二次函数衔接最值问题

2022-11-11

第一篇:二次函数衔接最值问题

二次函数最值问题

《二次函数最值问题》的教学反思

大河镇第二中学

姚朝江

本节课的教学目标是:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数知识解决实际问题中的最值。会综合运用二次函数和其他数学知识的解决有关面积、利润等函数最值问题,发展应用数学解决问题的能力,体会数学与生活密切联系,了解数学的价值。

现象:本节课设置了两个例题,第一个例题是有关利润的问题,第二个例题是有关面积的问题,为了顺利完成任务,我对这节课的内容、任务、进程都具体以时间来分解,其中复习5分钟、新授25分钟、巩固7分钟、作业5分钟、小结3分钟。课堂教学“五环节”做到丝丝入扣,但是在实际操作过程中,第一个例题就用了一节课的时间。

例题:某商店经营T恤衫,已知成批购进时单价是2.5元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元,销售量是500件,而单价每降低1元,就可以多售出200件。

问:销售单价是多少元时,可以获得最多?

办法:例题的数学是采用了分层设问,逐步突破难点的办法来展开的,先用列方程解应用题的思想,把这个问题当作应用题,列出一个二元二次方程,然后把它转化为二次函数的表达式。如:此例可以用下列问题来分层教学:

(1)销售量可以表示为

; (2)销售额可以表示为

; (3)所获利润可以表示为

;

(4)当销售单价是 元时,可以获得最大利润,最大利润是 元; 分析:获利就是指利润,总利润应为每件T恤衫的利润乘以T恤衫的数量,设销售量单价为x元,则降低了(13.5-x)元,每降低1元,可多售200件,降低(13.5x-x)元,则可多售出200(13.5-x)件,因此,共售出500+200(13.5-x)

第 1 页 共 2 页 件,设所获利润为y元,则y=(x-2.5)[500+200(13.5-x)],这样,一个二元二次方程就列出,这也为后面学习二次函数与一元二次方程的关系奠定了基础,针对上述分析,把所列方程整理后,并得到y=-200x2+3700x-8000,这里再利用二次函数y=ax2+bx+c(a≠0)的解析式中a、b、c的大小来确定问题的最值。把问题转化怎样求这个函数的最值问题。

b4acbb4acb根据a>0时,当x=-,y最小=;a<0时,当x=-,y最大=

2a4a2a4a的公式求出最大利润。

例2是面积的最值问题(下节课讲解)

教学反馈:讲得丝丝入扣,大部分学生能听懂,但课后的练习却“不会做”。 反思一:本节课在讲解的过程中,不敢花过多的时间让学生争辩交流,生怕时间不够,完成了不教学内容,只能按照自己首先设计好的意图引领学生去完成就行了。实际上,这节课以牺牲学生学习的主动性为代价,让学生被动地接受,去听讲,体现不了学生是学习的主人这一关键环节。

反思二:数学教学的目标不仅是让学生学到一些知识,更重要的是让学生学会运用知识去解决现实问题,让学生“从问题的背景出发,建立数学模型”的基本流程,如例题中,可让学生从“列方程→转化为二次函数解析式→

b4acb当x=-时,y最大(小)=→解决问题”,让学生在实践中发现数2a4a学,掌握数学。

反思三:教学应当促进学生成为学习的主人,离开了学生积极主动学习,老师讲得再好,学生也难以接受,或者是听懂了,但不会做题的现象。传统的教学“五环节”模式已成为过去,新的课程标准需要我们用新的理念对传统的教学模式、教学方法等进行改革,让学生成为课堂的主角。

第 2 页 共 2 页

第二篇:二次函数的最值问题

涟水县第四中学(红日校区)周练专用纸

初三:年级 数学:学科 出核人:杨守德 审核人:高阳 时间:12月26日 1.若二次函数y=x-3x+c图象的顶点在x轴上,则c=( ) 24411A. B.- C. D.-

9999222.抛物线y=ax+bx+c的对称轴的位置( )

A.与a、b、c有关 B.只与a、b有关 C.只与a有关 D.只与b有关 3.关于二次函数y=x+4x-7的最大(小)值,下列叙述正确的是( ) A.当x=2时,函数有最大值 B.当x=2时,函数有最小值 C.当x=-2时,函数有最大值 D.当x=-2时,函数有最小值 4.二次函数的图象如图所示,则下列判断错误的是( )

A.a>0 B.c<0 C.函数有最小值 D.y随x的增大而减小

5.若所求的二次函数的图象与抛物线y=2x-4x-1有相同的顶点,并且在对称左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小,则所求二次函数的关系式为( ) A.y=-x+2x-4 B.y=ax-ax+a-3 C.y=-2x-4x-5 D.y=ax-2ax+a-3(a<0) 6.抛物线y=-222222125x+3x-的顶点坐标是( ) 22A.(2,3) B.(3,2) C.(-2,3) D.(-3,2)

7.某商品进货单价为90元,按100元一个出售,能售出500个,如果这种商品涨价1元,其销售额就减少10个,为了获得最大利润,其单价应定为( ) A.130元 B.120元 C.110元 D.100元 8.将抛物线y=x+2x+1向左平移2个单位,再向上平移2个单位得到的抛物线的最小值是( ) A.-3 B.1 C.2 D.3 9.根据二次函数y=(x-1)(x+2)的图象可知,当x的取值范围是 时,y≤0 10.二次函数y=2x+x-n的最小值是2,那么n=

11.抛物线y=2x-4x+1的开口向 ,最低点的坐标为

12.抛物线y=ax+bx+c在点(3,1)处达到最高点,抛物线与y轴交点的纵坐标为-8,则它的解析式为

13.把二次函数y=2x-4x+5化成y=a(x-h)+k的形式是 ,其图象开口方向 ,顶点坐标是 ,当x= 时,函数y有最 值,当x 时,y随x的增大而减小。 22222214.已知二次函数y=x-6x+m的最小值为1,那么m的值是

15.已知一个二次函数的顶点为(1,2),且有最大值,请写出满足条件的一个二次函数的关系式

16.心理学家发现学生对概念的接受能力y与提出概念所用时间x(单位:分)之间满足函数关系:y=-0.1x+2.6x+43(0≤x≤30),y值越大,表示接受能力越强,当x= 时,y有最大值是

17.已知二次函数y有最大值4,且图象与x轴两交点间的距离是8,对称轴为x=3,求此二次函数的表达式。

18.某产品每件的成本是120元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系式y=-x+200,为获得最大利润,每件产品的销售价应定为多少元?此时每日的销售利润是多少?

19.在一场足球比赛中,一球员从球门正前方10米处将球踢起射向球门,当球飞行的水平距离是6米时,球到达最高点,此时球高3米,已知球门高2.44米,问能否射中球门?

20.如图,在体育测试时,一位初三同学掷铅球,已知铅球所经过的路线是二次函数的一部分,如果这个同学出手点A的坐标为(0,2),铅球路线最高处B的坐标为(6,5) (1)求这条二次函数的解析式;

(2)该生能把铅球掷多远?(精确到0.01米,15≈3.873)

21.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场判定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件

(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元? (2)每件衬衫降低多少元时,商场平均每天盈利最多? 22

第三篇:2015二次函数与最值问题

2015年中招专题---二次函数与最值问题

1.(2014•四川绵阳)如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,且与x轴交于A、B两点,与y轴交于C点. (1)求抛物线的解析式;

(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;

(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.

2.(2014•四川内江)如图,抛物线y=ax+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO. (1)求抛物线的解析式;

(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;

(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.

3. (2014•攀枝花)如图,抛物线y=ax2﹣8ax+12a(a>0)与x轴交于A、B两点(A在B的左侧),与y

2),顶点坐标为N(﹣1,),轴交于点C,点D的坐标为(﹣6,0),且∠ACD=90°. (1)请直接写出A、B两点的坐标; (2)求抛物线的解析式;

(3)抛物线的对称轴上是否存在点P,使得△PAC的周长最小?若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;

(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止.设直线m与折线DCA的交点为G,与x轴的交点为H(t,0).记△ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围.

4.(2014•襄阳)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.

(1)填空:点A坐标为

;抛物线的解析式为

.

(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?

(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

5.(2014•德州)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上. (1)求抛物线的解析式;

(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;

(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

6.(2014•甘肃兰州)如图,抛物线y=﹣x+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2). (1)求抛物线的表达式;

(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;

(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

7.(2014•重庆)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴于A、B两点(点A在点B的左边),与y轴交于点C,点D抛物线的顶点.

(1)求A、B、C的坐标;

交为2(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;

(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=

2DQ,求点F的坐标.

8.(四川泸州)如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣(1)求二次函数的最大值;

(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程a的值;

(3)若点F、G在图象C′上,长度为

的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四

=0的根,求2

,0).

边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.

第四篇:二次函数最值问题的研究

(内江师范学院 内江 641100)

摘要:最值问题是中学数学的重要内容之一,中学数学最值问题遍及代数、三角函数、立体几何及解析几何各部分之一,最值问题为载体,利用数形结合的思想,考查分类讨论、数形结合、转化与化归等思想考查二次函数的最值问题,利用二次函数的图像和性质进行研究最值问题,遍及初高中数学代数和几何部分的几乎所有,利用数与形进行分类和分轴以及参数问题讨论出最值问题的变化,同时利用数学等优秀的数学思想,将观察、类比、实验、归纳、一般化、抽象化等方法解决生活中遇到的最值问题。

关键字:数学 最值 数形结合 图像

1、前言

数学是一种古老而又年轻得文化,人类从蛮荒时代的结绳计数,到如今用电子计算机指挥宇宙航行,无时无刻不在受到数形结合和空中二次函数的思想的恩惠和影响,进入21世纪,我国数学课程中有关数学学习的理念时刻在发生变化,数学教学的主要目的和任务早已经不是简单的知识和方法的传授,而是通过数学学习在传授知识分方法的同时培养学生的数学能力,咋促进学生数学学习的过程中,加强数与行的结合,能化简为繁,对于帮助学生开阔思路,突破思维定势有积极地作用,能加深学生对知识的理解和掌握,学习二次函数的知识不仅是高中教材的内容,而且更是解决生活的实际问题有很大的帮助,但是二次函数包括的知识点不仅多,难度比较大之外,更重要的是具有可行性的量化和质变的本质区别,二次函数的最值问题作为研究二次函数的图像和性质,以及二次函数的区间最值问题都是需要学生去总结和探讨的。

作为初中和高中教材中的主要函数知识点的部分,学习二次函数起到一个承上启下的作用,同时二次函数也是中考和高考命题的重点,如何让初高中学生对二次函数了解的更加深刻和透彻,本文利用和数形结合的思想对初高中二次函数做了更深入的研究和讨论,主要运用数形结合的思想和分类讨论的思想以及根据二次函数的性质,从不同的角度进行分析二次函数的最值问题,利用二次函数的图像解决:定轴动区间、动轴动区间、动轴定区间的最值问题,以及根据开口方向、对称轴、所给区间确定;所给区间确定、对称轴位置变化;所给区间变化、对称轴位置确定;区间、对称轴位置都不确定,巧用二次函数的图像来进行讨论二次函数所遇到的最值问题,利用图像讨论含参数的问题,以及巧用二次函数图像讨论二次函数与一次函数交汇问题和运用数形结合求解问题误区的探讨这几个方面论述.

2、国内外研究现状:

查阅相关文献,众多数学教育者和数学专家从不同角度和侧面探讨了二次函数的最值问题,同时结合教学、解题、以及函数的应用,王丰霞在文献[1]中浅谈了构造数形结合在二次函数中的培养创新思维,张冰、杨光在文献[2-3]中浅析二次函数最值问题的研究的概念以及培养学生数形结合的兴趣,孙雪梅、王雨来、朴林玉等文献[4-6]分析了二次函数的最值问题,周建涛、姚爱梅在文献[7]中二次函数在闭区间的最值问题的研究,陈晨在文献[8]闭区间上的二次函数的最值,张连友在文献[8]二次函数在最值求法例谈,陈林文在文献[9]巧解最值问题,黄小琴在文献[10]二次函数最值求法探索,张武在文献[11]中“数形结合”解题误区的认识与思考给出了自己独特的见解和分析,通过观看以上等教育工作者的研究和对二次函数最值问题的研究,让我受益匪浅,从他们的研究中看到了对二次函数最值问题的深入剖析。

2、国内外研究现状评价

在所查阅到的国内外参考文献中,教育者们对在二次函数中最值问题的研究,只是针对了二次函数的某一些问题或是某一些最值问题探究的比较清楚,其中关于二次函数的深层次或是大学知识的解决办法未能够涉及到里面去,相对高思想高研究高知识层面的探讨问题研究的不是很充分,其次对于二次函数利用思想方法和数形结合的思想方法的分析缺乏深入的研究和探讨,数形结合的思想在初高中二次函数中是比较重要的一个内容,对数形结合的思想在高中二次函数中的综合运用进行深入研究,使之形成完整的体系,对今后利用二次函数的图像和数形结合的思想去进行二次函数的教学、解题、以及二次函数最值问题的分析在初高考的应用具有重要的意义。

3、提出问题:

二次函数最值问题是结合初高考的代数和几何进行考试的内容,同时也是大部分学生遇到的问题最多的地方,所以探讨二次函数的最值问题的具有可行性的,同时也是对函数部分的知识进行深入的剖析,在具体探讨二次函数的最值问题的时候加入一些数学思想和数学方法以及高等数学的解题方法,根据定义域的问题和对称轴的问题进行深入分析和探讨是有必要的数学研究,

4、结束语:

通过对国内外数学中二次函数的了解和研究以及专家和教育学者的文献的分析,二次函数是初高中数学的重点和难点,贯穿高中知识的始终,同时二次函数与其他知识的综合也是高考的重点和难点,是解决很多复杂的数学问题的一把利刃, 利用二次函数的图像和性质进行研究最值问题,求解函数的最值是高考的重点以及难点,必须从根本上解决高中生面对最值问题所遇到的困难,很多文献都是有解法的缺乏思想,有教学的缺乏实践支撑,本文就是让学生将解题的技巧与求解函数的最值结合起来,让学生不再害怕最值问题,不再高考的大部分涉及函数最值的题目中失分。凡题有法而可解,高中生在做题的时候往往照抄书本模式,禁锢于思维定势,用解法解题便成了盲区,对于解法,教材中只提到了二次函数配方法求最值,利用函数的单调性、奇偶性求最值,这些方法可以应对一些简单的题目,如果题目加大难度,学生就束手无策,文章对函数最值问题的解法进行研究,目的就是为了扩大学生之视野,扩张学生之思维,以解学生学习最值问题的重点和难点。 参考文献:

【1】 王丰霞,构造数形结合思想在二次函数中培养创新思维[J],胜利油田专科学校学报,2001,(04)

【2】 张冰、杨光,浅析二次函数最值问题的研究的概念以及培养学生数形结合的兴趣,山西财经职业技术学院,2011,(7)

【3】 孙雪梅、王雨来、朴林玉,二次函数的最值问题[J],2010,(11):45-46 【4】 周建涛、姚爱梅,二次函数在闭区间的最值问题的研究[J],数学教学学报,2005,(12):24-25 【5】 陈晨,闭区间上的二次函数的最值[J],中学数学杂志,2004(12) 【6】 张连友,二次函数在最值求法例谈[J],黑河教育,2008(4) 【7】 陈林文,巧解最值问题[J],时代教育,2007(7)

【8】 黄小琴,二次函数最值求法探索[M],中学数学教育,2012(15) 【9】 张武,“数形结合”解题误区的认识与思考[J],太原市教育学院,2004,(3):59-62 【10】 朱永星,谈二次函数的学习[J],高中数学教育学,2007,(11):11-13 【11】 周建涛浅谈二次函数在高中阶段的应用[J],数学教学通讯,2005,(12):24-25 【12】二次函数在高中数学教学中的应用[J],内江师范学院学报,2008,(23):58-59

第五篇:专题六 二次函数的最值问题

专题强化训练

专题六

二次函数的最值问题

初高中衔接教材

专题六 二次函数的最值问题 【要点回顾】

1.二次函数yaxbxc (a0)的最值.

二次函数在自变量x取任意实数时的最值情况 24acb2b当a0时,函数在x处取得最小值,无最大值;

4a2a4acb2b当a0时,函数在x处取得最大值,无最小值.

4a2a2.二次函数最大值或最小值的求法.

第一步确定a的符号,a>0有最小值,a<0有最大值;

第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值. 3.求二次函数在某一范围内的最值.

如:yaxbxc在mxn(其中mn)的最值. 第一步:先通过配方,求出函数图象的对称轴:xx0; 第二步:讨论:

[1]若a0时求最小值或a0时求最大值,需分三种情况讨论:

①对称轴小于m即x0m,即对称轴在mxn的左侧;

②对称轴mx0n,即对称轴在mxn的内部;

③对称轴大于n即x0n,即对称轴在mxn的右侧。 [2] 若a0时求最大值或a0时求最小值,需分两种情况讨论: 2mn,即对称轴在mxn的中点的左侧; 2mn②对称轴x0,即对称轴在mxn的中点的右侧;

2①对称轴x0说明:求二次函数在某一范围内的最值,要注意对称轴与自变量的取值范围相应位置,具体情况, 【例题选讲】

例1求下列函数的最大值或最小值.

(1)y2x3x5; (2)yx3x4.

1 22

专题强化训练

专题六

二次函数的最值问题

初高中衔接教材

例2当1x2时,求函数yxx1的最大值和最小值.

例3当x0时,求函数yx(2x)的取值范围.

2125xx的最小值(其中t为常数). 22分析:由于x所给的范围随着t的变化而变化,所以需要比较对称轴与其范围的相对位置.

125解:函数yxx的对称轴为x1.画出其草图.

22125(1) 当对称轴在所给范围左侧.即t1时:当xt时,ymintt;

22125(2) 当对称轴在所给范围之间.即t1t10t1时: 当x1时,ymin113;

22(3) 当对称轴在所给范围右侧.即t11t0时:当xt1

151ymin(t1)2(t1)t23.

222例4当txt1时,求函数y

122t3,t0综上所述:y3,0t1

15t2t,t122例5某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数m1623x,30x54.

(1) 写出商场卖这种商品每天的销售利润y与每件销售价x之间的函数关系式;

(2) 若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?

【巩固练习】

1.抛物线yx(m4)x2m3,当m= _____ 时,图象的顶点在y轴上;当m= _____ 时,图象的顶点在x轴上;当m= _____ 时,图象过原点.

2 2

专题强化训练

专题六

二次函数的最值问题

初高中衔接教材

2.用一长度为l米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 ________ . 3.设a0,当1x1时,函数yxaxb1的最小值是4,最大值是0,求a,b的值.

4.已知函数yx2ax1在1x2上的最大值为4,求a的值.

5.求关于x的二次函数yx2tx1在1x1上的最大值(t为常数).

222专题六 二次函数的最值问题 参考答案

22例1分析:由于函数y2x3x5和yx3x4的自变量x的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值. 解:(1)因为二次函数y2x23x5中的二次项系数2>0,

所以抛物线y2x23x5有最低点,即函数有最小值.

334949 因为y2x23x5=2(x)2,所以当x时,函数y2x23x5有最小值是.

48482(2)因为二次函数yx3x4中的二次项系数-1<0,

所以抛物线yx23x4有最高点,即函数有最大值.

因为yx23x4=(x2532253,所以当x时,函数yx23x4有最大值. )4242例2解:作出函数的图象.当x1时,ymin1,当x2时,ymax5.

说明:二次函数在自变量x的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.

根据二次函数对称轴的位置,函数在所给自变量x的范围的图象形状各异.下面给出一些常见情况:

3

专题强化训练

专题六

二次函数的最值问题

初高中衔接教材

例3解:作出函数yx(2x)x2x在x0内的图象.

2

可以看出:当x1时,ymin1,无最大值.所以,当x0时,函数的取值范围是y1. 例5解:(1) 由已知得每件商品的销售利润为(x30)元,那么m件的销售利润为ym(x30),又m1623x. y(x30)(1623x)3x2252x4860,30x54

(2) 由(1)知对称轴为x42,位于x的范围内,另抛物线开口向下

当x42时,ymax3422252424860432

当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.

【巩固练习】

l22311.4 14或2, 2.m 3.a2,b2. 4.a或a1.

16245.当t0时,ymax22t,此时x1;当t0时,ymax22t,此时x1.

上一篇:电子商务平台推广方案下一篇:对着月亮说声我爱你舞

本站热搜

    相关推荐