斯托克斯定理证明

2024-05-02

斯托克斯定理证明(精选12篇)

篇1:斯托克斯定理证明

无税收条件下的MM定理

1.1 假设条件

假设1:无摩擦市场假设

 不考虑税收;

 公司发行证券无交易成本和交易费用,投资者不必为买卖证券支付任何费用;  无关联交易存在;

 不管举债多少,公司和个人均无破产风险;

 产品市场是有效的:市场参与者是绝对理性和自私的;市场机制是完全且完备的;不存在自然垄断、外部性、信息不对称、公共物品等市场失灵状况;不存在帕累托改善;等等;

 资本市场强有效:即任何人利用企业内部信息都无法套利,没有无风险套利机会;  投资者可以以企业借贷资金利率相同的利率借入或贷出任意数量的资金。

假设2:一致预期假设

 所有的投资者都是绝对理性的,均能得到有关宏观、行业、企业的所有信息,并且对其进行完全理性的前瞻性分析,因此大家对证券价格预期都是相同的,且投资者对组合的预期收益率和风险都按照马克维兹的投资组合理论衡量。

1.2 MM定理第一命题及其推论

MM定理第一命题:

有财务杠杆企业的市场价值和无财务杠杆企业的市场价值相等。

第一命题的含义:

即公司的市场价值(即债权的市场价值+股权的市场价值,不含政府的税收价值)与公司的资本结构无关,而只与其盈利水平有关。这说明未来具有完全相同的盈利能力的公司市场价值相同,但由于其负债程度不同等因素,故它们的净资产可能有很大差异。

MM定理第一命题证明过程:证明方法是无套利均衡分析法。

基础假定:我们假定有两家公司—公司A和公司B,它们的资产性质完全相同但资本结构完全不同。A公司没有负债(这是一种极端假设,但作为比较基准更能说明问题);B公司的负债额度是D,假设该负债具有永久性质,因为可持续盈利的公司总可以用新发行的债券来偿还老债券(这与宏观经济学中的庞兹计划完全不同,那是没有收入来源且信息不对称下导致的终生借债消费计划无效)。

细节假设:

 B公司当前债务利率为r(固定值);  A、B两公司当前的股本分别是SA和SB(固定值);

 A、B两公司当前权益资本预期收益率(即市场的资本化率,也就是其股票的预期收益率)分别是rA和rB(固定数值,因为仅指当前的预期收益率);

 A、B两公司任何年份的息税前利润(EBIT)相同,数额都为EBIT(随机变量,每年的数值都是它的一个数据点);  A、B两公司当前的市场价值分别记为PVA和PVB(固定值);

 A、B两公司当前股票的市场价格与其真实价值完全一致,分别为MPA和MPB(固定值);

 A、B两公司当前的股东权益分别记作SEA和SEB(固定值)。

注:假定中固定值较多是因为静态考察公司当前价值。

考虑一个套利策略:卖出A公司1%的股票;同时买入B公司1%的股票和1%的债券(上述比例可任意假定,但必须均为同一值)。这种套利策略产生的即时现金流和未来每年的现金流见表1。

表1 上述套利策略的现金流

头寸

即时现金流

未来每年现金流

卖出1%A股票

0.01* PVA

-0.01*EBIT

买入1%B股票

-0.01*SB*MPB

0.01*(EBIT-D*r)买入1%B债券

-0.01*D

-0.01* D*r 净现金流

NC

0

首先,任何公司的资产都等于账面的负债加权益,A公司无负债,因此有

PVASEA;PVBDSEB

其次,任何公司的股票价格都等于其股东权益与股本的比值:

MPAPVA/SA;MPB(PVBD)/SB①

再次,市场不应该存在无风险套利机会,故NC=0,也就是

0.01*PVA0.01*SB*MPB0.01*D0 MPB(PVAD)/SB②

由①②推得:PVAPVB③,命题证毕。

MM定理第一命题推论一:

债转股后如果盈利未变,那么企业的股票价格也不变。

证明:假设B公司的债务权益比为k,则:

kD/SEB

1k(SEBD)/SEBPVB/SEBPVA/SEBSA/SB④

将③④代入①得:

MPAPVA/SAPVB/(SB(1k))(DSEB)/(SB(1k))SEB(1k)/(SB(1k))MPB

证毕。

MM定理第一命题推论二:

股东期望收益率会随财务杠杆的上升而上升。

含义:正常情况下B公司在债转股之后会降低其股票的预期收益率,或者说A公司的股票预期收益率小于B公司的股票的预期收益率。

证明:B公司的资产负债率(RDA)和股东权益比率(REA)分别为:

RDABD/PVBD/(DSEB)k/(1k)REABSEB/PVBSEB/(DSE)1/(1k)

由于公司所有税前收益均优先用于分派股息,而且市场有效性保证了股票的价格反映股票价值。则由股票收益现值模型可得A、B两公司的股票预期收益率rA和rB分别满足:

MPAEBIT/SAEBIT jSA*rAj1(1rA)(EBITR*D)/SBEBITR*D j(1rB)SB*rBj1MPB同时EBIT>r*PVB,因为这表示即使公司全部举债经营,公司产生的税息前收益也足够支付利息,也就是说股票的收益率大于债券的收益率,由于系统风险和预期收益相匹配的结果导致这个不等式必然成立。故可推导出:

rBEBITr*DEBITr*DEBITEBITEBITrA,证毕。

SEBPVBDPVBPVASA*MPAMM定理第一命题推论三:

股东每股盈利也会随着财务杠杆的上升而上升。

含义:正常情况下,债券转为股票之后,公司股东的每股盈利也会下降。证明:A、B两公司每股盈利分别为:

EAEBIT(EBITR*D);EB⑤ SASB将④代入⑤的第二式得: EB(EBITR*D)(1k)(EBITR*D)k*EBIT(1k)*R*D⑥ EASBSASA由于EBIT>r*PVB,再将前面RDAB定义式代入,可以推得:

kEBITk*EBIT(1k)*R*D(1k)(EBITR*D)(1k)*D(r)0⑦

1kPVB由⑥⑦得:EBEA,证毕。

注:数学基础非常少的人有可能会觉得上述三个推论感性理解上有相互矛盾的地方,故须深入思考现实过程。

1.3

MM定理第二命题:

公司加权平均资本成本(WACC)与公司的资本结构无关。

证明:由于公司A仅有股权融资,故WACCArA MM定理第二命题及其推论

WACCBrBSEBDEBITEBITrrA①,证毕。PVBPVBPVBPVAMM定理第二命题推论:

有负债的公司的权益资本成本等于同一风险等级的无负债公司的权益资本成本加上风险补偿,风险补偿的比例因子是负债权益比k。

(是不是和CAPM、多因子模型、套利定价和单证券定价模型有点像啊,呵呵)

证明:由①(重新编号)得:

rB2 PVBr*DDrArA(rAr)rAk(rAr),证毕。SEBSEBSEB有税收条件下的MM定理 2.1

假设条件

考虑税收,其他假设与前面相同。有税收条件下的MM定理仅一个定理,有四个推论。

2.2 MM定理第一命题及其推论

MM定理第一命题:

在考虑税收的情况下,有财务杠杆的企业的市场价值等于无财务杠杆的企业的市场价值加上“税盾”的市场价值。

证明:假定A、B两公司的所得税税率都是T(固定税率制,累进税率制等也一样的),那么两公司的税后收益(EAT)分别为:

EATA(1T)*EBIT

EATB(1T)*(EBITr*D)r*D(1T)*EBITT*r*DEATA,证毕。

其中T*r*D即税盾效应,与A公司税后盈利相比,这是B公司多出来的部分,这是由于B公司的财务杠杆起作用了:公司价值是股权市价加债权市价,A公司每年产生的现金流EBIT都要交所得税,而B公司中EBIT仅有一部分交所得税,故省出一部分价值计入到公司的债权价值中。或者也可以理解为没有负债的公司举债时,政府需要把原来征的税的一部分退给公司的债主,或者说举债成本里T*r是政府买单的(机会成本的角度讲),而公司举债的成本仅是(1T)*r,这是从金融的角度或者说机会成本的角度讲的,就如经济利润和会计利润的差别一样,而证券定价的基准正是从金融的角度给出才能准确。

显然A、B两公司的税前价值仍然一样,相当于不考虑税收。我们用带撇号的字母表示考虑税收的变量,则有税收情况下A、B两公司的市场价值分别为:

PVA/PVA(1T)

(1T)r*PVBr*D)DPVA/D(1)PVA/① EBITEBIT(1T)r*PVB)叫做税盾的市场价值。其中D(1EBITPVB/PVB(1T)(1

MM定理第一命题推论一:

在考虑税收情况下,股东的期望收益率仍然会随着财务杠杆的上升而上升。即在考虑税收的情况下,不考虑税收时MM定理的命题一的推论二仍然成立。

证明:考虑税收,A公司股票预期收益率为:

/rAEBIT(1T)EBIT(1T)EBIT(1T)rA② //SA*MPAPVA(1T)PVA由不考虑税收推论二证明的最后一个公式和①(重新编号)得B公司股票的预期收益率为:

rD(EBITrD)(1T)rD(EBITrD)(1T)rD(EBITrD)(1T)rD1TrB///(1T)*rD*PVBrDSB*MPBPVBDPVA(1)PVA/EBITEBITEBITrD//再由②得:rBrArDrDPVA(1T)(1)EBIT③,由于EBIT>rD(盈利足够付利息,保//证不破产),故rB,证毕。rA

MM定理第一命题推论二:

考虑税收情况下,股东的每股收益也仍然会随着财务杠杆的上升而上升,即在考虑税收情况下,不考虑税收MM定理命题一推论三仍然成立。

证明:A、B两公司每股盈利分别为:

/EA(1T)EBIT/(1T)(EBITrD)rD④;EBSASB将第一部分第一命题推论一下面的④代入④得:

/EB(1k)(1T)(EBITrD)rDSA/EATrDk(1T)(EBITrD)rDSA/EA

因EBIT>rD,故上不等式成立,证毕。

MM定理第一命题推论三:

在考虑税收情况下,WACC与公司资本结构有关。(证略)

根据CAPM模型,有税收后的贝塔系数/和无税收情况下的贝塔系数的关系为/(1(1T)D)(证明从略),由此得出股权预期收益,然后再根据公司计算出SEWACC,显然WACC是受资本结构影响的。MM定理第一命题推论四:

在考虑税收情况下,有负债的公司的权益资本成本仍然大于同一风险等级的无负债公司的权益资本成本,风险补偿的形式也更复杂(证明如③)。

注:一个延伸,PV/PV(1(1Tc)(1Ts))D,Tc表示企业所得税率,Ts表示股票收入的税

1Td率,Td表示利息收入的税率,个人可试着证明一下子。

公司税MM定理命题二

在考虑所得税情况下,负债企业的权益资本成本率(KSL)等于同一风险等级中某一无负债企业的权益资本成本率(KSU)加上一定的风险报酬率。风险报酬率根据无负债企业的权益资本成本率和负债企业的债务资本成本率(KD)之差和债务权益比所确定。其公式为:

KSL=KSU*(1-T)+(KSU-KD)*(1-T)*D/SL 式中:D — 有负债企业的负债价值; SL —有负债企业的权益价值。T—公司税率 在命题一的基础上,风险报酬考虑了所得税的影响。因为(1一T)总是小于l,在D/SL比例不变的情况下,这一风险报酬率总小于无税条件下命题二中的风险报酬率。由于节税利益,这时的股东权益资本成本率的上升幅度小,或者说,在赋税条件下,当负债比率增加时,股东面临财务风险所要求增加的风险报酬的程度小于无税条件下风险报酬的增加程度,即在赋税条件下公司允许更大的负债规模。

篇2:斯托克斯定理证明

a/sinA=b/sinB=c/sinC=2R(R为三角形外接圆的半径)

正弦定理(Sine theorem)

(1)已知三角形的两角与一边,解三角形

(2)已知三角形的两边和其中一边所对的角,解三角形

(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。

证明

步骤1

在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点HCH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步骤2.证明a/sinA=b/sinB=c/sinC=2R:

如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度因为在同圆或等圆中同弧所对的圆周角相等,所以∠D等于∠ACB.所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

余弦定理的证明:

在任意△ABC中

做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得:

AC^2=AD^2+DC^2

b^2=(sinB*c)^2+(a-cosB*c)^2

b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2

b^2=c^2+a^2-2ac*cosB

篇3:正弦定理证明六法

正弦定理:在一个三角形中, 各边和它所对角的正弦的比相等, 即:

1 利用三角函数的定义证明

(I) 如图 (1) △ABC是锐角三角形

证:过点A作AD⊥BC于点D

由三角函数的定义, 得:

AD=AC·sin C,

(II) 如图 (2) 已知:△ABC是直角三角形

证:由三角函数的定义可得

(III) 如图 (3) 已知:△ABC是钝角三角形

由 (I) 得, AD=AC·sinC=ABsinB

再过点C作高, 便可得

2 利用投影定理证明

投影定理:任意ΔABC中, a=b cos C+c cos B;b=a cos C+c cos A;c=a cos B+b cos A

(I) 如图 (4) ΔABC为锐角三角形

证:∵点O为ΔABC的外接圆圆心

推得∠OBC=∠OCB

在ΔOBC中, 利用投影定理:

(II) 如图 (5) ΔABC为直角三角形

因此在ΔABC中,

而∠ABC、∠ACB为锐角仿 (I) 可利用投影定理得

(III) 如图 (6) ΔABC为钝角三角形

由 (I) 可得结论

3 利用余弦定理证明

(I) 如图 (4) ΔABC为锐角三角形, 由上一种方法 (1) 式可得

sin∠BAC=sin (90°-∠OBC) =cos∠OBC

在ΔOBC中, 利用余弦定理:

(II) ΔABC为直角三角形∵∠A=90°

(III) 如图 (6) ΔABC为钝角三角形, 由上一种方法 (2) 式可得

sin∠BAC=sin (90°+∠OBC) =cos∠OBC

在ΔOBC中, 利用余弦定理:

而∠ABC、∠AC为锐角, 仿 (Ⅰ) 可得bsinB=2R;

4 利用面积公式证明

由面积公式S△ABC

两边同除以即得:

5 利用向量证明

(I) 如图 (7) ΔABC为斜三角形

过A作单位向量j垂直于

同理, 若过C作j垂直于

(II) ΔABC为直角三角形时不再赘述了

6利用外接圆转化为直角三角形进行证明

(I) 如图 (8) 所示, ΔABC为锐角三角形

(II) 如图 (9) 所示, ΔABC为直角三角形易得

(III) 如图 (10) 所示, ΔABC为钝角三角形

通过对正弦定理的证明方法的探讨, 旨在揭示数学知识之间的联系, 展示数学证明方法的内在美。

参考文献

[1]应洪尧.从正弦定理的证明看新《课标》理念的变化.http://www.longzhong.com.cn/lgzx/lunwen/list.asp?unid=340.

[2]人民教育出版社中学数学室.全日制普通高级中学教科书数学第一册 (下) [M].北京:人民教育出版社, 2003.

篇4:余弦定理证明初探

关键词: 数形结合 双基 创新意识 创新精神

如何发挥高考题的教学功能,把握高三复习备考方向,提高解题教学的功效,是我们一线教师努力的目标。余弦定理的证明曾在以前高考考题中出现过,去年陕西卷再次出现,说明余弦定理的证明不但能考察学生对“双基”知识的掌握能力,更能激发学生对数学中“数形结合”思想方法的重视和挖掘,从而对老师和学生起到抛砖引玉的功效。下面就余弦定理给出不同证明方法。

方法一(向量法)如图,设 ,则 即 ,

方法七(面积法) 如图,以 的三边为边长向外作三个正方形, 三条

高的延长线将三个正方形分成6个矩形。

教学的根本目的在于提高学生探索和解决问题的能力,以不同的知识为切入点,对同一题目从不同角度审视,探求出不同的解决方案,可以开拓思路,沟通知识,权衡优劣,提高学生的解题效率,更能提高学生分析、解决问题的能力,培养创新意识和创新精神,这正是新课改所追求的目的。

参考教材:

(1)北师大版高中数学,《必修4》。

(2)罗增儒,《数学解题学引论》。

篇5:著名定理证明(初中)

(1)试证明海伦公式:S三角形=√p(p-a)(p-b)(p-c),(p=三角形周长的一半)

(2)试证明角平分线定理:如图:若AD平分∠BAC,证明:

AB*CD=AC*BD

(3)证明射影定理:如图:在RT三角形EGF中,HG⊥EF,EG⊥FG

ⅰ:证明:HG²=EH*HF

ⅱ:证明:FG²=HF*EF

ⅲ:证明:EG²=EH*EF

(4)证明:S圆锥=sh/3(s=底面积,h=高)(提示,将圆锥等分为无限个“圆片”)

(5)证明:2π=sin(360/∞)*∞(提示,作圆内接正n边形)

(6)证明:中线定理:

如图,AI是三角形ABC中线,证明:

25、三角形是一个神奇的图形,如三角形有五心(旁心、重心、内心、外心、垂心),在三角形中有许多重要定理,如:勾股定理、余弦定理„„,三角形有许多重要公式,如:海伦公式„„,在三角形中还有许多重要的点,如:费马点、欧拉点„„

但今天,我们来研究一个多点共圆的问题:

首先,要证明多点共圆,只能从四点共圆入手,因此我现在这里提出一个证明四点共圆的方法:

证明:在任意凸四边形中,连接对角线,若同边所对的角相等,则这四点共圆,请以下图为例证明:如图,∠CBD=∠CAD(4分)

(2)如图,在任意等腰三角形中(顶角小于90度),证明:三垂线垂足、及三个欧拉点共圆(欧拉点:三角形三垂线交于一点为垂心,垂心与三顶点的连线的三条线段的中点即为欧拉点)(10分):以下图为例证明:

篇6:正弦定理证明

a/sinA=b/sinB 同理,在△ABC中,b/sinB=c/sinC 步骤2.证明a/sinA=b/sinB=c/sinC=2R:

如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R a/SinA=BC/SinD=BD=2R 类似可证其余两个等式。2.三角形的余弦定理证明:平面几何证法: 在任意△ABC中 做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 3 在△ABC中,AB=c、BC=a、CA=b 则c^2=a^2+b^2-2ab*cosC a^2=b^2+c^2-2bc*cosA b^2=a^2+c^2-2ac*cosB 下面在锐角△中证明第一个等式,在钝角△中证明以此类推。过A作AD⊥BC于D,则BD+CD=a 由勾股定理得:

c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2 所以c^2=(AD)^2-(CD)^2+b^2 =(a-CD)^2-(CD)^2+b^2 =a^2-2a*CD +(CD)^2-(CD)^2+b^2 =a^2+b^2-2a*CD 因为cosC=CD/b 所以CD=b*cosC 所以c^2=a^2+b^2-2ab*cosC 题目中^2表示平方。2 谈正、余弦定理的多种证法 聊城二中 魏清泉

正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合.定理:在△ABC中,AB=c,AC=b,BC=a,则(1)(正弦定理)= =;(2)(余弦定理)c2=a2+b2-2abcos C, b2=a2+c2-2accos B, a2=b2+c2-2bccos A.一、正弦定理的证明

证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有 AD=b•sin∠BCA,BE=c•sin∠CAB,CF=a•sin∠ABC。

所以S△ABC=a•b•csin∠BCA =b•c•sin∠CAB =c•a•sin∠ABC.证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有 AD=b•sin∠BCA=c•sin∠ABC,BE=a•sin∠BCA=c•sin∠CAB。证法三:如图2,设CD=2r是△ABC的外接圆 的直径,则∠DAC=90°,∠ABC=∠ADC。

证法四:如图3,设单位向量j与向量AC垂直。因为AB=AC+CB,所以j•AB=j•(AC+CB)=j•AC+j•CB.因为j•AC=0,j•CB=| j ||CB|cos(90°-∠C)=a•sinC,j•AB=| j ||AB|cos(90°-∠A)=c•sinA.二、余弦定理的证明

篇7:定理与证明

【学习目标】

1.了解定理,证明的定义。

2.知定理必须证明是正确的命题后才可运用。(重点)

3.会用几何语言证明一个命题。(难点)

【问题导学】

1.阅读课本55页,写下并记忆五个基本事实。

1)两点确定一条直线;2)两点之间,线段最短;3)过一点有且只有一条直线与已知直线垂直;4)过直线外一点有且只有一条直线与这条直线平行;

5)两条直线被第三条直线所截,如果同位角相等,那么这两直线平行。

2.认真阅读课本56页后回答:

① 什么是定理?定理的作用是什么?

数学中,有些命题可以从基本事实或其他真命题出发,用逻辑推理的方法判断他们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理。

作用:揭示客观事实的本质属性,作为进一步确认其他命题真假的依据。

② 认真完成“思考”的问题,参照云图中的提示,判断结论的正确与否:可知第一个结论不正确.23571113159509 第二个结论不正确.钝角三角形 第三个结论正确.对上面不正确的结论举反例说明。

③什么是证明?哪些可以作为证明的依据呢?

根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明。

3.阅读“直角三角形的两锐角互余”的证明后回答:

③ 写出这个命题的条件和结论,总结证明命题的步骤。

④ 仿照例题步骤证明定理“有一个角等于60°的等腰三角形是等边三角形”

4.阅读课本57页读一读,写出证明的依据有哪些?

定义、基本事实、已经学过的定理,等式的性质、等量代换

【课堂检测】

篇8:四色猜想(定理)简单证明

地图四色定理(Four color theorem)最先是由一位叫古德里Francis Guthrie的英国大学生提出来的.四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色.”用数学语言表示即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字.”这里所指的相邻区域是指有一整段边界是公共的.如果两个区域只相遇于一点或有限多点就不叫相邻的.也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行

二、初探及证明

在平面或地图中,至少需要几种颜色(简称“几色”)标注具有共同边界的区域或国家.如果数个区域任意两个均不相邻,则依旧可用单色(一色)标识,如在地图中,我们任选一种颜色,当我们将其他颜色抹去后,将会发现它们互不相邻.所以,相互相邻的区域多少,决定了颜色的多少.我们可以从最少数量拓展.

定理1在平面中,相互相邻区域的多少,决定了颜色的多少.

性质1数个互不相邻的区域,可以采用单色标记.

注:A,B,C,D,…,表示区域名称,此时A,B,C,D可以同色性质2如果两个区域相邻,则可以两色标记.

性质3如果三个区域相互相邻(即任两个区域相邻),则可以用三色标记.

由于A,B,C三个区域相互相邻,则A,B,C三个区域按照平面上的点来计,则形成封闭的三角形,那么第4块区域怎么与A,B,C相邻呢?

设第四块区域D.

1.如果D不能同时与A,B,C相邻,则色数不增加.假如D不能与C相邻,则D,C可采用同一色.

2.如果D同时与A,B,C相邻,在平面(地图)中,则D必处A,B,C相邻图的中心或外围.

(1)当D处于A,B,C相邻中心时,则D被A,B,C包围(与外界隔离),似乎增加D区域,标记为色4,但A,B,C,D区域外的区域仍可以利用色4标记,色4成了其他(向外扩展)区域的机动色(即:可以再次使用或标记),无需增加色5.形象地说,当一色被隔离(“死亡”)后,它可以在随后的其他地方“复活”.四色定理从这点理解应该是“3+1”色,这个“1”表示为可再次使用的颜色,即在四色中,向外拓展时,有一种颜色可以再次使用,那就是这个“1”色.

(2)当D与相邻的A,B,C外围相邻时,虽然用色4标记,这是至少有一色被D区域“与世隔绝”,当E区域标记时,被隔离的一色可以与区域E同色.同样,四色定理可以理解为“3+1”定理,无需增加色5.

定理2在平面中,相互相邻区域的最多为4.

所以在地图(平面图)颜色标记中,当三个区域相邻时,每增加1个区域(颜色)与三个区域相邻时,虽然增加1个颜色,达到四色,但同时必有“1”或以上被“隔离”而被再次使用,“3+‘1-1+1’-……”如此循环不断下去,始终不会超过四种颜色.

综上所证,在平面或地图中,各区域颜色标记可以用“3+‘1-1+1’…”或“3+1”颜色标记,即四色猜想(定理)成立.

参考文献

篇9:几何定理的机器证明

几千年来,人们解几何题的招数,层出不穷,争奇斗艳,概括起来,不外这4类:检验、搜索、归约和转换,50多年来,数学家和计算机科学家费尽心思,循循善诱,把个中奥秘向计算机传授,使得计算机解几何题的能力日新月异,大放光彩,除了灵机一动加辅助线,或千变万化的问题转换之外,前3种方法计算机都学得十分出色了,用机器帮助,以至在某种程度上代替学者研究几何,帮助乃至代替老师指导学生学习几何,已经从古老的梦想变为现实。

在几何定理机器证明中,采用代数方法,引进坐标,将几何定理的叙述用代数方程的形式重新表达,证明问题就转化成判定是否能从假设的代数方程推出结论的代数方程的问题,这样把几何问题代数化,自笛卡尔以来已是老生常谈,并无实质困难,然而代数化的过程,坐标点的选取和方程引进的次序都可能影响到后续证明的难度,甚至由于技术条件的限制,影响到证明是否可能完成,也就是说,几何问题化成纯代数问题之后,也并不见得一定容易,更不能说就能实现机械化了,这不仅是因为解决这些代数问题的计算量往往过大,令人望而却步,还因代表几何关系而出现的那些代数等式或不等式常常杂乱无章,使人手足无措,从这些杂乱无章的代数关系式中要找出一条途径,以达到所要证的结论,往往要用到高度的技巧,换句话说,即使你不怕计算,会用计算机来算,也不知道从何算起。

解几何题是思维的体操,是十分有吸引力的智力活动之一,图形的直观简明,推理的曲折严谨,思路的新颖巧妙,常给人以美的享受,许多青少年数学爱好者,往往首先是对几何有了浓厚的兴趣,用计算机证明几何问题,如果仅限于用平凡而繁琐的数值计算代替巧妙而难于入手的综合推理,则未免大煞风景,通过计算机的大量计算判断命题为真,确实是证明了定理,这是有严谨理论基础的,但这样的证明写出来只是一大堆令人眼花缭乱的算式、数字或符号,既没有直观的几何意义,又难于理解和检验,这跟几何教科书上十行八行就说得明明白白的传统风格的证明大相径庭,如果计算机给出的这一堆难于理解和检验的数据也算是几何问题的解答,这种解答只能叫做不可读的解答。

篇10:正弦定理证明方法

证明:任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

∴a/sinA=b/sinB=c/sinC=2R

方法2:用直角三角形

证明:在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC∴a/sinA=b/sinB=c/sinC

在直角三角形中,在钝角三角形中(略)。

方法3:用向量

证明:记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c∴a+b+c=0则i(a+b+c)=i·a+i·b+i·c

=a·cos(180-(C-90))+0+c·cos(90-A)=-asinC+csinA=0∴a/sinA=c/sinC(b与i垂直,i·b=0)

方法4:用三角形面积公式

证明:在△ABC中,设BC=a,AC=b,AB=c。作CD⊥AB垂足为点D,作BE⊥AC垂足为点E,则CD=a·sinB,BE=csinA,由三角形面积公式得:AB·CD=AC·BE

即c·a·sinB=b·csinA∴a/sinA=b/sinB同理可得b/sinB=c/sinC

∴a/sinA=b/sinB=c/sinC

用余弦定理:a^2+b^2-2abCOSc=c^2

COSc=(a^2+b^2-c^2)/2ab

SINc^2=1-COSc^2

SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2

=/4a^2*b^2*c^2

同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2

得证

正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC

证明如下:在三角形的外接圆里证明会比较方便

例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到:

2RsinD=BC(R为三角形外接圆半径)

角A=角D

得到:2RsinA=BC

同理:2RsinB=AC,2RsinC=AB

这样就得到正弦定理了

一种是用三角证asinB=bsinA

用面积证

用几何法,画三角形的外接圆

听说能用向量证,咋么证呢?

三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j与向量AB夹角为90,j与向量BC夹角为(90-B),j与向量CA夹角为(90+A),设AB=c,BC=a,AC=b,因为AB+BC+CA=0

即j*AB+J*BC+J*CA=0

|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0

所以asinB=bsinA

用余弦定理:a^2+b^2-2abCOSc=c^2

COSc=(a^2+b^2-c^2)/2ab

SINc^2=1-COSc^2

SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2

=/4a^2*b^2*c^2

同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2

得证用余弦定理:a^2+b^2-2abCOSc=c^2COSc=(a^2+b^2-c^2)/2abSINc^2=1-COSc^2SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2=/4a^2*b^2*c^2同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2得证

满意答案好评率:100%

正弦定理

步骤1.在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步骤2.证明a/sinA=b/sinB=c/sinC=2R:

如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R类似可证其余两个等式。

余弦定理

平面向量证法:

∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)

∴c·c=(a+b)·(a+b)

∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)

(以上粗体字符表示向量)

又∵Cos(π-θ)=-CosC

∴c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式)

再拆开,得c^2=a^2+b^2-2*a*b*CosC

同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。

平面几何证法:

在任意△ABC中

做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a

则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

根据勾股定理可得:

AC^2=AD^2+DC^2

b^2=(sinB*c)^2+(a-cosB*c)^2

b^2=sinB²·c²+a^2+cosB²·c^2-2ac*cosB

b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2

b^2=c^2+a^2-2ac*cosB

篇11:中心极限定理证明

高尔顿钉板试验.图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布.如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且

那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理.二、中心极限定理

设是独立随机变量序列,假设存在,若对于任意的,成立

称服从中心极限定理.设服从中心极限定理,则服从中心极限定理,其中为数列.解:服从中心极限定理,则表明

其中.由于,因此

故服从中心极限定理.三、德莫佛-拉普拉斯中心极限定理

在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则

用频率估计概率时的误差估计.由德莫佛—拉普拉斯极限定理,由此即得

第一类问题是已知,求,这只需查表即可.第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的.第三类问题是已知,求.解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:.抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次?

解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多.已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布:的随机变量.求.解:

因为很大,于是

所以

利用标准正态分布表,就可以求出的值.某单位内部有260架电话分机,每个分机有0.04的时间要用外线通话,可以认为各个电话分机用不用外线是是相互独立的,问总机要备有多少条外线才能以0.95的把握保证各个分机在使用外线时不必等候.解:以表示第个分机用不用外线,若使用,则令;否则令.则.如果260架电话分机同时要求使用外线的分机数为,显然有.由题意得,查表得,故取.于是

取最接近的整数,所以总机至少有16条外线,才能有0.95以上的把握保证各个分机在使用外线时不必等候.根据孟德尔遗传理论,红黄两种番茄杂交第二代结红果植株和结黄果植株的比率为3:1,现在种植杂交种400株,试求结黄果植株介于83和117之间的概率.解:将观察一株杂交种的果实颜色看作是一次试验,并假定各次试验是独立的.在400株杂交种中结黄果的株数记为,则.由德莫佛—拉普拉斯极限定理,有

其中,即有

四、林德贝格-勒维中心极限定理

若是独立同分布的随机变量序列,假设,则有

证明:设的特征函数为,则的特征函数为

又因为,所以

于是特征函数的展开式

从而对任意固定的,有

而是分布的特征函数.因此,成立.在数值计算时,数用一定位的小数来近似,误差.设是用四舍五入法得到的小数点后五位的数,这时相应的误差可以看作是上的均匀分布.设有个数,它们的近似数分别是,.,.令

用代替的误差总和.由林德贝格——勒维定理,以,上式右端为0.997,即以0.997的概率有

设为独立同分布的随机变量序列,且互相独立,其中,证明:的分布函数弱收敛于.证明:为独立同分布的随机变量序列,且互相独立,所以仍是独立同分布的随机变量序列,易知有

由林德贝格——勒维中心极限定理,知的分布函数弱收敛于,结论得证.作业:

p222EX32,33,34,3

5五、林德贝尔格条件

设为独立随机变量序列,又

令,对于标准化了的独立随机变量和的分布

当时,是否会收敛于分布?

除以外,其余的均恒等于零,于是.这时就是的分布函数.如果不是正态分布,那么取极限后,分布的极限也就不会是正态分布了.因而,为了使得成立,还应该对随机变量序列加上一些条件.从例题中看出,除以外,其余的均恒等于零,在和式中,只有一项是起突出作用.由此认为,在一般情形下,要使得收敛于分布,在的所有加项中不应该有这种起突出作用的加项.因为考虑加项个数的情况,也就意味着它们都要“均匀地斜.设是独立随机变量序列,又,这时

(1)若是连续型随机变量,密度函数为,如果对任意的,有

(2)若是离散型随机变量,的分布列为

如果对于任意的,有

则称满足林德贝尔格条件.以连续型情形为例,验证:林德贝尔格条件保证每个加项是“均匀地斜.证明:令,则

于是

从而对任意的,若林德贝尔格条件成立,就有

这个关系式表明,的每一个加项中最大的项大于的概率要小于零,这就意味着所有加项是“均匀地斜.六、费勒条件

设是独立随机变量序列,又,称条件为费勒条件.林德贝尔格证明了林德贝尔格条件是中心极限定理成立的充分条件,但不是必要条件.费勒指出若费勒条件得到满足,则林德贝尔格条件也是中心极限定理成立的必要条件.七、林德贝尔格-费勒中心极限定理

引理1对及任意的,证明:记,设,由于

因此,其次,对,用归纳法即得.由于,因此,对也成立.引理2对于任意满足及的复数,有

证明:显然

因此,由归纳法可证结论成立.引理3若是特征函数,则也是特征函数,特别地

证明定义随机变量

其中相互独立,均有特征函数,服从参数的普哇松分布,且与诸独立,不难验证的特征函数为,由特征函数的性质即知成立.林德贝尔格-费勒定理

定理设为独立随机变量序列,又.令,则

(1)

与费勒条件成立的充要条件是林德贝尔格条件成立.证明:(1)准备部分

(2)

显然(3)

(4)

以及分别表示的特征函数与分布函数,表示的分布函数,那么(5)

这时

因此林德贝尔格条件化为:对任意,(6)

现在开始证明定理.设是任意固定的实数.为证(1)式必须证明

(7)

先证明,在费勒条件成立的假定下,(7)与下式是等价的:

(8)

事实上,由(3)知,又因为

故对一切,把在原点附近展开,得到

因若费勒条件成立,则对任意的,只要充分大,均有

(9)

这时

(10)

对任意的,只要充分小,就可以有

(11)

因此,由引理3,引理2及(10),(11),只要充分大,就有

(12)

因为可以任意小,故左边趋于0,因此,证得(7)与(8)的等价性.(2)充分性

先证由林德贝尔格条件可以推出费勒条件.事实上,(13)

右边与无关,而且可选得任意小;对选定的,由林德贝尔格条件(6)知道第二式当足够大时,也可以任意地小,这样,费勒条件成立.其次证明林德贝尔格条件能保证(1)式成立.注意到(3)及(4),可知,当时,当时,因此

(14)

对任给的,由于的任意性,可选得使,对选定的,用林德贝尔格条件知只要充分大,也可使.因此,已证得了(8),但由于已证过费勒条件成立,这时(8)与(7)是等价的,因而(7)也成立.(3)必要性

由于(1)成立,因此相应的特征函数应满足(7).但在费勒条件成立时,这又推出了(8),因此,(15)

上述被积函数的实部非负,故

而且

(16)

因为对任意的,可找到,使,这时由(15),(16)可得

故林德贝尔格条件成立.八、李雅普诺夫定理

设为独立随机变量序列,又.令,若存在,使有

篇12:向量证明正弦定理

向量证明正弦定理

表述:设三面角∠P-ABC的三个面角∠BPC,∠CPA,∠APB所对的二面角依次为∠PA,∠PB,∠PC,则 Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA=Sin∠PC/Sin∠APB。

目录

1证明2全向量证明

证明

过A做OA⊥平面BPC于O。过O分别做OM⊥BP于M与ON⊥PC于N。连结AM、AN。 显然,∠PB=∠AMO,Sin∠PB=AO/AM;∠PC=∠ANO,Sin∠PC=AO/AN。 另外,Sin∠CPA=AN/AP,Sin∠APB=AM/AP。 则Sin∠PB/Sin∠CPA=AO×AP/(AM×AN)=Sin∠PC/Sin∠APB。 同理可证Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA。即可得证三面角正弦定理。

全向量证明

如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C

由图1,AC+CB=AB(向量符号打不出)

在向量等式两边同乘向量j,得・

j・AC+CB=j・AB

∴│j││AC│cos90°+│j││CB│cos(90°-C)

=│j││AB│cos(90°-A)

∴asinC=csinA

∴a/sinA=c/sinC

同理,过点C作与向量CB垂直的单位向量j,可得

c/sinC=b/sinB

∴a/sinA=b/sinB=c/sinC

2步骤1

记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

∴a+b+c=0

则i(a+b+c)

=i・a+i・b+i・c

=a・cos(180-(C-90))+b・0+c・cos(90-A)

=-asinC+csinA=0

接着得到正弦定理

其他

步骤2.

在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a・sinB

CH=b・sinA

∴a・sinB=b・sinA

得到a/sinA=b/sinB

同理,在△ABC中,

b/sinB=c/sinC

步骤3.

证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D. 连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

3

用向量叉乘表示面积则 s = CB 叉乘 CA = AC 叉乘 AB

=>absinC = bcsinA (这部可以直接出来哈哈,不过为了符合向量的做法)

=>a/sinA = c/sinC

2011-7-18 17:16 jinren92 | 三级

记向量i ,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理 其他步骤2. 在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,

4

上一篇:弓箭社社团活动总结下一篇:2023——2024年小学四年级第一学期英语教学计划