catia零件设计实例

2023-06-01

第一篇:catia零件设计实例

CATIA活塞连杆设计实例教程

第三章 零件设计------活塞、连杆、汽缸组件

本章是设计活塞、连杆与汽缸的三维模型。进一步熟悉绘制草图、拉伸成形、旋转成形、拉伸切除、旋转切除、钻孔、倒(圆)角等命令,同时增添混成、特征的阵列等命令。读者在使用过程中注意将各种命令穿插应用。领会各个命令的用法。

3.1

Loft(混成)特征

混成实体特征不仅应用非常广泛,而且其生成方法也非常丰富、灵活多变。Loft(混成)特征分为两种:Loft(混成实体)和Removed Loft (混成切除)。它们形成的方式是一样的。主要区别在于:Loft(混成实体)是增料特征,Removed Loft (混成切除)是减料特征。

3.1.1. Loft(混成实体) 混成实体指的是利用两个或两个以上的截面(或者说是轮廓),以逐渐变形的方式生成实体。也可以加入曲线或折线作为导引线,使用导引线可以更好的控制外形轮廓之间的过渡。

操作过程举例如下:

1.在窗口中建立三个平行平面,绘制三个截面

左键单击左边模型树中的xy plane平面,单击工具栏中的Plane (平面)图标 ,弹出对话框,提供创建平面的参数的设定。在Plane type 一栏中选择 Offset from plane (偏移平面);在Offset 一栏中输入20 mm ;预览生成的平面,如图3.1所示。

图3.1 同样再以刚才生成的平面作为参考面,再生成一个偏移10 mm的新平面,预览生成的平面,如图3.2所示。

图3.2 左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。

图标,绘制一个椭圆,圆心在原点。左

,标注椭圆的尺寸, ,进入零件实体设单击工具栏中的Ellipse(椭圆)键单击工具栏中Auto Constraint (自动标注尺寸)图标 如图3.3所示。

绘制完草图之后,单击工具栏中的退出工作台图标 计模式。

图3.3 同样,利用草图中的圆功能在新建的平面1和平面2上分别绘制直径为6和直径为15的圆,如图3.4所示,如图3.5所示。

图3.4 图3.5 2.以渐进曲线混成实体 左键单击Loft(混成实体)图标

,弹出对话框,提供混成参数的设定。在第一栏中分别选择上述绘制的三个草图,作为混成的截面,混成的图形预览如图3.6所示。

图3.6 点击确定。混成的模型如图3.7所示。保存为part3-1 。

图3.7

3.以样条曲线混成实体

上述模型省略了导引线,实际上它的导引线是渐进的曲线,我们也可以给它们建立导引线。

删去模型树中的混成特征

,左键单击左边模型树中的yz plane

,进入草参考平面,再单击一下右边工具栏中的sketch(草图设计)图标 图绘制模式。

按住Ctrl键,分别选择三个截面,点击工具栏中的Project 3D Elements (3D实体转换)图标 ,使之成三条直线,再单击Spline(样条曲线)

图标,鼠标左键分别选择三条直线的三个端点,绘制一条曲线。双击鼠标左键结束样条曲线,如图3.8所示。

图3.8

绘制完草图之后,单击工具栏中的退出工作台图标 计模式。

左键单击Loft(混成实体)图标

,进入零件实体设

,弹出对话框,提供混成参数的设定。在第一栏中分别选择前面绘制的三个草图,作为混成的截面;在第二栏中选择刚才绘制的样条曲线作为导引线;混成的图形预览如图3.9所示。

图3.9

点击确定。混成的模型如图3.10所示。保存为part3-2 。

图3.10

4.以连续折线混成实体

我们再将导引线变成折线来比较混成的实体不同,鼠标左键双击模型树中的样条曲线草图,进入草图绘制模式,编辑草图。

单击Profile(连续折线)

图标,鼠标左键分别选择样条曲线中的三个控制点,绘制一条折线。双击鼠标左键结束连续折线,再利用剪切功能将样条曲线删去,如图3.11所示。

图3.11

绘制完草图之后,单击工具栏中的退出工作台图标 计模式。

左键单击Loft(混成实体)图标

,进入零件实体设

,弹出对话框,提供混成参数的设定。在第一栏中分别选择前面绘制的三个草图,作为混成的截面;在第二栏中选择刚才绘制的连续折线作为导引线;混成的图形预览如图3.12所示。

图3.12

点击确定。混成的模型如图3.13所示,保存为part3-3 。与前两个相比较,就会发现模型随着导引线的不同而变化着。

图3.13

3.1.2. Removed Loft (混成切除) 混成切除指的是在实体上利用两个或两个以上的截面(或者说是轮廓),以逐渐变形的方式切除实体。也可以加入曲线或折线作为导引线,使用导引线可以更好的控制外形轮廓之间的过渡。

操作过程举例如下: 1.拉伸实体,建立基准面

左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。

,绘制一个圆,圆心在原点。鼠标左键单击工具栏中的Circle (圆)图标 单击 constraint(尺寸限制) 图标 图3.14所示。

,标注出圆的直径为30,修改尺寸后如

图3.14 绘制完草图之后,单击工具栏中的退出工作台图标 计模式。

在工具栏中单击pad(拉伸成形)图标

,进入零件实体设

,弹出对话框,提供拉伸成形参数的设定。在Type 一栏中选择Dimension,指定尺寸为50 mm ;在Selection一栏中选择刚才绘制的草图;如图3.15所示。

图3.15 左键单击左边模型树中的xy plane平面,单击工具栏中的Plane (平面)图标 ,弹出对话框,提供创建平面的参数的设定。在Plane type 一栏中选

择 Offset from plane (偏移平面);在Offset 一栏中输入25 mm ;预览生成的平面,如图3.16所示。

图3.16

同样再以刚才生成的平面作为参考面,再生成一个偏移40 mm的新平面,预览生成的平面,如图3.17所示。

图3.17

左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。 单击工具栏中的Hexagon(正六边形)尺寸后如图3.18所示。

图标,绘制一个正六边形,标注

图3.18 同样,利用草图中的正六边形功能在新建的平面1和平面2上分别绘制两个正六边形,单击 constraint(尺寸限制) 图标 的参数。如图3.19所示,如图3.20所示。

,分别标注出两个正六边形

图3.19

图3.20 2.混成切除实体

左键单击 Removed Loft(混成切除)图标

,弹出对话框,提供混成切除参数的设定。在第一栏中分别选择前面绘制的三个正六边形草图,作为混成切除的截面;混成切除的图形预览如图3.21所示。

图3.21

点击确定。混成切除的模型如图3.22所示,保存为part3-4 。

3.22 3.2

特征的阵列

特征的阵列就是将一定数量的几何元素或实体按照一定的方式进行规则有序的排列。将特征进行有规律排列的过程就是特征的阵列。

特征的阵列非常适合于有规律地重复创建数量众多的特征。它分为圆形阵列和矩形阵列。

3.2.1 圆形阵列

圆形阵列就是选择一个特征作为基本特征,以圆形数组方式重复应用这个基本特征。

操作过程举例如下: 1.拉伸实体和切除孔

左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。

,绘制一个圆,圆心在原点。单击 单击工具栏中的Circle (圆)图标 constraint(尺寸限制) 图标

,标注出圆的直径为100。如图3.23所示。

图3.23

绘制完草图之后,鼠标左键单击工具栏中的退出工作台图标 件实体设计模式。

在工具栏中单击pad(拉伸成形)图标

,进入零

,弹出对话框,提供拉伸成形参数的设定。在Type 一栏中选择Dimension,指定尺寸为20 mm ;在Selection一栏中选择刚才绘制的草图;模型预览如图3.24所示。

图3.24 点击OK,生成的模型如图3.25所示。

图3.25 选择实体上表面作为草图参考平面,单击一下右边工具栏中的sketch(草图设计)图标 ,进入草图绘制模式。

,绘制一个圆,圆心在原点。单击 单击工具栏中的Circle (圆)图标 constraint(尺寸限制) 图标

,标注出圆的直径为100。如图3.26所示。

图3.26 绘制完草图之后,鼠标左键单击工具栏中的退出工作台图标

,进入零件实体设计模式。

2.阵列孔特征

鼠标左键选择窗口模型树中的上一步骤中的孔特征,在工具栏中单击Circular Pattern (圆形阵列)图标 定。如图3.27所示。

,弹出对话框,提供圆形阵列参数的设

图3.27

在Parameters 一栏中选择Instance(s) or total angle (数量与总角度),在Instance(s) 一栏中输入7;在Total angle一栏中输入360度;在Reference element (参考元素)一栏中选择实体的上表面,在Object一栏中选择孔特征,单击OK,生成的孔阵列如图3.28所示。

图3.28

在上述对话框中还有一个菜单,这个菜单是Crown Definition (环绕定义),它可以定义圆形阵列的圈数,双击模型树中的圆形阵列的特征,重新编辑圆形阵列的参数。如图3.29所示。

图3.29 在Axial Reference 菜单中,所有参数不变;左键单击Crown Definition菜单,在Parameters 一栏中选择Circle(s) or Circle spacing (圆的数量和圆的间距),在Circle(s) 一栏中输入2;在Circle spacing一栏中输入-20 mm ;方向朝外为正,反之为负,这里选择负方向才有解。在Object一栏中选择孔特征,单击OK,生成的孔阵列如图3.30所示。

图3.30

3.2.2矩形阵列

矩形阵列就是选择一个特征作为基本特征,以矩形数组方式重复应用这个基本特征。

操作过程举例如下: 1.拉伸实体和切除槽

左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。

,在草图模式中绘制出一个矩单击工具栏中retangent (矩形)图标 形,标注尺寸后如图3.31所示。

图3.31

绘制完草图之后,鼠标左键单击工具栏中的退出工作台图标 件实体设计模式。

在工具栏中单击pad(拉伸成形)图标 的设定。如图3.32所示。

,进入零

,弹出对话框,提供拉伸成形参数

图3.32 在Type 一栏中选择Dimension,指定尺寸为10 mm ;在Selection一栏中选择刚才绘制的草图;点击OK。生成的模型如图3.33所示。

图3.33

选择实体上表面作为草图参考平面,单击一下右边工具栏中的sketch(草图设计)图标 ,进入草图绘制模式。

,绘制两个圆,双击Bi-Tangent 双击工具栏中的Circle (圆)图标 Line (切线)图标

,分别点击两圆的左右两个侧面,生成左右两条平行的切线。再利用剪切功能将多余的线段剪切掉,标注和修改尺寸后的草图如图2.34所示。

图2.34

绘制完草图之后,鼠标左键单击工具栏中的退出工作台图标

,进入零件实体设计模式。

2.阵列槽特征

鼠标左键选择窗口模型树中的上一步骤中的槽特征,在工具栏中单击Rectangular Pattern (矩形阵列)图标 的设定。如图3.35所示。

,弹出对话框,提供矩形阵列参数

图3.35

在Parameters 一栏中选择Instance(s) or Spacing (数量与间距),在Instance(s) 一栏中输入8;在Spacing一栏中输入20 mm;在Reference element (参考元素)一栏中选择实体的上表面,预览图形中的阵列特征,如果阵列的特征不在实体上,则选择Reverse (反向)选项,在Object一栏中选择槽特征。点击OK。生成的模型如图3.36所示。

图3.36

在上述对话框中还有一个菜单,这个菜单是Second Direction(第二方向)菜单),它可以定义矩形阵列的另一个方向,双击模型树中的矩形阵列的特征,重新编辑矩形阵列的参数。如图3.37所示。

图3.37 在First Direction(第一方向)菜单中,所有参数不变;鼠标左键单击Second Direction(第二方向)菜单, 在Parameters 一栏中选择Instance(s) or Spacing (数量与间距),在Instance(s) 一栏中输入2;在Spacing一栏中输入45 mm;在Reference element (参考元素)一栏中选择实体的上表面,如果有必要,选择Reverse (反向)选项,在Object一栏中选择孔特征。单击OK,生成的孔阵列如图3.38所示。

图3.38 3.3

活塞的创建

1. 进入软件,拉伸活塞本体 在桌面双击 图标(CATIA),或者从[开始] →[程序]中点击CATIA软件,进入 CATIA软件。选择[开始] →[机械设计] →[part design] 命令,进入零件模块设计。

左键单击左边模型树中的xy plane 参考平面,或在窗口中央选择三平面中的xy平面。再单击一下右边工具栏中的sketch(草图设计)图标 草图绘制模式。

单击工具栏中的Circle (圆)图标 constraint(尺寸限制) 图标 所示。

,绘制一个圆,圆心在原点。单击

,即进入

,标注出圆的直径为50,修改尺寸后如图3.

1图3.1 绘制完草图之后,单击工具栏中的退出工作台图标 计模式。

在工具栏中单击pad(拉伸成形)图标 的设定。如图3.2所示。

,进入零件实体设

,弹出对话框,提供拉伸成形参数

图3.2 在Type 一栏中选择Dimension,指定尺寸为44 mm ;在Selection一栏中选择刚才绘制的草图;点击确定。生成的模型如图3.3所示。

图3.3

2.旋转切除活塞内部

左键单击左边模型树中的yz plane 参考平面,或在窗口中央选择三平面中的yz平面。再单击一下右边工具栏中的sketch(草图设计)图标 图绘制模式。

单击工具栏中Axis (轴)图标

,先绘制一轴线,为下一步的旋转切除

,绘制草图,双击草图

,进入草作准备,再单击工具栏中 Profile (自由折线)图标 的终点即结束自由折线。绘制的草图如图3.4所示。

图3.4

鼠标左键单击工具栏中Corner(倒圆角)图标 圆角尺寸的数值,修改圆角值为R5。

双击 constraint(尺寸限制) 图标 栏中单击

,标注草图上所需尺寸。之后在工具

,在草图上倒圆角,双击 (选择)图标,进行尺寸编辑。最后完成草图的绘制和修改。修改尺寸后的草图如图3.5所示。

图3.5 鼠标左键单击工具栏中的退出工作台图标 实体设计模式。

在工具栏中单击Groove (旋转切除)图标 参数的设定。如图3.6所示。

,弹出对话框,提供旋转切除 ,退出草图模式,进入零件

图3.6 在对话框中First angle 一栏中输入360度,在Second angle 一栏中输入0度(通常默认状态也是这样),在Selection一栏中选择刚才绘制的草图;则下面的轴线选择一栏中会自动选择草图中的轴线,点击OK。生成的模型如图3.7所示。

图3.7 3.拉伸凸台

我们先从活塞内部创建一个平面。单击工具栏中的Plane (平面)图标

,弹出对话框,提供创建平面的参数的设定。在Plane type 一栏中选择 Offset from plane (偏移平面);在Reference一栏中选择 yz plane (从窗口的目录树上或工作台中选择,也可以在点击创建平面图标之前先选择该平面);在Offset 一栏中输入10 mm ;如果有必要,可以选择Reverse Direction(反向);预览生成的平面,如图3.8所示。

图3.8 点击确定,创建的平面如图3.9所示。

图3.9 鼠标左键单击创建的新平面,再单击一下右边工具栏中的sketch(草图设计)图标 ,进入草图绘制模式。

,绘制一个圆,单击 constraint(尺单击工具栏中的Circle (圆)图标 寸限制) 图标

,标注出圆的直径为16,修改尺寸后如图3.10所示。

图3.10 鼠标左键单击工具栏中的退出工作台图标 实体设计模式。

在工具栏中单击pad(拉伸成形)图标 的设定。如图3.11所示。

,弹出对话框,提供拉伸成形参数

,退出草图模式,进入零件

图3.11 在Type 一栏中选择Up to next; 在Offset(偏移)一栏中输入0 mm (通常默认状态都是0);在Selection一栏中选择刚才绘制的草图;点击OK。生成的模型如图3.12所示。

图3.12 左键点击一下左边模型树中上述刚完成的拉伸成形凸台的特征,再单击工具栏中的Mirror(镜像)图标

,弹出对话框,提供镜像参数的设置。如图3.13所示。

图3.13 在Mirroring element(镜像元素)一栏中选择yz平面,点击OK。镜像的特征如图3.14所示。

图3.14 选择其中一个凸台的上表面作为草图参考平面,单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。

,绘制一个圆,单击 constraint(尺单击工具栏中的Circle (圆)图标 寸限制) 图标 ,标注出圆的直径为10,修改尺寸后如图3.15所示。

图3.15 在工具栏中单击Pocket (拉伸切除)图标 参数的设定。如图3.16所示。

,弹出对话框,提供拉伸切除

图3.16 在Type 一栏中选择Dimension,指定尺寸为40 mm ,在Selection一栏中选择刚才绘制的草图;再选择Mirrored extent(镜像) 选项;点击OK。生成的模型如图3.17所示。

图3.17 4.旋转切除槽

左键单击左边模型树中的yz plane 参考平面,或在窗口中央选择三平面中的yz平面。再单击一下右边工具栏中的sketch(草图设计)图标 图绘制模式。

单击工具栏中 Profile (自由折线)图标

,在活塞的右上侧绘制草图,

,进入草双击草图的终点即结束自由折线。绘制的草图如图3.18所示。

图3.18 双击 constraint(尺寸限制) 图标 栏中单击

,标注草图上所需尺寸。之后在工具 (选择)图标,进行尺寸编辑。最后完成草图的绘制和修改。修改尺寸后的草图如图3.19所示。

图3.19

鼠标左键单击工具栏中的退出工作台图标 实体设计模式。

在工具栏中单击Groove (旋转切除)图标 参数的设定。如图3.20所示。

,弹出对话框,提供旋转切除 ,退出草图模式,进入零件

图3.20 在对话框中First angle 一栏中输入360度,在Second angle 一栏中输入0度(通常默认状态也是这样),在Selection一栏中选择刚才绘制的草图;在Axis Selection 一栏中选择窗口中的V轴,也可以选择活塞本体上的圆柱,系统自动出现圆柱的轴线,此轴线跟V轴平行。作用是一样的。点击OK。生成的模型如图3.21所示。

图3.21 5.钻孔

单击活塞上部的小平面作为钻孔表面,如图3.22所示。

图3.22 单击工具栏中的Hole (钻孔)图标

,弹出对话框,提供钻孔参数的设定。在对话框中先打开Extension 菜单,在第一栏中选择Up To Next(成型到下一面)类型;在Diameter(直径)一栏中输入2 mm ;在Offset(偏移)一栏中输入0 mm (通常默认状态都是0);单击右边的Positionning Sketch (草图位置)图标

,进入孔的草图模式状态,约束草图位置。

,标注孔的中心到H轴的距离为3.5;双击 constraint(尺寸限制) 图标

标注孔的中心与V轴在同一直线上,注意鼠标一定要点击上孔的中心,否则标注的尺寸不会正确。如图3.23所示。

图3.23 鼠标左键单击工具栏中的退出工作台图标 定义对话框。如图3.24所示。

,退出草图模式,返回孔的

图3.24 再打开Type菜单,在第一栏中选择Simple选项;再打开一下Thread Definition 菜单,察看一下是否取消了Threaded 选项,如果未取消则取消这个选项,通常默认状态是未选择的。至此,孔的定义已经完成。点击OK,生成的孔如图3.25所示。

图3.25 鼠标左键选择窗口模型树中的上一步骤中的孔特征,在工具栏中单击Circular Pattern (圆形阵列)图标 定。如图3.26所示。

,弹出对话框,提供圆形阵列参数的设

图3.26 在Parameters 一栏中选择Instance(s) or total angle (数量与总角度),在Instance(s) 一栏中输入5;在Total angle一栏中输入360度;在Reference element (参考元素)一栏中选择活塞的上表面,在Object一栏中选择孔特征,单击OK,生成的孔阵列如图3.27所示。

图3.27 6. 倒(圆)角

在工具栏中单击 Chamfer (倒角)图标

,弹出对话框,提供倒角参数的设定。

在Mode 一栏中选择Length1/Angle ;在Length1一栏中输入1.5 mm ;在Angle一栏中输入60度;在Object(s) to Chamfer 一栏中选择活塞的上表面的外边线;在Propagation一栏中选择Tangency选项。图形预览如图3.28所示。

图3.28 在工具栏中单击 Chamfer (倒角)图标

,弹出对话框,提供倒角参数的设定。

在Mode 一栏中选择Length1/Angle ;在Length1一栏中输入2 mm ;在Angle一栏中输入45度;在Object(s) to Chamfer 一栏中选择活塞的上表面的内边线;在Propagation一栏中选择Tangency选项。图形预览如图3.29所示。

图3.29 在工具栏中单击 Edge Fillet (倒圆角)图标

,弹出对话框,提供倒圆角参数的设定。

在Radius一栏中输入2 mm ,在Object(s) to fillets一栏中分别选择两个凸台底部的边线,在Propagation一栏中选择Tangency选项,图形预览如图3.30所示。

图3.30 在工具栏中单击 Edge Fillet (倒圆角)图标

,弹出对话框,提供倒圆角参数的设定。

在Radius一栏中输入0.5 mm ,在Object(s) to fillets一栏中分别选择活塞槽的上下面的边线、活塞底面、活塞内边线,在Propagation一栏中选择Tangency选项,图形预览如图3.31所示。

图3.31 至此,活塞模型已全部完成。隐藏所有参考面后的模型如图3.80所示。保存为huo sai 。

图3.32 3.4

连杆的创建

1. 进入软件,绘制连杆的一端草图 在桌面双击 图标(CATIA),或者从[开始] →[程序]中点击CATIA软件,进入 CATIA软件。选择[开始] →[机械设计] →[part design] 命令,进入零件模块设计。

左键单击左边模型树中的xy plane 参考平面,或在窗口中央选择三平面中的xy平面。再单击一下右边工具栏中的sketch(草图设计)图标 草图绘制模式。

双击工具栏中的Circle (圆)图标 constraint(尺寸限制) 图标 如图3.1所示。

,绘制两个圆,圆心都在原点。双击

,即进入

,标注出两个圆的直径20和27,修改尺寸后

图3.1

绘制完草图之后,单击工具栏中的退出工作台图标 计模式。

2.拉伸成形本体

,进入零件实体设进入零件实体设计模式之后,在工具栏中单击pad(拉伸成形)图标 出对话框,提供拉伸成形参数的设定。如图3.2所示。

,弹

图3.2

在Type 一栏中选择Dimension,指定尺寸为12mm;在Selection一栏中选择刚才绘制的草图;再选择Mirrored extent(镜像) 选项;点击确定。生成的模型如图3.3所示。

图3.3 2. 绘制连杆的另一端

左键单击左边模型树中的xy plane 参考平面,或在窗口中央选择三平面中的xy平面。再单击一下右边工具栏中的sketch(草图设计)图标 草图绘制模式。

双击工具栏中的Circle (圆)图标 constraint(尺寸限制) 图标

,绘制两个同心圆。双击

,即进入

,标注出两个圆的直径10和15,圆心到原点的距离是86。修改尺寸后如图3.4所示。

单击工具栏中的退出工作台图标 中单击pad(拉伸成形)图标 3.5所示。

图3.4

,进入零件实体设计模式。在工具栏

,弹出对话框,提供拉伸成形参数的设定。如图

图3.5 在Type 一栏中选择Dimension,指定尺寸为9mm;在Selection一栏中选择刚才绘制的草图;再选择Mirrored extent(镜像) 选项;点击确定。生成的模型着色如图3.6所示。

图3.6 4.建立基准面

左键单击左边模型树中的xy plane 参考平面,或在窗口中央选择三平面中的xy平面。再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。

左键选取大圆柱的外圆边线,单击工具栏中的Project 3D Elements (3D实体转换)图标 ,则在xy平面产生与圆柱外圆一样大小的圆。如图3.7所示。

图3.7 点击工具栏中Line (直线)图标

,在圆的中间绘制一条与V轴平行的直线;单击Intersection Point(交点)图标 两个交点。如图3.8所示。

,分别点击圆和直线产生

图3.8 单击 constraint(尺寸限制) 图标 图3.9所示。

,标注圆上两交点的距离为25mm,如

图3.9 双击工具栏中的 Quick Trim (快速剪切)图标

,鼠标左键点击要剪除的线段,将草图剪切成如图3.10所示的草图。这个草图将为下一步建立平面作基础。

图3.10 单击工具栏中的退出工作台图标

,退出草图模式。同理,再在xy平面用上述同样的方法在小圆柱上绘制如图3.11所示的草图。

图3.11 单击工具栏中的Plane (平面)图标

,弹出对话框,提供创建平面的参数的设定。在Plane type 一栏中选择 Angle/Normal to plane ;在Rotation axis 一栏中选择上一步在大圆柱上绘制的直线草图; 在Reference一栏中选择 yz plane (从窗口的目录树上或工作台中选择,也可以在点击创建平面图标之前 先选择该平面)。如图3.12所示。

图3.12 点击确定,创建的平面plane.1如图3.13所示。

图3.13 同理,利用在小圆上绘制的直线和yz平面建立同样类型的平面plane.2,如图3.14所示。

图3.14 5.混成连杆中段

先绘制两个草图作为混成的截面。左键单击左边模型树中的plane.1 参考平面,或在窗口中央选择三平面中的plane.1平面。再单击一下右边工具栏中的sketch(草图设计)图标

,即进入草图绘制模式。

,在草图模式中画出一个矩形,

,标注矩形的尺寸,如图3.15单击工具栏中Rectangle (矩形)图标

在工具栏中双击 constraint(尺寸限制) 图标 所示。

图3.15 单击工具栏中的退出工作台图标

,退出草图模式。左键单击左边模型树中的plane.2参考平面,或在窗口中央选择三平面中的plane.2平面。再单击一下右边工具栏中的sketch(草图设计)图标 图3.16所示的草图。

,进入草图绘制模式,绘制出如

图3.16 单击工具栏中的退出工作台图标 Loft(混成)图标

,进入零件实体设计模式。左键单击 ,弹出对话框,提供混成参数的设定。在第一栏中分别选择上述绘制的两个矩形草图,作为混成的截面,混成的图形预览如图3.17所示。

图3.17 点击确定。混成的模型如图3.18所示。

图3.18 仔细查看混成的图形,发现混成的图形超出了大孔的范围。因此,要再重新切除多余的部分。单击大圆的上表面作为草图基准面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。左键选取大圆柱的内

,则在圆边线,单击工具栏中的Project 3D Elements (3D实体转换)图标 此平面产生与圆柱内圆一样大小的圆。如图3.19所示。

图3.19 单击工具栏中的退出工作台图标 栏中的Pocket (拉伸切除)图标

,退出草图模式。左键单击右边工具

,弹出对话框,提供拉伸切除参数的设定。在Type 一栏中选择up to next ,在Selection一栏中选择刚才绘制的草图;图形预览如图3.20所示。

图3.20 点击OK。生成的模型如图3.21所示。

图3.21 6.拉伸切除连杆中段

单击大圆的上端面作为草图基准面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。按住Ctrl键分别选取连杆的边线和两圆柱的外圆边线,单击工具栏中的Project 3D Elements (3D实体转换)图标

,则在此平面产生与原边线相重合的边线。如图3.22所示。

图3.22 双击工具栏中Line (直线)图标

,分别在连杆的中段绘制两条直线(尽量与连杆的边线平行)。按住Ctrl键选取其中一条直线和这一侧的边线。单击工具栏中Constraints Defined in Dialog Box (约束定义)图标

,弹出约束定义的参数对话框。选择Parallelism(平行)选项。如图3.23所示。

图3.23 同样,约束定义另一侧的两条直线平行。在工具栏中双击 constraint(尺寸限制) 图标 ,分别标注两平行直线之间的距离为2.5,如图3.24所示。

图3.24 双击工具栏中的 Quick Trim (快速剪切)图标 的线段,将草图剪切成如图3.25所示的草图。

,鼠标左键点击要剪除

图3.25 单击工具栏中的退出工作台图标 栏中的Pocket (拉伸切除)图标

,退出草图模式。左键单击右边工具

,弹出对话框,提供拉伸切除参数的设定。在Type 一栏中选择Dimension,指定尺寸为9mm ,在Selection一栏中选择刚才绘制的草图;如果方向显示反了,可以选择Reverse Direction(反向);图形预览如图3.26所示。点击OK。生成的模型如图3.27所示。

图3.26

图3.27 左键点击一下左边模型树中上述刚完成的拉伸切除特征,再单击工具栏中的Mirror(镜像)图标

,弹出对话框,提供镜像参数的设置。如图3.28所示。

图3.28 在Mirroring element(镜像元素)一栏中选择xy平面,点击OK。镜像的特征如图3.29所示。

图3.29 7.倒圆角

在工具栏中单击 Edge Fillet (倒圆角)图标

,弹出对话框,提供倒圆角参数的设定。在Radius 一栏中输入3mm ,在Object(s) to fillet 一栏中分别选择连杆中段的的四个角,如图3.30所示的四条边。

图3.30 在Propagation一栏中选择Tangency一项,点击OK。生成的模型如图3.31所示。

图3.31 同样,将连杆中段的另一端及中间的平面分别倒圆角1.5mm,至此,连杆模型已经完成,隐藏各个参考面及草图,完成的模型如图3.32所示。保存为lian gan 。

图3.32

3.5

汽缸的创建 1. 进入软件,绘制汽缸的底板 在桌面双击 图标(CATIA),或者从[开始] →[程序]中点击CATIA软件,进入 CATIA软件。选择[开始] →[机械设计] →[part design] 命令,进入零件模块设计。

左键单击左边模型树中的xy plane 参考平面,或在窗口中央选择三平面中的xy平面。再单击一下右边工具栏中的sketch(草图设计)图标 入草图绘制模式。

单击工具栏中retangent (矩形)图标 形,如图3.33所示。

,在草图模式中绘制出一个矩

,即进

图3.33

下一步准备标注尺寸,由于前面采用的是基本标注尺寸的方法,在这里我再采用另一种标注尺寸的方法。让系统自动标注尺寸和使用方程相互约束尺寸。

左键单击工具栏中Auto Constraint (自动标注尺寸)图标 框。提供自动标注尺寸参数的设置。如图3.34所示。

,弹出对话

图3.34

在第一栏中标注的尺寸元素中分别选择窗口中矩形的长和宽;在第二栏中的参考元素中选择窗口中的V轴,即垂直轴;在第三栏中的对称线中选择H轴,即水平轴;在第四栏中的标注方式中选择Chained (链式)选项;单击确定,标注的尺寸如图3.35所示。

图3.35 鼠标左键单击矩形的一边到V轴距离的那个尺寸(39.815),再单击工具栏中的公式图标 ,弹出对话框,提供方程参数的设置,如图3.36所示。

图3.36 仔细查看要编辑的参数是否是刚才选中的尺寸,如果不是的话,就在参数框中再选择一次,单击框中的添加公式选项,弹出对话框,提供公式编辑框。在公式编辑框中的第一栏中,系统自动出现上面所选的尺寸;在第二栏中输入方程,鼠标左键在窗口中单击矩形上对应刚才所选尺寸的那条边,方程中即出现这个尺寸的代表式,再输入除号,再输入数字2,这个方程就定义了刚才的尺寸是矩形中这个对应单边尺寸的一半,以后只要改变矩形的这个边长,对应方程的尺寸就会自动定义为矩形这个边长尺寸的一半。同理,如果输入的方程式改变了,则对应的尺寸就会依照方程的定义而改变。如图3.37所示。

图3.37 点击确定,方程定义已经完成。同理,再编辑矩形的另一条边到H轴的距离是矩形对应边的1/2。完成方程的矩形如图3.38所示。读者注意图中尺寸上出现的(f(x)),代表这个尺寸是用方程定义约束的。

图3.38 鼠标左键分别双击矩形的两条边,在弹出的对话框中输入数值74,定义矩形的两个边长均为74mm ,如图3.39所示。

图3.39 鼠标左键单击工具栏中Corner(倒圆角)图标

,分别给矩形的四个直角倒成圆角,双击圆角尺寸的数值,修改圆角值为R8,如图3.40所示。

图3.40 鼠标左键单击工具栏中Profile (自由折线)图标

,在矩形的右边绘制草图,再利用剪切功能修剪草图,标注尺寸,如图3.41所示。

图3.41 鼠标左键单击工具栏中的退出工作台图标 实体设计模式。

在工具栏中单击pad(拉伸成形)图标 的设定。如图3.42所示。

,弹出对话框,提供拉伸成形参数

,退出草图模式,进入零件

图3.42 在对话框中的Type 一栏中选择Dimension,在Length一栏中输入尺寸为12 mm;在Selection一栏中选择刚才绘制的草图;点击确定。生成的模型如图3.43所示。

图3.43

2.拉伸汽缸本体

单击上述模型的上表面作为草图的工作平面,再单击一下右边工具栏中的sketch(草图设计)图标

,进入草图绘制模式。

,绘制一个直径为74的圆,圆心在单击工具栏中的Circle (圆)图标 原点,如图3.44所示。

图3.44

鼠标左键单击工具栏中的退出工作台图标 实体设计模式。

在工具栏中单击pad(拉伸成形)图标

,弹出对话框,提供拉伸成形参数

,退出草图模式,进入零件的设定。如图3.45所示。

图3.45 在对话框中的Type 一栏中选择Dimension,在Length一栏中输入尺寸为108 mm;在Selection一栏中选择刚才绘制的草图;点击确定。生成的模型如图3.46所示。

图3.46

3. 旋转切除汽缸本体

左键单击左边模型树中的yz plane 参考平面,或在窗口中央选择三平面中的yz平面。再单击一下右边工具栏中的sketch(草图设计)图标 图绘制模式。

单击工具栏中retangent (矩形)图标 标注尺寸后如图3.47所示。

,在草图模式中绘制出一个矩形,

,进入草

图3.47 鼠标左键单击工具栏中的退出工作台图标 实体设计模式。

在工具栏中单击Groove (旋转切除)图标 参数的设定。如图3.48所示。

,退出草图模式,进入零件

,弹出对话框,提供旋转切除

图3.48 在对话框中First angle 一栏中输入360度,在Second angle 一栏中输入0度(通常默认状态也是这样),在Selection一栏中选择刚才绘制的草图;在Axis Selection 一栏中选择窗口中的V轴。点击确定。生成的模型如图3.49所示。

图3.49 左键单击左边模型树中的yz plane 参考平面,或在窗口中央选择三平面中的yz平面。再单击一下右边工具栏中的sketch(草图设计)图标 图绘制模式。

单击工具栏中 Profile (自由折线)图标 图。双击 constraint(尺寸限制) 图标 如图3.50所示。

,在汽缸本体上部绘制草

,进入草

,标注草图尺寸。修改尺寸后的草图

图3.50 鼠标左键单击工具栏中的退出工作台图标 实体设计模式。

在工具栏中单击Groove (旋转切除)图标 参数的设定。如图3.51所示。

,弹出对话框,提供旋转切除 ,退出草图模式,进入零件

图3.51 在对话框中First angle 一栏中输入360度,在Second angle 一栏中输入0度(通常默认状态也是这样),在Selection一栏中选择刚才绘制的草图;在Axis Selection 一栏中选择窗口中的V轴。点击OK。生成的模型如图3.52所示。

图3.52 4. 钻气缸气孔

鼠标左键选择气缸上表面作为钻孔表面,如图3.53所示。

图3.53

单击工具栏中的Hole (钻孔)图标

,弹出对话框,提供钻孔参数的设定。在对话框中先打开Extension 菜单,在第一栏中选择Blind (盲孔)类型;在Depth (深度)一栏中输入18 mm;在右边关于孔的底部形状参数中选择Flat(平底)。如图3.54所示。

图3.54 再打开Type菜单,在第一栏中选择Simple选项;再打开一下Thread Definition 菜单,选择Threaded (螺纹)选项,在Type(类型)一栏中选择Metric Thin Pitch(公制细螺纹)选项;在Thread Description(螺纹直径) 一栏中选择M12选项 ;在Thread Depth (螺纹深度)一栏中输入14 mm;在 Hole Depth(孔深)一栏中输入18 mm。再选择 Right-Threaded(右旋螺纹)选项,图形预览如图3.55所示。

图3.55 至此螺纹定义完成,点击OK,生成的孔如图3.56所示。

图3.56

鼠标左键选择上述绘制的螺纹孔底面(平底)作为下一个钻孔的表面,如图3.57所示。

图3.57

单击工具栏中的Hole (钻孔)图标

,弹出对话框,提供钻孔参数的设定。在对话框中先打开Extension 菜单,在第一栏中选择Up To Next(成型到下一面)类型;在Diameter(直径)一栏中输入5 mm ;在Offset(偏移)一栏中输入0 mm (通常默认状态都是0);如图3.58所示。

第二篇:CATIA线束设计入门教程DOC

proe5.0安装说明:

☆ 本教程适用于32位proe 5.0 M010,M020,M030,M040,M050,M060 过程完全一样; ☆ 本教程适用于64位proe 5.0 M010,M020,M030,M040,M050,M060 安装破解时仅需将所述3个补丁路径中的 i486_nt 替换为 x86e_win64 即可,其他过程完全一样。 ☆ 本教程用于 Creo Elements/Pro 5.0 M070,M080,M090,M100,M110 时只需将教程中所有所述安装路径由“X:PtcproeWildfire 5.0”变成“X:PtcCreo ElementsPro5.0”即可,其他过程完全一样。

proe5.0详细安装步骤:(本教程以M090为例安装)

1、下载proe5.0 M090安装程序压缩文件,并解压该文件(解压路径一定不要包含中文字符),打开解压后的安装包,选择setup.exe安装程序进行软件安装,弹出安装界面,注意左下角显示的主机ID,如下图所示:

2、制作许可证文件:在解压出来的安装程序位置 CRACK(注意下载的版本不一样这里的名字可能也不一样,有可能为:Shooters 或MAGNiTUDE)目录下找到 license.dat 文件(或类似dat文件),复制到你想放置许可证的位置,然后用记事本打开 license.dat,在“编辑”菜单里点“替换”,如下图所示,查找内容 00-00-00-00-00-00 ,替换为后面输入你的主机 ID,就是你运行 setup.exe 时左下角显示的主机 ID;输入完成后点全部替换然后保存 license.dat 文件。

3、选中“我接受”,接受协议,然后点“下一步”,如下图所示:

4、不要点 Ptc License Server 安装,直接点Creo Elements/Pro进行安装,如下图所示:

5、进入安装路径和组件选择界面,需要的组件选择安装,不需要的组件选择不安装,选择下一步,如下图所示:

如若弹出此窗口,我们选择确定即可:

6、根据你的需要选择“公制”或“英制”,我们选择公制,然后点下一步,如下图所示:

7、添加许可证,把你在前面 第二步 中做好的许可证添加进去,注意如果你有多个网卡号可以做多个许可证添加进去,然后点击下一步。如下图所示:

8、接下来设置桌面快捷方式和启动目录,如下图所示,然后点“下一步”:

9、附加组件选择,如下图所示,然后点“下一步”。

10、View Express安装路径设置,如下图所示,然后点“安装”。

11、开始复制文件进入安装过程,如下图所示,接下来需要等待一会,大概几分钟的时间。

12、安装结束了,如下图所示,点“下一步、退出”完成安装。注意先不要运行 proe。

接下来开始破解软件

1、在解压出来的安装程序位置 CRACK目录下找到 proe_WF5_Win32_crk.exe 复制到 X:ptc5Creo ElementsPro5.0i486_ntobj下运行。

2、在解压出来的安装程序位置 CRACK目录下找到 proe_mech_WF5_Win32_#1_crk.exe 复制到 X:ptc5Creo ElementsPro5.0mechi486_ntin下运行。

3、在解压出来的安装程序位置 CRACK目录下找到 proe_mech_WF5_Win32_#2_crk.exe 复制到 X:ptc5Creo ElementsPro5.0mechi486_ntptc下运行。

至此proe5.0 M090安装破解成功,运行界面如下:

第三篇:机械零件设计实验报告

通过这次带传动实验,对带传动实验台结构及工作原理有了一定的了解,并且加深了我对带传动知识的认识,同时在之前课堂上很多不太懂的东西,通过这次实验也懂得了。例如在带传动的弹性滑动和打滑的区别和其产生的原因,我们应该如何避免打滑等,这些我之前都是靠死记硬背,很其难想象它的实际景象,现在都有了较深的理解。同时认识了带的初拉力、带速等参数的改变对带传动能力的影响,并学会了测绘出弹性滑动曲线,绘制带的滑动曲线及传动效率曲线图和转速、扭矩、转速差及带传动效率的测量等方法。

通过这次渐开线直齿圆柱齿轮的参数测定实验,加深了我对渐开线直齿圆柱齿轮的参数测定的知识,同时在之前课堂上很多不太懂的东西,通过这次实验也懂得了。如通过实验我掌握用常用量具测定渐开线直齿圆柱齿轮基本参数的方法;齿轮各参数之间的相互关系和渐开线的性质;测量齿根圆直径fd时,对齿数为偶数和奇数的齿轮在测量方法上有何不同;公法线长度的测量是根据渐开线的什么性质来测量的;对实际使用的齿轮,齿厚的上、下偏差均为负值,所测得的公法线长度比理论值略小,该如何正确测量结果的等等的东西

通过这次螺栓组连接受力与相对刚度实验, 我认识了用电阻应变仪测定机器机构中应力的一般方法及电阻应变片技术、计算机技术在力测量中的应用,受倾覆力矩时螺栓组联接中各螺栓的受力情况;被联接件间垫片材料对螺栓受力的影响;单个螺栓预紧力的大小对螺栓组中其它各螺栓受力的影响;螺栓组联接受力分析理论和现代测量技术在机械设计中的应用,如何判断实验中的螺栓组联接承受哪些载荷及如何知道哪个螺栓受力最大及所受哪些载荷;拧紧螺母时,要克服哪些阻力矩,此时螺栓和被联接件各受什么力,拧紧后螺栓还受什么力;在一组螺栓联接中,为何把各个螺栓的材料、直径和长度均取成相同;理论计算与实验结果之间的误差产生的原因有哪些等知识

通过这次减速器的拆装,在我对不同类型减速器的分析比较,加深对机械零、部件结构设计的感性认识,为机械零、部件设计打下基础。同时让我认识了减速器的整体结构、功能及设计布局; 轴上零件是如何定位和固定的; 轴上零件是如何定位和固定的;滚动轴承在安装时为什么要留出轴向间隙及应如何调整;箱体的中心高度的确定应考虑哪些因素;减速器中哪些零件需要润滑,如何选择润滑剂;如何选择减速器主要零件的配合与精度;减速器如何满足功能要求和强度、刚度要求、工艺;齿轮减速器的箱体为什么沿轴线做成剖分式;箱体的筋板有何作用?为什么有的上箱盖没有筋板;上箱体设有吊环,为什么下箱体还设有吊钩等知识

第四篇:“挡环”零件的钻床夹具设计

1引言

设计是机械工程的重要组成部分,是决定机械性能的最主要因素。由于各产业对机械的性能要求不同而有许多专业性的机械设计,如纺织机械设计、矿山机械设计、农业机械设计、船舶设计、汽车设计、机床设计、压缩机设计、内燃机设计、汽轮机设计等专业性的机械设计分支学科。

在机械制造厂的生产过程中,用来安装工件使之固定在正确位置上,完成其切削加工 、检验、装配、焊接等工作,所使用的工艺装备统称为夹具。如机床夹具、检验机械夹具、焊接夹具、装配夹具等。

钻床夹具的概述:钻床夹具:用干各种钻床(镗床组合机床)上的夹具,又称钻模,镗模。主要目的保证孔的精度(位置)。要想对钻床夹具有深刻的了解,就要先知道钻床夹具的特点。

在一般钻床对工件进行空加工,多具有以下特点: 首先是刀具本身的刚性比较差。钻床上所加工的空多为小尺寸的孔,其工序内容不外乎钻、扩、铰、锪或攻螺纹等加工,所以,刀具直径往往比较小,而轴向尺寸比较啊,刀具的刚性均较差。

其次是多刃刀的不对称,易造成空的形位公差。钻、扩、铰等孔加工刀具,多为多刃刀具,当刀刃分布不对称,或刀刃分布不对称,或刀刃长度不等,会造成被加工孔的制造误差,尤其是采用普通麻花钻钻孔,手工刃磨钻头所造成的两侧不对称,极易造成被加工孔的孔位偏移、孔径增大及孔轴线的弯曲和歪斜,严重影响孔的形状、位置精度。

再有就是普通麻花钻头起钻时,孔的精度极差。普通麻花钻轴向尺寸大,结构刚性差,加上钻心结构所形成的横刃,破坏定心,使钻尖运动布稳定,往往在起钻过程造成较大的孔位误差。在单件、小批量生产种中,往往要考操作工在起钻过程中不断地进行人工矫正控制孔位精度,而在大批生产中,则需依靠刀刃结构的改进和夹具对刀具的严格引导解决。

综合以上孔加工特点,钻床夹具的主要任务是解决好工件相对刀具的正确加工位置的严格控制问题。在大批量生产中,为有解决钻头钻孔的精度不稳定的问题,多直接设置带有刀具引导的钻模板,对钻头进行正确引导和对孔位进行强制性限制。尤其是对箱体、盖板类工件的钻孔,往往要同时有多支钻头一次性钻出众多的孔,为保证加工孔隙的位置精度,一定要通过一块精确的模版,把多个孔位由引导限制好。这种用来正确引导钻头控制孔位精度的模版。专业化、高效生产中的钻床夹具,通常具有较精确的钻模版,以正确、快速地引导钻头控制孔位精度,这是钻床夹具的最主要的特点。所以,习惯上又把钻床夹具称为钻模。为防止钻刃破坏钻模板上引导孔的孔壁,多在引导孔中设置高硬度的钻套,以维持钻模板的孔系精度。

陕西航空技师学院毕业设计

2设计思想

2.1主要技术指标

1)保证工件的加工精度

专用夹具应有合理的定位方案、合适的尺寸、公差和技术要求,并进行必要的精度分析,确保夹具能满足工件的加工精度要求。

2)提高生产效率

专用夹具的复杂程度要与工件的生产纲领相适应。应根据工件生产批量的大小选用不同复杂程度的快速高效夹紧装置,以缩短辅助时间,提高生产效率。

3)工艺性好

专用夹具的结构简单、合理、便于加工、装配、检验和维修。专用夹具的生产属于中批量生产。

4)使用性好

专用夹具的操作应简便、省力、安全可靠,排屑应方便,必要时可设置排屑结构。 5)经济性好

除考虑专用夹具本身结构简单、标准化程度高、成本低廉外,还应根据生产纲领对夹具方案进行必要的经济分析,以提高夹具在生产中的经济效益。2.2设计方案、设计方法、设计手段。研究原始资料,在明确夹具设计任务后,应对以下几方面的原始资料进行研究。

2.2研究加工工件图样。

了解该工件的结构形状、尺寸、材料、热处理要求,主要表面的加工精度、表面粗糙度及其它技术要求。熟悉工艺文件,明确以下内容

1)毛坯的种类、形状、加工余量及其精度。

2)工件的加工工艺过程、工序图、本工序所处的地位,本工序前已加工表面的精度及表面粗糙度,基准面的状况。

3)本工序所使用的机床、刀具及其它辅具的规格。 4)本工序所采用的切削量。

2.3拟订夹具的结构方案

拟订夹具的结构方案包括以下几个内容. 1)确定夹具的类型

各类机床夹具均有多种不同的类型、钻床夹具有固定式、翻转式、盖板式和滑板式等,应根据工件的型状、尺寸、加工要求及重量确定为回转式。

“挡环”零件的钻床夹具设计

2)确定工件的定位方案,设计定位装置

根据六点定位原则,通过分析工序图确定工件以椎孔定位,定位元件为心轴。 3)确定工件的夹紧方式,设计夹紧装置

常用的夹紧机构有斜楔夹紧、螺旋夹紧、偏心夹紧、铰链夹紧等。根据工件的结构,加工方法其因素确定为螺旋夹紧。

4)确定引导元件(钻套的类型及结构尺寸)

钻套的类型有固定式钻套、可换式钻套、快换式钻套、特殊式钻套,根据工件加工量确定为可换式钻套。

5)夹具精度分析与计算 6)绘制夹具总图

2.4主要工作程序

1)零件本工序的加工要求分析 2)确定夹具类型

3)拟定定位方案和选择定位元件 4)确定夹紧方案

5)确定引导元件(钻套的类型及结构尺寸) 6)夹具精度分析与计算 7)绘制夹具总图 8)绘制夹具零件图样 9)编写设计说明书

2.5总结

我们在设计专用夹具时为了能满足工件的加工精度要求,考虑了合理的定位方案、合适的尺寸、公差和技术要求,并进行了必要的精度分析。由于是中批量生产,采用了固定式钻床夹具,提高了生产效率。在工艺性方面使这种夹具的结构简单、合理、便于加工、装配、检验和维修。在使用性方面这种夹具的操作简便、省力、安全可靠,排屑也方便,必要时可设置排屑结构。通过对钻床夹具设计的制作,进一步巩固和所学基本知识并使所学知识得到综合运用。学会查阅和收集技术资料,提高运用计算机辅助设计的能力,树立正确的设计思想和严谨的工作作风。设计思想:以定位轴为主定位,以固定式套筒为辅助定位。

此次设计需要完成的题目如下:

如图2-1所示,设计加工挡环上φ10H7小孔的钻床夹具。图中其他各表面均已加工完毕,并且中等批量生产。本工序是为一挡环零件加工 1 个φ10H7 的小孔,所设计的一

陕西航空技师学院毕业设计

套钻床专用夹具。主要技术指标能保证工件的加工精度、提高生产效率、工艺性和使用性好。

(图2-1)零件图 4

“挡环”零件的钻床夹具设计

3钻床夹具设计过程

如图3-1所示为挡环工件造型图:

(图3-1)零件造型图

3.1零件本工序的加工要求分析

本工序使用机床为 Z5125立钻。刀具为通用标准工具,钻φ10H7孔。 本工序前已加工的表面有:

φ50孔、φ24H7孔及其端面;外径φ80、φ64两端面。

3.2 确定夹具类型

本工序所加工一个孔 (φ10H7),位于工件外径φ 80的圆周上,孔径较小,工件重量轻、轮廓尺寸以及生产量为中批量生产等原因,采用固定式钻模。

陕西航空技师学院毕业设计

3.3 拟定定位方案和选择定位元件

1)定位方案

根据工件结构特点,其定位方案有两种:

①以 φ 24H7孔及其左端面为定位面,限制5个自由度。这一定位方案,存在基准不重合误差,会引起较大的定位误差。

②以φ 24H7孔定位,以φ 50孔左端面为定位面,限制5个自由度。这一定为方案设计基准与定位基准重合,所以ΔB=0比较上述两种定位方案,初步确定选用第二种方案。

2)选择定位元件

选择带台阶面的定位心轴,作为以φ10H7孔及其端面的定位元件。定位配合取φ10H7/f6。

3)定位误差计算

加工φ10H7孔时孔距尺寸 18±0.1mm的定位误差计算 由于基准重合,故ΔB=0; 不存在基准位移误差,故ΔD=0 。

由此可知此定位方案能满足尺寸18±0.1mm的定位要求。

3.4确定夹紧方案

参考夹具资料,以定位轴为主定位,以固定式套筒为辅助定位,采用 M18螺母、端盖、垫圈和定位轴在φ24H7孔右端面夹紧工件。

3.5确定引导元件

由于生产量为中批量生产故选用可换钻套。主要尺寸由《机床夹具零、部件》国家标准 GB/T2263 — 80 、 GB/T2265 — 80选取。

钻孔时钻套内径为φ10mm。外径为φ16mm 。中间衬套内径为φ16mm。中间衬套外径为φ22mm。钻套端面至加工面的距离取 8mm。麻花钻选用φ10mm 。引导元件至定位元件间的位置尺寸为50±0.03mm。钻套轴线对基面的垂直度允差为0.02mm。

3.6 夹具精度分析与计算

所设计夹具需保证的加工要求有:尺寸 18± 0.1mm;孔 φ10轴线对 φ24 轴线间垂直度公差0.1 mm等二项,精度分别验算如下:

1.尺寸 18± 0.1mm的精度校核

A、定位误差ΔD,有前计算,已知ΔD=0;

B、钻套与中间衬套间的最大配合间隙ΔT1= 0.027mm;

“挡环”零件的钻床夹具设计

C、定位轴的定位端面至衬套中心距离(50mm)其尺寸公差按工件相应尺寸公差的三分之一取为ΔJ1=0.03 mm;

D、麻花钻与钻套内孔的间隙 X 2= 0.04mm;

E、钻套外径与中间衬套内径间的最大配合间隙ΔI= 0.027mm; F、钻头在钻套孔中的倾斜误差: X1=(B+S+H/2)×X2 ÷H 由于B=5 mm,S=8 mm,H=15 mm。 所以X1=(5+8+9)×0.04÷18=0.059 G、钻套中间衬套内外表面轴度公差e1=e2=0.02 mm; 按概率法相加

ΔT=[(2ΔJ1)2+ e12+ e22+Δ12+ X12] =0.124 mm ΔD+ΔT=0.124 mm<0.2 mm 因而该夹具能保证尺寸18± 0.1 mm的加工要求。 2.孔,φ10轴线对φ24轴线间垂直度公差0.1 mm精度校核 钻套孔轴线对夹具底座间垂直度误差ΔT=0.02 mm 因此夹具能保证两孔轴线的垂直度要求。

3.7夹紧机构设计与夹紧计算

夹紧机构设计

根据设计思想,则此钻床夹具采用固定式钻床夹具,如图3-2所示:

陕西航空技师学院毕业设计

(图3-2)夹具图

夹紧计算

F9.81CFd0ZffFYfKF

KFZ查表可得C=42.7、

xf=1.0、

yf=0.7、.因此Fz=.595N ZM=.0.9 M9.81CMd0fYMKM

MM

查表可得C=0.0

21、

xM=2.0、

yM=0.8、.K=.0.87

因此 扭矩

M=1.6Nm

由夹紧力机构产生的实际夹紧力应满足下式

P=K×

其中:其余系数K=K1×K2×K3×K4

K1——基本安全系数 1.3

K2——加工性质系数1.1

K3——刀具钝化系数1.15

K4——断续刀削系数1.2

所以

K=1.3×1.1×1.15×1.2.=1.98

8 F“挡环”零件的钻床夹具设计

考虑实际夹紧力较小,以及所加工零件的结构特征,决定选用滑动压板夹紧结构 而且不需要进行强度.校核.。

3.8操作过程说明

扭松螺母取下端盖将工件装到定位轴上,装上端盖扭紧螺母,则工件被固定。扭松螺母,拆下端盖,则可取下工件。

陕西航空技师学院毕业设计

4.绘制夹具总图

绘制的夹具零件如图4-1所示。

根据已完成的夹具结构草图,进一步修改结构,完善视图后,绘制正式夹具总装图。如图4-1所示;

图4-1 夹具总图

“挡环”零件的钻床夹具设计

5.夹具零件图

绘制的夹具零件如图5-1所示。图5-1 夹具零件定位轴 11

陕西航空技师学院毕业设计

6.课程设计心得体会

必不可少的过程.为期二年的高级技工培训工作接近尾声,回顾整个过程,我们在老师的指导下,取得了可喜的成绩,课程设计作为《机械制造工艺学》课程的重要环节,使理论与实践更加接近,加深了理论知识的理解,强化了生产中的感性认识。

设计思路是最重要的,只要你的设计思路是成功的,那你的设计已经成功了一半。因此我们应该在设计前做好充分的准备,像查找详细的资料,为我们设计的成功打下坚实的基础。

总体来说,通过这次设计我受益匪浅。在摸索该如何画出夹具零件图时的过程中,也特别有趣,培养了我的设计思维,增加了理论知识。对一些先进的生产技术和工艺,先进材料有一定的了解和认识。对未来的生产技术有很大的想象空间。在让我体会到了搞设计艰辛的同时,更让我体会到成功的喜悦和快乐。

本次课题设计主要为专用夹具设计。我们运用了基准选择、切削用量选择计算、机床选用、时间定额计算等方面的知识;夹具设计的阶段运用了工件定位、夹紧机构及零件结构设计等方面的知识。

通过此次设计,使我们基本掌握了零件的加工过程分析、工艺文件的编制、专用夹具设计的方法和步骤等。学会了查相关手册、选择使用工艺装备等等。

总的来说,这次设计,使我们在基本理论的综合运用及正确解决实际问题等方面得到了一次较好的训练。提高了我们在实际工作中分析原因、解决问题的能力。

由于能力所限,设计中还有许多不足之处,恳请各位老师、领导们批评指正!

“挡环”零件的钻床夹具设计

致 谢

自从进入2014年3月至今,近两年多的学习生活让我难以忘怀。两年的学习是短暂充实的,各位任课老师的悉心指导,同学们的热情帮助都给我留下了深刻的印象。本文的研究工作进展的比较顺利,关键的程序和平台功能可以正常实现,这得益于各位老师悉心的指点和无私的关怀,我在其中受益匪浅。

最后,我要衷心地感谢学校和老师的耐心讲授和指导,特别是我的指导老师辛老师,她一直都耐心地给予我指导和意见,使我在总结学业及撰写论文方面都有了较大提高;同时也显示了老师高度的敬业精神和责任感。还有公司给我们这一次学习的机会,公司领导在学习期间给予我们的支持。在此,我对各位老师和公司领导我的同学们表示诚挚的感谢以及真心的祝福。

陕西航空技师学院毕业设计

参考文献

[1] 李华.机械制造技术.高等教育出版社,2007 [2] 薛彦成.公差配合与技术测量,2002 [3] 杨海东.CAD/CAM软件应用,2011 [4] 隋明阳.机械设计基础,2002 [5] 冯欢.《机械制造工艺学》,2005 [6]崇凯 机械制造技术基础课程设计指南——北京:化学工业出版社 2006.12 14

第五篇:肥皂盒模具设计零件分析

第 一 部分

产品的说明

第 二 部分

塑件分析

第 三 部分

注射机的型号和规格选择及校核

第 四 部分

第 五 部分

第 六 部分

第 七 部分

第 八 部分

第 九 部分

第 十 部分

第十一部分

第十二部分

第十三部分

型腔的数目决定及排布

分型面的选择

浇注系统的设计

成型零件的工作尺寸计算及结构形式

导柱导向机构的设置

推出机构的设计

冷却系统的设置

模具的动作过程

设计小结

参考资料

第 一 部分

产品的说明

肥皂盒是日常用品,几乎家家户户都有,商店里出售的肥皂盒也是各式各样,丰富多彩,有很特别的设计以赢得消费者的喜爱。而此次我设计的是肥皂盒,结构比较简单,主要考虑的是其实用性和经济性。为了防止香皂遇水软化,将底座设计成了中间镂空的形状,并在底座水平放置面创建了四个支撑钉。为了防止使用香皂后手滑,特别将肥皂盒四边侧面设计成了带有较大R的圆角。此次产品是在pro/e4.0的辅助下完成的。 完成后的产品图如下:

图一

零件实体图

1、工艺性分析

分析塑胶件的工艺性包括从技术和经济两方面分析,在技术方面:根据产品图纸,只要分析塑胶件的形状特点、尺寸大小、尺寸标注方法、精度要求、表面质量和材料性能等因素,是否符合模具工艺要求;在经济方面:主要根据塑胶件的生产批量分析产品成本,阐明采用注射生产可取得的经济效益。

1、塑胶件的形状和尺寸: 塑胶件的形状和尺寸不同,对模具工艺要求也不同。

2、塑胶件的尺寸精度和外观要求:

塑胶件的尺寸精度要求不是很高,能装下肥皂并且大小适中就好,设计的自由性很大;产品外观不产生溢料,飞边,气穴。不影响美观就可以。

2型腔数目的确定及排布

为了保证塑件体精度,在模具设计时应确定型腔数目,常用的方法有四种: a)、根据产品的经济性能确定型腔数目;

b)、根据现有注射机的额定锁模力确定型腔数目;

c)、根据现有注射机的最大注射量确定型腔数目;

d)、根据制品要求的精度确定型腔数目。

从经济性方面和产品要求的精度方面入手,经过简单分析,我们初步将模具设为一模两腔,采用对称的平衡布局。布局方式如下:

上一篇:资助自查自纠工作报告下一篇:在组织生活会上的发言