光纤光学光纤特性

2022-07-02

第一篇:光纤光学光纤特性

光纤通信实验五光纤衰减特性测量实验

1 实验目的

1.1 要求学生掌握利用光时域反射计(OTDR)对光纤进行衰减特性测量。

1.2 了解OTDR基本工作原理。

1.3 正确选择仪表的测试参数。

1.4 能够解释测试曲线的含义。

2 实验使用的仪表及器材

2.1 光时域反射计、光纤尾纤、光纤法兰、被测光纤等。

3 实验步骤

3.1 打开光时域反射计电源开关。

3.2将光纤尾纤插入仪表测试口中。尾纤另一端插入被测光纤端口法兰

3.3选择仪表测试波长,有两种测试波长可供选择1310nm和1550nm 。

3.4 根据被测光纤选择仪表折射率选项。实验一中给出,常用G.652单模光纤折射率约为

1.467

3.5 根据被测光纤的大概长度选择仪表的测试距离。测试仪表的测试距离选择一定要大于

被测光纤的长度,例如,测量一条2Km的光纤,选择仪表5Km的测试距离是正确的,如果选择仪表测试距离为40Km,测试以后被测光纤的线迹,将会集中在屏幕的左边,不利对线迹的分析观察。在实际的光纤测试工作中,往往不知道被测光纤的长度,这种情况下就要选择不同的测试距离多测几次,找出最佳的测试距离进行测量。

3.6 选择仪表发射光脉冲的宽度。发射光脉冲的宽度越窄,测试结果分辨率就越高,但是,

如果仪表选择的测试距离很长而又选择了很窄的测试光脉冲,远距离测量将会变得很困难,甚至失败,在这种情况下有些仪表会禁止该光脉冲选项,直到加宽光脉冲的选项到合适宽度以后测量才被允许。

3.7 上面几步仪表选项完成以后按下仪表上面的测试按钮开始测量。仪表向被测光纤发射

光脉冲并接收返回来的光进行处理,处理结果用一条线迹曲线显示在屏幕上,通过这条线迹,我们能够知道被测光纤的长度、被测光纤的总损耗、被测光纤的平均损耗、被测光纤某一段距离的平均损耗、某一熔接点(损耗过大点)的损耗值及距测试点的长度等信息。

4 实验报告要求

4.1 写出使用光时域反射计的体会

4.2 解释被测光纤测试线迹的含义

第二篇:光纤与铜线各有优点 为啥选用光纤通信?

来自一览铜业英才网

2011年2月28日消息,安防系统经常会遇到各类信号的传输,比如视频、音频、数据、局域网等信号传输,如何选择传输介质是一件非常恼人的事情。光纤与铜缆各有其优点,特点也比较鲜明,但是随着光纤价格的降低以及用户端设备价格大幅降低,比如视频光端机、多业务数字光端机的价格已经较前几年有不小的降幅。

技术领先的美国一家专业工程公司认为 “在我们工程中基本上都选用光纤作为介质,我们基本上不使用铜缆。”光纤传输网络可以为未来用户需求的增长提供许多空间,光纤传输市场的前景看好。

1. 光纤及光端机价格大幅下降

在几年前,光纤的总体价格要高于电缆的100%-200%,而现在的价格已经没有差别。光端机的价格也已经大幅下降。记得三年前有一工程设计人员说:“如果单路视频光端机的价格降到600元内,我工程中就首选光端机,而不使用铜缆。”他当时正为使用同轴电缆所带来的问题,如干扰、传输质量、传输距离、布线等一些列问题所困扰,但他若选择使用光纤必须支付高昂的费用。现在不用担心了,光端机价格已经降到可以大批量使用的地步了,他只要总体上支付比铜缆传输多10%左右的费用,他以前所面临的问题都不存在了。

2.传输容量大

光纤传输信号的带宽是很大的,一芯可以传输带宽达到几个G、甚至几

十、几百个G。举个例子,我们现在使用的电话带宽是64K、数字视频信号是150M左右、局域网是100M左右,1 G等于1000M,1M等于1000K,你可以算一算,一芯光纤可以传输多少信号?而常规一根光纤内部有四芯光纤,当然可以定做6芯、8芯、甚至更多。而现在的多业务数字光端机可以把视频、音频、数据、局域网、电话、DVI、HDMI、USB等各种用户需要传输的信号组合到一芯光纤上传输,不但简洁明了,而且容易维护。给你的组网及未来扩容带来很大的方便,如果用户未来有什么特殊要求,你无须重新布线,只要改进或增加光端机的功能就可以了。

3.传输距离远、不受干扰、传输质量高

光纤(单模光纤,建议用户首选单模光纤)传输衰减是很小的,正常每千米传输衰减只有0.3到0.6dB。如果你订购的光端机允许30 dB的衰减,你就可以传输到60千米以上,这样给你的方案设计带来很多方便,如果不是特别远,可以不考虑传输距离。由于光纤中传输的是光信号,所以电信号的干扰对光纤是没有任何影响的。现在光端机内部都使用数字技术,不但传输稳定,而且传输质量可以达到很高的水平。

制造光纤使用的是硅材料,我们地球上的硅是取之不尽、用之不竭的,而铜缆使用的铜却并不是如此。随着光纤连接工艺的提高和改进,光纤施工会越来越方便。

第三篇:深圳光纤接入

深圳鹏博士光纤专线接入介绍

深圳光纤接入 http:/// ,深圳地区最大、最综合企业光纤上网解决方案网站,我们成立于2006年,由电信,网通,天威,长城四大营运商客户经理发起成立,是一家专业级的企业上网解决方案网站,目前在深圳行业内最具有权威性网站,在通讯行业内有多年服务经验,经验非常丰富,并享有盛名,曾服务过企业(公司)有一百多家之多,包括政府单位及事业单位和上市公司等,过去的成绩并不代表我们未来的成绩,我们会继往开来,努力成为业内的领头羊,继续为新老客户提供优质的服务。

销售产品:深圳电信,深圳联通(原网通),深圳天威视讯,长城宽带,深圳移动(原铁通)等国内运营商的优秀光纤上网产品,包括: 1M-100M光纤专线接入速率,VPN( Virtual PrivateNetwork ),IDC,PCM(长途电路),DDN专线接入,等产品。

我们的服务理念:选择深圳光纤专线网,您不必再东奔西跑,电信,网通,天威,长城,移动,任您选择!

我们的服务目标:合理的价位,高效的网络方案,专业大客户经理服务,是我们工作的目标!

我们的承诺:保证全深圳价格最低,保证光纤专线的质量,保证拥有大客户级别的售后服务!

具体报价和咨询请联系我们

本文由 深圳光纤专线网原创,转载请注明来源,谢谢

第四篇:光纤

是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。光导纤维由前香港中文大学校长高锟发明。

微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。通常,光纤的一端的发射装置使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至光纤,光纤的另一端的接收装置使用光敏元件检测脉冲。

在日常生活中,由于光在光导纤维的传导损耗比电在电线传导的损耗低得多,光纤被用作长距离的信息传递。

通常光纤与光缆两个名词会被混淆.多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆.光纤外层的保护结构可防止周遭环境对光纤的伤害,如水,火,电击等.光缆分为:光纤,缓冲层及披覆.光纤和同轴电缆相似,只是没有网状屏蔽层。中心是光传播的玻璃芯。在多模光纤中,芯的直径是15μm~50μm, 大致与人的头发的粗细相当。而单模光纤芯的直径为8μm~10μm。芯外面包围着一层折射率比芯低的玻璃封套, 以使光纤保持在芯内。再外面的是一层薄的塑料外套,用来保护封套。光纤通常被扎成束,外面有外壳保护。 纤芯通常是由石英玻璃制成的横截面积很小的双层同心圆柱体,它质地脆,易断裂,因此需要外加一保护层。

[]光导纤维的发明和使用

1870年的一天,英国物理学家丁达尔到皇家学会的演讲厅讲光的全反射原理,他做了一个简单的实验:在装满水的木桶上钻个孔,然后用灯从桶上边把水照亮。结果使观众们大吃一惊。人们看到,放光的水从水桶的小孔里流了出来,水流弯曲,光线也跟着弯曲,光居然被弯弯曲曲的水俘获了。

人们曾经发现,光能沿着从酒桶中喷出的细酒流传输;人们还发现,光能顺着弯曲的玻璃棒前进。这是为什么呢?难道光线不再直进了吗?这些现象引起了丁达尔的注意,经过他的研究,发现这是全反射的作用,即光从水中射向空气,当入射角大于某一角度时,折射光线消失,全部光线都反射回水中。表面上看,光好像在水流中弯曲前进。实际上,在弯曲的水流里,光仍沿直线传播,只不过在内表面上发生了多次全反射,光线经过多次全反射向前传播。

后来人们造出一种透明度很高、粗细像蜘蛛丝一样的玻璃丝──玻璃纤维,当光线以合适的角度射入玻璃纤维时,光就沿着弯弯曲曲的玻璃纤维前进。由于这种纤维能够用来传输光线,所以称它为光导纤维。

光导纤维可以用在通信技术里。1979年9月,一条3.3公里的120路光缆通信系统在北京建成,几年后上海、天津、武汉等地也相继铺设了光缆线路,利用光导纤维进行通信。

利用光导纤维进行的通信叫光纤通信。一对金属电话线至多只能同时传送一千多路电话,而根据理论计算,一对细如蛛丝的光导纤维可以同时通一百亿路电话!铺设1000公里的同轴电缆大约需要500吨铜,改用光纤通信只需几公斤石英就可以了。沙石中就含有石英,几乎是取之不尽的。

另外,利用光导纤维制成的内窥镜,可以帮助医生检查胃、食道、十二指肠等的疾病。光导纤维胃镜是由上千根玻璃纤维组成的软管,它有输送光线、传导图像的领,又有柔软、灵活,可以任意弯曲等优点,可以通过食道插入胃里。光导纤维把胃里的图像传出来,医生就可以窥见胃里的情形,然后根据情况进行诊断和治疗。

[]光纤系统的运用

多股光导纤维做成的光缆可用于通信,它的传导性能良好,传输信息容量大,一条通路可同时容纳十亿人通话。可以同时传送千套电视节目,供自由选看。光导纤维内窥镜可导入心脏和脑室,测量心脏中的血压、血液中氧的饱和度、体温等。用光导纤维连接的激光手术刀已在临床应用,并可用作光敏法治癌。

光导纤维可以把阳光送到各个角落,还可以进行机械加工。计算机、机器人、汽车配电盘等也已成功地用光导纤维传输光源或图像。如与敏感元件组合或利用身的特性,则可以做成各种传感器,测量压力、流量、温度、位移、光泽和颜色等。在能量传输和信息传输方面也获得广泛的应用。

高分子光导纤维开发之初,仅用于汽车照明灯的控制和装饰。现在主要用于医学、装饰、汽车、船舶等方面,以显示元件为主。在通信和图像传输方面,高分子光导纤维的应用日益增多,工业上用于光导向器、显示盘、标识、开关类照明调节、光学传感器等,同时也用在装饰显示、广告显示。

[]光纤的历史

1880-AlexandraGrahamBell发明光束通话传输

1960-电射及光纤之发明

1977-首次实际安装电话光纤网路

1978-FORT在法国首次安装其生产之光纤电

1990-区域网路及其他短距离传输应用之光纤

2000-到屋边光纤=>到桌边光纤

2005 FTTH(Fiber To The Home)光纤直接到家庭

[]光纤的分类特征

按材质分,有无机光导纤维和高分子光导纤维,目前在工业上大量应用的是前者。无机光导纤维材料又分为单组分和多组分两类。单组分即石英,主要原料为四氯化硅、三氯氧磷和三溴化硼等。其纯度要求铜、铁、钴、镍、锰、铬、钒等过渡金属离子杂质含量低于10ppb。除此之外,OH-离子要求低于10ppb。石英纤维已被广泛使用。多组分的原料较多,主要有二氧化硅、三氧化二硼、硝酸钠、氧化铊等。这种材料尚未普及。高分子光导纤维是以透明聚合物制得的光导纤维,由纤维芯材和包皮鞘材组成。芯材为高纯度高透光性的聚甲基丙烯酸甲酯或聚苯乙烯抽丝制得的纤维,外层为含氟聚合物或有机硅聚合物等。

光导通信的研究和实用化,与光导纤维的低损耗密切相关。光能的损耗可否大大降低,关键在于材料纯度的提高。玻璃材料中的杂质产生的光吸收,造成了最大的光损耗,其中过渡金属离子特别有害。目前,由于玻璃材料的高纯度化,这些杂质对光导纤维的损耗影响已很小。

石英玻璃光导纤维的优点是损耗低,当光波长为1.0~1.7μm(约14μm附近),损耗只有1dB/km,在1.55μm处最低,只有0.2dB/km。高分子光导纤维的光损耗较高,1982年,日电信电报公司利用氘化甲基丙烯酸甲酯聚合抽丝作芯材,光损耗率降低到20dB/km。但高分子光导纤维的特点是能制大尺寸,大数值孔径的光导纤维,光源耦合效率高,挠曲性好,微弯曲不影响导光能力,配列、粘接容易,便于使用,成低廉。但光损耗大,只能短距离应用。光损耗在10~100dB/km的光导纤维,可传输几百米。

光纤主要分以下两大类:

1)传输点模数类

传输点模数类分单模光纤(Single Mode Fiber)和多模光纤(Multi Mode Fiber)。单模光纤的纤芯直径很小, 在给定的工作波长上只能以单一模式传输,传输频带宽,传输容量大。多模光纤是在给定的工作波长上,能以多个模式同时传输的光纤。 与单模光纤相比,多模光纤的传输性能较差。

2)折射率分布类

折射率分布类光纤可分为跳变式光纤和渐变式光纤。跳变式光纤纤芯的折射率和保护层的折射率都是一个常数。 在纤芯和保护层的交界面,折射率呈阶梯型变化。渐变式光纤纤芯的折射率随着半径的增加按一定规律减小, 在纤芯与保护层交界处减小为保护层的折射率。纤芯的折射率的变化近似于抛物线。

[]光纤结构及种类

光及其特性:

1.光是一种电磁波

可见光部分波长范围是:390~760nm(毫微米)。大于760nm部分是红外光,小于390nm部分是紫外光。光纤中应用的是:850,1300,1550三种。

2.光的折射,反射和全反射。

因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。而且,折射光的角度会随入射光的角度变化而变化。当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。光纤通讯就是基于以上原理而形成的。

1.光纤结构:

光纤裸纤一般分为三层:中心高折射率玻璃芯(芯径一般为50或62.5μm),中 间为低折射率硅玻璃包层(直径一般为125μm),最外是加强用的树脂涂层。

2.数值孔径:

入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。这个角度就称为光纤的数值孔径。光纤的数值孔径大些对于光纤的对接是有利的。不同厂家生产的光纤的数值孔径不同(AT&T CORNING)。

3.光纤的种类:

A.按光在光纤中的传输模式可分为:单摸光纤和多模光纤。

多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

单模光纤(Single-mode Fiber):一般光纤跳纤用黄色表示,接头和保护套为蓝色;传输距离较长。

多模光纤(Multi-mode Fiber):一般光纤跳纤用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较短。

B.按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤。

常规型:光纤生产厂家将光纤传输频率最佳化在单一波长的光上,如1300nm。

色散位移型:光纤生产长家将光纤传输频率最佳化在两个波长的光上,如:1300nm和1550nm。

C.按折射率分布情况分:突变型和渐变型光纤。

突变型:光纤中心芯到玻璃包层的折射率是突变的。其成低,模间色散高。适用于短途低速通讯,如:工控。但单模光纤由于模间色散很小,所以单模光纤都采用突变型。

渐变型光纤:光纤中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成较高,现在的多模光纤多为渐变型光纤。

4.常用光纤规格:

单模:8/125μm,9/125μm,10/125μm

多模:50/125μm,欧洲标准

62.5/125μm,美国标准

工业,医疗和低速网络:100/140μm,200/230μm

塑料:98/1000μm,用于汽车控制

[]光纤的衰减

造成光纤衰减的主要因素有:征,弯曲,挤压,杂质,不均匀和对接等。

征:是光纤的固有损耗,包括:瑞利散射,固有吸收等。

弯曲:光纤弯曲时部分光纤内的光会因散射而损失掉,造成的损耗。

挤压:光纤受到挤压时产生微小的弯曲而造成的损耗。

杂质:光纤内杂质吸收和散射在光纤中传播的光,造成的损失。

不均匀:光纤材料的折射率不均匀造成的损耗。

对接:光纤对接时产生的损耗,如:不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。

[]光纤传输优点

直到1960年,美国科学家Maiman发明了世界上第一台激光器后,为光通讯提供了良好的光源。随后二十多年,人们对光传输介质进行了攻关,终于制成了低损耗光纤,从而奠定了光通讯的基石。从此,光通讯进入了飞速发展的阶。

光纤传输有许多突出的优点:

1。频带宽

频带的宽窄代表传输容量的大小。载波的频率越高,可以传输信号的频带宽度就越大。在VHF频,载波频率为48.5MHz~300Mhz。带宽约250MHz,只能传输27套电视和几十套调频广播。可见光的频率达100000GHz,比VHF频高出一百多万倍。尽管由于光纤对不同频率的光有不同的损耗,使频带宽度受到影响,但在最低损耗区的频带宽度也可达30000GHz。目前单个光源的带宽只占了其中很小的一部分(多模光纤的频带约几百兆赫,好的单模光纤可达10GHz以上),采用先进的相干光通信可以在30000GHz范围内安排2000个光载波,进行波分复用,可以容纳上百万个频道。

2.损耗低

在同轴电缆组成的系统中,最好的电缆在传输800MHz信号时,每公里的损耗都在40dB以上。相比之下,光导纤维的损耗则要小得多,传输

1、31um的光,每公里损耗在0.35dB以下若传输1.55um的光,每公里损耗更小,可达0.2dB以下。这就比同轴电缆的功率损耗要小一亿倍,使其能传输的距离要远得多。此外,光纤传输损耗还有两个特点,一是在全部有线电视频道内具有相同的损耗,不需要像电缆干线那样必须引人均衡器进行均衡;二是其损耗几乎不随温度而变,不用担心因环境温度变化而造成干线电平的波动。

3.重量轻

因为光纤非常细,单模光纤芯线直径一般为4um~10um,外径也只有125um,加上防水层、加强筋、护套等,用4~48根光纤组成的光缆直径还不到13mm,比标准同轴电缆的直径47mm要小得多,加上光纤是玻璃纤维,比重小,使它具有直径小、重量轻的特点,安装十分方便。

4.抗干扰能力强

因为光纤的基成分是石英,只传光,不导电,不受电磁场的作用,在其中传输的光信号不受电磁场的影响,故光纤传输对电磁干扰、工业干扰有很强的抵御能力。也正因为如此,在光纤中传输的信号不易被窃听,因而利于保密。

5.保真度高

因为光纤传输一般不需要中继放大,不会因为放大引人新的非线性失真。只要激光器的线性好,就可高保真地传输电视信号。实际测试表明,好的调幅光纤系统的载波组合三次差拍比C/CTB在70dB以上,交调指标cM也在60dB以上,远高于一般电缆干线系统的非线性失真指标。

6.工作性能可靠

我们知道,一个系统的可靠性与组成该系统的设备数量有关。设备越多,发生故障的机会越大。因为光纤系统包含的设备数量少(不像电缆系统那样需要几十个放大器),可靠性自然也就高,加上光纤设备的寿命都很长,无故障工作时间达50万~75万小时,其中寿命最短的是光发射机中的激光器,最低寿命也在10万小时以上。故一个设计良好、正确安装调试的光纤系统的工作性能是非常可靠的。

7.成不断下降

目前,有人提出了新摩尔定律,也叫做光学定律(Optical Law)。该定律指出,光纤传输信息的带宽,每6个月增加1倍,而价格降低1倍。光通信技术的发展,为Internet宽带技术的发展奠定了非常好的基础。这就为大型有线电视系统采用光纤传输方式扫清了最后一个障碍。由于制作光纤的材料(石英)来源十分丰富,随着技术的进步,成还会进一步降低;而电缆所需的铜原料有限,价格会越来越高。显然,今后光纤传输将占绝对优势,成为建立全省、以至全国有线电视网的最主要传输手。

结构原理 光导纤维是由两层折射率不同的玻璃组成。内层为光内芯,直径在几微米至几十微米,外层的直径0.1~0.2mm。一般内芯玻璃的折射率比外层玻璃大1%。根据光的折射和全反射原理,当光线射到内芯和外层界面的角度大于产生全反射的临界角时,光线透不过界面,全部反射。这时光线在界面经过无数次的全反射,以锯齿状路线在内芯向前传播,最后传至纤维的另一端。这种光导纤维属皮芯型结构。若内芯玻璃折射率是均匀的,在界面突然变化降低至外层玻璃的折射率,称为阶跃型结构。如内芯玻璃断面折射率从中心向外变化到低折射率的外层玻璃,称为梯度型结构。外层玻璃具有光绝缘性和防止内芯玻璃受污染。另一类光导纤维称自聚焦型结构,它好似由许多微双凸透镜组合而成,迫使入射光线逐渐自动地向中心方向会聚,这类纤维中心的折射率最高,向四周连续均匀地减少,至边缘为最低。

[]生产方法

①管棒法:将内芯玻璃棒插入外层玻璃管中(尽量紧密),熔融拉丝;

②双坩埚法:在两个同心铂坩埚内,将内芯和外层玻璃料分别放入内、外坩埚中;

③分子填充法:将微孔石英玻璃棒浸入高折射率的添加剂溶液中,得所需折射率分布的断面结构,再进行拉丝操作,它的工艺比较复杂。在光导纤维通信中还可用内外气相沉积法等,以保证能制造出光损耗率低的光导纤维。光导纤维应用时还要做成光缆,它是由数根光导纤维合并先组成光导纤维芯线,外面被覆塑料皮,再把光导纤维芯线组合成光缆,其中光导纤维的数目可以从几十到几百根,最大的达到4000根

[]光网络的结构

光网络的基结构类型有星形、总线形(含环形)和树形等3种,可组合成各种复杂的网络结构。光网络可横向分割为核心网、城域/地网和接入网。核心网倾向于采用网状结构,城域/地网多采用环形结构,接入网将是环形和星形相结合的复合结构。光网络可纵向分层为客户层、光通道层(OCH)、光复用层(OMS)和光传送层(OTS)等层。两个相邻层之间构成客户/服务层关系。

客户层:由各种不同格式的客户信号(如SDH、PDH、ATM、IP等)组成.

光通道层:为透明传送各种不同格式的客户层信号提供端到端的光通路联网功能,这一层也产生和插入有关光通道配置的开销,如波长标记、端口连接性、载荷标志(速率、格式、线路码)以及波长保护能力等,此层包含OXC和OADM相关功能.

光复用层:为多波长光信号提供联网功能,包括插入确保信号完整性的各种层开销,并提供复用层的生存性,波长复用器和高效交叉连接器属于此层.

光传送层:为光信号在各种不同的光媒体(如G.6

52、G.6

53、G.655光纤)上提供传输功能,光放大器所提供的功能属于此层。

从应用领域来看,光网络将沿着"干线网→地网→城域网→接入网→用户驻地网"的次序逐步渗透。

第五篇:联通光纤宽带

宽带接入网络的光纤化趋势

在规模越来越大的宽带接入网络中,现有的大部分局域网(LAN)都运行在100Mbit/s的网络上,许多大规模的商业公司正在向吉比特以太网(GE)过渡。而在城域核心网和城域边缘网上,SONET/SDH/GE带宽容量非常充裕,这使得接入网部分产生了严重的带宽瓶颈。与电缆传输相比较,光纤传输具有容量大、损耗小、防电磁干扰能力强等优势,因而,随着光纤传输的成本逐步下降,接入网的光纤化是必然的发展趋势。代表着“最后一公里”部分的接入网段,有超低成本、简单结构以及便于实现等要求,这给技术实现带来了很大的挑战。而无源光网络(PON)采用了无源器件,是实现宽带光接入网最有潜力的技术。

从承载的内容来分类,PON技术主要包括APON(ATM Based PONs)、EPON(Ethernet Based PONs)以及GPON(Gigabit PONs)等。在接入网建设的初期和中期,迄今还没有一种绝对主导技术实现接入网的全部功能。面对多元化的接入技术,PON技术在实际应用中,采用了一些向全光接入网过渡的方式,即实现部分光纤化,如FTTE+ADSL、FTTC(或FTTB)+VDSL和FTTx+LAN等,其中以FTTx+LAN方式应用最为普遍。

一、PON的宽带接入技术优势

无源光网络从中心交换局到用户驻地网之间不存在任何有源器件,取而代之的是将无源光器件插入到网络中,并在整个路径上通过分离光波长的功率来引导传输的流量。这种替换使得服务提供商不再需要向传输环路中的有源器件供能和保养,大大节约了服务提供商的成本。无源的分光器和耦合器只起到传递和限制光的作用,不需要供电和信息处理,而且具有不受限制的平均故障间隔时间(MTBF),可以全面降低服务供应商的维护成本。

无源光网络通常是由位于中心局(CO)的光线路终端(OLT)和一系列位于用户驻地的光网络单元(ONT)构成,在这些器件中间是由光纤、无源分光器或耦合器构成的光配线网络(ODN)。在一个PON网络中,可从服务交换局拉出单根光纤到宽带业务子区或办公园区,然后再用无源分光器或耦合器从主光纤分离出若干支路到各个大楼或业务设备上。该方式可使多个用户共享从交换局到用户驻地这段相对昂贵的光纤链路,因而也极大降低了光纤到楼(FTTB)和光纤到户(FTTH)的使用成本。采用PON技术,从运营商交换机引出的单纤可以为1632幢或更多的大楼提供宽带业务。

通过采用APON/BPON、EPON或即将标准化的GPON技术,在PON的主干光纤上可以支持155Mbit/s、622Mbit/s、1.25Gbit/s或2.5Gbit/s的速率。为同时支持语音、数据和视频应用,每个用户的带宽分配可以是静态的,也可以是动态的。

PON网络中到用户驻地的下行数据流的传输过程有别于上行数据流的传输过程。下行数据流从OLT广播到各个ONT,各个ONT通过匹配协议传输单元头中的地址信息,只对目的地址和其自身匹配的数据进行处理。由于ODN存在共享介质的特性,上行的流量传输相对较为复杂。为了避免冲突的发生,上行数据流采用TDMA(时分多址)方式,并按照OLT的控制机制对上行方向的传输进行控制。这样,特定的传输时间片代表特定的ONT,同步这些时间片即可避免不同的ONT的突发之间产生冲突。

作为有很大潜力的宽带接入技术的一种,PON技术的优点体现在以下几个方面。

1.光纤接入网是最能适应未来发展的解决方案,特别是PON和其他现有技术,如ATM、Ethernet、WDM型结合而形成的各种x-PON技术已被证明是当前综合宽带接入中非常经济有效的方式。

2.由于采用PON技术,整个光分配网是无源的,无源光网络的体积小且设备简单。

3.与铜缆网相比,PON可减少维护运行费用,并彻底避免了电磁干扰和雷电干扰。

4.PON的无源ONU(光网络单元)无需供电,不仅免除了供电的一系列问题,而且可靠性比有源设备要高的多。

5.因为使用的是无源器件,共享光纤传输介质,整个光网络的费用较低。

6.可支持开发新业务,特别是多媒体和宽带业务,从而加强运营企业竞争力,增速新业务的开展,补偿光网络建设的新投资,将接入网的数字化进一步推向用户。

7.PON在一定程度上对所使用的传输体制是透明的,升级起来比较容易。

目前,由于终端用户带宽需求的增长和光器件价格的大幅下降,PON技术已逐渐显示出了其充满活力的发展态势。但PON技术大范围的应用并不是一蹴而就的,它也受到诸多因素的影响。

二、PON技术应用的局限性

作为一种接入网技术,PON技术无疑具有接入网的一般特性。接入网的基本特征与核心网大不相同,其应用情况对成本、法规、业务、技术等因素均很敏感。笔者认为前两个问题是不容忽视的,一是光纤接入的成本问题,另一个就是宽带应用的问题。

1.网络成本高昂

根据光纤深入的程度,光纤接入可以分为光纤到路边(FTTC)、光纤到大楼(FTTB)和光纤到户(FTTH)。从网络总的发展趋势来看,光纤会一直向用户延伸,直到最终取代接入网中的馈线电缆,实现FTTH。但受光纤和光器件价格的影响,实现FTTH的成本过高,普通用户还无力承担。PON技术曾经是很多电信运营商长期以来追求的目标,但由于价格与成本等多方面的因素,使得目前PON技术除了在少数发达国家(如德国和日本等)获得一定的发展以外,并没有被多数国家所接受。

2.宽带业务内容匮乏

宽带技术虽然有所突破,但目前宽带内容的发展大大落后于宽带网建设,形成了曲高和寡的局面。代表着宽带大容量的PON技术在此时发展,无疑会受到宽带市场需求的影响。与现有的各种宽带接入技术一样,PON技术的应用尚需宽带内容的带动。

3.EPON的局限性

目前EPON的应用面临两个较为明显的局限性,一是其效率极低,二是缺乏支持除以太网外的其他业务的能力。正因为如此,EPON在处理语音或TDM业务时还存在QoS的问题。EPON采用 8b/10b编码作为其线路码,而这种线路码在处理协议之前,就有20%的带宽消耗。与EPON不同的是,APON和GPON系统都采用扰码作为线路码,这与SONET或SDH网络的线路编码机制相一致,不涉及带宽的额外消耗。

3.统一的标准和规范还未形成

虽然APON技术早1998年就已经被标准化,但APON接下来的发展却并不顺利,其中与ATM技术在局域网上的全面溃败不无关系。另外,不同厂商的APON产品也存在互通性差的问题,APON的市场拓展并不理想。

由于IP/Ethernet越来越受到青睐使得EPON应运而生并迅速发展,成为宽带光纤接入的一个重要发展方向。IEEE802.3 EFM(Ethernet for the First Mile)研究组正在加紧研究EPON技术,并加速对EPON的标准化。2001年第三季度,802.3工作组批准了其项目授权申请(Project Authorization Request)。2002年7月,特别工作组对一整套基本的技术建议达成了一致,这些基本建议的采纳成为第一版标准草案的原型,该草案在2002年底提交802.3工作组评审和投票。目前,尚没有相应的EPON标准出台。

三、PON技术的标准进展

1.国外PON标准进展情况

PON技术的出现已有很长的时间。早在1996年,ITU-T就针对2Mbit/s以下接入速率的窄带PON技术(可称为“第一代”PON技术)进行了规范,建议号为G.982。

20世纪90年代中期开始出现APON技术,首先对APON进行规范的国际组织是FSAN(Full Service Access Network)联盟,同时也可以说FSAN是对APON的国际标准贡献最大的组织,其提出的APON格式首先成为ITU-T 建议G.983.1(1998.10)。1999年,ITU-T又出台了G.983.2建议。2000年开始,EPON引起了设备供应商和运营商的关注。预计802.3工作组最早将于2003年底正式批准该标准。

GPON技术在PON上承载多业务时具有更高比特率和更高的效率两大优点。GPON技术的出现有可能彻底改变现有PON的应用和需求,并极有可能提供一种与原有的APON标准全然不同的新解决方案。

尽管GPON保留了许多与PON没有直接关系的功能,如OAM消息、DBA等,但GPON基于一种完全不同的传输汇聚(TC)子层。FSAN起草的GPON的标准也可望在2003年完成。

2.国内PON标准进展情况

国内对PON技术的研究起步较国外稍晚,但发展很快。很多国内的设备厂商也纷纷推出了相应的APON产品,如华为MA510

1、MA5102 等系列化的APON产品,烽火通信、北邮电信等厂商也先后研制成功实用化的APON产品。在EPON方面,我国在“十五”的863计划中设立了Gbit/s EPON的相应课题,正加紧对EPON的研究。我国通信标准化协会的相关研究组也在讨论制定EPON的相关行业标准。虽然WDM技术在国内蓬勃发展,但WDM-PON在国内尚处于空白阶段,仍需尽快发展。

上一篇:各项管理规章制度下一篇:公文语言常用词汇

本站热搜