温度监控装置课程设计

2023-03-11

第一篇:温度监控装置课程设计

温度传感器课程设计

温度传感器简单电路的集成设计

当选择一个温度传感器的时候,将不再限制在模拟输出或数字输出装置。与你系统需要相匹配的传感器类型现在又很大的选择空间。市场上供应的所有温度感应器都是模拟输出。热电阻,RTDs和热电偶是另一种输出装置,矽温度感应器。在多数的应用中,这些模拟输出装置在有效输出时需要一个比较器,ADC,或一个扩音器。因此,当更高技术的集成变成可能的时候,有数字接口的温度传感器变成现实。这些集成电路被以多种形式出售,从超过特定的温度时才有信号简单装置,到那些报告远的局部温度提供警告的装置。现在不只是在模拟输出和数字输出传感器之间选择,还有那些应该与你的系统需要相匹配的更广阔的感应器类型的选择, 温度传感器的类型:

图一:传感器和集成电路制造商提供的四中温度传感器

在图一中举例说明四种温度感应器类型。一个理想模拟传感器提供一个完全线性的功能输出电压(A)。在传感器(B)的数字I/O类中,温度数据通常通过一个串行总线传给微控制器。沿着相同的总线,数据由温度传感器传到微控制器,通常设定温度界限在引脚得数字输出将下降的时候。当超过温度界限的时候,报警中断微控制器。这个类型的装置也提供风扇控制。

模拟输出温度传感器:

图2 热阻和矽温度传感器这两个模拟输出温度探测器的比较。

热电阻和矽温度传感器被广泛地使用在模拟输出温度感应器上。图2清楚地显示当电压和温度之间为线性关系时,矽温度传感器比热阻体好的多。在狭窄的温度范围之内,热电阻能提供合理的线性和好的敏感特性。许多构成原始电路的热电阻已经被矽温度感应器代替。

矽温度传感器有不同的输出刻度和组合。例如,与绝对温度成比例的输出转换功能,还有其他与摄氏温度和华氏温度成比例。摄氏温度部份提供一种组合以便温度能被单端补给得传感器检测。

在最大多数的应用中,这些装置的输出被装入一个比较器或A/D转换器,把温度数据转换成一个数字格式。这些附加的装置,热电阻和矽温度传感器继续被利用是由于在许多情况下它的成本低和使用方便。 数字I/O温度传感器: 大约在五年前,一种新类型温度传感器出现了。这种装置包括一个允许与微控制器通信的数字接口。接口通常是12C或SMBus序列总线,但是其他的串行接口例如SPI是共用的。阅读微控制器的温度报告,接口也接受来自温控制器的指令。那些指令通常是温度极限,如果超过,将中断微控制器的温度传感器集成电路上的数字信号。微控制器然后能够调整风扇速度或减慢微处理器的速度,例如,保持温度在控制之下。

图3:设计的温度传感器可遥测处理器芯片上的p-n结温度

图4。温度传感器可检测它自己的温度和遥测四个p-n结温度。

图5。风扇控制器/温度传感器集成电路也可使用PWM或一个线性模式的控制方案。

在图4中画是一个类似的装置:而不是检测一个p-n结温度,它检测四个结和它的自己内部的温度。因此内部温度接近周围温度。周围温度的测量给出关于系统风扇是否正在适当地工作的指示。

在图5中显示,控制风扇是在遥测温度时集成电路的主要功能。这个部分的使用能在风扇控制的二个不同的模式之间选择。在PWM模式中,微处理控制风扇速度是通过改变送给风扇的信号周期者测量温度一种功能。它允许电力消耗远少于这个部分的线性模式控制所提供的。因为某些风扇在PWM信号控制它的频率下发出一种听得见的声音,这种线性模式可能是有利的,但是需要较高功率的消耗和附加的电路。额外的功耗是整个系统功耗的一小部分。

当温度超出指定界限的时候,这个集成电路提供中断微控制器的警告信号。这个被叫做过热温度的信号形式里,安全特征也被提供。如果温度升到一个危险级别的时候温控制器或软件锁上,警告信号就不再有用。然而,温度经由SMBus升高到一个水平,过热在没有微控制器被使用去控制电路。因此,在这个非逻辑控制器高温中,过热能被直接用去关闭这个系统电源,没有为控制器和阻力潜在的灾难性故障。

装置的这个数字I/O普遍使用在服务器,电池组和硬盘磁碟机上。为了增加服务器的可靠性温度在很多的位置中被检测:在主板(本质上是在底盘内部的周围温度),在处理器钢模之内,和在其它发热元件例如图形加速器和硬盘驱动器。出于安全原因电池组结合温度传感器和使其最优化已达到电池最大寿命。

检测依靠中心马达的速度和周围温度的硬盘驱动器的温度有两个号的理由:在驱动器中读取错误增加温度极限。而且硬盘的MTBF大大改善温度控制。通过测量系统里面温度,就能控制马达速度将可靠性和性能最佳化。驱动器也能被关闭。在高端系统中,警告能为系统管理员指出温度极限或数据可能丢失的状况。

图6。温度超过某一界限的时候,集成电路信号能报警和进行简单的ON/OFF风扇控制。

图7.热控制电路部分在绝对温标形式下,频率与被测温度成比例的产生方波的温度传感器

图8。这个温度传感器传送它的周期与被测温度成比例的方波,因为只发送温度数据需要一条单一线,就需要单一光绝缘体隔离信道。

模拟正温度感应器

“模拟正量”传感器通常匹配比较简单的测量应用软件。这些集成电路产生逻辑输出量来自被测温度,而且区别于数字输入/输出传感器。因为他们在一条单线上输出数据,与串行总线相对。

在一个模拟正量传感器的最简单例子中,当特定的温度被超过的时候,逻辑输出出错:其它,是当温度降到一个温度极限的时候。当其它传感器有确定的极限的时候,这些传感器中的一些允许使用电阻去校正温度极限。

在图6中,装置显示购买一个特定的内在温度极限。这三个电路举例说明这个类型装置的使用:提供警告,关闭仪器,或打开风扇。

当需要读实际温度时,微控制器是可以利用的,在单线上传送数据的传感器可能是有用的。用微处理器的内部计数器,来自于这个类型温度感应器的信号很容易地被转换成温度的测量。图7传感器输出频率与周围温度成比例的方波。在图8中的装置是相似的,但是方波周期是与周围温度成比例的。

图9。用一条公共线与8个温度传感器连接的微控制器,而且从同一条线上接收每个传感器传送的温度数据。

图9,在这条公共线上允许连接达到八个温度传感器。当微控制器的I/O端口同时关闭这根线上的所有传感器的时候,开始提取来自这些传感器的温度数据。微控制器很快地重新装载接收来的每个传感器的数据,在传感器关闭期间,数据被编码。在特定时间内每个传感器对闸口脉冲之后的时间编码。分配给每个感应器自己允许的时间范围,这样就避免冲突。

通过这个方法达到的准确性令人惊讶:0.8 是典型的室温,正好与被传送方波频率的电路相匹配,同样适用于方波周期的装置。

这些装置在有线电线应用中同样显著。举例来说,当一个温度传感器被微控制器隔离的时候,成本被保持在一个最小量,因为只需要一个光绝缘体。这些传感器在汽车制造HVAC应用中也是很有效,因为他们减少铜的损耗数量。 温度传感器的发展:

集成电路温度传感器提供各式各样的功能和接口。同样地这些装置继续发展,系统设计师将会看见更多特殊应用就像传感器与系统接口连接的新方式一样。最后,在相同的钢模区域内集成更多的电子元件,芯片设计师的能力将确保温度传感器很快将会包括新的功能和特殊接口。

总结

通过这些天的查找资料,我了解了很多关于温度传感器方面的知识。我的大家都知道温度的一些基本知识,温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。利用温度所创造出来的传感器即温度传感器是最早开发,应用最广的一类传感器。并且从资料中显示温度传感器的市场份额大大超过了其他的传感器。从17世纪初人们开始利用温度进行测量。在半导体技术的支持下,在本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。

这些天,我通过许多的资料了解到两种不同材质的导体,如在某点互相连接在一起,对这个连接点加热,在它们不加热的部位就会出现电位差。这个电位差的数值与不加热部位测量点的温度有关,和这两种导体的材质有关。这种现象可以在很宽的温度范围内出现,如果精确测量这个电位差,再测出不加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称它为“热电偶”。我查找的资料显示数据:不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。热电偶的灵敏度是指加热点温度变化1℃时,输出电位差的变化量。对于大多数金属材料支撑的热电偶而言,这个数值大约在5~40微伏/℃之间。

热电偶传感器有自己的优点和缺陷,它灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。 温度传感器是五花八门的各种传感器中最为常用的一种,现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。

温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6~300K范围内的温度。

非接触式温度传感器的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可以用来测量运动物体、小目标还有热容量小或温度变化迅速(瞬变)对象的表面温度,也可以用于测量温度场的温度分布。资料显示,最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法、辐射法和比色法。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体所测温度才是真实温度。如果想测定物体的真实温度,就必须进行材料表面发射率的修正。而材料表面发射率不仅取绝于温度和波长,而且还与表面状态、涂膜和微观组织等有关连,因此很难精确测量。在自动化生产中我发现往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,这样才能提高有效发射系数。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即是介质温度)进行修正而得到介质的真实温度。 现在,我通过这些天的努力,了解了很多温度传感器及其相关的一些传感器的知识。他们在我们生活中的应用及其广泛,我们只有加紧的学习加紧的完成自己所学专业的知识,了解相关的最新信息,我们才能跟上科技前进的步伐。

参考文献:

【1】刘君华.智能传感器系统.西安电子科技大学出版社,1993.3 【2】张富学.传感器电子学.国防工业电子出版社,1992.6 【3】王家桢等.传感器与变送器[M].北京清华出版社1996.5 【4】张正伟.传感器原理与应用[M].中央广播电视大学出版社,1991.3 【5】樊尚春.传感器技术及应用.北京航空航天大学出版社,2004.8 【6】赵负图.现代传感器集成电路.人民邮电出版社,2000.8 【7】谢文和.传感器技术及应用.高等教育出版社,2004.7 【8】赵继文.传感器与应用电路设计[M].科技出版社,2002.6 【9】陈杰,黄鸿.传感器与检测技术.高等教育出版社,2002.3 【10】黄继昌,徐巧鱼,张海贵等.传感器工作原理及应用实例.人民邮电出版社,1998.6

第二篇:水箱加热系统的PLC温度控制课程设计

目 录

一、前 言 1

1. 可编程序控制器的概述

2.FX2N系列PLC简介 2

3.特殊功能模块 2

4. 调功器 3

5. 温度变送器 3

二、系统设计 4

1.系统设计要求 4

2.系统硬件设计 4

2.1. 水箱温度自动调节系统: 4

2.2. 输入输出点数的分配表 5

2.3. 相关元器件的选型 5

2.4. PLC的外部接线原理图 6

3.系统软件设计 7

3.1. 模拟量与数字量的对应关系 7

3.2. 系统流程图的设计 7

3.3. 系统梯形图 8

3.4. 系统指令表 9

3.5. 系统实时监控图 10

三、总 结 12

四、附 录 13

4.1.课题介绍 13

4.2.控制要求 13

第一章 前 言

1.1 可编程序控制器的概述

随着微处理器、计算机和数字通信技术的飞速发展,计算机控制已经广泛应用在所有的工业领域。现代社会要求制造业对市场这一需求迅速做出反应,生产出小批量、多品种、多规格、低成本和高质量的产品。可编程控制器就是顺应这一需要出现的,它是以微处理器为基础的通用工业控制装置。编程控制器不仅可以按事先编好的程序进行各种逻辑控制,还具有随意编程、自动诊断、通用性好、体积小、可靠性高的特点。因此,可编程控制器正逐步取代着继电器-接触器控制系统。

国际电工委员会(IEC)于 1982年11月和 1985年1月对可编程序控制器作了如下的定义:“可编程序控制器(PLC)是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的命令,并通过数字式模拟式的输入和输出,控制各种类型的机械或生产过程。可编程序控制器及其有关设备,都应按易于与工业控制系统联成一个整体,易于扩充功能的原则而设计”。可编程序控制器(PLC)主要由CPU模块、输出模块和编程器组成。PLC的特殊功能模块能完成某些特殊的任务。从使用方式PLC分为: 1)整体式PLC(又称单元式或箱体式)整体式PLC是将电源、CPU、I/0部件都集中装在一个机箱内。一般小型PLC采用这种结构;2)模块式PLC,将PLC各部分分成若干个单独的模块,模块式PLC由框架和各种模块组成。模块插在插座上。一般大、中型PLC采用模块式结构3)PLC将整体式和模块式结合起来,称为叠装式PLC。

2.2 FX2N系列PLC简介

本次设计中,我们将采用FX2n系列PLC,FX系列PLC为单元型,内含CPU、电源和固定搭配的输入/输出。 Q4AR系列为双机热备系列,最大输入输出点数为8192点。 A系列PLC的最大输入输出点数为2048点。 F系列程控器的最大输入输出点数为256点。三菱小型 FX 2(N)系列程控器的输入输出点最大不超过256点。每台主机可连模入、模出、高速记数、定位等特殊功能模块,不超过8个。 FX系列在日本三菱的姬路制作所生产。三菱姬路制作所累计已生产超过三百万台 FX系列 PLC。目前FX系列PLC为中国内地销量最多的小型PLC。FX2n系列PLC是该系列中功能最强、速度最快的微型PLC。有RAM, EPROM和EEPROM FX2N系列 PLC 的特点超高速的运算速度 0.08微秒. 比FX2的0.48微秒快六倍.容量极大8K步(最大16K步).比FX2大四倍.机体小型化 比FX2小50% .兼容FX2的编程设计.备有多种不同的FX2N扩展单元及特殊模块.

殊功能模块

在工业控制中,某些输入量(例如压力、温度、流量、转速等)是连续变化的模拟量,某些执行机构要求PLC输出模拟信号,而PLC的CPU只能处理数字量。模拟量首先被传感器和变送器转换成标准的电流和电压。其中,D/A转换器将PLC的数字输出量转换成模拟电压或电流,再去控制执行机构。模拟量I/O模块的主要任务就是完成A/D转换和D/A转换。根据设计要求,本次设计选用模拟量输入模块FX2N-4AD,该模块用4个12位模拟量输入通道,输入量程为DC-10V??+10V和4—20MA,转换速度为15MS/通道或6MS/通道(高速)。

2.4 调功器

调功器是应用晶闸管(又称可控硅)及其触发控制电路用于调整负载功率的盘装功率调整单元。

在电子设备中起重要作用的晶闸管(也称可控硅,英文缩写SCR)被广泛用于各类生产部门,正在成为自动化、高效化不可缺少的装置。在最新的温度控制中晶闸管的利用明显的普及起来。但在国内对其有不同的叫法,如晶闸管调整器、可控硅调整器、晶闸管控制器、可控硅控制器、晶闸管调压器、可控硅调压器、晶闸管调功器、可控硅调功器、调压器、调功器、晶闸管交流电力控制器、可控硅交流电力控制器 、电力调整器、电力控制器、电压调整器、电压控制器等。

2.5 温度变送器

温度变送器,专应于热电阻或热点偶,讲温度转换成4-20MA的电流信号。

至于要不要加模块,要看接受的控制器对于输入信号是0-10V还是4-20MA。一般现在的控制器,都直接配有相应的温度变送器模拟量输入模块,如温控器,PLC的热电阻模拟量模块等

温度变送器的作用是与热电偶或热电阻配合,将温度或温差信号转换成4—20毫安的统一的直流电信号,并将这些信号输送给调节器或显示仪表。PT100的热电阻输出的是电阻信号,变送器输出的是毫安信号,

温度变送器0-100度与0-150度最大值时输出电流均为20MA,所以当温度同为100度时,0-100度的变送器输出电流为20MA,而0-150度的变送器输出电流为14-15MA左右。所以在不改变接收装置参数的情况下它们不可以互换。

第二章 系统设计

2.1 系统设计要求

本系统的被控对象是1KW电加热管,被控制量是水箱的水温T,PLC的模拟量输出控制调功器的输出,由调功器控制电加热管的通断,被控对象为水箱中的单相电热管,被控制量为水箱水温。它由铂电阻PT100测定,输入到温度变送器上,量程为0~100℃。温度变送器变换为4~20mA传送给PLC的模拟量输入通道。根据给定值加上dF与测量的温度值相比较的结果,PLC模拟量输出通道向晶闸管调功器发出控制信号,从而达到控制水箱温度的目的

2.2 系统硬件设计

根据对系统设计内容的分析,确定控制系统所需要的输入输出点数为1/3点。选用FX系列PLC, 输入输出点数的分配如表2-1所示,由于系统必须对温度信号进行采集和控制,还必须使用到模拟量输入/输出模块FX-4AD模块、晶闸管跳功模块、温度变送器。

2.2.1水箱温度自动调节系统:

该闭环系统的组成中,刮号中的部分即用FX系列的PLC和模拟量FX-4AD模块实现;用热电偶检测水箱温度,温度变送器将温度转换为标准量程的电流送给模拟量输入模块,经过PLC的内部处理将模拟量转化成可识别的数字量与设定值比较处理,在将控制信号作用于控制调功器上,以此来控制水箱中电热管的开关情况,实现对水箱温度的闭环控制。

2.2.2 输入输出点数的分配表

表2-1 输入和输出点分配表

2.2.3 相关元器件的选型

表2-2 元器件明细表

2.2.4 PLC的外部接线原理图

PLC的外部接线原理图

图2-4 PLC的外部接线原理图

第三章 系统软件设计

3.1 模拟量与数字量的对应关系

转化时应综合考虑变送器的输出、出入量程和模拟量输入模块的量程,找出被测物理量与A/D转换后的数据之间的关系。

根据系统要求,所要测量的温度量程为0-100C,所对应的数据量为0-2000,由此可根据公式:

测量温度=(100*D0/2000)C=0.05D0C

其中,D0为PLC转换出来的数字量

3.2 系统流程图的设计

PLC梯形图

3.4 系统指令表

3.5 系统实时监控图

监控图3

第三章 总 结

两周的PLC课程设计对我收益匪浅,让我系统性地认识和全面地掌握了PLC编程和调试技术,让我将平常学的PLC编程及应用方法学以致用,使我的PLC编程能力有了很大提高和进步,让我对PLC应用有了深入细致的了解。

第一、二周,我们寻找有关的资料和课题小组成员间一起交流看法和讨论设计方案,进行设计的总体规划,理清课程设计思路。但是将这些具体的方案落实到每一个设计环节和步骤中,难免会出现意想不到错误,这就需要我们在进行设计的过程中利用所掌握的知识认真排查错误原因,多方面的思考问题的关键不断地改正自己的设计不足之处和错误。

第三、四周,对硬件电路的工作原理和可编程知识的掌握是进行下一步的软件设计的关键。进入了软件设计方案和具体的编程和调试运行阶段。在这个阶段中,对系统的需求分析和如何采用模块化设计思想是设计方案主要解决的问题。在这一周遇到最大的问题就是如何实现闭环方法来实现温度控制,在没有任何有价值的参考资料的情况下,通过不断地设计尝试和反复地设计调试初步解决了问题。但是也存在了设计上的不足之处。需要用到模拟量的输入/输出模块,而且所编程序也和课堂上老师所讲完全不一样,给我们的课题制作带来了很大的困难。但是我们还是通过查阅资料,询问老师按时完成了我们的课题。

四周的PLC编程及应用的课程设计,发现自己在这方面的学习还需要不断的加深。通过这段时间的学习认识,对温控闭环的系统有了一个整体的认识,熟悉各种器件和软件应用。在这里,本次设计中感谢两位指导老师对我的帮助。

4、附 录

4.1.课题介绍

本系统的被控对象是1KW电加热管,被控制量是水箱的水温T,PLC的模拟量输出控制调功器的输出,由调功器控制电加热管的通断,被控对象为水箱中的单相电热管,被控制量为水箱水温。它由铂电阻PT100测定,输入到温度变送器上,量程为0~100℃。温度变送器变换为4~20mA传送给PLC的模拟量输入通道。根据给定值加上dF与测量的温度值相比较的结果,PLC模拟量输出通道向晶闸管调功器发出控制信号,从而达到控制水箱温度的目的。

4.2.控制要求

设计PLC模拟量输入输出的闭环控制系统,实现水箱的自动

调节和控制。根据控制对象的用途、基本结构、运动形式、工艺过程、工

作环境和控制要求,确定控制方案。绘制水箱加热系统的PLC位式温度控制系统的电气原理图、控制系统的PLC I/O接线图和梯形图,写出指令程序清单。选择电器元件,列出电器元件明细表。编写设计说明书。

第三篇:计算机控制课程设计(电阻炉温度控制系统)

计算机控制课程设计

报告

设计题目: 电阻炉温度控制系统设计 年级专业: 09级测控技术与仪器 姓 名 :

武帆 学 号 : P60914001 任课教师: 谢芳

电阻炉温度控制系统设计

0.前言

随着电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本性的变化,特别是微型计算机的出现使现代的科学研究得到了质的飞跃,利用单片机来改造落后的设备具有性价比高、提高设备的使用寿命、提高设备的自动化程度的特点。温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于冶金、化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量。因而设计一种较为理想的温度控制系统是非常有价值的。本设计就是利用单片机来控制高温加热炉的温度,传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。

温度控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。采用单片机进行温度控制,具有电路设计简单、精度高、控制效果好等优点,对提高生产效率、促进科技进步等方面具有重要的现实意义随着单片机技术的迅速兴起与蓬勃发展,其稳定、安全、高效、经济等优点十分突出,所以其应用也十分广泛。单片机已经无处不在、与我们生活息息相关,并且渗透到生活的方方面面。

1.课程设计任务

项目设计:电阻炉温度控制系统设计

以在工业领域中应用较为广泛的电阻炉为被控对象,采用MCS—52单片机实现电阻炉温度计算机控制系统的设计,介绍电阻炉温度计算机控制系统的组成,并完成系统总体控制方案和达林算法控制器的设计,给出系统硬件原理框图和软件设计流程图等。

1.1电阻炉组成及其加热方式

电阻炉是工业炉的一种,是利用电流通过电热体元件将电能转化为热能来加热或者熔化元件或物料的热加工设备。电阻炉由炉体、电气控制系统和辅助系统组成,炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。由于炉子的种类不同,因而所使用的燃料和加热方法也不同;由于工艺不同,所要求的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,对控温精度要求不同,因而控制系统的组成也不相同。电气控制系统包括主机与外围电路、仪表显示等。辅助系统通常指传动系统、真空系统、冷却系统等,因炉种的不同而各异。电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。间接加热式电阻炉,就是在炉子内部有专用的电阻材料制作的加热元件,电流通过加热元件时产生热量,再通过热的传导、对流、辐射而使放置在炉中的炉料被加热。直接加热式电阻炉,是将电源直接接在所需加热的材料上,让强大的电流直接流过所需加热的材料,使材料本身发热从而达到加热的效果。工业电阻炉,大部分采用间接加热式,只有一小部分采用直接加热式。由于电阻炉具有热效率高、热量损失小、加热方式简单、温度场分布 均匀、环保等优点,应用十分广泛。 1.2控制要求

本系统中所选用的加热炉为间接加热式电阻炉,控制要求为: (1)采用一台主机控制8个同样规格的电阻炉温度; (2)电炉额定功率为20 kW; (3)恒温正常工作温度为1000℃,控温精度为±1%; (4)电阻炉温度按预定的规律变化,超调量应尽可能小,且具有良好的稳定性; (5)具有温度、曲线自动显示和打印功能,显示精度为±1℃; (6)具有报警、参数设定、温度曲线修改设置等功能。

二、系统总体设计

根据题目要求,电热锅炉温度控制系统由核心处理模块、温度采集模块、键盘显示模块、及控制执行模块等组成。采用比较流行的AT89S52作为电路的控制核心,使用8位的模数转换器AD0808进行数据转换,控制电路部分采用PWM通过AC-SSR实现锅炉温度的连续控制,此方案电路简单并且可以满足题目中的各项要求的精度。系统总体框图如下。

显示电路热电偶电阻炉变送器数据采集单片机越限报警

2.1核心处理模块——单片机

该部分的功能不仅包括向温度传感器写入各种控制命令、读取温度数据、数据处理,同时还要对执行单元进行控制。单片机是整个系统的控制核心及数据处理核心。

选择单片机的理由:单片机的特点是体积较小,也就是其集成特性,其内部结构是普通计算机系统的简化,增加一些外围电路,就能够组成一个完整的小系统,单片机具有很强的可扩展性。它具有和普通计算机类似的、强大的数据处理功能,通过使用一些科学的算法,可以获得很强的数据处理能力。所以单片机在工业应用中,可以极大地提高工业设备的智能化、数据处理能力和处理效率,而且单片机无需占用很大的空间。

2.2温度信号采集与传感器

本部分的主要作用是用传感器检测模拟环境中的温度信号,温度传感器上电流将随环境温度值线性变化。再把电流信号转换成电压信号,使用A/D转换器将模拟电压信号转换成单片机能够进行数据处理的数字电压信号,本设计采用的是数字温度传感器,以上过程都在温度传感器内部完成。

2.3人机交互及串口通信

人机交换的目的是为了提高系统的可用性和实用性。主要包括按键输入、输出显示。通过按键输入完成系统参数设置,而输出显示则完成数据的显示和系统提示信息的输出,串口通信的主要功能是完成单片机与上位机的通信,便于进行温度数据统计,为将来系统功能的扩展做好基础工作。 AC-SSR过零检测光耦隔离键盘控制 2. 4控制执行单元

是单片机的输出控制执行部分,根据单片机数据处理的结果,驱动继电器控制外部设备,可以达到超温报警及升温或者降温目的,使环境温度始终保持在一个范围之内。

根据温度变化慢,并且控制精度不易掌握的特点,我们设计了以AT89S52单片机为检测控制中心的电热锅炉温度自动控制系统。温度控制采用改进的PID数字控制算法,显示采用8位LED动态显示。

三、硬件电路设计

硬件电路如图所示:硬件系统主要由AT89S52单片机、温度采集、A/D转换、键盘显示电路、报警等功能电路组成。

3.1、核心部分单片机

AT89S52单片机为主控制单元。AT89S52单片机首先根据炉温的给定值和测量值计算出温度偏差,然后进行PID控制并计算出相应的控制数据由P1.0口输出。最后将P1.0口输出的控制数据送往光电耦合隔离器的输入端,利用PWM脉冲调制技术调整占空比,达到使炉温控制在某一设定温度。AT89S52单片机还负责按键处理、温度显示以及与上位机进行通信等工作。4位高亮度LED用于显示设定温度或实测温度。 3.2、温度采集转换模块

温度采集电路主要由铂铑-铂热电偶LB-3。LB-3热电偶可以在1300℃高温下长时间工作,满足常规处理工艺要求。测温时,热电阻输出mV热电势,必须经过变送器变换成0-5V的标准信号。本系统选用DWB型温度变送器,并将其直接安装在热电偶的接线盒内,构成一体化的温度变送器,不仅可以节省补偿导线,而且可以减少温度信号在传递过程中产生的失真和干扰。电阻炉炉温信号是一种变换缓慢的信号。这种信号在进行A/D转换时,对转换速度要求不高。因此为了减低成本以及方便选材,可以选用廉价的、常用的A/D芯片ADC0809,ADC0809是一种逐次逼近式8路模拟输入、8为数字输出地A/D转换器件,转换时间为100us,完全满足系统设计的要求。经过ADC0809转换所得到的实测炉温数据直接送入AT89S52单片机中进行数据处理。

此外,为了防止断偶或者炉温越限,产生热处理质量事故;同时为了提高温控系统的智能化控制性能,降低热处理操作人员的劳动强度,本系统特别设置了断偶或炉温越限自动报警电路。在热处理生产过程中,当发生断偶或炉温越限等异常现象时,主控单元AT89S52单片机自动启动报警电路进行声、光报警,以便操作人员快速处理,防止炉内工件过热,破坏金属组织结构。

3.3、AC—SSR交流功率调节电路

由输出来控制电炉,电炉可以近似建立为具有滞后性质的一阶惯性环节数学模型。其传递函数形式为:

其中时间常数T=350秒,放大系数K=50,滞后时间t=10秒。 为了避免交流接触器等机械触电因频繁通断产生电弧,烧坏触电或者干扰其他设备正常工作,本系统选用AC-SSR交流功率调节器作为PID控制系统的执行机构。AT89S52单片机P1.0口输出的温度控制信号经过光电耦合器件隔离,送至过零检测电路。过零检测电路产生脉冲控制AC-SSR调功电路。当实测温度偏低时,单片机输出的控制信号使得双向可控硅的导通角减小,导通时间变短,加热器功率降低炉温适当降低。通过控制输入到加热器平均功率的大小达到控制电阻炉炉温的目的。

控制执行部分的硬件电路如下图

3.4键盘模块电路

采用4×4矩阵键盘接单片机的P1口,然后实现对设定温度的修改,将它与实际温度进行对比,实现要求的功能。矩阵键盘如下图3所示:

3.5 A/D转换电路

如图所示:

3.6 变送电路

3.6.1、4~20mA变送器XTR101 XTR101为4~20mA线性化变送器,它可与镍络-镍硅测温传感器构成精密的T/I变换。器件中的放大器适合很宽的测温范围,在-40℃~+85℃的工作温度内,传送电流的总误差不超过1%,供电电源可以从11.6V到40V,输入失调电压<±2.5mV,输入失调电流<20nA。XTR101外形采用标准的14脚DIP封装。XTR101有如下两种应用于转换温度信号的典型电路:

3.6.2、I/V转换器RCV420 RCV420是一种精密电流/电压变换器,它能将4~20mA的环路电流变为0~5V的电压输出,并且具有可靠的性能和很低的成本。除具有精密运放和电阻网络外,还集成有10V基准电源。对环路电流由很好的变换能力。具有-25℃~+85℃和0℃~70℃的工作温度范围,输入失调电压<1mA,总的变换误差<0.1%,电源电压范围±5~±18V。RCV420的外形采用标准的16脚DIP封装。它的典型应用如下:

四、系统软件设计

系统的软件由三大模块组成:主程序模块、功能实现模块和运算控制模块。

4.1 主程序模块

开始初始化计时器初始化PID参数A/D采样以及变换Y判断越限报警N显示当前温度和设定温度报警开启设置PWM的占空比

主程序流程图

4.2 功能实现模块

以用来执行对可控硅及电炉的控制。功能实现模块主要由A/D转换子程序、中断处理子程序、键盘处理子程序、显示子程序等部分组成。

4.2.1T0中断子程序

该中断是单片机内部100ms定时中断,优先级设为最高,是最重要的子程序。在该中断响应中,单片机要完成调用PID算法子程序且输出PID计算结果等功能。其流程图如下:

进入中断设置定时器寄存器判断标志位是否为1NY标志位置0计算PID子模块标志位加1中断返回 T0中断子程序

4.2.2 T1中断子程序

T1定时中断用于调制PWM信号,优先级低于T 0中断,其定时初值由PID算法子程序提供的输出转化而来,T1中断响应的时间用于输出控制信号。其流程图如下:

进入中断取反标志位,表示该输出高电平或低电平输出高电平?Y设置高电平脉宽N输出口置高电平设置低电平脉宽Y输出低电平?N输出口置低电平中断返回 T1中断子程序

4.3运算控制模块

运算控制模块涉及标度转换、PID算法、以及该算法调用到的乘法子程序等。

4.3.1标度转换子程序

该子程序作用是将温度信号(00H~FFH)转换为对应的温度值,以便送显示或与设定值在相同量纲下进行比较。所用线形标度变换公式为:

式中,Ax: 实际测量的温度值;Nx:经过A/D转换的温度量; Am =90;Ao=40;Nm =FEH; No=01H;

单片机运算采用定点数运算,并且在高温区和低温区分别用程序作矫正处理。

4.4 控制算法:PID算法

积分分离控制的基本思路是:当偏差e(k)绝对值较大时。取消积分作用,以免由于积分作用使系统稳定性降低,超调量增大;当偏差e(k)绝对值小于某一设定值M时,引入积分控制,以便消除静差,提高控制精度,

PID算法的表达式为:

u(t)Kp[e(t)式中u(t):调节器的输出信号;

e (t):偏差信号;

1TIt0e(t)dtTDde(t)]dt

Kp:调节器的比例系数;

TI:调节器的积分时间; TD:调节器的微分时间。

在计算机控制中,为实现数字控制,必须对上式进行离散化处理。用数字形式的差分方程代替连续系统的微分方程。设系统的采样周期为T,在t=kT时刻进行采样,

e(t)dtTe(i)0i0tk

式中e(k):根据本次采样值所得到的偏差;

e(k-1):由上次采样所得到的偏差。 将上面的三个式子代入,则有

de(t)e(k)e(k1)dtT

Tu(k)Kp[e(k)TITe(i)i0kkDe(k)e(k1)]TKpe(k)kie(i)kdi0e(k)e(k1)T

式中,T为采样时间,项为积分项的开关系数

01e(k)e(k)

积分分离PID控制算法程序流程图如图10所示。

开始参数初始化采入r(k)及y(k)yPID控制E(k)<ß?nPD控制控制器输出参数更新返回

积分分离PID控制算法程序流程图

参考文献

[1] 张艳兵, 王忠庆,鲜浩编著,计算机控制技术.北京:国防工业出版社,2006 [2] 于海生编著,微型计算机控制技术.北京:清华大学出版社,1999 [3] 杨进才,沈显君,刘蓉编著,C++语言程序设计教程.北京:清华大学出版社,2006 [4] 夏云龙编著,最新Visual C++ 使用手册.北京:电子工业出版社,2005 [5] 黄迪明,许家珆,胡德昆编著,C语言程序设计.成都:电子科技大学出版社,2008 [6] 颜永军等,Protel99电路设计与应用,国防工业出版社,2001 [7] 楼然苗,李光飞,51系列单片机设计实例(第二版),2006 [8] 李朝青

单片机原理及接口技术. 北京航空航天大学出版社

[9]刘洪恩.利用热电偶转换器的单片机温度测控系统[J]仪表技术,2005.2: 29- 30。 [10]孙凯, 李元科.电阻炉温度控制系统[J].传感器技术,2003.2:50- 52.。

附录

主程序

ORG 0400H DISM0 DATA 78H DISM1 DATA 79H DISM2 DATA 7AH DISM3 DATA 7BH DISM4 DATA 7CH DISM5 DATA 7DH MOV SP,#50H CLR 5EH CLR 5FH CLR A MOV 2FH,A MOV 30H,A MOV 3BH,A MOV 3CH,A MOV 3DH,A MOV 3EH,A MOV 44H,A MOV DISM0,A MOV DISM1,A MOV DISM2,A MOV DISM3,A MOV DISM4,A MOV DISM5,A MOV TMOD,#56H MOV TL0,#06H MOV TH0,06H CLR PT0 SETB TR0 SETB ET0 SETB EA LOOP:ACALL DISPLY ACALL SCAN AJMP LOOP

50H送SP

A

清暂存单元

清显示缓冲区

T0为计数器方式2,T1为方式1

T0赋初值

T0为低中断优先级 T0工作 T0中断 CPU中断

;;清本次越限标志;清上次越限标志;清累加器;;;;;;;;;;;;;;设;;;令;启动;允许;开;调用显示程序;调用扫描程序;等待中断T0中断服务程序 ORG 000BH AJMP CT0 ORG 0100H CT0: PUSH ACC ;

PUSH DPL ;保护现场 PUSH DPH ;

SETB D5H ;置标志

ACALL SAMP ;调用采样子程序 ACALL FILTER ;调用数字滤波程序

CJNE A,42H,TPL ;若Ui(k)不等于Umax,则TPL WL: MOV C,5EH ;

MOV 5FH,C ; 5EH送5FH CLR 5EH ;清5EH单元 ACALL UPL ;转上限处理程序 POP DPH POP DPL POP ACC RETI ;中断返回

TPL: JNC TPL1 ;若Ui(k)大等Umax,则TPL1 CLR 5FH ;清上次越限标志

CJNE A,43H,MTPL ;若Ui(k)不等于Umin,则MTPL HAT: SETB P1.1 ;若温度不越限则令绿灯亮 ACALL PID ;调用计算PID子程序 MOV A,2FH ;PID值送A CPL A ;

INC A ; 对PID值求补,作为TL1值 NM: SETB P1.3 ;令p1.3输出高电平脉冲 MOV TL1,A ;

MOV TH1,#0FFH ; T1赋初值 SETB PT1 ;T1高优先级中断 SETB TR1 ;启动T1 SETB ET1 ;允许T1中断

ACALL TRAST ;调用标度转换程序 LOOP: ACALL DISPLY ; 显示温度 JB D5H,LOOP ;等待T1中断 POP DPH ;

POP DPL ; 恢复现场 POP ACC ;

RETI ;中断返回

MTPL: JNC HAT ;若Ui(k)大于Umin,则HAT SETB P1.0 ;否则越下限声光报警 MOV A,45H ;取PID最大值输出 CPL A ;

INC A ; 对PID值求补,作为TL1 AJMP NM ;转NM执行

TPL1: SETB 5EH ;若Ui(k)大于Umax,则5EH单元置位 JNB 5FH,WL ;若上次未越限,则转WL INC 44H ;越限计数器加1 MOV A,44H CLR C SUBB A,#N ;越限N次?

JNZ WL ;越限小于N次,则WL SETB P1.2 ;否则,越上限声光报警 CLR 5EH CLR 5FH POP DPH POP DPL POP ACC RETI

T1中断服务程序 ORG 001BH AJMP CT1 ORG 0200H CT1: CLR D5H CLR P1.3 RETI ;

; 清越限标志 ;

; 恢复现场 ;

;中断返回

p1.3变为低电平 ;中断返回 ;清标志;令

第四篇:监测监控装置管理制度

附件2:

监测监控装置管理制度

1 目的

为了保证各种监测、监控装置的完好、准确,需对其进行有效的维护保养,从而满足生产安全运行需求。 2 适用范围

适用于厂属各车间、部室。 3 管理内容与要求

3.1监测、监控装置的巡检、维护、保养分工职责按设备系统检修维护分工规定执行。

3.2各类显示仪表、监测探头等需检定的按相关规定进行周期检定。

3.3监视、监控系统的设计、安装需满足安全生产要求、施工标准及厂区内防爆等相关规定。

3.4监测、监控装置的安装、验收及撤除要求

3.4.1新增加的监测、监控装置需使用单位提出申请,业务部室核实,分管厂领导批准后方可进行。 3.4.2新项目工程按设计图纸配置。

3.4.3监测、监控安装完成后,由机械动力部组织安监处、生产部和使用单位等进行验收,验收合格后交付使用。

3.4.4因工艺调整或其他原因监视、监控装置确实不需要,维护单位按程序终止其使用。

3.5使用、维护单位按其分工职责保证各监控、监视装置的完好,数据准确,保证数据的实时性。对设备需加强监测及巡检维修,并认真填写记录。 4 检查与分工

各单位按照分工对所监视、监控实施检查维护。机械动力部、生产部、安监处、信息部负责监督检查。 5 附则

5.1本标准自2010年8月1日起执行。 5.2本标准由机械动力部起草。 5.3本标准由管理标准编审组审核。

第五篇:课程设计4:110kV变电站电气主接线及配电装置平面布置图的设计

电气工程及其自动化专业

电力系统方向课程设计任务书和指导书

题目: 110kV变电站电气主接线及配电装置平面布置图的设计

指导教师:江静

电气主接线及配电装置平面布置图课程设计任务书 题目: 110kV变电站电气主接线及配电装置

平面布置图的设计

一、课程设计的目的要求

使学生巩固和应用所学知识,初步掌握部分工程设计基本方法及基本技能。

二、题目:

110kV变电所电气主接线设计

三、已知资料

为满足经济发展的需要,根据有关单位的决定新建1座降压变电气。原始资料: 1变电所的建设规模 ⑴类型:降压变电气

⑵最终容量和台数:2×31500kVA:年利用小时数:4000h。 2电力系统与本所连接情况

⑴该变电所在电力系统中的地位和作用:一般性终端变电所;

⑵该变电所联入系统的电压等级为110kV,出线回路数2回,分别为18公里与电力系统相连;25公里与装机容量为100MW的水电站相连。 ⑶电力系统出口短路容量:2800 MVA;

3、电力负荷水平

⑴高压10 kV负荷24回出线,最大输送2MW,COSΦ=0.8,各回出线的最小负荷按最大负荷的70%计算,负荷同时率取0.8,COSΦ=0.85,Tmax=4200小时/年; ⑵24回中含预留2回备用; ⑶所用电率1%

4、环境条件

该所位于某乡镇,有公路可达,海拔高度为86米,土壤电阻系数Р=2.5×104Ω.cm,土壤地下0.8米处温度20℃;该地区年最高温度40℃,年最低温度-10℃,最热月7月份其最高气温月平均34.0℃,最冷月1月份,其最低气温月平均值为1℃;年雷暴日数为58.2天。

四、设计内容

1、设计主接线方案

⑴确定主变台数、容量和型式

⑵接线方案的技术、经济比较,确定最佳方案 ⑶确定所用变台数及其备用方式。

2、计算短路电流

3、选择电气设备

4、绘制主接线图

5、绘制屋内配电装置图

6、绘制屋外配电装置平断面图

五、设计成果要求

1、设计说明书1份 编写任务及原始资料 ⑴编写任务及原始资料

⑵确定主变压器台数、容量和型式 ⑶确定主接线方案(列表比较)

⑷计算短路电流(包括计算条件、计算过程、计算成果) ⑸选择高压电气设备(包括初选和校验,并列出设备清单)。

2、变电站电气主接线图1份

采用75×50 cm方格纸,图形符号必须按国家标准符号绘制,并有图框和标签框,字体采用仿宋体字,用铅笔绘图和书写。接线按单线图绘制,仅在局部设备配置不对称处绘制三线图,零线绘成虚线。在主母线位置上注明配电装置的额定电压等级,在相应的方框图上标明设备的型号、规范。

3、屋内10kV配电装置图1份

采用75×50 cm方格纸,图形符号必须按国家标准符号绘制,并有图框和标签框,字体采用仿宋体字,用铅笔绘图和书写。该图应能显示开关柜的排列顺序、各柜的接线方案编号、柜内的一次设备内容(数量的规格)及其连接,设备在柜内的大致部位,以及走廊的大致走向等。

4、屋外110kV配电装置平断面图1份

采用75×50 cm方格纸,图形符号必须按国家标准符号绘制,并有图框和标签框,字体采用仿宋体字,用铅笔绘图和书写。该图应能显示各主要设备的布置位置及走廊的大致走向等。

5、编制设计说明书及计算书 六 、日程安排

第一天:布置任务、介绍电气设备选择 第二天:电气主接线最佳方案的确定 第三天:短路电流计算

第四、五天:电气设备选择 第六天:绘制电气主接线图

第七天:绘制10kV配电装置订货图

第八天:绘制110kV配电装置平面布置图 第九天:绘制110kV户外配电装置断面图 第十天:整理设计说明书、考核 电气主接线及配电装置平面布置图课程设计指导书

第一节

一、主接线方案设计所需原始资料

设计主接线方案时,首先需要了解原始资料:

(一)水能资料

包括水电站的装机台数和容量,年装机利用小时数、调节性能、开发 形式等。

(二)电力系统资料

1.水电站在电力系统中的地位和作用; 2.电力系统的情况和参数; 3.与电力系统的耦合方式;

4.负荷的性质、重要程度、供电容量和输电距离; 5.厂用电的情况;

(三)气象情况

包括选择电气设备所需的各种温度等大气条件等

(四)其它有关资料

包括配电装置型式,各主要设备的保护方式等。

二、主变压器型式、台数和容量的确定

三、电气主接线方案的确定

(一)电气主接线的基本形式

(二)电气主接线方案的技术比较

根据任务书所列的已知资料,先拟出几个可能的电气主接线方案,先进行粗略的技术比较,筛选出2~3个满足供电可靠性和电能质量等要求的接线方案。最后进一步进行较详细的技术比较,确定出最佳方案。

技术比较一般从以下几个方面论证,分析其优缺点:

1.技术上的选择与灵活性; 2.供电的可靠性; 3.运行的安全性;

4.维护、检修方便以及布置的合理性;

5.继电保护的简化、适应运行人员的技术水平;

6.电气设备的制造问题、就地取材问题、占地面积问题等。

四、厂用电器

(一)厂用变压器的台数和容量

1.台数:有地区外来电源作备用或装机容量较小时,可采用一台,否则骨干电站应考虑两台;

2.备用方式:采用暗备用方式,若采用油浸式变压器,每台容量按70%

电气主接线方案设计 计算容量选择;若采用干式变压器,则每台容量按100%计算容量选择。

(二)厂用电源的引接原则

1.有母线的电气主接线,从电压等级较低的母线上引接厂用电源; 2.无母线的电气主接线,可从发电机——变压器之间分支上引接厂用电源。

(三)厂用电母线的接线方式

按厂用变台数进行分段或不分段,但必须装设备用电源自动投入装置(BZT)。

第二节

短路电流计算及电气设备选择

一、电气设备的配置:

(一)开关电器的配置原则

每一回路须有操作电器、保护和隔离电器。

根据设计任务书的要求及已知资料,在选定的电气主接线方案草图上配置开关电器时应考虑以下问题:

1.35KV屋外配电装置管理开关带接地刀闸问题

根据不同电气主接线具体情况需要,从检修、试验的安全角度出发,在隔离开关,在隔离开关的一侧或双侧装设接地刀闸。

2.接在主母线上的阀型避雷器与电压互感器合用一组隔离开关。 3.厂用变压器高压侧一般采用熔断器作为操作、保护电器。

(二)互感器的配置

互感器的配置应充分满足保护及自动装置、测量、同期以及绝缘监察的 需要。

(三)其它

1.设备之间的连接方式

一般采用母线连接,当布置有困难时采用电力电缆连接。 2.防雷保护即侵入波过电压的保护 3.通讯问题

二、 短路计算条件

在短路电流计算之前,应先确定短路计算条件,包括以下内容: 1.计算电路图的确定

(1) 系统容量及电抗的确定(已知系统部分参数时); (2) 最大运行方式的确定; (3) 短路计算点的确定。 2.短路计算时间的确定

三、 短路电流的计算

1.根据电气设备选择的需要,短路电流应计算下列参数:

I‘’、Izt 、 Izt/

2、ich和 Ich

。 2.短路电流计算步骤:

(1) 选取基准Sj,Uj=Up,计算各元件电抗标么值,并绘制等值电路图

(2) 网络化简,求各电源到短路点的综合电抗 (3) 短路电流计算

四、 电气设备选择

主要选择下列设备:各电压级汇流主母线、断路器、隔离开关、熔断器、 互感器、电力电缆、回路载流导体及绝缘子等。并对所选设备进行校验。

第三节

安装接线图

安装接线图是二次接线的主要施工图,也是提供厂家制造屏和柜的图纸。施工图经过施工和运行检修并修正后,就成为对二次回路进行维护、试验和检修的基本图纸。

安装接线图一般包括屏面布置图、端子排图、屏背面接线图三种。本设计是要求根据已知的二次原理展开图及所选用的设备,设计相应的屏内设备的屏面布置图,然后再由原理展开图及屏面布置图,设计出端子排图。最后根据以上三种图纸设计屏背面接线图。

一、屏面布置图

屏面布置图是加工、制造屏、台、盘和安装屏、台、盘上设备的依据。屏、台、盘上各设备的排列、布置系根据运行操作的合理性并适当考虑到维护和施工的方便而决定的,必须按照设备尺寸和设备之间的距离及一定的比例进行绘制。

二、端子排图

端子排图是表示屏、台、盘内需要装设端子排的数目、型式、排列顺序、位置,以及它与屏台排上设备和屏、台、盘外设备连接情况的图纸。

端子排土实际是屏背面接线图的一个组成部分,它主要是表示屏内设备与屏外设备的连接(电缆)情况。

三、屏背面接线图

屏背面接线图是以屏面接线图为基础,并以原理接线图为依据而绘制的接线图,它标明了屏上各个设备引出端子之间的连接情况,以及设备与端子之间的连接情况,它是一种指导屏上配线的图纸。

为了配线工作及识图的方便,在这种接线图中,对各设备和端子排一般都增加了一种采用“相对编号法”进行的编号,用以说明这些设备相互连接的关系。例如,甲接线柱上标了乙接线柱的编号,乙接线柱上标上甲接线柱的编号,这表明甲和乙两接线柱之间应连接起来。

第四节

配电装置布置图

配电装置是电气一次接线的工程实施,是发电厂及变电站的重要组成部分。它是按电气主接线的要求,由开关电器、载流导体和必要的辅助设备所组成的电工建筑物,在正常情况下用来接受和分配电能;发生事故时能迅速切断故障部分,以恢复非故障部分的正常工作。

一、绘制屋内配电装置订货图

屋内配电装置订货图是厂家根图形进设计、订货、安装的重要资料,厂家将根据订货图进行具体的配料。

二、屋内配电装置布置图

将屋内配电装置如成套开关柜合理地布置的屋内。

三、屋外配电装置平、断面图

将屋外配电装置布置合理在屋外的场地进行布置,即应满足对安全距离的要求,又应节约用地。

第五节

设计成果

一、绘制水电站电气主接线图

1.采用75×50cm方格纸,图形符号必须按国家新标准符号绘制,并有图框和标题栏,字体应采用仿宋体字,用铅笔绘图和书写。 2.接线按单线图绘制,仅在局部设备配置不对称处绘制三线图,零线绘成虚线。

3.在主母线位置上注明配电装置的额定电压等级,在相应的方框图上表明设备的型号、规格。

二、绘制屋内配电装置配置图

1.采用50×375cm方格纸绘制。

2.设备的型号、规格和数量采用列表的形式。

三、绘制35kV屋外配电装置平断面图

1.两张图分别采用75×50cm和75×50cm图纸绘制。

2.屋外配电装置布置图应按与实际尺寸成比例画出,要求布置协调对称、美观。各元件的型号规格必须列在设备表中。

四、绘制设计说明书

1.任务及原始资料。

2.主变台数、容量及型式的确定(需论证)。 3.主接线方案的确定(列表比较)。

4.短路电流计算(包括计算条件即计算电路图确定说明,计算过程和结果表)。

5.电气设备的选择。 6.主要一次设备清单(包括设备名称、型号、规格、单位和数量等)。

7.其他需要说明的内容。

上一篇:我的精神家园――答案下一篇:舞蹈晚会主持词开场白