采集控制和人机界面(监控)设备三部分组成。自控系统的构建主要是指三部分系统形式和设备的选择。本执行机构主要是根据工艺的要求由工艺专业确定,预留自控系统的接口,仪表的选择将在后面的部分进行描述。信号采集控制部分主要包括基本控制系统的选择以及系统确定后控制设备和必须通讯网络的选择。人机界面主要是指中控室和现场值班室监视设备的选择。

1、基本系统的选择

目前用于污水处理厂自控系统的基本形式主要有三种DCS系统、现场总线系统和基于PC控制的系统。从规模来看三种系统所适用的规模是不同。DCS系统和现场总线系统一般适用于控制点比较多而且厂区规模比较大的系统,基于PC的控制则用于小型而且控制点比较集中的控制系统。

基于PC的控制系统属于高度集成的控制系统,其人机界面和信号采集控制可能都处于同一个机器内,受机器性能和容量的限制,本工程厂区比较大,控制点较多,因此采用基于PC的控制系统是不太合适的。

DCS系统适用于模拟量多,闭环控制多的系统。而现场总线系统的主要优势是适用用于控制点相当较少而且特别分散的系统。从施工和维护的角度来看,传统的DCS系统布线的工作量要远远大于现场总线系统。此外,现场总线系统与DCS系统相比,还有最为重要的一点是开发性好,扩展方便。

本工程的控制点在700点左右,模拟量只占20%左右,属于规模比较小的类型,而且这些控制点是以工艺处理单元为界线分散在厂区各处,因此本工程采用现场总线作为基本控制系统。

2、通讯网络选择

现场总线系统最主要的特点就是依赖网络通讯,分散控制和信号采集,最大程度的减少布线,节省安装和维护费用。现场总线主要是指从现场控制器或 IO模块到监控系统的通讯网络。目前现场总线,根据通讯协议的不同可以分为很多种,比如,Profibus、CAN、ControlNet、DeviceNet FF Lon总线等。目前现场总线技术还没有统一的标准,各自的功能特点基本一致,因此本工程设计时选用在中小型控制系统应用非常广泛的ProfiBus总线。其在性价比较高,且在国内推广的时间长,稳定性较高。

Profibus总线有三种形式DP、PA和FMS。PA总线是与智能仪表结合在一起安全性非常高的一种ProfiBus总线形式,造价比较高,常用于石油化工冶金等行业;FMS总线适用于大范围和复杂的通讯系统,旨在解决通用性通讯任务,传速速度中等;DP总线是用于传感器和执行器级的高速数据传速网络,不需要智能仪表配合,安全性略低于PA总线。本工程是污水处理工程,对通讯安全性的要求并不太高,通信的任务比较简单,对系统的传输速度有一定要求。因此本工程的采用ProfiBUS-DP网络,即用西门子S7系列PLC搭建整个系统。总线采用普通双绞作为传输介质,通讯速率可以达到 12MBP。

3、现场站设备配置的选择

对于Profibus-DP网络来说只是提供了一个从现场到监控层的信息通道,但信号的采集和执行命令的下达仍然需要由控制器和现场的IO模块组成的站来完成。ProfiBus-DP网络是一种主从站的网络结构。整个网络上最多可以有128个从站,但只有一个作为主站,所有的通讯事务都由主站来管理。主站必须要有控制器(CPU),同时也可以安装IO采集模块。从站有两种方式:CPU+IO模块和通讯模块+IO模块。第一种方式每个从站都由 CPU,每个站的控制事务都由本站完成,与主站之间的通讯量比较少。第二种方式是所有的从站都没有CPU,所有的控制事务都由主站CPU来完成,通过总线网络把命令结果传输到从站完成,从站只是远程IO。

前述这两种从站组成方式各有自己的特点。第一种方式,控制比较分散,通讯事务较小,对网络的依赖不强,但每个站都有CPU,造价高。第二种方式,控制集中,控制事务对网络依赖性强,需要可靠的网络来支撑,同时对主站CPU的性能要求高,在软件编程和调试方面具有很大的优势。这两种方式对工程的现场安装布线施工影响比较少。

本工程控制点的规模施工调试工期比较短,选用了性价比比较高的第二种方式作为从站的组成方式即由西门子IM153通讯模块和S7 300系列IO模块组成,主战CPU选用S7 315-2DP系列。

4、人机界面设备的选择

人机界面设备是直接与操作管理人员进行交流的监控视备,一般由两部分组成,即现场监视设备和中控室监视设备。现场监视设备可以是PC机或是触摸屏,中控室监视设备一般由工控机、模拟屏或投影仪等组成。监视设备应在兼顾投资的情况下,保证操作管理人员可以对整个污水处理厂全面直观的监视与控制。

现场监视设备一般在比较重要的单元或控制事务比较大的从站中设置,以便操作人员及时对现场情况进行处理。本工程的从站的规模比较少,厂区大小从操作距离来看并不大,同时现场操作间内均设有有线电话,因此可在不设不设现场监视系统的情况下保证现场与中控室的联络畅通。

中控室监视设备是全厂的指挥和信息处理中心,其作用不言而喻。中控室监视设备比较传统的做法是模拟屏加工控机的方式,这种方式造价比较高且复杂。随着多屏卡功能的不断完善,现场又出现了工控机多屏显示加投影仪的模式。多屏卡的安装使得一台工控机可以同时拖动多台显示器,并显示不同画面,不同的工段可以同时显示,保证了操作人员监视的全面性。投影仪可以把所需要的任何画面进行放大显示,也可以供人参观。第二种方式的造价要远低于传统做法。本工程选用APPinx一拖四的多屏卡和东芝投影仪一台。

5、其它

成套设备的耦合

本工程中鼓风机为高速离心风机,脱水机为2000mm带宽脱水机,均为大型设备。这些大型设备是由许多辅助电动部分与主机共同工作完成鼓风机和脱水机的正常工作。本工程设计要求大型设备都单独配有自己小型的控制器,由供应商根据自己的经验编制相关程序并预留Profibus-DP接口,最终成为整个自控系统的一个从站。这样就其它大型设备自控系统与整个自控系统无缝连接,减少了不同供应商之间任务的交叉重叠。

监控软件的选择

监控软件是人机交流的桥梁和翻译,是保证整个自动控制系统易操作、易维护最重要的部分。应选用成熟、先进并应用广泛的知名监控软件,本项目选用力控PCAUTO组态软件。

自控控制系统与管理层的衔接

自控系统操作与污水处理厂管理层的衔接主要是把自动控制系统收集到的全厂信息可以顺利传输到管理层计算机,管理人员可以在线查看污水处理厂的运行状况并调用相关的运行数据。随着监控软件的供应商对INTERNET技术的不断应用开发,监控软件都可以通过局域网或INTERNET广域网进行信息发布,管理层或授权用户在任何可以上INTERNET网的地方便可浏览运行状况。而所使用MS IE浏览器的安全性问题已经得到解决。

冗余问题

由于本工程为污水处理厂工程,其安全性和可靠性要求并不严格,本设计没有对通讯网络和控制器进行冗余配置,只对上位工控机采用了双机热备配置。笔者认为在资金允许的情况下,应对主控制器进行冗余配置。

四、自控系统的站点划分

根据污水处理工艺的工作原理以空间分别特点,在布线最小、功能完整的情况下对全厂的站点进行了划分,子站为泵房站、水解池站、1号改进SBR 站、2号改进SBR站、脱水机房站和鼓风机房站。泵房子站负责提升泵房、粗格栅、细格栅和沉砂池的数据处理,脱水机房站除负责脱水机房外,集泥池、浓缩池也归在该站内,其余子站负责各自的工艺单元。主站为变电所站,设在变电所内。各站配置控制点数量统计如下表:

工段名称 控点类型及数量

DI DO AI AO

泵房子站 96 16 20 2

水解池子站 64 32 16

1号改进SBR子站 160 64 32

2号改进SBR子站 160 64 32

脱水机房子站 24 8 8

鼓风机房子站 设备配套PLC并提供接口

各站所配置的控制点数量,富余量均大于20%。本工程自控系统的结构如图2所示:

污水处理厂自控拓补图

五、自控系统的仪表选择

仪表系统遵循“工艺必需、计量达标、实用有效、免维护”的原则进行设计,仪表配置如下:

粗格栅渠配置超声波液位差测量仪表1套;

集水池配置超声波液位测量仪表1套;

细格栅进水井:pH及温度测量仪表1套;

细格栅渠配置超声波液位差测量仪表1套;

AICS反应池配置溶解氧测量仪表及悬浮物浓度测量仪表各4套;

AICS反应池进气管路流量测量仪表3套;

鼓风机房配置鼓风机进出风管压力测量仪表6套;

集泥池配置超声波液位测量仪表1套;

脱水机房配置脱水机进泥管路流量测量仪表2套(随污泥脱水设备成套);

絮凝制药装置液位开关2套(随污泥脱水设备成套);

变电所配置各出线回路的电量测量仪表。

尽管上述仪表中部分仪表已经实现的国产化,但是在精度和稳定方面与进口产品还有一定的差距,因此上述仪表中除通用的流量、温度和压力仪表外,其它均采用进口产品。

六、自控系统的功能设计

自动控制系统除了保证污水处理工艺的正常运转外,还有可以提高处理工艺的整体优化水平等,本工程的功能设计主要归纳如下;

1、单体设备控制

对单体设备来说其控制分为三个层次,其优先顺序为现场手动控制、上位手动控制和PLC自动控制,这样现场发现设备故障时可以最快的速度切断故障设备的运行,最大程度地降低设备的损坏程度。在整个系统中,单体设备的损坏时保证系统其它无关联设备的正常运转。

2、节能控制

本工程的节能设计主要包括提升水泵的变频控制和好氧部分溶解氧自动调节控制两部分。

通过变频器与液位计形成闭环控制,保持集水井内液面的稳定,这样可以减少因提升泵的启动对处理系统造成的冲击,保证系统的稳定运行,同时根据水量变化调节水泵频率,降低了运行能耗。

为保持AICS反应器曝气部分溶解氧浓度稳定在2mg/l左右,通过控制鼓风机进口导叶角度来实现鼓风机的流量的调节,达到节能的目的。

此外,液位差控制的格栅的按需运转也是节能设计的一部分。

3、信息处理设计

通过上位监控软件系统直接采集的在线仪表数据,并以数据报表和图形显示,还可根据处理工艺原理自动对所采集的数据进行分析和推导,提炼出对运行操作更有指导意义的数据。如:

污泥负荷、提升水泵运行效率、污泥龄、絮凝剂投加比例、鼓风机运行效率、泵房提升单方水量的电耗、鼓风机每1000m3供风的电耗、单方污水污泥处理的电耗、低压总电量、附属设施耗电量、工艺设施总耗电量、提升电耗、供风电耗以及工艺其它各个工艺构筑物的电耗等等。

七、自控特点:

1、低投资:投资少

本工程除一些精度要求高的在线监测仪表(污泥浓度计、溶解氧仪和液位计)为进口仪表外,其余部分在线仪表实现国产化,节省了一部分投资费用。

另外,从工艺控制角度看,省区了一些不影响工艺运行要求的在线仪表,如ORP计、气体流量计等。不设现场监视设备的也是降低投资的重要原因之一。

在自控系统的总线技术选取上、现场I/O控制设备和上位监控设备的选取上,均采用了性价比较高的产品。如PLC采用西门子S7-300系列等。

本自控系统从以上几点节约了大量的费用。

2、低费用:运行费用低

在占全厂能耗90%的原水提升和鼓风曝气这两个环节上,依托自动控制系统,进水段实现恒液位、变流量控制,由大功率变频装置拖动大流量潜污泵,完全涵盖了500—3000m3/h的流量范围,克服了多台泵切换启停,流量突变对后续工艺的水力冲击,也达到节能的目的,立式潜污泵的提水电耗为 4.75kwh/km3。

占全厂能耗75%以上的鼓风机选用单级高速离心风机,通过控制进口导叶开度调节风量,从而降低能耗,具体的作法是在夜间小水量和过渡工序时自动减小供气量。

3、管理操作简便

本自控工程在上位软件二次开发过程从人性化角度出发,提高自控系统的可操作性,使管理者在任意时间和地点可对工艺系统进行全方面的监控,及时了解到处理系统运行的优劣状态。

八、投资

本工程自控系统的预算费用约占污水处理厂总投资的5%左右。与其它污水处理厂相比,本工程的自控系统投资是中等偏下,性价比较高。

九、结语

该污水处理厂自控系统是根据工艺要求在确定的设计原则下进行设计,既保证污水处理系统的正常运行,又尽可能的降低了工程的造价投资,其设计过程和结果对其它污水处理工程的自控设计具有一定的借鉴意义。

上一篇:动态监控管理办法下一篇:我们需要的不是鸡汤而是有温度的共鸣杂文随笔