粉末冶金技术简介

2024-04-16

粉末冶金技术简介(共8篇)

篇1:粉末冶金技术简介

姓名:张丹

学号:11309010 指导老师:张自强

粉末冶金的技术简介

摘要:本文对近几十年以来发展的粉末冶金过程中应用到的各种技术,包括制粉技术、成形技术和烧结技术作了一个简单的介绍。并介绍了粉末冶金的特点、粉末冶金材料以及在各行业的应用。

关键字:粉末冶金 制粉技术

粉末成形技术 引言

粉末冶金是一门古老又现代的材料制备技术。古代炼块技术和陶瓷制备技术都是粉末冶金技术的雏形。18至19世纪欧洲采用粉末冶金法制铂,是古老粉末冶金技术的复兴和近代粉末冶金技术的开端。现代最早出现粉末冶金技术的国家是美国,其在1870年通过粉末冶金技术合成了铜铅轴承,利用其多孔性实现了轴承的自润滑。20世纪起,粉末冶金进入了高速发展的时期。至今,粉末冶金已成为新材料科学和技术中最具有发展活力的领域之一。随着全球工业化的蓬勃发展,粉末冶金行业发展迅速,粉末冶金技术已被广泛应用于交通、机械、电子、航天、航空等领域[1]。粉末冶金的特点

粉末冶金是指把制取的金属粉末或金属粉末与非金属粉末的混合物作为原料,经过成形和烧结,经过必要的后处理得到金属材料、复合材料和各种类型制品的工艺技术。后处理包括精压、滚压、挤压、淬火、表面淬火、浸油和熔渗等。粉末工艺的主要过程包括:制粉→原材料的混合→成形→烧结→后处理。

粉末冶金制品的主要特征之一是多孔,制得的粉末冶金制品多是半致密或致密的。利用多孔性可以在制品内加入润滑介质,形成微型自润滑系统,减轻零件磨损程度,提高其使用寿命;利用多孔性在制品内部加入催化剂,可以提高物质的接触面积,提高反应速度和催化效果;也可以利用多孔性制成多样过滤层。此外,多孔性还有利于减轻产品的重量[2]。然而制品的孔隙,不仅能影响制品的物理、化学、力学和工艺性能,还会对精密成形造成一定难度。所以,现在有很多生产高致密、高性能的粉末冶金制品的技术被研究了出来。

粉末冶金还具有其他特点。如:粉末冶金技术可以最大限度地减少合金成分偏距,消除粗大、不均匀的铸造组织;可以制备非晶、微晶、准晶、纳米晶和超饱和固溶体等一系列高性能非平衡材料,这些材料具有优异的电学、磁学、光学和力学性能;可以实现多种类型的复合,发挥各种材料的特性;可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料、多孔分离膜材料、高性能结构陶瓷和功能陶瓷材料[3]。除此之外,粉末冶金还具有加工工艺流程短而简单,产品质量好,精度高,原材料利用率高,加工



姓名:张丹

学号:11309010 指导老师:张自强

效率高,节能节时等优点。粉末冶金的工艺技术 3.1制粉

3.1.1粉末冶金材料类型

粉末冶金材料是用粉末冶金工艺将金属粉末与非金属粉末混合,经成形、烧结后制得多孔、半致密或全致密的材料[4]。粉末冶金材料主要可以分为传统的粉末冶金材料和现代先进粉末冶金材料[5]。1)传统粉末冶金材料

① 铁基粉末冶金材料:作为重要的粉末冶金材料,被广泛的应用于汽车行业。此外,还广泛应用于家用电器、电动工具、农业机械、文体休闲器材。

② 铜基粉末材料:主要有烧结青铜(锡青铜和铝青铜)、烧结黄铜、烧结镍银和烧结铜镍合金和弥散强化铜、时效强化铜合金以及减震铜合金。主要应用于含油轴承,此外,还在摩擦材料、电刷、过滤器、机械结构零件、电工零件等有应用。

③ 硬质合金材料:主要由一种或者多种难溶金属经过碳化形成的一种硬质材料。这种材料是通过金属粘结剂进行粘结,然后经过粉末冶金技术进行制作。主要应用于切削领域。

④ 难溶金属材料:这种材料主要有难溶的金属构成,其熔点高、强度和硬度也相对较高。该材料主要用于航空航天、国防、能源和核研究领域。

⑤ 电工材料:这种材料主要用于电气和仪表领域,如电阻器件、电力管等。⑥ 摩擦材料:这种材料是依靠摩擦力来实现制动和传动功能的部件材料,主要应用在摩擦离合器和摩擦制动器中。

⑦ 减摩材料:这种材料具有低的摩擦系数和好的耐磨性,具有好的自润滑性能,主要应用于动力机械、汽车、拖拉机、飞机等领域。2)现代粉末冶金材料

① 软磁材料:可分为金属软磁材料和铁氧体软磁材料。后者比前者出现的早,其特点是只能通过粉末冶金的方法获得。这种材料具有较高的导磁率和较强的饱和磁化强度,被各个磁行业广泛应用。

② 能源材料:指在发展过程中,能促进新能源建立和发展的材料。主要发展方向是电池、氢能和太阳能。主要应用于能源开发领域。如采用粉末冶金技术制作锂电池正负极材料、储氢合金、燃料电池的阳极材料、太阳能光电、光热材料、风能中的机械制动材料、核结构



姓名:张丹

学号:11309010 指导老师:张自强

材料等[6]。

③ 生物材料:这种方法主要应用于医学领域,应用钛合金被多次研究,诸如李元元等用粉末冶金法合成高强低模超细晶医用钛合金[7]。3.1.2制粉技术

制粉按其过程实质分为两类:机械法和物理法。机械法是将原材料粉碎,但是其化学成分基本不发生变化;物理法是借助化学的或物理的作用,改变原料的化学成分或聚集状态而获得粉末。

1)机械法主要有机械粉碎法和雾化法。

机械粉碎法主要的方法是球磨法。它是将金属、金属化合物及合金放入球磨机内,在碾磨球强烈的搅动下,受到冲击力、碾磨力、剪切力和压力的不断作用,使之发生变形、破碎和冷焊接的一种粉末制造技术。现在应用较广的机械合金化技术中采用了高能球磨技术,其特点是能制造出超细材料。在球磨过程中,金属和非金属混合物会发生严重的晶格畸变,得到高密度的缺陷和纳米级的精细结构。目前,高能球磨法被广泛应用于合金、磁性材料、超导材料、金属间化合物、过饱和固溶体材料以及非晶、准晶纳米晶等亚稳态材料的制备[8]。② 雾化法。快速凝固雾化制粉技术是直接击碎液体金属或合金并快速冷凝而制得粉末的方法,此种方法可以有效减少合金成分的偏析,通过控制冷凝速率可以获得具有非晶、准晶、微晶、或过饱和固溶体等非平衡组织的粉末。

按照击碎的方式不用,雾化法又可以分为气体雾化、高压水雾化和离心雾化。气体雾化法所用的雾化压力一般为2-8MPa,制得的粒径一般为50-100mm,多为表面光滑的球形。近年发展起来的一种新的紧耦合气体雾化喷枪,可以极大的提高细分率,粒径为30-40mm,粉末占75%左右,粉末的冷凝速度也相应有了提高。高压水雾法是20世纪60年代中期建立起来的技术,其采用密度较高的水作为雾化媒介,其冷凝速度比一般气体雾化要高上许多,一般是提高一个数量级,但是其产生的粉末颗粒形状多为不规则。离心雾化法是利用机械旋转造成的离心力使得金属溶液克服表面张力,以细小的液滴甩出,然后再飞行过程中被冷凝、球化的过程。离心雾化法几乎适用所有金属和合金粉末的制取,还可以制取难溶化合物(如氧化物、碳化物)粉末,也是目前制取高纯、无污染难溶金属和化合物球形粉末最理想的方法,但是其生产过程的自动化产业还未成熟,生产能力低,价格高[9]。

2)物理法。物理法有还原法、化学沉淀法、合金分解法和电解法等。其中应用最大的是还原法和电解法。还原法是用还原剂在一定条件下将金属氧化物或金属盐类等进行还原而制取粉末的一种方法;化学沉淀法是用一种或者多种金属盐溶液,通过化学反应形成沉淀物,然



姓名:张丹

学号:11309010 指导老师:张自强

后脱除溶剂和加热分解的制粉方法;合金分解法是选择一种溶剂,只溶解合金中某一成份,再将不溶解的成分分离出来获得金属粉末;电解法是电解金属盐的水溶液使得金属阳离子在阴极上沉积或进行熔融盐电解而获得金属粉末[10]。

3.2成形

成形的目的是将粉末制成具有一定形状和尺寸的坯料,制得的坯料具有一定的强度和密度。目前,粉末成形的方法有很多,归纳起来可以分为有压成形和无压成形。无压成形是指粉末在不受压力的作用而得到一定尺寸和形状坯料的成形方法,又称作粉浆浇注成形法,利用毛细管原理让石膏模具吸收浆料(粉末与液体(水、甘油、酒精等)的混合)中的液体,使得粉末在模具中固化成形的过程。有压成形是指粉末在压力作用下得到一定尺寸和形状坯料的成形方法,如注射成形技术、温压成形技术、热压成形技术、等静压成形技术和高速压制成形技术等。3.2.1注射成形技术

粉末注射成形技术(powder injection molding,简称PIM)是将塑料注射成形的思路和方法应用到粉末成形上的一门新技术。粉末成形技术的基本工艺过程是:将粉末与粘结剂混合后,在一定温度下使得粘结剂熔融,然后进一步混合均匀,在注射剂压力作用下,从注射剂喷嘴射入模具,经冷却脱模后得到生坯,实现粉末成形。粉末微成形注射技术的原理与传统的粉末注射成形是一致的,只是最后得到的生坯的尺寸是在微米级,且其粉末粒径亦为微米级别,加大了的制粉的难度,此外,其模具需采用微加工技术加工。北京科技大学自行研制开发了具有自主知识产权的粉末微注射成形用模具,并成功注射成形出齿顶圆直径小于1mm的微型齿轮[11]。

粉末注射成形可以获得组织结构均匀,力学性能优异的净成形零部件,制造比传统的工艺要低,且通过注射成形的零件一般都不需要在经过机械加工,而且能加工出传统粉末冶金方法不能制造的各种形状复杂的零件。现在粉末注射成形生产已实现一体化,自动化程度高。3.2.2温压成形技术

温压成形技术于1994年国际粉末冶金和隔离材料会议上,由美国Hoeganaes公司公布,被国际粉末冶金界誉为“导致粉末冶金技术革命”的新成形技术[12]。粉末温压技术,顾名思义其加压温度介于室温和热压温度之间,一般为100-150℃,在压力作用下混合粉末(粉末加高温润滑剂)在预热的封闭钢模中被加压成形。其特点是:制造铁基粉末冶金零部件的成本低;能使生坯致密;制品强度高;可以制造复杂形状零件;密度均匀等。3.2.3热压成形技术



姓名:张丹

学号:11309010 指导老师:张自强

热压成形过程中,将成形与烧结两个工序一并完成,它是对装有粉末的模腔加压并加热,温度达到正常烧结温度或更低一些,在短时间内完成烧结得到致密均匀的制品。热压成形按照加热方式可以分为电阻间接加热、电阻直接加热和感应加热三种。第一种方式是采用碳管发热,对模具和粉末同时加热;第二种方式是采用压横材料发热,使得模具成形部位的温度要高于其他部位。第三种方式由于粉末坯料中的涡流大小与密度相关,而坯料密度在热压成形过程中会变大,造成电阻降低,涡流发热减小,所以感应加热的温度是不好控制的。热压成形的优点是可以制成全致密的材料。但是,热压成形中温度的均匀性和稳定性不好把握。3.2.4等静压成形技术

等静压成形过程的基本原理是将混合粉末经过真空吸粉,气动填料输入等静压成形机的模具(橡胶模具或塑料模具)中,在通过介质(水或油或气体)向各向施加均等的压力,压制成致密、结实的制品。等静压成形又可分为冷等静压和热等静压,前者传递压力的介质是水或油;后者传递压力的介质是气体。等静压成形的特点是能制成形状复杂的零件;制品密度均匀,强度高;成本低廉;在较低温度下可以值得接近完全致密的材料。然而,其制品表面精度和光洁度比钢模压制法低;生产率低;模具寿命短。3.2.5高速压制成形技术

高速压制成形的基本原理是通过高速运动的垂头产出强烈的冲击应力波,在很短时间内(0.02s)将冲击能量通过压模传递粉末进行致密化,通过附加间隔(0.3s)的高频冲击应力波可以进一步提高材料的密度,从而使得制品性能更加优异。具有密度高,分布均匀,径向弹性后效小容易脱模、生产率高、成本低等特点。高速压制成形技术近几年来成为了研究热点,各种研究成果得到了证实,华南理工大学肖志瑜教授等人提出了一种高速压制和温压相结合的温高速压制的技术思路,通过一系列实验表明,该方法能否获得更高的压坯密度,取决于粉末的种类和特性;华南理工大学邵明教授等人,自行设计和制造了一种基于机械弹簧蓄能的粉末冶金高速压制压力机,并用于基础探索研究[13]。

3.3烧结

烧结作为粉末冶金过程中最重要的工序,一直以来是人们研究的重点。一个好的烧结工艺,不仅能提高粉末冶金制品的力学性能,还能降低物质和能源消耗。

3.3.1放电等离子体烧结(SPS)

放电等离子体烧结,是将瞬间、断续、高能脉冲电流通入装有粉末的模具上,在粉末颗粒间会产出等离子体放电,能迅速消除粉末颗粒表面吸附的杂质和气体,并加速物质高速度的扩散和迁移,导致粉末的净化、活化和均化。它是一种集等离子体活化、热压、电阻加热



姓名:张丹

学号:11309010 指导老师:张自强

为一体的加工工艺,具有烧结时间段、温度控制准确、烧结样品颗粒均匀、致密性好等优点。王兴华等[14]采用机械合金化技术制备的Fe75Zr3Si13B9粉体,通过放电等离子体烧结技术在不用温度下将非晶合金粉体制备成了d20 mm×7 mm的块状非晶纳米晶合金。研究表明,在500MPa烧结压力下,随着烧结温度的升高,非晶相开始晶化形成非晶纳米晶双相结构。同时,样品的致密度、抗压强度、微观硬度、饱和磁化强度显著提高。最后在500MPa的烧结压力和863.15 K的烧结温度下,获得密度6.9325 g/cm3、抗压强度1140.28MPa、饱和磁化强度1.28 T的非晶纳米晶磁性材料。3.3.2选择性激光烧结成形(SLS)

选择性激光烧结成形(SLS)是将三维数值模型分解成一系列二维层片结构后,由计算机控制激光束移动,进行逐层烧结,最后形成三维实体。在SLS过程由三个部分组成,分别是激光源、粉末摊铺系统和气氛控制系统。激光源发射的激光束功率、扫描速度和方式对烧结精度有重要影响。粉末摊铺密度、厚度对粉末烧结致密性有影响,一般是粉末摊铺密度越大、厚度越薄,烧结得到的制品越致密,精度越高。气氛的作用是防止粉末在烧结过程中被氧化,通常有氮气、氩气等。

选择性激光烧结成形的特点是无需模具就能直接烧成近净形致密零件,成形灵活性强、周期短、原料广泛,适合制造不同材料和复杂形状的零件。在汽车、造船、机械、航空与航天领域得到广泛应用[15]。3.3.3场活化烧结技术

场活化烧结技术是利用外场的活化作用实现低温快速烧结致密化的一种烧结技术。在烧结的初始阶段施加一个脉冲电流,使得粉末颗粒间产生电火花或等离子弧,在其作用下粉末表面的氧化膜和杂质被清除,粉末颗粒直接接触并发生烧结形成烧结颈,戒指同时施加大电流和一定压力,使得粉体致密化。与传统的烧结方法比,烧结时间短,烧结过程对粉末微观组织影响小,制品纯度高。在日本已应用于工业化生产软磁和硬磁材料以及切削工具[16]。结束语

随着新材料的不断开发研究,粉末冶金技术越来越多应用到各种新材料的加工制造中,粉末冶金制品的应用领域不断扩大,对粉末冶金技术的改进技术不断被开发提出。我国的粉末冶金技术与发达国家比还尚有差距,因此,我们要及时开发具有自主知识产权的粉末冶金新技术。



姓名:张丹

学号:11309010 指导老师:张自强

参考文献

[1]黄伯云,易键宏.现代粉末冶金材料和技术发展现状

(一)[J].上海金属, 2007, 29(3):1-7.[2]现代粉末冶金技术简介[J].金属世界, 2010,(3):1-7.[3]韩明刚.关于粉末冶金技术的发展趋势研究[J].现代企业教育, 2008,(18):108.[4]焦健,彭芳.浅析粉末冶金材料[J].内蒙古石油化工, 2013,(5):63-64.[5]魏建华.粉末冶金材料的分类及应用分析[J].科技与企业, 2013,(23):359.[6]郭志猛,杨薇薇,曹慧钦.粉末冶粉末冶金技术在新能源材料中的应用[J].粉末冶金工业, 2013, 23(3):10-20.[7]李元元,邹黎明,杨超.粉末冶金法合成高强低模超细晶医用钛合金[J].华南理工法学学报, 2012, 40(10):43-50.[8]袁慎坡,陈萌莉.高能球磨法细化合金钢粉末工艺的研究[J].新技术新工艺, 2007,(6):84-86.[9]郭菁.粉末冶金技术的发展概述[J].新疆有色金属, 2013,(1):151-153.[10]郭青蔚.粉末冶金工艺发展现状[J].世界有色金属, 1998,(1):8-9.[11]潘豪.微成形技术的研究概述[J].电子世界, 2013,(18):171-172.[12]周洪强,陈志强.粉末冶金温压成形技术的研究现状[J].钛工业进展, 2007, 24(5):5-8.[13]马春宇,肖志瑜,李超杰等.粉末冶粉末冶金高速压制成形技术最新研究进展[J].粉末冶金工业, 2012, 22(2):55-59.[14] Xing-hua WANG,Ge WANG,Yu-ying ZHU.Fe75Zr3Si13B9 Magnetic Materials Prepared by Spark Plasma Sintering[J].Science Direct, 2014,(24):712-717.[15]余文焘,欧阳鸿武,杨家林等.粉末选区激光烧结—一种新型粉末冶金成形技术[J].稀有金属, 2006, 30(12):80-83.[16]全球五金网.场活化烧结技术.[EB/OL].[2012-12-11].http://cn.made-in-china.m/info/article-4401684.html.

篇2:粉末冶金技术简介

冶金学社隶属兰州资源环境职业技术学院院团委。挂靠于冶金工程系。我们创建这个社团就是为了对冶金工程系四大专业进行更进一步的了解与掌握,扩充我们的知识面,向全院同学介绍相关知识,拓展专业理论学科;它是一个为学生服务,给同学们一个锻炼平台的社团,同时为学院的建设贡献一份力量;它也可以帮助我们学好自己的本职专业,巩固专业知识,实践专业理论;在工作方面可总结一些经验,有利于今后的工作需求,更好的让学生在社会实践中获得专业技能。

冶金包括两大部分 一部分是冶金,利用矿产资源加工成钢铁,以及日常生活用品。另一部分是煤化工,都是以矿产资源为原料,通过化学工艺将其转化为化工产品的所有生产过程的统称。经化学方法将煤炭转为气体,液体和固体产品或半产品,而后进一步加工成化工、能源产品的工业,包括焦化、电石化学、煤气化等。

社团的精神;创新求变、积极发展、勤奋锻炼、坚持不懈 社团的性质:为学生服务,给同学们一个锻炼的平台 社团的宗旨:巩固专业知识,实践专业理论

发展的方向: 面向全院同学,介绍相关知识

社训;辉煌冶金、齐力同心、团结奋进、严谨创新

机构的设置:

冶金技术部(主要对专业知识的巩固和实践)

煤炭深加工与利用部(主要对专业知识的巩固和实践)矿物加工部(主要对专业知识的巩固和实践)选煤技术部(主要对专业知识的巩固和实践)

篇3:冶金用钢水罐加载试验装置简介

关键词:钢水罐,转炉,加载试验装置

1 加载试验要求

1.1 根据AQ2001-2004中8.1.2的规定:以1.25倍负荷进行重负荷试验合格后方可使用。

1.2 在钢水罐制作厂家没有铁水, 不能按实际使用情况进行重负荷试验, 只能模拟使用工况进行试验。

1.3 采取向钢水罐内添加高密度固体颗粒物料的方法, 费时费力, 工人劳动强度大, 费用高, 效率低。

2 加载试验原理

2.1 正常使用下钢水罐受力情况如图1

钢水罐受向下的重力G, 耳轴受向上的拉力F1, F2, 罐壁内侧产出压力P。

2.2 本试验装置模拟钢水罐受力时情况进行设计。利用液压千斤顶将力传给横梁及底盘支座, 再由两端吊臂传递给耳轴, 底盘支座传递给罐底, 使耳轴受竖直向上的拉力, 罐底受竖直向下的压力, 受力情况与承载钢水时受力情况相似。

2.3 使用钢水罐加载试验装置时钢水罐受力情况如图2

2.4 加载试验装置产生支反力R1、R2、R3、R4;当R1+R3=G时, 会在耳轴上产生向上的力F1'、F2', 在罐底产生向下的力G', 且F1'=F1, F2'=F2, G'=G。

2.5 罐体内侧压力为一平衡力, 且在水平方向, 可不进行考虑。竖直方向的受力情况在加载实验时与正常使用时类似。

3 加载试验装置 (如图3、图4、图5)

4 加载力计算

以钢水罐最大负荷重量为180t时计算

钢水重量:G1=180t

耐材重量:G2=52t

钢水罐本身重量:G3=32t

试验时的加载力F=G1*1.25+G2+G3=309t即R1=R3=F/2=154.5t。

5 试验步骤

5.1 将序号4底盘支座放在罐体内, 底盘支座底面与罐底平面接触。

5.2 将序号3千斤顶放置在罐体支座上部, 左右分别放置1件, 共2件。

5.3 将序号1横梁放置在罐体上, 方向沿着千斤顶放置方向。

5.4 将吊臂分别悬挂在横梁两端, 吊臂中心线与耳轴中心线重合。

5.5 接通千斤顶油路, 进行加载压力试验。

5.6 缓慢地按0-25%-50%-75%-100%分段加压。达到设计载荷 (换算后的液压泵工作压力) 后, 稳压15分钟。

5.7 液压千斤顶为同步液压千斤顶 (一拖二) 。实验时查看压力表显示, 对照吨位换算表确定顶力大小。

5.8 卸压间隔20分钟后重复5.6加压试验, 反复5次。

5.9 加压试验全部结束后, 试验完毕。

6 测量检验记录

6.1 加载试验前对耳轴周边筋板焊缝进行探伤, 加载试验后进行检验看是否有变化。

6.2 加载试验前对耳轴进行UT探伤, 加载试验后进行检验看是否有变化。

6.3 加载试验前对罐口直径进行测量, 加载试验后进行检验看是否有变化。

7 结论

经过加载试验后, 如需要测量项在加载试验后与加载实验前无变化, 视为合格。

8 注意事项

加载试验时罐体及试验装具承载压力较大, 为确保人员安全, 现场工作人员撤离后再进行打压试验。

参考文献

[1]AQ2001-2004.炼钢安全规范.

[2]GB25683-2010.钢液浇包安全要求.

[3]GB_713-2008.锅炉和压力容器用钢板.

[4]JBT6061-2007.无损检测焊缝磁粉检测.

[5]YB4175 (2008) .冶金用钢水罐.

篇4:冶金工程专业简介

说起冶金工程,在我国可以追溯到商周时期的青铜器时代。那时,丰富的冶铜技术就成为了中国冶金工业的源头,并迅速把整个青铜技术推到更高的阶段,建立了世界上最为光辉灿烂的“青铜文明”。

之后,我国的冶金技术在世界上又率先取得了突破:在漫长的冶炼过程中,人们逐渐掌握了金属冶炼所需要的高温技术和较高水平的冶金处理技术,如柔化处理技术、炒钢技术、百炼钢技术、灌钢技术等。公元十五世纪,在明代中叶我国已开始大量生产金属锌。在宋应星的《天工开物·五金》中,有关于密封加热冶炼“倭铅”(即锌)方法的记载。明代的钱币“永乐通宝”也具有较高的含锌量。而欧洲到了十八世纪才开始冶炼锌。此外,宋应星的《天工开物》记载了我国古代冶金技术的许多成就,如冶炼生铁和熟铁的连续生产工艺,退火、正火、淬火等钢铁热处理工艺等。

冶金工业是我国的支柱产业

新中国成立以来,国家一直非常重视冶金工业的发展。截至2008年5月,我国黑色金属冶炼及压延加工业企业数量达7151家,其中炼铁业869家,炼钢业363家,铁合金冶炼业1561家,钢压延加工业4358家。全部从业人员年平均人数达300.49万人,全行业资产总额33221.69亿元。这些数据表明,我国钢铁行业在工业经济中的地位十分重要。钢铁工业是中国国民经济的基础产业,对国民经济的发展有着举足轻重的作用。

钢铁材料在现代社会保持优越地位的原因在于:

(1)资源丰富。Fe占地壳的5%,丰度排在第四位,而且有高品质的大矿床可供开采。2004年开始,世界粗钢年产量超过10亿吨。

(2)容易冶炼。钢铁的大量生产的方式早已确立,近年来,钢铁企业在大型化、高速化、连续化、自动化方面不断进步。

(3)强度、硬度、韧性等性质可以满足一般结构材料的要求。

(4)多用途,性能可调节。通过合金化、热处理、特殊加工工艺等,可以在广泛的范围内对性能进行调节。最近开发了多种技术,使钢铁材料从结构材料向功能材料转化。除了不锈钢以外,有些钢材具有耐热、电磁、热电转换、超硬、减震、多孔等功能。

尽管钢铁材料有很古老的历史,在未来相当长的一段时期内,其优势和特性依然是其它材料所不可比拟和替代的。其冶炼和加工工艺还是经常导入时代的尖端技术而不断创新、发展。铁是人类社会发展的重要原因,没有铁就没有现代社会。铁是现代社会的骨骼,能源是现代社会的血液。作为人类用量最大的结构材料和产量最高的功能材料而言,钢铁材料的地位在可预见的将来不会改变。

虽然钢铁工业在西方被视为“夕阳工业”已经多年,但是钢铁工业的经济价值是不可低估的。2004年,全世界钢铁工业的经济价值已超过62000亿美元;2006年,达到72000亿元人民币。1996年以来,中国钢产量已经连续13年超过1亿t,2008年中国粗钢产量达到5.02亿t,占世界粗钢总产量13.30亿t的37.75%。我国钢产量占世界产量的比重继续增加。我国的人均钢材消费量还比较低,与发达国家相比差距较大,我国的基础设施建设很不完善,有些方面还很落后,加工和制造业对新材料还有相当大的需求,其它国民经济部门对钢材的需求仍然旺盛。随着国民经济的发展,钢铁工业还有相当的发展空间。

冶金工程专业属紧缺专业

那么,冶金工程是一门什么样的学科呢?

冶金工程是一门研究从矿石提取钢铁或有色金属材料并进行加工的应用性学科,培养的是冶金工程领域科学研究与开发应用、工程设计与实施、技术攻关与技术改造、新技术推广与应用、工程规划与冶金企业管理等方面的高层次专门人才。

高新技术和学科发展相结合是冶金工程专业的一大特点。主要体现在以下两个方面:一是通过冶金过程的优化和新技术开发,最大限度地满足相关产业对高品质冶金材料的要求;二是最大限度地减少冶金生产的资源和能源消耗,减少对环境的污染,这也是该专业的前沿主攻方向。考虑到我国冶金行业清洁化生产水平低和特有的复合矿资源多样化的特点等因素,该专业不仅要致力于研究流程中废弃物的减量化、再资源化和无害化处理技术,而且还要对复合矿冶炼技术进行环保和经济意义上的评价和指导,并在此原则下开发复合矿的综合利用技术,最终实现我国高品质冶金材料的生态化生产。

根据以上特点,冶金工程专业主要有三大分支:冶金物理化学、钢铁冶金和有色金属冶金。除了一般工科专业的基础课程和专业基础课程以外,冶金工程专业的学习内容主要包括:冶金与材料物理化学、材料制备物理化学、冶金和能源电化学;钢铁和有色金属冶金新工艺、新技术和新装备、冶金资源综合利用、优质高附加值冶金产品的制造和特殊材料的制备技术等。

由于冶金工程专业培养的学生基础宽厚、理论扎实、技能全面,同时又具备冶金和金属材料加工等方面的知识和技能,毕业生择业面宽,适应能力强。毕业生可以到冶金、化工、材料、环境保护及其相关行业的生产、科研和管理部门从事生产技术管理、工程设计、技术开发、新型结构材料和功能材料的研制和开发等工作,也可以到高等院校和高等职业学校从事专业教学工作。冶金工程专业学生的就业前景十分广阔,目前,全国仅有20多所高校开设有此专业,每年培养的专业人才非常有限,而市场需求量又特别大。祖国蓬勃的建设事业需要冶金工程方面大量的专业人才,钢铁冶金、有色金属冶金企业等都是学子们一展身手的好地方。

院校点击:

武汉科技大学冶金专业历史悠久,冶金工程专业是武汉科技大学传统的优势和特色专业。其钢铁冶金学科始创于1953年(专科),1958年开始招收炼铁和炼钢专业本科生。1979年,炼钢和炼铁专业合并建立钢铁冶金专业;1998年,将钢铁冶金和冶金物理化学、冶金传输原理、有色冶金等专业方向组合建成冶金工程系,本科生按冶金工程一级学科招生。

经国务院学位委员会批准,钢铁冶金学科于1986年获得工学硕士学位授予权,2003年获得工学博士学位授予权。2001年获批冶金工程领域工程硕士授予权。冶金工程一级学科2005年获得工学硕士学位授权点(涵盖钢铁冶金、有色金属冶金和冶金物理化学三个二级学科)。2007年批准建立冶金工程博士后流动站。

1994年,武汉科技大学冶金工程一级学科所属二级学科钢铁冶金被原冶金部和湖北省评定为重点学科,2000年,被评为湖北省首批“楚天学者”特聘教授设岗学科,有钢铁冶金和冶金物理化学两个“楚天学者”特聘教授岗位。2004年,被评为湖北省有突出成就的创新学科,并获湖北省教育厅批准开展冶金工程品牌专业立项建设,2008年验收通过。2005年,冶金工程一级学科被评为湖北省重点学科,2008冶金工程一级学科被评为湖北省优势学科和教育部第三批高等学校特色专业建设点。

篇5:粉末冶金技术简介

1999年新当选中国工程院院士简介(化工冶金与材料工程学部部分)

王静康院士简介 王静康,女,汉族,1938年生于河北省.1960年天津大学化工系有机合成专业本科毕业,1965年天津大学化工系化学工程专业研究生毕业.

作 者:作者单位:刊 名:材料导报 ISTIC PKU英文刊名:MATERIALS REVIEW年,卷(期):200014(2)分类号:关键词:

篇6:粉末冶金的优缺点及其技术

粉末冶金工艺的优点:

1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。

2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。

3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。

4、粉末冶金法能保证材料成分配比的正确性和均匀性。

5、粉末冶金适宜于生产同一形状而数量多的产品,特别是齿轮等加工费用高的产品,用粉末冶金法制造能大大降低生产成本。

粉末冶金工艺的基本工序是:

1、原料粉末的制备。现有的制粉方法大体可分为两类:机械法和物理化学法。而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。其中应用最为广泛的是还原法、雾化法和电解法。

2、粉末成型为所需形状的坯块。成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。

3、坯块的烧结。烧结是粉末冶金工艺中的关键性工序。成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。

4、产品的后序处理。烧结后的处理,可以根据产品要求的不同,采取多种方式。如精整、浸油、机加工、热处理及电镀。此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。

粉末冶金材料和制品的今后发展方向:

1、有代表性的铁基合金,将向大体积的精密制品,高质量的结构零部件发展。

2、制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金。

3、用增强致密化过程来制造一般含有混合相组成的特殊合金。

4、制造非均匀材料、非晶态、微晶或者亚稳合金。

5、加工独特的和非一般形态或成分的复合零部件。粉末冶金工艺缺点:

1:在没有批量的情况下要考虑 零件的大小.2:模具费用相对来说要高出铸造模具.粉末冶金(P/M)技术是一门重要的材料制备与成形技术,被称为是解决高科技、新材料问题的钥匙…。高性能、低成本、净近成形一直以来是粉末冶金工作者重要研究课题之一。粉末冶金法能实现工件的少切削、无切削加工,是一种高效、优质、精密、低耗节能制造零件的先进技术。进入20世纪80年代许多行业,特别是汽车工业比以往任何时候更加依赖于粉末冶金技术,尽可能多地采用粉末冶金高性能的零部件是提高汽车尤其是轿车在市场中的竞争能力的一种有力手段。高密度的P/M产品是保证其具有优异的力学性能的关键因素。因此,为扩大粉末冶金P/M零部件的应用范围,必须提高其密度以获得力学性能优异的粉末冶金零部件。目前,常用来提高P/M零部件密度的技术途径主要有: 压缩性铁粉的应用

复压复烧

浸铜

高温烧结

粉末热锻等等

由于这些工艺存在着不同程度的成本和工件尺寸精度保证困难等技术问题,使本富于竞争力的粉末冶金零件的潜力难以得到充分发挥。而流动温压粉末成型技术的发展使之成为提高P/M零件密度的有效途径。1.流动温压粉末成型技术的发展 1.1温压技术的发展

20世纪80年代末,Hoeganaes公司的Musella等人为提高零件密度,在扩散粘结铁粉制备工艺的研究基础上,将粉末和模具加热到一定温度进行压制,开发出一种所谓温压的新工艺,即ANCORDENSE工艺。温压工艺就是采用特制的粉末加温、粉末输送和模具

加热系统,将混有特殊聚合物润滑剂的金属粉末和模具加热至130~150℃,然后按传统粉末压制工艺进行压制和烧结以提高压坯密度的新方法据资料分析,虽然温压工艺比常规的一次压制烧结工艺的相对成本提高了20%,但比渗铜工艺、复压烧结工艺、粉末热锻工艺分别降低了20%、30%和80%的成本,开拓了粉末冶金应用的潜力。因而被誉为“开创粉末冶金零件应用新纪元的一次新型制造技术”,为零部件在性能和成本之间找到一个理想的结合点,也被认为是进人90年代以来粉末冶金零件生产技术方面最为重要的一项技术进步"。目前,在粉末制备、工艺优选、温压及烧结行为、致密化机理等方面均进行了广泛的研究,并实现了工业化生产。1.2金属注射成形技术的发展

金属注射成形MIM(Metal Injection Molding)是传统粉末冶金工艺与现代塑料注射成形工艺相结合而形成的一门新型近净成形技术。最早可追溯于20世纪30年代开始的陶瓷火花塞的粉末注射成形制备,随后的几十年间粉末注射成形主要集中于陶瓷注射成形。直到1979年,由Wiech等人组建的Parmatech公司的金属注射成形产品获得两项大奖,以及当时的Wiech和Rivers先后获得专利,粉末注射成形才开始转向以金属注射成形为主导。

1.3流动温压粉末成型技术的产生

金属粉末注射成形技术适用于大批量制造具有复杂几何形状、高性能、高精度的零件,在产业化方面也取得突破性进展。但该工艺在粉末中需要加人较多的粘结剂,粉末需用≤10um的超细近球形粉,从混料到脱脂、烧结,工序较复杂,工艺要求严格,特别是需要较长的脱脂和烧结时间,造成制造成本往往偏高。流动温压成形(WFC:Warm Flow Compaction)正是在金属粉末温压的基础上,结合了金属粉末注射成形工艺的优点,通过加人适量的粗粉和微细粉末以及加大热塑性润滑剂的含量而大大提高了混合粉末的流动性、填充性和成形性¨。由于在压制时混合粉末变成具有良好流动性的粘流体,既具有液体的优点,又有很高的粘度,并减小摩擦力,使压制压力在粉末中分布均匀,还得到了很好的传递。这样,粉末在压制过程中可以流向各个角落而不产生裂纹,从而使密度也得到了很大的改善。该技术由德国Fraunhofer先进材料与制造研究所(IFAM)于2001年首次报道。

流动温压可以在80~130℃温度下,在传统压片机上精密成形形状非常复杂的工件,如带有与压制方向垂直的凹槽、孔和螺纹孔等的复杂工件,而不需要其后的二次机加工。WFC技术既克服了传统冷压在成形复杂几何形状方面的不足,又避免了注射成形技术的高成本,是一项极具潜力的新技术,具有广阔的应用前景。

流动温压工艺几乎适用于所有的粉末体系,但最适合于成形低合金钢、Ti以及WC、Co等硬质合金粉。

2.流动温压粉末成型技术的特点

流动温压工艺是在温压工艺基础上结合了金属注射成形的优点而发展起来的,它是一种新型的粉末冶金零件近净成形技术。在对温压的研究中,人们发现温压成形时在径向产生了很大的径向压力,从而在注射成形技术中注射喂料的良好流动性和成形性给予了启发,将两者的优势结合起来并对混合粉料加以优化就产生了流动温压粉末成型技术。流动温压工艺就是将具有良好流动性的混合粉末装入型腔中,然后在一定温度下压制成形具有较复杂几何外形的工件,不需专门脱脂工艺而直接烧结制得粉末冶金零件的新技术。其主要特点可概括如下。

2.1可成形具有复杂几何形状的零件、采用流动温压可以直接成形与压制方向相垂直的凹槽、孔和螺纹孔等工件。而采用冷压制造此类形状的工件却是非常困难甚至是不可能的,一般需要通过其后的机加工才能完成。即使用数控压片机来实现复杂和精准的动作也只能生产出较为简单的此类工件。

Fraunhofer研究人员也用带有微小锥度的成形冲头成功地直接成形了较深的盲孔工件,盲孔的壁高和壁厚的比率可达到3~7,壁厚的变化范围可在1~3mm。为了系统地研究流动温压工艺中粉末的流动行为,Fraunhofer研究人员采用了如图1所示的特制模具¨引。该模具为两半用螺栓联接而成,水平孔和垂直孔的直径都是16mm。研究人员对T孔、通孔、L孔形型腔模具进行了研究,与压制方向垂直的侧孔的长度可以通过螺栓来调节。用流动温压工艺成功制备出了T型工件。实验结果表明,混合粉末的良好流动性足以避免在拐角处产生裂纹。

利用流动温压工艺还可成形零件更复杂的几何外形。混合粉末的良好流动性使得流动温压工艺可以精密地成形工件的精细轮廓。因此,流动温压工艺可以用于成形螺纹。用带有外螺纹型芯的模具经压制成形后,将型芯从半成品中拧出,然后进行烧结就可制得螺纹。根据收缩率选取适当的型芯直径就可压制出所需的螺纹而不需要二次机加工。这也许是流动温压工艺最显著的应用。对流动温压进行了初步研究,制造出一套研究流动温压流动趋势的特制装置,并实现十字型零件的成形。2.2压坯密度高、密度较均匀

流动温压由于装粉密度较高,因此经温压后的半成品密度可以达到很高的值。除密度提高外,由于粉末流动性好,成形的零件密度也更加均匀。或者说采用简单的模冲(不需要辅助的浮动多轴模冲)就可成形多台阶的粉末冶金工件。

对于难成形的纯Ti粉,应用流动温压也取得了明显的结果。如采用Ti粉成形的T型工件的密度分布(在零件图上用1~6数字标出)如下图所示。从图中可以看出,采用流动温压可以获得较高的密度,工件除具有较好的烧结性能外,密度分布也较均匀。图中“5”处距离零件中心轴有14mm,在冷压时密度偏低,这主要是阴模模壁的摩擦和压力的传递不均造成的。Ti基半成品和成品在不同位置的密度分布(ri无空隙密度为4.5g/cm3)2.3对材料的适应性好

流动温压工艺可适用于各种金属粉末,包括低合金钢粉、不锈钢粉、纯Ti粉和硬质合金粉末等。Fraunhofer研究人员对各种金属粉末进行了流动温压工艺研究,都取得了较显著的结果,其中包括低合金钢粉(DistolayAE)、不锈钢316L粉、纯Ti粉和WC-Co硬金属粉末。流动温压工艺原则上可适用于所有的粉末系,唯一的要求是该粉末必须具有足够好的烧结性能,以便最终达到所要求的密度和性能。2.4工艺简单,成本低

用传统粉末冶金方法成形零件在垂直于压制方向上的凹槽、横孔等外形,需要设计非常复杂的模具或通过烧结后的二次机械加工才能完成。虽然注射成形技术在成形零件的复杂外形方面几乎不受什么限制,但是由于添加的粘结剂数量较多,在加热过程中会因为重力影响使工件发生变形,因此往往需要额外增加一道较复杂和较昂贵的专门脱脂工序,使得注射成形技术比常规粉末冶金技术成本高,所以注射成形的零件不一定能够取代可满足其设计功能的常规粉末冶金零件,从而使注射成形技术的应用范围受到了一定的限制。

而流动温压粉末成型技术既可直接成形复杂几何外形而不需要其后的二次机加工;另一方面,在流动温压成形工艺中,所用的特殊粘结剂和润滑剂含量适中,所配置的混合粉末具有很高的粘度和临界剪切强度,在加热过程中不会发生变形,因而可直接在烧结过程中去除粘结剂。因此,与传统粉末成形工艺和注射成形工艺相比,流动温压粉末成型技术对成形复杂几何外形的零件来说,既简化了生产工艺,又大大降低了制造成本。3.流动温压粉末成型技术的应用前景

流动温压成形技术结合了传统压制和金属注射成形的优点,成形零件时既缩短了工艺流程,又降低了成本,同时使零件的密度和复杂性方面也得到了提高,应用前景好。流动温压可以在传统的粉末冶金压机上进行工件的成形,这样就使以前需要通过机加工才能成形的复

杂形状的零件得以很容易地实现。因此,流动温压成形技术将大大拓展了粉末冶金成形技术的应用范围,具有广阔的应用潜力和前景。4.流动温压技术的研究意义

WFC作为一项新型的粉末冶金金属零部件近净成形技术,可以以较低的成本短流程生产高性能复杂形状(如凹槽、横孔和螺纹孔等)的零件,而采用传统粉末压机制造此类粉末冶金零件过去一直被认为是非常困难,甚至是不可能的。

流动温压虽然在成形三维复杂零件方面不可能取代注射成形技术,但是利用流动温压成形的独到特点却能生产出零件形状复杂程度介于冷压和注射成形之间的中等复杂零件,这就可能使得采用传统压片机的粉末冶金复杂零件的低成本短流程制造技术取得突破性的进展,有望在汽车、电子、医疗设备、日用品、办公机械、仪表、机械制造等行业获得应用,其应用也将进一步扩大传统温压成形的应用范围和领域。金属粉末流动温压成形技术为高性能复杂精密零件的低成本、短流程的先进制造开辟新的发展方向,粉末冶金材料的成形加工技术将有望得到拓展和深化。发展方向

篇7:粉末冶金技术简介

摘要:钢铁是人类使用最多的金属材料,钢铁工业被称为现代工业的脊梁。我国作为一个发展大国,每年对于钢铁的需求都是极为庞大的。据不完全统计,我国每年生产的粗钢产量超过五亿吨。然而在钢铁生产的过程中,不可避免的会产生二次资源。结合我国为数巨大的钢铁产量,在其中发展循环经济的效益也就显得十分可观。

关键词:钢铁循环经济;粉末冶金技术;应用

近年来,可持续发展意识已在各行各业的生产活动中得到广泛体现,在钢铁冶炼行业中亦是如此。随着冶炼技术的不断发展成熟,我国对钢铁冶炼产生的二次资源也形成了有效的利用,即使用粉末冶炼技术[1-3]。通过对粉末冶炼技术的应用,可以有效的提高金属资源的利用能力,从而提高钢铁行业的生产效率。因此,本文将对粉末冶金技术在钢铁循环经济中的应用展开一系列的介绍和讨论[4]。

篇8:粉末冶金技术的应用

1 粉末冶金技术的简介

粉末冶金是一种通过制取金属或金属粉末作为原料, 经过烧结和成形, 而制造各种金属材料、复合材料以及各种制品的冶金工艺技术。在上个世纪50年代后, 粉末冶金技术得到了空前的发展, 期间产生了众多的新型技术装备、新型生产工艺以及新的制品和材料, 开拓出了一些可制造出新型材料的领域, 而这一领域也成为现代工业的最主要组成部分。粉末冶金其在技术原理上和陶瓷工艺也存在一些相似之处, 故在陶瓷材料的制备上, 粉末冶金也可以应用其中[1]。

2 粉末冶金技术的应用领域

粉末冶金技术在现代工业生产中具备诸多优势, 属于新兴材料的敲门砖, 在新材料的发展上起着绝对性的作用, 而粉末冶金技术的具体应用领域主要集中在以下几个方面。

首先, 粉末冶金技术在应用中可以实现最大程度上的减少合金成本的偏聚, 继而可起到消除粗大、不均匀铸造组织的问题。因此, 粉末冶金技术被广泛的应用在了稀土储氢材料、高温超导材料、高性能稀土永磁材料、稀土发光材料、稀土催化剂以及众多新型金属材料的制造中[2]。

其次, 被应用于制造一些具备极优良的磁学、力学、光学以及电学性能的材料, 例如微晶、准晶、非晶、超饱和固溶体以及纳米晶等非平衡化材料。

再次, 粉末冶金技术也被广泛应用于生产一些多类型复合的材料, 并且通过粉末冶金技术还可以实现各组成材料之间的特性有机融合, 是一种具备高性能、低成本生产的陶瓷复合材料和金属基的冶金工艺。此外, 面对一些普通熔炼技术难以生产的特殊性能、结构的功能陶瓷材料和材料, 例如多孔分离膜材料、新型多孔生物材料等, 也可以使用粉末冶金技术进行制作。

最后, 粉末冶金技术在应用中对于大多数材料都可实现自动化批量及可实现自动化批量生产, 因此在生产能源的消耗上也可以实现很大的降低, 是一种可对材料进行再生利用的新型技术。是一种可以充分应用尾矿、矿石、轧钢铁鳞、炼钢污泥以及回收旧金属作为原材料的高能环保型的冶金技术, 其在综合利用、材料再生等诸多方面都有十分突出的优势, 是冶金行业的一类新技术, 也是具有广阔发展前景的一类新技术。

3 粉末冶金技术的发展前景

在汽车行业和航空工业快速发展的背景下, 粉末冶金技术也必然会朝着新的方向发展, 其在强度和质量上均可得到一定程度的提升和改善, 具体而言粉末冶金技术在未来的发展上, 必然朝着三个方面发展。首先, 是朝着全致密化的方向发展, 其重点为纳米粉以及超细粉末;其次, 为朝着集成化、低成本化以及高性能化的方向发展;最后, 粉末冶金技术最终必然会发展成一个产业, 进而粉末冶金技术也会朝着产业化的方向发展。

4 结束语

综合上述分析可知, 粉末冶金技术是上个世纪50年代开始蓬勃发展起来的一种新型冶金技术工艺, 在六七十年代的快速发展中其已经在汽车制造行业以及飞机制造行业中起着不可代替的作用, 能够制造出很多常规冶金技术难以制造的材料, 并且具备低成本、可再生的诸多优势。就目前世界上的粉末冶金技术水平而言, 美国仍然处于先进的水平, 我国在未来粉末冶金技术的应用上, 首先需要认知到粉末冶金技术的发展前景, 进而提前做好准备, 大力提升我国的制造业水平。

摘要:粉末冶金技术是一种十分特殊的制造技术, 具有无切削、效率高、制品少以及效率高等诸多优势, 在未来的发展方向上会逐渐朝着高性能、高致密以及低成本化和集成化发展, 因此受到了广大设备零件设计和制造人员的重视。基于此, 首先介绍了粉末冶金技术的概念, 进而分析了粉末冶金技术的应用领域, 最后简单论述了粉末冶金技术的发展前景。

关键词:粉末冶金技术,应用,领域,探究

参考文献

[1]曲选辉, 张国庆, 章林, 等.粉末冶金技术在航空发动机中的应用[J].航空材料学报, 2014, 34 (1) :1-10.

[2]冯士超, 王艳红, 丁瑞锋, 等.粉末冶金在钢铁企业的应用及发展前景[J].粉末冶金技术, 2015, 33 (4) :296-300.

[3]王东辉, 郑欣, 夏明星, 等.铌基高强合金的微观组织和力学性能[J].热加工工艺, 2013, (04) .

[4]张宇, 徐轶, 葛昌纯, 等.固溶处理对喷射成形FGH4095组织的影响[C].第十二届中国高温合金年会论文集.2011.

上一篇:更年期保健知识讲座下一篇:王菲的歌词