传感器原理复习总结

2022-08-04

总结是一种事后记录方式,针对于工作结束情况、项目完成情况等,将整个过程中的经验、问题进行记录,并在切实与认真分析后,整理成一份详细的报告。如何采用正确的总结格式,写出客观的总结呢?以下是小编整理的关于《传感器原理复习总结》仅供参考,希望能够帮助到大家。

第一篇:传感器原理复习总结

传感器原理复习提纲

第一章:

传感器的定义,组成

测量的定义,测量结果,测量误差和种类

第二章:

静态量,动态量,静态特性,静态特性的指标。

第三章:

电阻应变效应,

金属电阻应变片的结构

电阻应变片的分类

电阻应变式传感器的测量电路(会画电桥,会推平衡条件)

温度补偿(线路补偿和应变片自补偿)

测力传感器的结构

压力传感器的结构

压阻效应

压阻式传感器的应用

第四章:

电容式传感器工作原理

电容式传感器分类

测量电路(交流电桥电路,变压器电器电路,双T形电桥电路,运算放大器,调频)工作原理,

电容式传感器的设计改改善措施。

电容式压力传感器的工作原理,结构

电容式加速度传感器的工作原理,结构

电容式位移传感器的工作原理

电容式液位传感器的工作原理

第五章

定义

分类

结构组成

工作原理

差动自感传感器的结构,会推导差动自感传感器的输出特性和灵敏度

测量电路 变压器电路(会分析,会计算),相敏检波电路(原理,会分析) 涡流效应

第六章

压电效应

常用压电材料的种类

压电传感器的工作原理。

石英晶体的压电效应

压电元件的常用结构

第七章

霍尔效应

霍尔元件的结构

霍尔传感器的不等位电势和不等位电阻产生的原理,及补偿方法 霍尔传感器的测量电路

第八章

光电效应

光电效应的种类

光电管的结构及原理

光电倍增管的结构及原理

光敏电阻的结构及原理

第九章:

测温的方法,

金属电电阻的种类及结构

金属热电阻的工作原理(铂热电阻,铜热电阻)

热敏电阻工作原理。

热敏电阻的温度特性(会计算)

热电偶的种类、工作原理

热电效应

热电势的组成

热电偶的冷端温度补偿的方法

热电偶分度表的应用(会计算)

第二篇:传感器原理与应用复习提纲

《传感器原理与应用》课程复习纲要

一、课程内容

1.基本概念名词解释,要完整。

例如:压电效应:名词解释要包括两部分(正、逆压电效应),材料等。

2.传感器的工作原理

例如:电涡流式测厚传感器:说明传感器的组成结构、写出原理图、叙述工作过程和相关的表达式(或数学模型或物理模型)等。

3.基础知识和基本常识(包括传感器的分类)

例如:(1)动态模型中,“标准”输入只有三种:正弦周期输入、阶跃输入和线性输入,而经常使用的是前两种。

(2)在光线作用下能使物体产生一定方向电动势的称光生伏特效应,如光电池。

(3)电涡流式位移传感器有高频反射式和低频透射式两种。

(4)看图分析并叙述图上提供的信息。

4.计算

例如:(1)金属应变片如何贴片分布于在等强度梁上?电阻变化计算和输出电压计算。

(2)用于测量转速的传感器有哪些?结构如何?如何计算转速?测速误差多少?

5.测量电路简图和作用

例如:金属应变片全桥电路、半桥电路等测量电路图,及相应的作用。

6.有关误差补偿

例如:非线性补偿可用差动结构;温度补偿也可差动结构,还有其它方法等。

7.看图设计叙述

例如:(1)8个实验内容:金属应变片、差动变压器、扩散硅压阻式压力传感器、霍尔传感器和光纤传感器等。

(2)看图叙述某传感器的结构组成,如何工作的及优缺点。

二、考试形式

1.闭卷考试

考试时间:120分钟。

2.考试题型

填空题(10分)、单项选择题(10分)、简述题(4*8分)、计算题(2*10分)和设计题(2*14分)

三、各章需掌握的内容

绪论

什么是传感器,传感器的物理基础、传感器的分类等。

第1章 传感器技术基础

传感器的数学模型、物理模型、静态特性(包括其指标,如线性度等)、动态特性(包括其指标,如二阶系统的参量分析等)、标定和校准、传感器的分析手段

和传感器材料。

第2章 电阻式传感器

电阻式传感器的结构、组成和工作原理,测量电路及有关信号输出计算,及应用。

第3章 变磁阻式传感器

电感式传感器的分类、组成和工作原理、测量电路的作用等;电涡式传感器的分类、组成和工作原理;霍尔式传感器的组成、工作原理和所用材料,及应用;磁阻效应的有关知识。

第4章 电容式传感器

电容式传感器分类、组成和工作原理、测量电路的作用等,如何解决存在的问题。

第5章 磁电式传感器

磁电式传感器分类、组成和工作原理、测量电路的作用,材料,及有关应用等。

第6章 压电式传感器

压电式传感器材料、分类、组成和工作原理、测量电路,如何解决存在的问题。

第7章 光电式传感器

光电式传感器材料、分类、组成和工作原理、测量电路,光源要求;包括模拟式光电传感器、开关式光电传感器、光纤传感器、电荷耦合器件CCD等。

第9章 智能传感器

智能传感器的分类、组成和工作原理,数据采集和数据处理技术等。

第10章 数字式传感器

哪些是直接以数字量形式输出的传感器、以脉冲形式输出的传感器和以频率形式输出的传感器。

第三篇:传感器原理及实用技术期末复习1

3.简要说明电容式传感器的原理

电容式传感器能将被测量转换为传感器电容变化,传感器有动静两个极板,极板间的电容为C=ε0εrA/δ0

式中:

ε0真空介电常数8.854×10-12F/mεr介质的相对介电常数

δ0两极板间的距离A极板的有效面积

当动极板运动或几班见的介质变化就会引起传感器电容值的变化,从而构成变极距式,变面积式和变介质型的电容式传感器。

4.简述电涡流传感器工作原理及其主要用途。

电涡流式传感器就是基于涡流效应工作的。电涡流式传感器具有结构简单、频率响应快、灵敏度高、抗干扰能力强、体积小、能进行非接触测量等特点,因此被广泛用于测量位移、振动、厚度、转速、表面温度等参数,以及用于无损探伤或作为接近开关,是一种很有发展前途的传感器。

6.简述光敏电阻的工作原理。

光敏电阻是一种基于光电导效应(内光电效应)工作的元件,即在光的照射下,半导体电导率发生变化的现象。光照时使半导体中载流子浓度增加,从而增大了导电性,电阻值减小。照射光线愈强,电阻值下降愈多,光照停止,自由电子与空穴逐渐复合,电阻又恢复原值。

7.什么叫零点残余电压?产生的原因有哪些?

当衔铁处于差动电感的中间位置时,无论怎样调节衔铁的位置,均无法使测量转换电路输出为零,总有一个很小的输出电压,这种微小误差电压称为零点残余电压。产生零点残余电压的具体原因有:① 差动电感两个线圈的电气参数、几何尺寸或磁路参数不完全对称;② 存在寄生参数,如线圈间的寄生电容及线圈、引线与外壳间的分布电容;③ 电源电压含有高次谐波;④ 磁路的磁化曲线存在非线性。

8.简述霍尔传感器的工作原理。

金属或半导体薄片两端通控制电流 ,并在薄片的垂直方向上施加磁感应强度为 的磁场,那么,在垂直于电流和磁场的方向上将产生电势 (称为霍尔电势电压),这种现象称为霍尔效应。霍尔电势的大小正比于控制电流和磁感应强度, 称为霍尔元件的灵敏度,它与元件材料的性质与几何尺寸有关。

9.什么叫纵向应变效应?什么叫横向应变效应?

应变片在受到外力变形时,其截面积变化引起的电阻变化,称为横向效应。应变片在收到外力变形时,其长度变化引起的电阻变化,称为纵向效应。也就是说,导体在长度上发生变化时,截面积也会随之变化,所以应变效应包含纵向效应和横向效应。

10.简述利用面型CCD摄像传感器实现二位图像识别的基本原理。

物体成像聚焦在CCD图像传感器上,视频处理器对输出信号进行存储和数据处理,整个过程由微机控制完成,根据几何光学原理,可推导出被测物体尺寸计算公式:

式中:n为物体成像覆盖的光敏像素数;p为像素间距;M为成像倍率。 微机可对多次测量求平均值,精确的到被测物体的尺寸。任何能够用光学成像的零件都可以用这种方法实现不接触的在线自动检测的目的。

11.变压器电桥电路和带相敏检波电桥电路哪个能更好的起到测量转换电路?为什么?

采用相敏整流电路,得到的输出信号既能反映位移的大小,又能反映位移的方向;而变压器电桥电路的输出电压随位移方向不同而反相1800,由于桥路电源是交流电,若在转换电路的输出端接上普通仪表时,无法判别输出的极性和衔铁位移的方向。此外,当衔铁处于差动电感的中间位置时,还存在零点残余电压。所以相敏整流的电桥电路能更好地起到测量转换作用。

12.常见的压电材料有哪些?各有什么特点?

常见的压电材料可分为三大类:压电晶体、压电陶瓷与高分子压电材料。 石英晶体还具有机械强度高、绝缘性能好、动态响应快、线性范围宽、迟滞小等优点。但石英晶体压电系数较小,灵敏度较低,且价格较贵。

压电陶瓷是人工制造的多晶体压电材料。与石英晶体相比,压电陶瓷的压电系数很高,制造成本很低。因此,在实际中使用的压电传感器,大都采用压电陶瓷材料。

第四篇:传感器原理及应用课程总结

绪论 传感器定义:传感器是将各种非电量按一定规律转换成便于处理和传输的另一种物理量的装置。

组成:敏感元转,转换元件(调制作用),测量电路

分类:按输入量分类,按测量原理分类,按结构型和物理型分类【第2页】

第一章

静态特性:传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为稳态特性。

Y=a0+a1X+a2X2+…+anXn 【第4页 公式1-1 线性度:在规定条件下,传感器校准曲线与拟合直线间最大偏差裕满量程(F·S)输出值的百分比称为线性度。δL=±ΔYmax/YF·S×100%

灵敏度:指到达稳定工作状态时输出变化量与引起次变化的输入变化量之比。

【第7页 公式1-2】 动态特性:指传感器对随时间变化的输入量的响应特性。(传感器的动态特性是传感器的输出值能够真实地再现变化着的输入量能力的反映。)【第10~11页,0,1,2阶数学模型】 幅频特性,相频特性【第13~15页】

对系统响应测试时,常采用正弦和阶跃两种输入信号。这是由于任何周期函数都可以用傅里叶级数分解为各次谐波分量,并把它近似地表示为这些正弦量之和。而节约信号则是最基本的瞬变信号。

第二章(应变传感器 与 压阻式传感器相联系)

金属应变片,特点:1.精度高,测量范围广。2.频率响应特性好。3.结构简单,尺寸小,质量轻。4.可在高(低)温、告诉、高压、强烈震动、强磁场及核辐射和化学腐蚀等恶劣条件下正常工作。5.易于实现小型化,固态化。6.价格低廉,品种多样,便于选择。

缺点:大应变状态时明显非线性,半导体传感器非线性严重;输出信号微弱,抗干扰能力差;不能显示应力场中应力梯度变化。

金属丝:应变系数【第20页 公式2-6】

金属应变片:【第23页 公式2-7】 横向效应:金属应变片由于敏感栅的两端为半圆弧形的横栅,测量应变时,构件的轴向应变ε使敏感栅电阻发生变化,其横向应变εr也将使敏感栅半圆弧部分的电阻发生变化,应变片的这种既受轴向应变影响,又受横向应变影响而引起电阻变化的现象称为横向效应。 温度误差:温度漂移→温度误差→因环境温度改变而引起电阻变化的两个主要因素:其一是应变片的电阻丝具有一定温度系数;其二是电阻丝材料与测试材料的线膨胀系数不同。

【公式2-16,17,18】 (补偿方式?)

应变极限:【第25页 公式2-11】与测量电路联系起来看 测量电路:电桥: 相邻相异,相对相同【第30页 公式2-27】

应用:看书后习题【第332页】

第三章

电容表达式:C=ε0εrS/dε=ε0εr

三种类型:变面积型,变介质介电常数型,变间距型【第46页】

变间距型,采用差动式电容传感器,使灵敏度提高已被,而且使非线性误差可以减小一个数量级。线性度极大减少?【第49页】 测量电路:【第53页 图3-10】

差动脉冲宽度调制电路:分析【第55页】

误差分析:寄生分布电容,边缘效应【第59页】

边缘效应:边缘效应的影响相当于传感器并联一个附加电容,引起了传感器的灵敏度下降和非线性增加。消除方法:增大初始电容C0,即增大极板面积,减小极板间距,加装等位环。 寄生分布电容:一般电容传感器的电容值很小,如果激励电源频率较低,则电容传感器的容抗很大。因此,对传感器绝缘电阻要求很高;另一方面传感器除有极板间电容外,极板与周围物体也产生电容联系,这种电容称为寄生电容。寄生电容极不稳定,导致传感器特性不稳定,产生严重干扰。措施:静电屏蔽,将电容器极板放置在金属壳体内,并将壳体与大地相连。电极引出线也必须用屏蔽线,屏蔽线外套要求接地良好。

第四章

电涡流传感器

电涡流传感器工作原理:当被测物体与传感器间的距离d改变时,传感器的Q值和等效阻抗Z、电L均发生变化,越是把位移量转化为电量。

为何说被测导体是传感器一部分:1.无被测导体,不发生电涡流效应,必要条件。2.被测导体变化,传感器特性也变化。

如何测,测量参数,影响因素【第89页】

第五章

压电式传感器是一种典型的有缘传感器。

压电效应:某些电介质,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在他的两个表面上产生符号相反的电荷;当外力去掉后,又重新恢复不带电状态。 压电陶瓷和晶体有何不同,有极性为何不显电性 电致伸缩效应 正负压电效应

测量电路:原理 【第105页】

内部泄露:传感器内部不可能没有泄露,外电路负载也不可能无穷大,只有外力以较高频率不断地作用,传感器的电荷才能得以补充,从这个意义上讲,压电晶体不适合于静态测量。 电压放大器【第106页 图5-17 公式5-18】模值,峰峰值,理想输出

电荷放大器

压电加速度传感器【第110页】阻尼系数,固有频率

第六章

数字式传感器:直接采用数字式传感器可将被测参数直接转换成数字信号输出【第114页】 光栅式传感器:由照明系统、光栅副和光电接收元件组成。

摩尔条纹形成【第120页】

辨向原理:如果能够在物体正向移动时,将得到的脉冲数累加,而物体反向移动时可从已累加的脉冲数中减去反向移动的脉冲数,这样就能得到正确的测量结果。

细分技术【第123页】 光栅传感器特性

第八章 霍尔效应,霍尔系数【第167页】

为何选N型材料:输出电势小,受温度影响小,线性度较好 磁敏传感器温度补偿:【第173页】半导体材料的电阻率、迁移率和载流子浓度等随温度变化的缘故。因此,霍尔元件性能参数,如内阻、霍尔电势等都将随温度变化。为减少霍尔元件温度误差,可:1.选温度系数小的材料。2.采用恒温措施。3.采用恒流源供电。4.采用补偿电路 为何尺寸,外形有要求? 测量电路,概念,两种符号,各种特性,形状系数,不等位电势

光敏传感器

光电效应

外光电效应:在光线作用下,物体内的电子逸出物体表面,向外发射的现象称为外光电效应。 内光电效应:受光照的物体导电率发生变化,活产生光生电动势的效应叫内光电效应 各种元件的基本特性,原理 负载,功率的选择

应用【第367页 例8-5】

光电传感器的类型及应用【第201页】

类型划分,按原理,按测量量(连续,断续)

光纤传感器 特点,原理,计算公式,结构,分类

特点:1.电绝缘2.抗电磁干扰3.非侵入性4.高灵敏度5.容易实现队被测信号的远距离监控 原理:斯奈尔定理:当光由光密物质射出至光疏物质时,发生折射,其折射角大于入射角。

【第245页】

结构:发送器、敏感元件、光接收器、信号处理系统以及光纤构成

公式E=Asin(ωt+ ø)

第五篇:传感器原理

传感器原理 第一章

1、测量方法:①根据获得测量值的方法,为直接测量、间接测量、组合测量。

②根据测量方式,偏差式测量、零位式测量与微差式测量。

③根据测量条件,等精度测量、不等精度测量

④根据被测量变化快慢,静态测量、动态测量

⑤根据测量敏感原件是否与被测介质接触,接触式测量、非接触式测量

⑥根据测量系统是否向被测量施加能量,主动式测量、被动式测量

2、直接测量:测得值直接与标准量进行比较

间接测量:首先对与被测量有确定函数关系的几个量进行直接测量,将直接测的值带入函数关系式,经过计算得到所需要的结果。

组合测量:被测量必须经过求解联立方程组求的

偏差式测量:用仪表指针的位移决定被测量的量值。

零位式测量:用指零仪表的零位反映测量系统的平衡状态,在测量系统平衡时用已知的标准量决定被测量的量值。

微差式测量:将被测量与已知的标准量相比较,获得差值后,再用偏差法测得此差值。

等精度测量:在整个测量过程中,若影响和决定误差大小的全部因素始终保持不变,对同一被测量进行多次重复测量。

不等精度测量:在不同的测量条件下,用不同精度的仪表,不同的测量方法,不同的测量次数以及不同的测量者进行测量和对比。

3、测量误差:测量值与被测量的真值之差。

①绝对误差:测量结果与真值之差。

②相对误差:绝对误差与被测量之比。

③引用误差:绝对误差与量程之比。

④随机误差:在同一测量条件下,多次测量被测量时,绝对值和符号以不可预定方式变化的误差。通过增加测量次数减小随机误差对测量结果的影响。

⑤粗大误差:超出规定条件下预期的误差,又称疏忽误差。 第二章

1、传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。

2、传感器由敏感元件和转换元件组成。

敏感元件是指传感器中能直接感受或响应被测量的部分。

转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。

3、传感器的基本特性:静态特性和动态特性。

静态特性是指被测量的值处于稳定状态时的输出与输入的关系。包括灵敏度,迟滞,线性度,重复性,漂移。

灵敏度:输出量增量与引起输出量增量的相应输入量增量之比。

线性度:传感器的输出与输入之间数量关系的线性程度。

迟滞:传感器在相同工作条件下输入量由小到大及输入量由大到小变化期间其输入输出特性曲线不重合的现象。

重复性:传感器在相同工作条件下,输入量按同一方向做全量程连续多次变化时,所得特性曲线不一致的程度。

漂移:输入量不变的情况下,传感器输出量会随时间变化。 第三章

应变式传感器

1.金属电阻应变片的工作原理:基于电阻应变效应。

2.电阻应变效应:导体在外界作用下产生机械变形(拉伸或压缩)时,其电阻值相应发生变化的现象。

3.半导体电阻应变片的工作原理:基于半导体材料的压阻效应。

4.压阻效应:半导体材料的电阻率ρ随作用应力的变化而发生变化的现象。 5.金属电阻应变片的灵敏度推导及半导体电阻应变片的灵敏度推倒。 6.金属电阻应变片的结构:由敏感栅,基片,覆盖层和引线等部分组成。

敏感栅是应变片的核心部分,它粘贴在绝缘的基片上,其上再粘贴起保护作用的覆盖层,两端焊接引出导线。

7.金属电阻应变片的材料要求:

①灵敏系数大②ρ值大③电阻温度系数小④与铜线的焊接性能好⑤机械强度高 8.电阻应变片的温度误差:由于测量现场环境温度的改变而给测量带来的附加误差,称为应变片的温度误差。

产生应变片温度误差的主要因素有下述两个方面: ①电阻温度系数的影响

②试件材料和电阻丝材料的线膨胀系数的影响

9.电阻应变片的温度补偿方法:线路补偿和应变片自补偿

应变片的自补偿法是利用自身具有温度补偿作用的应变片(称之为温度自补偿应变片)来补偿的。

10.电阻应变片的测量电路:电压灵敏度的计算,相互关系公式推导。

第四章

电感式传感器

1.变气隙式电感传感器:特点,工作原理灵敏度的公式推导 特点:灵敏度高,非线性严重

2.零点残余电压:把传感器在零位移时的输出电压称为零点残余电压,记作 3.产生零点残余电压的原因: ①由于由于两电感线圈的电气参数及导磁体几何尺寸不完全对称,因此在两电感线圈上的电压幅值和相位不同,从而形成了零点残余电压的基波分量。 ②由于传感器导磁材料磁化曲线的非线性(如铁磁饱和,磁滞损耗)使得激励电流与磁通波形不一致,从而形成了零点残余电压的高次谐波分量。 4.为了减小电感式传感器的零点残余电压的采取措施。

①在设计和工艺上,力求做到磁路对称,铁芯材料均匀。要经过热处理以除去机械应力和改善磁性。两线圈绕制要均匀,力求几何尺寸与电气特性保持一致。 ②在电路上进行补偿。

5.电涡流式传感器工作原理:当传感器线圈通以交变电流

时,由于电流的变化在线圈周围产生交变磁场

,使置于此磁场中的被测导体产生感应电涡流

,电涡流

又产生新的交变磁场

方向相反,因而抵消部分原磁场,从而导致传感器线圈的电感量,阻抗和品质因数发生变化,即线圈的等效阻抗发生变化。这些变化与被测导体的电阻率

磁导率

以及几何形状有关,也与线圈几何参数,激磁电流频率

有关,还与线圈与被测导体间的距离

有关,因此可写为

式中,为线圈与被测导体的尺寸因子。

第五章

1、电容式传感器结构简单、体积小、分辨率高,可非接触式测量,并能在高温、辐射、强烈震动等恶劣条件下工作。

2、电容式传感器可分为变极距型(测量位移)、变面积型(测量直线位移、角位移、尺寸)、变介电常数型(测量液体液位、材料厚度)。

3、变极距型平板电容式传感器的灵敏度推导

为了提高灵敏度,减小非线性误差,大都采用差动式结构。

4、电容式传感器的应用:电容式压力传感器,电容式加速度传感器,差动式电容测厚传感器。

第六章

压电式传感器

1.压电式传感器的定义:其工作原理是基于某些介质材料的压电效应,是一种典型的有源传感器。它通过材料受力作用变形时,其表面会有电荷产生而实现非电量测量。 2.压电式传感器的特点:体积小,重量轻,工作频带宽。

3.压电效应:某些电介质,当沿这一定方向对其施力而使它变形时,内部就产生极化现象,同时。在它的两个表面上产生符号相反的电荷。到外力去掉后,又重新恢复到不带电的状态,这种现象称为压电效应。

4.把这种机械能转化为电能的现象称为正压电效应。

5.当在电介质极化方向施加电场时,这些电介质也会产生几何变形,这种现象称为逆压电效应(电致伸缩效应)。

6.压电材料的主要特性参数: 压电常数:压电常数是衡量材料压电效应强弱的参数,它直接关系到压电输出灵敏度。 7.沿电轴x方向的力作用下产生电荷的压电效应称为纵向压电效应。 沿机械轴 y方向的力作用下产生电荷的压电效应称为横向压电效应。 沿光轴方向的力作用时不产生压电效应。 8.压电式传感器的等效电路的特点

9.压电式传感器的测量电路的特点

10.压电式传感器的应用:

①压电式测力传感器②压电式加速度传感器

③压电式金属加工切削力测量④压电式玻璃破碎报警器 第七章

1、磁电感应式传感器:变磁通式、恒磁通式。

变磁通式传感器工作原理:产生磁场的永久磁铁和线圈都固定不动,通过磁通Φ的变化产生感应电动势e。又称为磁阻式,常用于角速度的测量。

恒磁通式传感器工作原理:气隙磁通保持不变,感应线圈与磁铁作相对运动,线圈切割磁力线产生感应电势。

2、磁电感应式传感器的误差主要有非线性误差和温度误差

⑴非线性误差的主要原因:当磁电式传感器在进行测量时,传感器线圈会有电流流过,这时线圈会产生一定的交变磁通,此交变磁通会叠加在永久磁铁所产生的工作磁通上,使恒定的气隙磁通变化。

补偿非线性误差的方法:在传感器中加入补偿线圈,补偿线圈被通以一定的电流,适当选择补偿线圈的参数,产生的交变补偿磁通可以与传感器线圈本身产生的交变附加磁通相互抵消。

⑵温度误差产生的主要原因:受温度变化的影响。

温度误差补偿的方法:在结构允许的情况下,在传感器的磁铁下设置热磁分路。

3、霍尔效应:置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上垂直于电流和磁场的方向上产生电动势。

霍尔电势的影响因素:霍尔电动势正比于激励电流及磁感应强度,其灵敏度与霍尔系数成正比,而与霍尔片厚度d成反比,为了提高灵敏度,霍尔元件常制成薄片形状。

4、霍尔原件的符号

5、霍尔传感器的应用:霍尔式微位移传感器,霍尔式转速传感器,霍尔计数装置。 第八章

光电式传感器 1.光电效应

光电效应分为外光电效应和内光电效应两大类。

在光线作用下物体内的电子溢出物体表面向外发射的现象称为外光电效应。

在光线作用下物体的导电性能发生变化或产生光生电动势的效应称为内光电效应。 2.光敏电阻的主要参数: ①暗电阻与暗电流

光敏电阻在不受光照射时的阻值称为暗电阻,此时流过的电流称为暗电流。 ②亮电阻与亮电流

光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流称为亮电流。 ③光电流

亮电流与暗电流之差称为光电流。 3.光敏电阻的基本特性

①伏安特性

在一定照度下流过光敏电阻的电流与光敏电阻两端的电压的关系称为光敏电阻的伏安特性。光敏电阻在一定的电压范围内,其

曲线为直线,说明其阻值与入射光量有关,而与电压,电流无关。

②光照特性

光敏电阻的光照特性是描述光电流

和光照强度之间的关系的,不同材料的光照特性是不同的,绝大多数光敏电阻光照特性是非线性的。

③光谱特性

光敏电阻对入射光的光谱具有选择作用,即光敏电阻对不同波长的入射光有不同的灵敏度。光敏电阻的相对光敏灵敏度与入射波长的关系称为光敏电阻的光谱特性,亦称为光谱响应。对应于不同波长,光敏电阻的灵敏度是不同的,而且不同材料的光敏电阻光谱响应曲线也不同。 ④频率特性 ⑤温度特性

4.光敏二极管的工作原理

光敏二极管儿电路中一般是处于反向工作状态,在没有光照时,反向电阻很大,反向电流很小,该反向电流称为暗电流。当光照射在

结上,光子打在

结附近,使

结产生光生电子和光生空穴对,它们在

结处的内电场作用下作定向运动,形成光电流。光的照度越大,光电流越大,因此光敏二极管在不受光照射时处于截止状态,受光照射时处于导通状态。 5.光敏晶体管的工作原理

大多数光敏晶体管的基极无引出线,当集电极加上相对于发射极为正的电压而不接基极时,集电结就是反向偏压,当光照射在集电结时,就会在结附近产生电子--空穴对,光生电子被拉到集电极,基区留下空穴,基极与发射极间的电压升高,这样便会有大量的电子流向集电极,形成输出电流,且集电极电流为光电流的

倍,所以光敏晶体管有放大作用。 6.光电池的工作原理

基于光生伏特效应,光电池是因为有较大面积的PN结,当光照射在PN结上时,在结的两端出现电动势,从而成为电源。

上一篇:成功的医药产品经理下一篇:仓管员岗位设置目的