生物医学工程产业调查

2024-04-22

生物医学工程产业调查(精选8篇)

篇1:生物医学工程产业调查

产业调查大纲(生物医学工程)

开课单位:药学与生物工程学院开课学期:第4学年秋季学期

学分:0.5学分学时:16学时(1周)

适用专业:生物医学工程(1004)

一、产业调查的目的与意义

生物医学工程研究中的理论不仅在学科研究中有重要意义,其成果还可在产业化的进程中有广泛应用。本课程通过对生物医学工程产业及产品的专题调查,帮助学生了解生物医学工程的前沿技术、主流产品,从而强化学生对本专业所学知识的认识,达到“学以致用”的目的。

二、产业调查对象与内容

1、调查对象为医疗器械生产企业、医院信息科、医院中使用生物医学工程研究成果的部门。

2、调查内容:

(1)生物医学工程前沿技术在医疗器械生产企业的应用情况。

(2)医院信息系统在医院的应用情况。

(3)所调查企业、部门中可进一步改善的情况。

三、产业调查的方式

以走访调查为主、课堂讲授为辅,同时结合小组讨论与走访的单位进行互动调查。

四、产业调查的基本要求

1、按照调查计划进行,与指导老师保持密切的联系与沟通。

2、强调纪律、注意安全。

3、社会调查结束后,学生要根据调查结果写出调查报告,并将结论反馈给所调查的单位。

五、产业调查成绩的评定

1、按优、良、中、及格、不及格五级评定成绩。

2、成绩评定依据:出勤及纪律考评20%;小组讨论及发言情况20%;调查报告60%。

篇2:生物医学工程产业调查

2011.7.X X X

此次我们2008级生物医学工程学生产业调查课程分为两部分,一部分是课堂讨论,一部分是在实习基地参观实习。通过实习了解公司经营方向、客户来源构成、产品结构体系、价格体系、公司人员组织构成,再通过网络与书籍查找资料,包括生物医学产业传统产品、受益人群、未来发展的思考。其目的是对生物医学产业进行全面深入的了解,将以往所学知识与社会实际结合起来;同时促进我们学生更加积极地思考问题,主动获取更多专业相关知识,使我们全方面发展。

此次参观实习我们去的是重庆华伦医疗器械有限公司。重庆华伦医疗器械有限公司创建于1993年,是一家集科、工、贸为一体的高新技术企业,主要致力于医疗器械、生物医药研发、生产和销售,并承接医疗器械加工制造,公司拥有高频X线机、多克自热炎痛贴、华伦药灸、特定电磁波(TDP)治疗器、皮肤消毒液等系列产品。公司销售网点覆盖国内所有省市及港澳台地区,并销往美国、加拿大、英国、德国、瑞士等30多个国家和地区。公司人员组织结构情况为,最顶层是总经理,其下设行政副总、经营副总、技术副总。各副总又分管其下相关部门。另外还设有X线机分公司。

通过对华伦公司的了解与实地参观实习,首先我从微观的层面上了解了一个医疗器械企业的基本构成及其与市场的各方面之间的联系。再者,从微观上升到宏观的高度,我不仅只了解该公司的运转情况,还必须了解整个医疗器械市场的情况。于是通过网络与书籍查找资料,结合与同学老师的讨论,对目前的医疗器械发展状况有了比较全面的认识。

一、2010年我国医械市场呈八大特点

我国医疗器械市场已跃升至世界第二位,首次突破1000亿元大关。尤其在多种中低端医疗器械产品方面,产量居世界第一。但高端产品仅占25%,中低端产品则占75%。这表明,我国医疗器械仍以技术含量较低的产品为主。

虽然如此,2010年我国医疗器械产业存在的问题仍不小,如小型企业数量太多(占90%左右)、多数厂家技术水平不高、缺乏新品开发投入,多数企业从事低端产品生产、靠低价在国际市场竞争,某些产品高度同质化等等。总之,我国医疗器械行业必须正视存在的问题,加大投入,开发国际国内市场急需的新产品,才能保持产业的有序发展和潜力。2010年我国医疗器械产业主要呈现以下特点:

市场首次突破1000亿

目前,我国医疗器械市场已跃升至世界第二位,仅次于美国。尤其在多种中低端医疗器械产品(如卫生材料、一次性医院耗材、输液器、B超、呼吸机、普通手术器械和激光类手术器械等)方面,我国的产量均居世界第一。据了解,去年我国出口数量较多的医疗器械产品主要是:电子和水银血压计、B超、CT、MRI、病员监护仪、一次性医院耗材(如输液器、输液泵、注射器、针头导管等产品)、按摩器械、医用敷料、手动轮椅及残疾人车等、其它类产品(如急救药箱、义齿材料、康复器械、助听器等)。

仍以低技术含量产品为主

2010年我国医疗器械市场的基本构成如下:高端产品仅占25%,而中低端产品则占75%。反观国际医疗器械市场,高端产品一般占55%的份额,中低端产品仅占45%。这表明,我国医疗器械市场仍以技术含量较低的产品为主。本土企业高端产品制造力不足,众 1

多企业长期从事低端产品加工出口业务所隐藏的巨大风险,长期依赖低原料价格、低人力成本走加工贸易之路,再也不能继续下去了。

自由贸易协定催热东盟市场

我国2010年对东盟出口医疗器械数量猛增。东盟国家大多只能生产一些初级产品(如乳胶手套、纱布药棉等卫生材料等),这就为我国中低端医疗器械产品进入东盟市场开启了大门。据有关方面报道,去年东盟业已成为我国第五大医疗器械产品出口市场。过去3年来,我国医疗器械产品对东盟出口的年增长率高达25%。此外我国的注射器质量已得到欧美发达国家的认可,但由于近几年来出口注射器数量增长过快。我国作为全球最大的一次性注射器生产国的地位已不可动摇。同时非洲成为一次性注射器潜力股。

高端诊断成像仪出口突破

从总体上分析,我国中小型医疗器械产品出口优势较大,而高档产品的出口数量小,但在黑白B超、彩色B超、国产CT机、X光机、MRI等一批高端诊断成像仪出口方面开始取得突破。我国高端医疗器械产品市场再也不是外资企业产品一统天下。

家用医械发展空间巨大

目前,家用医疗器械产品仅占国内医疗器械市场总销售额的14%。而在国外这一比例一般在25%左右。由此可见,我国家用医疗器械产品仍有巨大发展空间。监护设备掀起家用化变革,应加大力度研发用于便携式设备的新技术,以便病人能在舒适的家中检查生命体征,如心率、血压、血氧和呼吸速率等。

国产心血管支架受青睐

国产支架已在植入式支架这一高端器械产品市场上站稳脚跟。

骨科材料销量猛增

因为各地卫生部门和医院加强了医保费用控制,加上进口骨科材料价格太昂贵(通常为国产骨科材料的2~4倍),故越来越多病人主动选择国产骨科材料。

诊断试剂崭露头角

国产试剂开始在国内市场崭露头角,高端诊断试剂由进口产品一统天下的局面已被打破。

二、十类产品引领本世纪医械市场走向

21世纪最值得开发的医疗器械产品:

1.医用电子诊断成像仪

这类产品包括CT、PET、MRI、B超、吞服式内窥镜(又名胶囊型内窥镜)及其他产品。

2.新型给药器械

这类产品包括胰岛素笔、无针注射器和透皮药膜、输液泵等。在国外,新型给药器械业已发展成为一大类产品。我国在新型释药器械产品研发方面与发达国家相比差距较大,急需迎头赶上。

3.分子诊断设备

这类产品包括生物传感器、蛋白质基因组分析仪、纳米技术诊断产品等。近几年来,分子诊断设备在国外发展较快。

4.移动救护设备

移动救护设备已成为一种市场急需的医疗器械。开发适合航空器或火车以及野外使用的紧急救护设备很有必要。对这类产品的要求是,体积小巧、易操作和多功能等。

5.微创/无创伤型手术器械

目前国际市场销量最大的微创型器械产品首推血管支架。这类产品国外已开发出第三代产品。我国已开发上市自己的血管支架,某些产品在性能上并不逊于西方同类产品,但价格则便宜不少。减肥手术器械则是国外近年来大力开发的新型医疗器械。我国在减肥医疗器械研发上与欧美国家相比较落后。另一大类具有广阔发展前景的微创/无创伤手术器械产品是手术机器人。

6.微液与MEMS类器械

这类产品是发达国家在上世纪九十年代末才开发的一类新型医疗器械产品,其中包括袖珍医用压力传感器、生物芯片、蛋白质芯片等。这类产品在国外的开发势头十分强劲,我国在生物芯片和蛋白质芯片技术上已取得突破,并有相关产品问世。

7.无创伤检测仪

这类产品在西方国家开发上市较早。

8.新型生物材料

生物材料又称仿生材料,它也是西方国家正在大力开发的新型医疗器械产品。其中包括仿生人工肢体、仿生骨关节、生物水泥(骨水泥)、创伤包扎用新型卫生材料等。我国在这方面与发达国家相比差距较大。

9.电子生物植入器

这类产品已开发上市的主要有植入式电子耳蜗(人工耳蜗)、植入式尿失禁电刺激治疗仪、植入式癫痫治疗仪等。实际上,植入式电子生物治疗仪是一种袖珍电脉冲发生器,其体积通常只有一粒黄豆大小,它能发出特定波长的电脉冲信号,刺激病人体内某一部位的神经达到治疗作用。在国外已开发出多种相关产品。我国在电子耳蜗产品开发上已迈出第一步,但在植入式电子生物治疗仪研发上与西方发达国家仍有较大差距。

10.远程电子医疗产品

所谓电子医疗产品(telemedicines)系指利用现代无线通讯技术将医院诊断数据进行实时无线传输,并转化成可视图像的各种电子器械产品。

远程医疗系统业已在美国和欧洲(尤其地广人稀的北欧国家)得到广泛应用。

篇3:苏州科技城生物医学产业园

与此同时,医药产业园悄然兴起。在“中科院苏州生物医学工程与生物医药产业化基地”整体规划中,苏州科技城生物医学产业园成为重要的组成部分。根据项目独特的功能特征、发展方向和运作模式,整个园区将先后形成管理行政区、研发区、孵化区、生产区和配套服务区。本项目是其中首发的管理行政区,包括综合管理楼、标准中试实验楼及食堂,因其紧邻城市主干道这一特殊地理位置,不仅将成为整个产业园的门户,也将成为城市界面的重要组成部分。

园区标志—综合管理大楼

综合管理大楼是本项目的核心。建筑师有意识地将其安排在城市主干道的交叉口,成为整个园区重点打造的标志性建筑。在最初的构思中,建筑师沿采空区边界线形成天然45°分割的两幢大楼,并通过空中连廊形成有趣的互动。但由于采空区建设限制条件的改变,设计不得不将原结构退离采空区边界线15m以上,针对这一突如其来的变化,建筑师在保留了45°轴线概念的基础上,另辟蹊径,最终以一条“龙”的盘旋姿态将原来的两栋楼连成一体,并以一道让使用者几乎感觉不到的辅助轴线将整栋楼区分成以实验为主的1号楼和以参观为主的2号楼,两者互相贯通,各自拥有独立的出入口。

整个综合管理大楼立面采用了大面积的穿孔铝板、玻璃与石材相结合的幕墙,同时以苏州传统的云雷纹作为设计原点,在穿孔铝板上进行有节奏的开槽处理,不仅赋予建筑当地人文气质,也诠释了医学产业逻辑稳定而又充满张力的理性研发特征。景观化的食堂

从使用方便性而言,将服务于整个首发区的食堂置于园区的中心是一个合理的选择,但对园区的景观中心会造成一定的干扰。面对这个新的难题,建筑师巧妙地利用了食堂的大面积屋顶,将各种绿化植被覆于其上,并设置了一个动感飘逸的伞状张拉膜结构,不仅从造型上强化了景观中心的概念,也在功能上起到一定的遮阳作用。在这个“伞状雕塑”的下面,层层叠叠的花坛与台阶交错结合,情趣盎然,引导人们前往屋顶花园游赏休憩。如此,景观与建筑有机地融合在一起,也重拾了被现代人逐渐遗忘的“饭后散步”的传统健康生活观。

跳跃在严谨序列中的活力

建筑师在标准化模块的基础上对5幢标准中试实验楼分别进行设计,从而创造出细节互衬、整体和谐的建筑群体。9m×9m的柱网系统形成可灵活调节的平面布局,以满足不同试验规模的需求。同时,通过模数化的错位叠加、对标准立面模块的复制,营造出井然有序、简洁明快的建筑风格,以契合医药产业园理性、严谨的气质。

尤其值得一提的是其中的5号实验楼,因其正好位于园区主要人流来向的一侧,为了在第一时间给来访者一个惊喜或震撼,建筑师在其造型及用材上都作了更加差异化的处理。以大面积锈蚀钢板为“基地”,以透明玻璃幕墙为“束腰”,使其如同一个独具漂浮感的四方形“盒子”映入人们的眼帘。同时,建筑师又在首当其冲的位置上安排了一个造型独特的室外钢楼梯。此楼梯以立方体为基本元素,通过前后错位叠置的方式,形成极具视觉冲击力的雕塑效果,使5号楼成为最具标识性的实验楼。

篇4:对我国生物医学工程产业的分析

[关键词] 生物医学工程 产业 必要性

一、国外生物医学工程产业现状概述

生物医学工程(是理、工、医结合的边缘学科,是多种工程学科向生物医学领域渗透的产物)产业是目前全球发展最快、贸易往来最活跃的产业之一。根据美国医疗卫生工业制造商协会(HIMA)的报道,世界医疗器械市场容量近年来连续以6%~7%的速度增长,1993年~1999年5年内,由929亿美元增加到1570亿美元,而2000年则达到2000亿美元,2005年全球医疗器械销售额达到了2500亿美元。全球范围内,BME产业的主要生产地在美国、欧洲和日本,美国是最大的生产、使用和出口国,其次是日本、德国和法国。美国专利局每年批准 BME专利达四五千件,并按年8%的速度增长,而且每年都有数千种新产品投入市场,高技术密集型产品层出不穷。20世纪90年代以来,日本的BME 产业发展速度也很快,年销售额增长率高于美国,达10%。日本制造的BME产品,安全性和可靠度很高,在世界市场上占有很高的比例,法国政府和医疗器械技术工业组织借助于国际市场出口技术和产品,出口额达医疗器械销售额的30%,并稳步增长,成为世界第四个医疗器械产业大国。BME产业在保障民众的身体健康和提高生存质量方面发挥着越来越大的作用,不久的将来,BME产业会形成国际间的大发展。全球范围内,BME产业的主要产地在美国、欧洲和日本,美国是最大的生产、使用和出口国,其次是日本、德国和法国。

二、我国生物医学工程产业现状

我国BME产业发展现状总体上与国际先进水平还有10年以上的差距,但是,随着电子技术、计算机技术与生物材料科学的发展及生物医学工程学科的兴起,我国BME工业获得了进一步发展的理论基础和技术源泉,从而带动了整个产业的技术进步和创新发展,走上BME科技产业的道路。从当前整个医疗器械国际市场的分配格局看,美国占40%,欧洲占30%,日本占15%~18%,而我国目前仅占2%,所以,中国需要后来者居上,扩大我们的市场份额。

1.产业结构

目前,全国有医疗器械生产企业6626家,专营企业约3500家。在这些企业中,涉及精密型医疗器械制造的企业约占60%,其中中外合资企业约40家,国外独资企业约100家;从业人数达到近30万人,构成了一个跨部门、多学科的新兴产业群。

(1)大中型企业是产业的主力军,但小型企业数量居多。根据国家统计局第一次全国基本单位普查,2891家医疗器械产业中,大型企业(固定资产投资8000万元以上)为18家,占0.6%;中型企业51家,占1.8%;小型企业2822家(1000万元以下),占97.6%。

(2)多种所有制企业及新兴的企业不断出现,使产业格局发生了质的变化。越来越多的军工转轨企业、科研单位和优秀科技人员投入BME产业中,由于改革开放,吸引了更多的外商到中国办企业,并将生产技术和产品引进我国。

(3)BME產业重点区域向沿海地区倾斜和延伸。20世纪80~90年代,全国BME产业总产值的80%被上海、北京、天津所占有,但20世纪90年代以后,上海、天津所占有份额有所下降,取而代之的是广东、江苏、浙江、山东、辽宁、上海和北京等省市,约占全国BME产业总产值的85%。

2.产品结构

我国目前已能生产包括医用电子仪器、光学仪器、超声仪器、激光仪器、放射仪器、医学影像设备等在内的47大门类,5000余个品种,3万个规格的产品,而且随着科学技术的发展还在出现新的门类。其特点是:(1)多层次的医疗装备市场,决定了多层次的产品结构;(2)产品门类基本齐全,同水平重复现象严重,未形成自己的品牌;(3)科学技术的发展和高新技术产品的涌现促进产品结构调整;(4)科技队伍壮大,人才聚集。

3.生物医学工程产业对我国社会发展的重要作用

虽然目前我国BME产业经济收入还不很大,总产值占医药工业的10%,不到全球销售额的2%,且我国BME产业技术水平与国外相比差距还很大。但近年来工业总产值、销售收入的增长速度很快,年增长率甚至超过某些发达国家。在国家扶植下发展新兴企业和企业集团,更多地采用新技术、新工业、新材料,BME产业必将成为我国国民经济发展中的重要产业。近年来我国BME产品层出不穷,每一个产品的出现都会引起国外厂商的震动,甚至降低进口产品的价格。所以,发展中国的生物医学工程产品,保护民族工业,抑制进口产品占领中国市场,BME产业将发挥着重要作用。

三、加快发展我国生物医学工程产业的必要性

1. 我国BME产品档次低,贸易逆差巨大

根据全国医保商会提供的数据,我国2000年医疗器械出口6.63亿美元,其中大部分是低档产品,大部分是高档产品,如核磁共振成像装置、X光发射器等,进口医疗器械11.23亿美元,出口额与进口额相比实现贸易逆差4.60亿美元。另据统计,我国90%的心电图机、80%的中高档监护设备和100%的高档成像设备及全自动分析仪等都是国外产品。因此,加快我国BME产业的发展已是关系到国计民生的大事。

2.我国人口众多,BME产品需求量大

随着社会的发展与进步,人民生活水平的不断提高,人们对生存质量和医疗保健越来越重视,因此,对BME产品的依赖性也越来越大。在发达国家,目前药品与BME产品的市场销售比例为1∶1,国际平均水平为1.9∶1,而我国的BME产品的销售却不及药品的五分之一。因此,我国的BME产业具有广阔的发展空间和巨大的潜在市场,到2010年预计为1200亿元。

3.我国加入WTO之后面临的严峻挑战

我国加入WTO后,经济全球化的发展将进一步冲击我国的BME产品市场,民族BME产业的发展将面临更加严峻的挑战。由于我国对医疗器械进口关税的不断降低,必须引导大型企业集团调整产业结构,组织力量研制开发高质量的BME产品,培育新兴的BME产业,已是刻不容缓。

四、我国生物医学工程产业未来发展对策

我国科技部已将该产业作为国民经济的一个新的增长点,制定了“十五” 计划和2015年前“生物医学科技产业行动纲要”,提出了发展战略目标,将该产业形成新兴产业,使其年增长率保持在15%~20%,2005年总产值达到了500亿元,2005年全球医疗器械销售额达到了2500亿,2015年总产值达1100亿~1300亿元,2010年我国医疗器械总产值将增加1000亿元, 占全球市场份额的5%,2050年我国医疗器械总产值将占全球份额25%,我国将成为世界一流的医疗器械制造强国.。我国生物医学工程产业的未来发展对策应是:

1.加强政府的政策引导和扶植,制定科学的产业政策

国家和地方政府应不断制定和完善有关政策、法规,保障BME 产业的持续、健康发展,形成新经济增长点和支柱产业;加快技术交易市场的建立和完善,为科技成果的转让提供条件;根据需求促进国产化BME产品的发展。

2.资金保障

加大对BME产业的资金投入,并使有限的科研基金起到催化剂的作用,引导BME技术研究的发展,对于BME 高新技术企业给予融资便利和税收优惠;积极吸引外资,加快我国BME 的产业化进程。

3.以企业为主体,加快科技成果的转化

在技术进步主要是服务于商业竞争目的的情况下,企业应成为产业发展的主体,把科技创新优势、产品技术优势、市场营销优势、经营管理优势和企业的社会资源充分整合起来。

4.构建BME产业技术创新体系

以企业为技术创新主体,充分发挥科研院所、大专院校的技术创新骨干作用,实行产、学、研结合,组织学科齐全、队伍精干、人材结构合理的BME科研和新产品开发队伍,构建开发有自主知识产权的BME高新技术产品。

5.加强对外合作与交流

积极参加国际间的技术交流与合作,学习国外先进的技术和管理经验,及时掌握BME技术在国际上发展前沿状况和趋势。积极引进、消化、吸收国外先进技术,强化“产品国际化.意识,在新产品开发上要和国际接轨,增强我国BME产品的竞争力,缩小与发达国家之间的差距。

6.大力引进、培养人才

篇5:生物医学工程产业调查

摘 要: 生物医学工程(BME)是当代最受重视、最具吸引力的高科技领域之一。我国的BME技术及产业 与世界先进水平相比尚存在着很大差距,国内市场处于被西方发达国家垄断、瓜分的状态,产 品贸易逆差巨大。在发达国家跨国公司的强力冲击下,我国BME产业在21世纪初面临着严重的 生存危机。当前,国内在技术标准、贷款担保、进口税收等方面的滞后政策,很大程度上制约 了我国BME产业的发展进程。因此,迫切需要比照发达国家经验,找出国内相关政策存在的缺 陷,有针对性地提出扶持政策,以便抓住机遇,实现我国BME产业的跨越式发展。 关 键 词:生物医学工程;政策缺陷;政策制定

生物医学工程(bio-medical engineering,简称BME)是理、工、医相结合的边缘学科,是多 种工程学科向生物医学领域渗透的产物。它运用现代自然科学和工程技术的原理与方法,从 工程学的角度,在多种资源上研究生物体,特别是人体的结构、功能及其他生命现象,研究和 开发用于防病治病、人体功能辅助及卫生保健的人工材料、制品装置、系统和工程技术。BM E是当代最受重视、最具吸引力的高科技领域之一。美国国家研究委员会于1987年发表的“ 美国生物与工程系统研究”专门报告中,提出了11个领域作为当前生物工程研究的重要领域, 其中除三个属生物技术外,其余八个均属生物医学工程。BME技术及产业是知识密集、资金密 集、多学科交叉、竞争挑战激烈的高科技领域,并与诸多高新技术产业有密切关联,能够有效 地带动嵌入式软件、集成电路、新材料等产业的发展。它是一个国家先进制造业和高科技尖 端水平的标志之一。最近几年,BME产品的国际贸易额每年以25%的速度增长,销售利润达40% ~50%[1],被认为是21世纪最活跃的新经济增长点和最被看好的朝阳产业。

一、我国BME产业的市场潜力与发展现状

以来,中国BME市场成为继美国和日本之后世界第三大市场,并且在以每年14%左右的速 度增长[2]。制药业和生物医学工程是当代健康产业的两大支柱,在20世纪90年代, 以美国为代表的发达国家BME产业与制药业的销售额比例已经达到1∶1,而在我国目前这个比 例为?1∶6[3],?这也预示着我国BME产业具有广阔的发展空间和巨大的潜在市场 。

但令人忧虑的是,我国的BME技术及产业与世界先进水平相比,存在着非常大的差距,主要产品 的技术水平与世界先进水平相差近[4]。从市场总量看,国内有近70%的医疗器 械市场已被发达国家的公司瓜分;在高档医疗设备市场,更呈现出进口产品几乎独霸天下 的局面,其中以GE、西门子和飞利浦三大医疗集团为突出代表[5-6]。业内人士透 露,我国医院90%的心电图机、80%的中高档监护设备和将近100%的高档成像设备都是舶来 品[7]。近年来,我国BME产品贸易逆差巨大且呈逐年增加的态势。

据不完全统计,仅美国一国生产的BME产品就占了全世界总量的40%以上,欧洲占了30%左右,日 本占了15%~18%,加起来几乎垄断了世界市场。而中国BME产品总产值仅占世界总销售额的2% [8]。

篇6:生物医学工程简历

性别:男

民族:壮族

最终学历:本科生毕业

毕业学校:中南民族大学

出生年月:1983年1月7日

毕业时间:秋

学院:电子信息工程学院

专业:生物医学工程

政治面貌:中国共产主义青年团员

身高:169cm健康状况:良好生源地:广西

固定电话:

移动电话:

联系地址:

英语等级:熟练其它外语及掌握程度:

计算机能力:

1.熟悉Windows 98//XP操作系统平台,能熟练使用Microsoft Office办公件如World、Excel、PowerPoint等;

2.熟练掌握C/C++语言编程,能熟练应用相关工具Turbo C 2.0、Visual C++ 6.0a进行应用程序和数据库系统的开发;

3.熟悉SQL语言,熟悉SQL Server2000数据库,能熟练应用C++ Builder 6.0和SQL Server2000构建C/S结构数据库系统,有数据库系统设计方面的应用

程序开发经验;

4.熟悉软件工程思想,了解网络原理知识并熟悉网络协议TCP/IP协议;

5.对计算机硬件有相当的了解,可以独立完成机子的.装拆和维修,及系统的安装;能解决一般的软件、硬件问题.

个人爱好:体育运动、文艺活动等.

特殊技能:

获奖及成果:第三届“挑战杯”湖北省大学生创业计划大赛银奖

校数学竞赛3等奖

社会活动(包括个人任职情况):

1.从209月至今,担任中南民族大学电子信息工程学院级9班生活委员,兼本班团支部书记,成功协调和组织班内同学开展各项集体活动,有效促进了班内同学之间的交流,并成功组织班内同学开展各项集体活动,协助辅导员老师成功开展学生工作,组织班内同学参加党校学习,协助年级分团委、年级党支部考察入党积极分子等。

2.在4月到206月期间,参加了第三届“挑战杯”湖北省大学生创业计划大赛,在团队中负责市场营销部分,并在武汉市内进行了相关的市场调查。

篇7:生物医学工程论文

关键字:学科概论、生物材料、医学影像学、生物信息学、发展与展望

生物医学工程是一门由理、工、医相结合的边缘学科,是多种工程学科向生物医学渗透的产物。它是运用现代自然科学和工程技术的原理和方法,从工程学的角度,在多层次上研究人体的结构、功能及其相互关系,揭示其生命现象,为防病、治病提供新的技术手段的一门综合性、高技术的学科。有识之士认为,在新世纪随着自然科学的不断发展,生物医学工程的发展前景不可估量。生物医学工程学科是一门高度综合的交叉学科,这是它最大的特点。它综合工程学、生物学和医学的理论和方法,在各层次上研究人体系统的状态变化,并运用工程技术手段去控制这类变化,其目的是解决医学中的有关问题,保障人类健康,为疾病的预防、诊断、治疗和康复服务。它有一个分支是生物信息、化学生物学等方面主要攻读生物、计算机信息技术和仪器分析化学等,微流控芯片技术的发展,为医疗诊断和药物筛选,以及个性化、转化医学提供了生物医学工程新的技术前景,化学生物学、计算生物学和微流控技术生物芯片是系统生物技术,从而与系统生物工程将走向统一的未来。

生物医学工程兴起于20世纪50年代,它与医学工程和生物技术有着十分密切的关系,而且发展非常迅速,成为世界各国竞争的主要领域之一。生物医学工程学与其他学科一样,其发展也是由科技、社会、经济诸因素所决定的。这个名词最早出现在美国。1958年在美国成立了国际医学电子学联合会,1965年该组织改称国际医学和生物工程联合会,后来成为国际生物医学工程学会。生物医学工程学除了具有很好的社会效益外,还有很好的经济效益,前景非常广阔,是目前各国争相发展的高技术之一。以1984年为例,美国生物医学工程和系统的市场规模约为110亿美元。美国科学院估计,到2000年其产值预计可达400~1000亿美元。生物医学工程学是在电子学、微电子学、现代计算机技术,化学、高分子化学、力学、近代物理学、光学、射线技术、精密机械和近代高技术发展的基础上,在与医学结合的条件下发展起来的。它的发展过程与世界高技术的发展密切相关,同时它采用了几乎所有的高技术成果,如航天技术、微电子技术等。

生物医学工程因为是一门综合学科,所以其学科内容十分的丰富。其涉及生物力学、生物控制论、生物效应、生物材料、医学影像、介入放射学和生物磁成像等方面,所以对于生物医学工程的学生来说以后就业的方向也是多种多样的。下面就接着介绍生物医学工程的学科内容。

首先,说一说生物材料。生物材料的定义很多, 归纳起来可理解为生物材料是一类用于人工器官、修复、理疗康复、诊断、检查、治疗疾病等医疗保健领域, 对人体组织、血液不致产生不良影响的功能材料。生物材料的发展已经有非常长的历史, 自人类认识了解材料起, 就有了生物材料端倪。早在公元前3500 年, 古埃及人就利用棉花纤维、马鬃做缝合线;16 世纪开始用黄金板修复颚骨, 陶材做齿根;用金属固定内骨板以及用金属种植牙齿等。随着医学以及材料学的发展, 尤其是新型材料的研究开发成功, 如20 世纪40 年代高分子材料的大力发展, 为生物材料的研究与应用提供了极大的发展机会。目前可以说从人体天灵盖到脚趾骨、从内脏到皮肤, 从血液到五官, 除了脑以及大多数内分泌器官外, 都可用人工器官来代替。医学水平的提高以及人类生活质量的改善, 也促进了生物材料的发展。根据发展水平和产业化状况, 把生物材料分为三个发展阶段:

一、惰性生物材料, 即材料与组织细胞无界面作用;

二、生物材料的生物化, 即材料与组织细胞亲和性改善, 关注界面间的相互作用;

三、组织工程支架材料, 不仅关注材料与组织细胞的亲和性, 还关注材料本身的成型、力学性能和降解能力。下面分别说说这三个阶段生物材料的研究状况和发展前景。

惰性生物材料是指对人体组织化学惰性,其物理机械和功能特性与组织匹配,使材料在应用过程中不致产生不利于功能发挥和对其它组织影响的反应, 特别是与组织接触或短(长)时间不产生炎症或凝血现象,无急性毒性或刺激反应,一般无补体激活产生的免疫反应的一类功能材料,这类材料的应用基于对材料本身性能的全面了解,是人类最早、最广泛应用的生物材料。随着医学水平的提高以及人们生活质量的改善,惰性生物材料的应用会向更高层次生物化或组织工程化生物材料过渡。但就目前商品化和普及应用水平看,尤其是医学的目的从治病救人转轨到预防保健过程中,需要大量常用人工器官和生物材料为主体的医疗器械,使惰性生物材料在相当长一段时间内占统治地位是研究开发的重点.生物材料的生物化,随着材料科学、医学的发展, 以及先进仪器设备的发明, 带动了生物材料的发展。集中表现在发现新型生物材料, 以及更多关注惰性生物材料所制成的人工器官和医疗器械在使用过程中与组织或血液产生的界面反应。新型生物材料有代表性的成果是20 世纪70 年代发现的钙磷系玻璃陶瓷, 如羟基磷灰石、B-磷酸三钙、珊瑚等。这类材料具有与人体骨组织的无机成分有类似的化学组成, 材料抗压、抗折强度与人骨接近, 植入后与组织亲和性良好, 同时有降解作用并诱导成骨细胞(加诱导因子如BMP)的长入, 使植入组织骨化, 一段时间后植入组织转化为正常组织等特点, 也即材料在使用过程中逐渐生物化。组织工程支架材料,材料生物化毕竟不能改变材料的基本结构。这为材料的长期使用留下隐患,同时器官(尤其是组织)是一个复杂的系统,不可能用单一无活性的材料来模仿其全部或大部分功能。因此在器官(或组织)供体来源非常有限的情况下,如何在体外培养出正常的组织供手术使用,是医学界和生物医学工程学界追求的目标之一。组织工程的出现和发展为这一目标的实现提供了可能。组织工程是近十年发展起来的一门新兴学科,它是应用生命科学和工程的原理与方法,研究、开发用于修复、增进或改善人体各种组织或器官损伤后功能和形态的新学科,作为生物医学工程的一个重要分支,是继细胞生物学和分子生物学之后,生命科学发展史上又一个新的里程碑。组织工程的关键是构建细胞和生物材料的三维空间复合体,该结构是细胞获取营养、气体交换、废物排泄和生长代谢的场所,是新的具有形态和功能的组织、器官的基础。生物材料在组织工程中占据非常重要的地位。同时组织工程也为生物材料出了难题和提供了发展方向,那么组织工程用生物材料(支架材料)应具备哪些性能呢? 首先是无毒,具有良好的生物相容性和组织相容性;其次是可降解吸收,在组织形成过程中材料降解并被吸收。具有可加工性,尤其是能形成三维结构并有较大的孔隙率,以便进行营养物质传输、气体交换、废物排泄;使细胞按一定形状生长,良好材料细胞界面,利于细胞黏附、增殖、激活细胞特异基因表达等。目前应用于组织工程研究的生物材料为可降解性天然或合成高分子材料,无机陶瓷或玻璃、珊瑚等。

其次,医学影像学也是其中非常重要的一个学科。医学影像是临床诊断疾病的主要手段之一,也是世界上开发科研的重点课题。医用影像设备主要采用 X射线、超声、放射性核素磁共振等进行成像。医学影像学的发展受益于现代计算机技术的突飞猛进,其与图像处理,计算机视觉,模式识别技术的结合产生了一个新的计算机技术分支--医学图像处理。

X射线成像装置主要有大型X射线机组、X射线数字减影(DSA)装置、电子计算机X射线断层成像装置(CT);超声成像装置有B型超声检查、彩色超声多普勒检查等装置;放射性核素成像设备主要有γ照相机、单光子发射计算机断层成像装置和正电子发射计算机断层成像装置等;磁成像设备有共振断层成像装置;此外还有红外线成像和正在兴起的阻抗成像技术等。

超声波成像是利用人体内的波散射、组织运动、流体灌注、组织弹性和人体的血液所产生的实时影像。目前在临床诊断上已得到广泛应用。但存在信号提取和处理的复杂性以及在影像空间分辨率上的局限性问题。因此, 研究者在寻找新的超声波成像方法,弹性图像造影便是一种新的方法。

过去, 磁共振成像(MRI)在临床医学中发挥了重要作用, 对软组织成像有着明显的优势。今后, 磁共振的两个扩展方向是功能性磁共振(Funct io nal MRI ,fM RI)和磁共振波谱学(M agnet ic ResonanceS pect roscolo y, MRS)。fMR I 的价值主要在通过血氧含量绘制人体的脑皮层功能图, 通过这种技术, 人的神经对不同刺激, 如说话、视觉和听觉的感应图可以绘制出来。

还有就是生物信息学方面,生物医学信息学可理解为医学信息学(Medical Informatics)和生物信息学(Bioinformatics)的结合。医学信息学是一个利用计算机和信息技术进行医学信息交换、理解和管理的领域,其最终目的是在合适的时机和场所为医学临床决策提供支持,涵盖了所有与医学数据和知识应用相关的数据结构、算法及系统研究,包括基于生物医学信号处理、医学成像及图像处理等方法提供临床诊疗支持,面向各类医疗仪器和设备的数据采集、传输、管理和应用,以及以患者为中心的各类医疗信息系统等。当前该领域的研究重点是电子健康档案(或称电子病历),通过解决个体综合医疗健康数据的生成、融合、存储、传输、管理和利用,实现医疗卫生健康的高质量和低成本。目前很多国家和地区均已制定了长期的国家计划进行全民电子健康档案的建设。生物信息学伴随基因组学的研究而产生,主要研究分子级别的生物医学信息的储存、检索和利用。进入后基因组时代后,对基因型和表型关系的阐述成为其研究重点,近年来各类研究成果逐渐走入临床应用(如生物芯片等)。生物信息学和医学信息学的边界趋于模糊,互相渗透和结合的趋势明显。广义上,生物医学信息学可定义为与医疗服务、生物医学、公共卫生等领域中信息和知识的集成、管理和利用相关的,理论与实践研究相结合的交叉性学科领域。

以上就是我对生物医学工程这个学科的一些了解,接下来就谈谈我对生物医学工程这个学科的一些认识,并且谈一下自己对这个学科的展望。

从生物医学工程崛起都现在,生物医学工程已经深入于医学, 从临床医学到医学基础, 并深刻地改变了医学本身, 而且预示着医学变革的方向。可以说, 没有生物医学工程就没有医学的今天。另一方面, 生物医学工程的兴起和发展不仅推动了医疗器械产业的发展, 而且使它发生了质的改变, 最根本的是, 把人和医疗装置看作是一个系统整体, 强调其间的相互作用, 进而用系统工程的观念研究发展所需要的医疗装置, 实现预定的医疗目的。作为一门工程科学, 生物医学工程学科的发展不能单纯追求科学技术先进性, 更不能盲目地以市场为导向。因为, 市场是少数利益集团利用社会心理定势, 扭曲、放大实际需求的炒作、操作结果。生物医学工程的发展应当也必须以医疗费用控制、医学可持续发展为前提。因而, 作为社会健康保障体系的技术支撑, 21 世纪的生物医学工程学科必然是科学技术和人文的有机结合体。

纵观医学新技术诞生和发展的 历史,从伦琴发现X线到今天X射线诊疗技术的发展,从朗兹万发现超声波到今天B超诊断的 广泛应用,从布洛赫和伯塞尔发现核磁共振到今天MRI的问世,从赫斯费尔德发明CT到今天CT成像系统的应用,都是以物理学工程技术为基础、医学需求为前提发展起来的医学新技术。循着20世纪医学发展的轨迹,我们有理由预测21世纪新的医学诊疗技术可能在以下10个方 面有重大突破和创新:

(1)各种诊疗仪器、实验装置趋向计算机化、智能化,远程医疗信 息网络化,诊疗用机器人将被广泛应用。

(2)介入性微创,无创诊疗技术在临床医疗中占有越来越重要的地位。激光技术,纳米技术 和植入型超微机器人将在医疗各领域里发挥重要作用。

(3)医疗实践发现单一形态影像诊查仪器不能满足疾病早期诊断的需要。随着PET的问世和应 用,形态和功能相结合的新型检测系统将有大发展。非影像增显剂型心血管、脑血管影像诊 查系统将在21世纪问世。

(4)生物材料和组织工程将有较大发展,生物机械结合型、生物型人工器官将有新突破,人工器官将在临床医疗中广泛应用。

(5)材料和药物相结合的新型给药技术和装置将有很大发展,植入型药物长效缓释材料,药 物贴覆透入材料,促上皮、组织生长可降解材料,可逆抗生育绝育材料、生物止血材料将有 新突破。

(6)未来医疗将由治疗型为主向预防保健型医疗模式转变。为此,用于社区、家庭、个人医 疗保健诊疗仪器,康复保健装置,以及微型健康自我监测医疗器械和用品将有广泛需求和应用。

(7)除继续努力加强生物源性疾病防治外,对精神、心理、社会源性疾病的防治诊疗技术和 相应仪器设备的研制受到越来越多的重视与开发,研制精神分析、心理安抚、生物反馈型诊 疗技术和设备将是生物医学工程的新起点。

(8)创伤是造成青年人群死亡的主要原因,研制新型创伤防护装置、生命急救系统是未来生 物医学工程的重要课题。

(9)即将迎来的21世纪是分子生物学时代,有关分子生物学的诊疗新技术将快速发展,遗传、疾病基因诊疗技术,生物技术和微电子技术相结合的DNA芯片、雪白芯片和诊疗系统将被 广泛应用。

(10)空气污染、环境污染严重危害着人类健康,研究和开发劳动保护、家庭保健、个人防护 用的人工气候微环境是未来不能忽视的问题。

综上,我想说的就是生物医学工程涉及十分的广泛,将来我们出来也会有很多的选择,但是我们想要找到好的工作还得靠自己好好的努力学习,争取学好、学精自己的专业,并且有能力的还可以考研去更加深入的学习自己的专业。

参考文献:

[1] 杨玉星 生物医学工程的研究与应用 [2] 《生物医学工程概论》

[3] 悟进.医学图像处理:从基础理论到解决实际问题[J ].中国

卫生画报,2006 ,(106):28100.[8] 袁力,赵遵强,袁聿德,等.高等医学影像教育课程设置改革[J ].医学影像

学杂志,2003 ,13(5):37359.[10] 熊荣生.我国高职教育校企合作现存问

题分析[J].教育与职业,2008(2).[11] 顾汉卿, 徐国风.生物医学材料学[M].天津: 天津科技翻译出版公司, 1993.[12] 赵于前,汤井田,等*从交叉学科的角度谈生物医学工程教育改革*医

疗卫生装备,2004(6)[13] 汤顺清, 周长忍, 邹 翰 生物材料的发展现状与展望(综述)2000(10)[14] 973 项目综合与交叉领域重要临床医学信息处理的关键科 学问题研究(2003CB716100 [15] 生物医学材料现状和发展对策研讨会论文集.1997 [16] 杨子彬。发展中的生物医学工程[J]北京工业大学 学报1988年12月

[17] 胡兴斌。浅谈生物医学工程的现状及前景[J]医疗 卫生装备2004年第9期

[18] 陶祖莱.生物医学工程学科发展报告(2006-2007)[M].北

京:中国科学技术出版社,2007.[19] C M E 2 0 0 7 第二届国际复合医学工程学术大会报告

篇8:生物医学工程产业调查

生物医学工程崛起于20世纪50年代初,1967年,美国大学开始有计划培养专门研究人员。70年代初期,美多所大学相继开设生物医学工程本科专业,到目前全美共有60余所大学生物医学工程本科专业获美国工程技术认定委员会(ABET)的认定,获得授予学士学位资格。我国生物医学工程专业本科教育始于20世纪70年代末,经历40余年发展,现已有120多所高校开办生物医学工程专业本、专科教育,其中90多所是综合性或理工类院校,30多所是单科性医科院校。

特色专业建设点是国家质量工程建设的主要项目。2007年至2010年,教育部、财政部先后分7批在全国本科高校立项建设3376个特色专业建设点(涉及专业310个)。其中,清华大学、浙江大学、南方医科大学、上海交通大学、首都医科大学、东南大学、东北大学(自筹)、湖北科技学院、西安交通大学、天津大学10所高校生物医学工程专业被列为特色专业建设点[1]。

本研究以普通院校和国家级生物医学工程特色专业院校为研究对象,比较其课程体系,分析差异与差距,寻求课程体系改革与优化结构切入点,提高生物医学工程专业建设与人才培养水平。

1 生物医学工程专业研究对象的选择与研究方法

1.1 研究对象选择

搜集分析各高校生物医学工程专业培养方案,所有院校课程体系结构均包括人文社科类、医学基础类、理工基础类课程、工程类核心课程。一般来说,综合性或理工类高校偏向于电子信息、计算机等理工方向,医科类高校侧重于生物材料与生物力学、影像工程、医学物理、医学仪器等领域。具体研究对象在普通院校中选择综合性院校湖北科技学院,在特色专业建设高校中,以南方医科大学为主,兼顾与其它特殊专业高校的对比,以求分析全面,得到多方面启发。

1.2 研究资料主要来源

湖北科技学院研究资料主要来源于原咸宁学院教务处编印的本科人才培养方案(2009年应用版)、学院主页及其它查询调研;南方医科大学研究资料来源于该校生物医学工程学院提供的专业培养方案电子版,该校质量工程建设点主页。

1.3 主要研究方法

基本研究方法参照作者前期生物医学工程专业课程体系研究的思路[2],采用系统研究法、比较法、统计分析法对院校专业、课程设置多维度要素、多质点进行比较分析,寻找特点及规律,发现问题。

2 2校专业培养目标与就业方向比较

2.1 南方医科大学(以下简称南医大)

生物医学工程专业本科有医学影像工程、医学信息工程、医学仪器检测、医学物理、电子信息工程和计算机科学与技术6个专业方向,另有“卓越工程师培养计划”。2007年获教育部高等学校第一类特色专业建设点,并建设有国家级精品课程1门、省级精品课程和研究生示范课程多门,出版国家级教材多部,多次获广东省教学成果奖。

2.2 湖北科技学院(以下简称湖科院)

生物医学工程专业本科包括医学仪器、医学影像工程、医学物理、医学信息工程、听力学、眼视光学(注:眼视光学、听力学等方向没有正式纳入人才培养计划实施)6个培养方向。2007年生物医学工程专业获省级品牌专业,2009年获教育部财政部高等学校第一类特色专业建设点,并建设有3门校级精品课程,2012年生物医学工程专业(医学信息工程方向)被列入湖北省战略性新兴(支柱)产业人才培养计划项目。近年出版医用传感器、医学影像设备、医学物理学、医疗器械营销实务等多部国家级规划教材,多次获得湖北省教育厅、市级教学成果奖。

2.3 专业培养目标及就业方向

南医大培养目标为德、智、体、美全面发展,具有扎实的生物医学工程、医学电子、信息、计算机和一定的医学理论和方法基础,拥有生物医学工程领域专业实践能力,培养能综合应用所学知识解决实际问题、具有工程实践开发能力的卓越工程人才。就业方向:毕业生可从事医疗仪器研制与开发、生物信息处理、电子及计算机技术等领域系统的设计、开发和维护,或从事相关行业的系统开发组织与管理工作。

湖科院培养目标:培养德、智、体、美全面发展,具备生命科学、成像系统与成像技术、其它电子技术、计算机技术及信息科学有关的基础理论知识以及医学与工程技术相结合的科学研究能力,能在医疗卫生保健机构、生物医学工程研究机构以及其它电子技术、计算机技术、信息产业等相关部门从事研究、开发、医疗、教学及管理的高级工程技术人才。就业去向:主要是综合性医院或其它医疗卫生保健机构的放射科、设备科、核医学科;医学影像设备生产企业、研发机构;在医院多部门从事医疗仪器、设备使用维护与维修。

2校生物医学工程专业医学影像工程方向的专业课程培养目标及学生就业方向相近,使本研究具有可比性。

3 课程体系比较与分析

3.1 专业课程体系性质与层次比较

南医大主干核心课程群:理学类课程、生物学和医学类课程、计算机类课程、信息科学、影像技术类。教学特色课程是高等数学、大学物理、电路分析基础、电子技术基础、计算机程序设计、信息与系统、微机原理与应用、数字信息与处理、医用传感器、生物医学信息预处理、医学电子仪器原理、医用X线机原理、CT成像原理与技术、MR原理与技术、医学电子与数字化医学影像技术等。

湖科院主干学科与核心课程:基础医学、电子信息类,核心特色课程有高等数学、普通物理学、基础医学概论、临床医学概论、模拟电子技术、数字电子技术、微机原理与接口技术、数字信号处理、医学图像处理、医学成像系统、放射肿瘤学、核医学、放射物理与防护、医学影像学、超声医学仪器、医用传感器、放疗与核医学仪器、CT原理及设备、磁共振成像原理及设备、医用加速器原理及设备等。

从课程结构看,南医大课程结构由政治理论与人文素质课程、公共基础课程、学科基础课程、专业课程四段式课程构成。公共基础课程只开设必修课外,其它每段课程均开设必修课、选修课,段内必修课与选修课交织在一起,显示层次与结构清晰,课程教学内容呈螺旋阶梯式上升,以循环加深的方式设计教学内容,有体现知识内容再现与复认的优点。而湖科院课程结构是由通识教育课程、学科基础课程和专业课程三段式五层次课程结构组成。学科基础课程没开设选修课,通识教育课程、专业课程均开设必修课、选修课二层次。课程教学内容呈直线式上升式,以直线加深的方式设计教学内容,强调知识阶梯,先学为后学知识定基础,也是比较传统课程体系。

再从部分课程分析看,南医大没有开设医用化学课,表明该专业偏离生物或高分子材料类的发展方向,专业口径相应来说较窄;把计算机程序设计等计算机类课程作为学科基础课纳入核心课程群、教学特色课程是为数不多的院校,C语言与程序设计在多数高校作为通识教育课来开设。将高等数学、大学物理学列入公共基础课程,可能是因为该校属于医科院校将其列入所有专业的公共课之故。此外,南医大公共基础课程没开选修课,湖科院是学科基础课程没开选修课。意味着在公共基础课、学科基础课段建立大一统具有相对稳定性的课程教育平台特征,2校均显大基础、宽口径、后分流的人才培养模式选择与创新,适合于拓展专业培养方向,更能体现出平台相对稳定、口径宽。

3.2 课程体系教学课时配备的比较分析

3.2.1专业课程总学分、总学时、理论课与实验学时比例比较南医大课程体系结构分为政治理论与人文素质课程、公共基础课、学科基础课、专业课四段式课程构架模式。课程总学分/总学时为144.5/2548学时,理论课与实验实践学时比例为2199:469/1:0.21(见表1)。(资料数据来源于生物医学工程专业人才培养方案,2011年电子版。由南方医科大学生物医学工程学院提供。)

湖科院课程体系分为公共基础、专业基础、专业课三段式,加专业限选课、专业任选课二段共五层次课程构架模式。课程中总学分/总学时为155学分/2700学时,理论课与实验实践学时比例为2072:628、1:0.30(见表2)。

注:表中括号数据为专选课学分、学时,不含公选课学时学分。

注:总学分不含课外实践的55学分,专业任选课实践学时未列入计算。

2院校生物医学工程专业课程总学分/总学时,理论课与实验学时比例分别见表3。经过比较可看出,湖科院学分、学时分别高出南医大10.5学分、152学时;比例差异相差比较明显,说明湖科院重视课程课堂教学;而再从理论学时看,湖科院反低于南医大127学时,而理论课与实验学时比例却高出1:0.09,这充分说明重视实践教学,重视培养应用型本科人才。再向前看,其分别与上海交通大学生物医学工程专业课程体系中的总学时相比,上交大1831学时,其中理论学时1558,实验课学时为243,理论与实践学时之比为1:0.15[3]。其总学时分别低出湖科院969学、南医大717学时,理论与实践比例分别低出1:0.15、1:0.06(见表3)。经我们初步分析与推断,显示“211工程大学”在人才培养策略层面上重理论教学与实践研发、减少学生课业负担,重视学生自主学习、探究性学生之故。3.2.2医学课程、必修课与专选课的比较课程体系中医学课程开设情况与比较,南医大开设医学课程是人体解剖学、生理学、病理学、临床医学概论等4门,总学时216学时。湖科院开设医学课程是基础医学概论(分解剖学、生理学、生物化学3门课授课)、临床医学概论、影像诊断学等5门,总学时是291学时。从学时比较看,湖科院医学课程学时高出南医大75学时,是因为其在专选课增开48学时影像诊断学,2校开设医学课程门数与学时数相差不大,通过对2校医学课学时比较,得出的结论与赵娜等人报道的“医学院校开设的医学基础课程比例高于理工院校,能够为该专业学生提供较为系统的医学类课程教育,完善学生的临床知识体系,有助于该专业教学和科研水平的提高的观点不相符合[4],而恰好相反的是综合性的湖科院反高于南医大。再从邓军民等人研究报道看,首都医科大学生物医学工程专业开设的有6门医学课程,共472学时[5],远高于同质同类的南医大216学时,也高于综合类的湖科院291学时,可见首医专业偏医度高出许多院校。

选修课是课程结构中必要的组成部分,是对必修课的优化性的适时、适宜性内容补充,调和、衔接课程内容的顺序性,也是适应市场与社会发展需要。南医大必修课学时是192,湖科院是450,是南医大的2.3倍还多,显示相差很大,说明南医大医疗市场面向宽、构筑市场化平台,湖科院则显示专业课相对稳定,且趋势于学科基础课边缘,专选课类似于专业课伸展。而专选课从学时本身来讲,南医大是580,湖科院是492,则相差无几。

必修课与选修课学时比例,湖科院、南医大分别是1:3.31、1:0.92。此组数据比较显示南医大专选课学时比例远高于湖科院,南医大的微机原理与接口技术、单片机原理与应用、面向对象的程序设计(C++)等3门专选课,湖科院分别作为专业课和公共课开设。

分析指出,过于偏重专选课,可导致专业建设稳定性差,容易造成学科、课程与教材建设方向性不明或摆动现象。此处建议开设专选课学时保持与专业课学时1:1比例为宜,有些课程还可以专题讲座形式进行[6](见表4)。3.2.3基础课程学分、学时、理论与实践学时比例的比较学科基础课程学分、学时分配数据从表4看出,湖科院学科基础课48.5学分低于南医大51学分,低出2.5学分;学时817低于南医大894,低出77学。再从基础课学时占总学时比例看,湖科院是30.2%,南医大是35.1%。再从南医大理论:实践学时比例是744:150/1:0.20。而湖科院理论:实践学时比例是828:189/1:0.30,低出1:0.10。从这四组数据看,前三组两两比较,差异均无意义。后一组数据相差明显,正能说明湖科院在基础学科中就开始重视实践教学,提升实践教学课时。也能反应综合性院校,涵盖医学、理学、工学等10大学科门类,组建有多个教学院部,给实践教学创建良好条件和突厚共享资源(见表5)。

注:南医大总学时2548、湖科院是2700学时。

3.3 核心课程、实践教学与就业率关联性比较分析

在集中实践训练环节,南医大集中实践训练折合成32周,1280学时,其中模电课程设计1周,数电课程设计1周,医疗仪器综合课程设计2周,毕业实习4周,生产实习4周、毕业设计(论文)14周、军训与劳动2周、创新课程4学周。创新课程主要是信息技术2周、医学物理学师2周、软件工程1周。

湖科院集中实践训练共47周,其中专业实习28周,毕业设计(论文)8周,职业技能训练8周,军训3周;而劳动教育、社会实践、课程实习分散安排,电子技术、放疗技术、医学成像技术与系统等课程设计由教学团队分散实施,没有记入训练周。

核心课程与就业的关系,课程设置要面向社会、面向市场,在很大程度上决定、支撑着就业方向和就业岗位。2院校基本目标方向一致,没有什么实质性差异性。

而从理论与实践教学关系上看,南医大教学进程表课程设置大部分以理论课为主干,实践课只是理论课的附属品,单独开实验的课程唯有电子技术实验;这无凝是实践教学理念上陈旧之故,只重知识传授轻能力培养,把实践的重心放在加深对其理论的认知和理解上,忽视学生动手能力和分析,忽视陈设问题与创新能力的培养。而湖科院在这方面要做得好一些,除单独开设电子技术实验外,尚还开设电工与电路分析实验、物理学实验、生物医学信号处理实验、微机接口技术及应用实验、医学影像实践等,这些单开实验关联性设及到13门基础、专业理论课,多数实践课从理论课中游离出来。为实践教学创新理念迈出新的一步。

再从集中实践教学环节比较看,实践教学环节是集中培养学生动手能力的主要措施。南医大集中实践训练32周,与湖科院集中实践训练47周相比,从表面上看少15周,但由于集中实践教学环节方式、方法与途径各校各异,比较的实际意义不大,两校集中实践教学环节虽各有长短,其实都没有达到高校理工类人才培养的标准和要求。湖科院的医学影像设备实践等课程设计,在操作层面上分别由临床医学工程、医学影像工程教学团队集中与分散安排,也是一个后续探讨的问题。

4 比较分析后的启示与建议

通过2校的课程体系比较,兼顾与多所院校特色专业的继续比对,从中得到更多启发。

4.1 坚持办学理念创新,更加突出医学影像工程专业特色

目前湖科院的课程设置偏重理论学习、实践训练不足。考虑引入产、学、研合作模式,真正体现特色专业建设始终以“以人为本,质量领先,以生为本,追求卓越”的人才质量理念[7]。实际操作可以东北大学生物医学工程专业为标杆。

4.2 深化课程体系改革,突出主干课,优化、纯化课程结构

课程体系应突破传统三段式课程结构,建立新三段式九层次课程结构,每段课程开必修课和选修课;在课程设置上增加医用X线机原理,CT、MRI设备原理,医疗设备故障诊断原理课,且其实验、实践课程教学时数不低于180学时,突出影像工程技术性核心改革方向可参照浙江大学生物医学工程专业[8],西安交通大学生物医学工程专业课程体系[9],并且可学习清华大学[10],结合本校特点探索夏季小学期制,满足学生个性化课程选修,拓展实践的时间、空间,采用多元教学及实践活动设计。

4.3 调整课程教学时数比例

四年制本科生物医学工程专业人才培养,课程总学时控制在2550~2750学时。学时分配应适度减少专业课理论学时,增加实践教学学时,对理论与实践课学时比例控制,研究型高校在增加学科基础课理论学时的同时,将理论与实践课程学时比例控制在1:0.3左右,专业课控制在1:0.4左右;而教学型或应用型高校适度减少学科基础课,把理论与实践课程学时比例控制在1:0.4左右,专业课控制在1:0.5。

4.4 实践教学与就业联动,提高毕业生竞争力,提高就业率

医疗机构对医学影像专业大学生的实际操作能力要求越来越高,因此,必须提高医学影像工程专业实践教学,提升学生的就业竞争力。一是加强实验室、实训室、实习基地、图书馆等实验实践教学平台建设,巩固基础性、实用性、稳定性的实践教学资源;二是以人为本,实施“产学研”结合,让教师、学生了解社会与岗位,了解自我。让教师在技术实践中学习,进行知识更新;让学生尽早了解影像工程岗位、熟悉岗位技术要求并通过考核,实现直接就业;三是为学生就业提供参加生产技术、科学研究场所,提供一些创新性开发研究的机会;四是重视顶岗实践与毕业设计,充分利用专业实习来增加就业机会,把毕业设计与就业岗位技术要求联系起来,结合岗位来选题,开展毕业设计研究,做到动脑和动手结合。

4.5 启动精品课程引领战略把握课程知识内容关联

课程设置要求减少或避免课程内容的简单重复,处理好先修与后续课程秩序及其知识关联性,通过制定教学大纲、规范课程标准,体现循序渐进的知识与技能运行程序,课程设置要显本校专业办学特色、服务于医疗市场,启动精品课程引领,培植精品课程文化效应,引领专业课程群,推进专业建设全面发展。

参考文献

[1]佚名.全国高校特色专业建设点[EB/OL].[2012-07-08].http://gkcx.eol.cn/ads/gaokao/tszy.shtml.

[2]王能河,邹卫东,梅贤臣.生物医学工程专业课程体系建设与应用型人才培养质量保障[J].咸宁学院学报,2009,29(4):100-105.

[3]宫照军,顾宁,梅汉成.中美生物医学工程专业本科教育的比较与启示[J].现代教育科学,2011,(5):133-134.

[4]赵娜,丁唯一,廖敬懿.生物医学工程课程设置改革浅析[J].法制与社会(教育文化),2011,(11上):244.

[5]邓军民,全海英,刘志成,等.生物医学工程专业本科教育课程设置探讨[J].首都医科大学学报(社会科学版),2007,(增刊):166-167.

[6]王能河.我院本科专业开设选修课现况分析与对策[J].华北煤炭医学院学报,2004,6(2):239-240.

[7]王能河,吴基良,沈定文,等.以质量文化为导向的教学质量监控长效机制研究[J].理工高教研究,2009,28(6):54-85,132

[8]浙江大学信息部.浙江大学网页[EB/OL].(2011-07-06)[2012-06-26].http://fit.zju.edu.cn/chinese/redir.php?catalog.

[9]西安交通大学信息中心.西安交通大学生命科学与技术学院网页[EB/OL].[2012-06-17].http://www.xjtu.edu.cn/yxsz/231.html.

上一篇:查房范文下一篇:《小蓝和小黄》de详案