三角形中线定理公式

2022-08-25

第一篇:三角形中线定理公式

三角形公式定理

第三章 三角形公式定理

第三章 三角形

1 三角形的有关概念和性质

1.1三角形的内角和

在同一平面内,由一些不在同一条直线上的线段首位顺次相接所围成的封闭图形叫做多边形.组成多变形的那些线段叫做多边形的边.相邻两边的公共端点叫做多边形的顶点.多变形相邻两边所夹的角叫做多边形的内角,简称多边形的角.多变形的角的一边与另一边的反向延长线组成的角叫做多边形的外角.三角形内角和定理:三角形三个内角和等于180

在原来图形上添画的线叫做辅助线

依据三角形内角的特征,对三角形进行分类:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形;锐角三角形和钝角三角形统称斜三角形.

在直角三角形中,夹直角的两边叫做直角边,直角的对边叫做斜边.

推论1 直角三角形的两个锐角互余

推论2 三角形的一个外角等于与它不相邻的两个内角的和

1.2三角形的有关线段

三角形一个角的平分线和对边相交,角的顶点和交点之间的线段叫做三角形的角平分线连接三角形的一个顶点和它对边中点的线段叫做三角形的中线

从三角形的一个顶点向其对边或对边的延长线画垂线,顶点和垂足间的线段叫做三角形的高

2 全等三角形

2.1全等三角形的证明

边边边 有三边对应相等的两个三角形全等

边角边 有两边及其夹角对应相等的两个三角形全等

角边角 有两角及其夹边对应相等的两个三角形全等

定理 有两角及其其中一角的对边对应相等的两个三角形全等

2.2直角三角形全等的判定

定理 斜边和一条直角边对应相等的两个直角三角形全等

3 等腰三角形

3.1等腰三角形及其性质

三角形的三边,有的三边互不相等,有的有两边相等,有的三边都相等.三边都不相等的三角形叫做不等边三角形,有两边相等的三角形叫做等腰三角形,三边都相等的三角形叫做等边三角形.在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角

定理 等腰三角形的底角相等

推论 等腰三角形顶角的平分线平分底边并且垂直于底边

定理 有两个角相等的三角形是等腰三角形

定理 一个三角形是等腰三角形的充要条件是这个三角形有两个内角相等

等边三角形定理1 等边三角形的各角都相等,并且每一个角都等于60

等边三角形定理2 三个角都相等的三角形是等边三角形

等边三角形定理3 有一个角等于60的等腰三角形是等边三角形

3.2线段的垂直平分线与角平分线

定理 线段的垂直平分线上的点和这条线段两个端点的距离相等

定理 和一条线段两个端点距离相等的点,都在这条线段的垂直平分线上

线段的垂直平分线可以看成是所有和线段两段距离相等的点的集合

定理 点在角平分线上的充要条件是这一点到这个角两边的距离相等

角的平分线可以看作是到角的两边距离相等的所有点的集合

3.3 轴对称

定义 如果点A,B在直线l的两侧,且l是线段AB的垂直平分线,则称点A,B关于直线l互相对称,点A,B互称为关于直线l的对称点,直线l叫做对称轴

定义 在平面上,如果图形F的所有点关于平面上的直线l成轴对称,直线l叫做对称轴

定义 在平面上,如果存在一条直线l,图形F的所有点关于直线l的对称点组成的图形,仍是图形F自身,则称图形F为轴对称图形,直线l是它的一条对称轴

定理 (1)对称轴上的任意一点与一对对称点的距离相等 (2)对称点所连线段被对称轴垂直平分

推论 两个图形如果关于某直线称轴对称,那么这两个图形是全等形

3.4三角形中的不等关系

定理 三角形的外角大于和它不相邻的任一内角

定理 三角形任何两边的和大于第三边

推论 三角形任何两边的差小于第三边

定理 在一个三角形中,如果两边不等,那么它们所对的角也不等,大边所对的角较大定理 在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大

在一个三角形中,一条边大于另一条边的充要条件是,这条边所对的角大于另一条边所对的角 4 直角三角形

4.1勾股定理逆定理

勾股定理逆定理 如果三角形的三边长a,b,c满足条件a+b=c,那么c所对的角是直角

4.2含30角的直角三角形的性质

定理 在直角三角形中,如果一个瑞角等于30,那么它所对的直角边等于斜边的一半

4.3直角三角形斜边上中线的性质

定理 在直角三角形中,斜边上的中线等于斜边的一半

5 基本作图

5.1基本作图

5.1作三角形

5.3轨迹与反证法

我们把物体按某种规律运动的路线叫做物体运动的轨迹

我们就把一个点在空间按某种规律运动的路线,叫做这个点运动的轨迹,这个点就叫做动点定义 具有性质a的所有点构成的集合,叫做具有性质a的点的轨迹

轨迹具有纯粹性和完备性

基本轨迹1 与两个已知点距离相等的点的轨迹是连结这两点的线段的垂直平分线基本轨迹2 与已知角的两边距离相等的点的轨迹是这个角的平分线

圆几何公式:

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理 不在同一直线上的三个点确定一条直线

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交 d﹤r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d﹥r

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d﹥R+r ②两圆外切 d=R+r

③两圆相交 R-r﹤d﹤R+r(R﹥r)

④两圆内切 d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)

136定理 相交两圆的连心线垂直平分两圆的公共弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长计算公式:L=n∏R/180

145扇形面积公式:S扇形=n∏R/360=LR/2

146内公切线长= d-(R-r) 外公切线长= d-(R+r)

第二篇:《三角形的高、中线与角平分线》教学

设计

一、教学目标:

(一)掌握的知识与技能:

、经历折纸、画图等操作过程认识三角形的高、中线、角平分线,结合图形,会用几何语言表述。

2、会用工具准确地画出三角形的高、中线与角平分线。

(二)经历的教学思考:

经历折纸、画图、观察、思考、交流等活动,发展空间观念和表达能力

(三)培养的情感态度和价值观:

通过数学活动,让学生体验和理解三角形中的特殊线段,结合图形认识三角形的高、中线、角平分线所揭示的数量关系,学会发现问题,解决问题。

二、教学重难点:

、重点:(1)了解三角形的高、中线、角平分线的概念,会用工具准确画出三角形高、中线、角平分线。

(2)了解三角形的三条高,三条中线与三条角平分线分别交于一点。

2、难点:(1)三角形平分线与角平分线的区别,三角形的高与垂线的区别。

(2)钝角三角形高的画法。

(3)不同的三角形三条高的位置关系。

三、教学方法:自主探究,合作交流

四、教学工具:三角形纸片,三角板,直尺

五、教学过程:

、各组组长检查预习作业完成情况。

2、师生问好。

3、情境导入:【大屏幕显示】白雪公主有一块三角形的煎饼,她打算把煎饼分成面积相等的七块给小矮人,想了很久也不知道怎么分,你能帮助她吗?

4、展示本学习目标【大屏幕显示】

、学生自学本P6-66内容后,完成导学案。(小组共同完成,组长组织)教师巡视全班。(导学案附后)

6、通过题目检查学生自学情况。【大屏幕显示】(学生抢答)

7、将学生在自学过程中的疑难问题适当加以点拨。

8、学生完成堂练习,完成后交给组长评分。(堂练习附后)

9、共同完成拓展练习。

0、共同完成前设疑的问题。现在你能帮助白雪公主了吗?

1、堂小结:由学生总结,互相补充。

2、布置下作业。

【导学案和堂练习题附后】

三角形的高、中线和角平分线导学案

前准备:请你完成下列作图:

、经过点A画直线l的垂线

2、画∠AB的角平分线

3、作出线段AB的中点

动手实践,探究新知:

三角形的高线

、三角形高线定义:

2、请你画出下面三角形的高

思考:(1)三角形的高线有

条;

(2)锐角三角形的三条高是在三角形的内部还是外部?

;

(3)直角三角形的三条高线相交

;

(4)钝角三角形的三条高线也相交于一点吗?

请你拿出前准备好的三角形,通过自己折纸画出三角形的角平分线和中线,回答下面问题

、三角形角平分线定义:

2、三角形有几条角平分线?

3、你发现三角形的三条角平分线是否交于一点?

三角形的中线

、三角形的中线定义:

2、三角形有几条中线?

3、你发现三角形的三条中线是否交于一点?

三角形高、中线、角平分线堂练习

应用新知,体验成功

、填空:∵AD是△AB的高

=

=

°

2、填空:∵F是△AB的中线

=

=

3、填空:∵AE是△AB的角平分线

=

=

4、如图:D,BE是∆AB的角平分线,它们相交于点I,则

①∠AD=∠

=

∠AB,∠AB=

∠ABE

②BI是∆

的角平分线,I是∆

的角平分线。

③你能画出∆AB的第三条角平分线吗?

、如图,在∆AB中,∠BA是钝角,请在∆AB中分别画出:

∠BA的平分线;

A边上的中线;

A边上的高;

AB边上的高。

6、已知:如图,在△AB中,∠AB=90°,D是高,

则图中互补的角有

对,分别为

7、请你找出图中以AD为高的三角形

它们分别是

8、三角形某条边上的高(

)

A在三角形的内部B在三角形的外部

在三角形的一边上

D以上三种情况都有可能

9、如图,如果D是B的中点,B=6,AE⊥B于E,AE=4

则BD=D=

,S△ABD=

S△AD=

,S△ABD

S△AD

0、三角形的一条,能把三角形分成两个面积相等的三角形。

A.角平分线

B.中线

.高

D.以上都不对

第三篇:《三角形的高、中线与角平分线》教学设计

一、内容和内容解析

1.内容

三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

2.内容解析

本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情.

理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

二、目标和目标解析

1.教学目标

(1)理解三角形的高、中线与角平分线等概念.

(2)会用工具画三角形的高、中线与角平分线.

2. 教学目标解析

(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

(3)掌握三角形的高、中线与角平分线的画法.

(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.

三、教学问题诊断分析

三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.

三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

三角形的角平分线的理解: 三角形的角平分线也是一条线段,角的顶点是一个

端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

四、教学过程设计

1.抛砖引玉,提出问题

先演示画三角形的一条高,再给出问题:

(1)任画一个三角形,你能画出它的三条高吗?

(2)同一个三角形的三条高线有什么位置关系?

(3)不同类型的三角形的三条高线的交点位置有什么差别?

师生活动:先让学生画图实践,教师下位随机点拔,再让会画和不会画的学生相互交流提点,然后带着问题讨论,最后各小组派代表发言,师生共同归纳概念和画法.

【设计意图】这一环节是一个重要的实践活动,需要学生动手实践,动口交流,动脑思考,加深理解高线的概念和掌握画高线的作图能力.

2.从实践上升到理论,形成概念

师生活动:

定义:从三角形的一个顶点出发,向对边引垂线,这个顶点和垂足之间的连线段叫做三角形的高线,简称三角形的高.

三角形的高有三条,特别强调:钝角三角形的高有两条在三角形外部,一条在三角形内部.直角三角形的两直角边就是高线.任何三角形的三条高所在直线交于一点,这点叫三角形的垂心.

归纳:锐角三角形有

条高,它们相交于一点,交点在三角形 ;

直角三角形有 条高 ,它们相交于一点,交点在三角形 ; 钝角三

角形有 条高,它们所在直线相交于一点,交点在三角形 .

注意:三角形的高是线段. (几何语言) ∵AD是ABC上的高, ADBC (ADB=ADC=90). 逆向:∵ADBC垂足是D,

AD是ABC的边 BC 上的高.

几何语言表达可在学完三个定义之后统一学习.便于学生比较记忆形成知识结构. 【设计意图】让学生体会由实践到理论的过程,培养学生的归纳总结能力. 补充说明:要养成习惯,画好高线后,随手标明垂直的记号和垂足的字母.

师生活动:结合具体图形,教师引导学生养成良好的作图习惯. 【设计意图】进一步加深学生对几何符号和几何语言的熟悉. 3.类比学习,掌握几何探究的基本方法

用相同的探究方法引导学生学习三角形的中线和角平分线. 师生活动:与高线的探究类似. 4.归纳总结,形成知识结构 师生活动:师生共同完成这个表格.

三角形的重要线段

定义

图形

表示法

三角形 的高线

的线段

从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间

1.AD是△ABC的BC上的高线. 2.ADBC于D. 3.ADB=ADC=90.

三角形 的中线

三角形中,连结一个顶点和它对边中点的线段

1.AE是△ABC的边BC上的中线. 2.BE=EC=BC.

三角形的 角平分线

三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段

1.AM是△ABC的BAC的平分线.

2.1=2=BAC.

【设计意图】通过这一活动的设计,提高学生归纳概括的能力,了解几何语言简洁性.

5. 应用巩固

课本上P5第

1、2题

补充练习:

(1)如图,AE是△ABC的中线,EC=6,DE=2,则BD的长为( ).

A.2

B.3 C.4

D.6

解析:因为AE是△ABC的中线,

所以BE=EC=6.

又因为DE=2,

所以BD=BE-DE=6-2=4.

答案:C

(2)下列说法正确的是( ).

①平分三角形内角的射线叫做三角形的角平分线;

②三角形的中线、角平分线都是线段,而高是直线;

③每个三角形都有三条中线、高和角平分线;

④三角形的中线是经过顶点和对边中点的直线.

A.③④ B.③ C.②③ D.①④

解析:任何一个三角形都有三条高、中线和角平分线,并且它们都是线段,不是射线或直线,因此只有③正确,故选B.

答案:B

(3)三角形的三条高在( ).

A.三角形的内部 B.三角形的外部

C.三角形的边上 D.三角形的内部、外部或边上

解析:三角形的三条高交于一点,但有三种情况:当是锐角三角形时,这点在三角形内部;当是直角三角形时,这点在三角形直角顶点上;当是钝角三角形时,这点在三角形外部,所以只有D正确.

答案:D

学生通过解决这样的应用问题,特别是(3)中又要用到分类讨论的思想,学生通过解决问题的过程加深理解不同类型的三角形其高线都是交于一点,但交点位置却不同.

【设计意图】除了考查学生的灵活运用的能力外,逐步培养学生一些基本的数学思想,还能突破难点加深学生对三角形高线位置的理解,一举多得.

6.总结反思

教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.

(1)三角形的高、中线、角平分线等有关概念及它们的画法.

(2)三角形的高、中线、角平分线的几何表达及性质的简单应用.

师生活动:教师引导,学生小结.

【设计意图】学生共同总结,互相取长补短,再一次突出本节课的学习重难点.

7.布置作业

教科书第8页第3,4题.

第四篇:17.1.2三角形的高、中线与角平分线教学反思

数学组 王春平

本节内容着重介绍了三角形的三种非常重要的线段,学生已经学过过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识,是学习本节新知识的基础,所以我在复习提问环节不但要求学生说出上述概念的文字语言,还要求学生说出符号语言,为后面三角形的高、中线与角平分线的几何语言做好铺垫。同时我在创设问题情境时我觉得很成功,激起了学生的浓厚兴趣,同时在后面又作为例题进行讲解,既解决了问题情境中提出的问题,又填补了例题的空缺,同时应用三角形的高、中线知识进行解决,得出三角形中线把三角形分成面积相等的两个三角形的结论。

本节重点是三角形的三种重要线段,难点是对三角形的角平分线、中线、高的准确理解、作图与正确运用,而突破难点的关键是运用好数形结合的数学思想从画图入手,获得三种线段的直观形象,进一步架起数与形之间的桥梁,加强知识间的相互联系。

对于每一种线段的获得我都设计了动手操作,尤其是钝角三角形的高的画法,占去了大量的时间,因为学生在作图上确实存在很大问题。但最终学生还是很好的画出了钝角三角形的三条高,并得出了相关结论。

如果让我再讲一遍这节课,我仍然要这样讲,我对自己对这节课的设计还是很满意的。但由于课堂容量大,而且有难点不好突破,所以在时间控制上还存在一定的问题,有些前松后紧了,前边如果能挤出3到5分钟,这节课将很顺利的完成。比如在引课的时候可以问一到两个学生,答不对就应该顺势引课,通过本节课的学习,你就能解决这个问题了,这里可以节约一分钟。在直角三角形、钝角三角形的高画出来,学生展示并讲解结论时,不重复,直接演示,也会节省点时间。还有一点重大失误,就是高和中线的几何语言的书写,原计划不写,可又觉得缺点什么,所以临时决定写,这里不但浪费了时间,而且出现了重大失误,因为我没料到看不见大屏幕上的图,所以照着学生贴在黑板上的图及印象写的,当时存侥幸心理,因为大屏幕上有推理格式,一般人都会看大屏幕,因为黑板的板书很小,看不清,可是结果恰恰被田校长看出来了。通过这件事给了我一个教训,万事不能存侥幸心理,每一个预设环节都要想好怎样实施,做到万无一失,不能失败了才长教训,这样会失去很多。

本节课我充分利用了类比的思想,所以学生在写三角形的高、中线与角平分线的推理形式时,顺理成章,写得非常好,所以如果推理形式我不板书,那将既节省时间又完美。人们常说缺憾也是一种美。

我想我在教态上也有了一定的进步,不管学生答得对与错,我都能笑脸相迎,让学生感觉很放松,再有适时的表扬,也对学产生了激励作用,这是与一次次的调研,一次次的听课离不开的。通过本次的同课异构活动感触很多,我要做一个终身学习的教师。

第五篇:三角形射影定理

几何证明

射影就是正投影,从一点到过顶点垂线垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影,即射影定理。

直角三角形射影定理

直角三角形射影定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

公式 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:

(1)(AD)=BD·DC,

(2)(AB)=BD·BC ,

(3)(AC)=CD·BC 。

证明:在 △BAD与△ACD中,∠B+∠C=90°,∠DAC+∠C=90°,∴∠B=∠DAC,又∵∠BDA=∠ADC=90°,∴△BAD∽△ACD相似,∴ AD/BD=CD/AD,即(A

D)^2=BD·DC。其余类似可证。

注:由上述射影定理还可以证明勾股定理。由公式(2)+(3)得:(AB)+(AC)=BD·BC+CD·BC =(BD+CD)·BC=(BC)

即 (AB)+(AC)=(BC)。 22222222

2任意三角形射影定理

任意三角形射影定理又称“第一余弦定理”:

设⊿ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有a=b·cosC+c·cosB,

b=c·cosA+a·cosC,

c=a·cosB+b·cosA。

注:以“a=b·cosC+c·cosB”为例,b、c在a上的射影分别为b·cosC、c·cosB,故名射影定理。

证明1:设点A在直线BC上的射影为点D,则AB、AC在直线BC上的射影分别为BD、CD,且

BD=c·cosB,CD=b·cosC,∴a=BD+CD=b·cosC+c·cosB. 同理可证其余。

1.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.2.圆周角定理的推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.

弦切角定理:弦切角的度数等于它所夹的弧的度数的一半.

2.弦切角定理推论:弦切角等于它所夹的弧所对的圆周角.

切线的性质定理:圆的切线垂直于过切点的半径.

进一步指出:由于过已知点有且只有一条直线与已知直线垂直,所以经过圆心垂直于切线的直线一定过切点;反过来,过切点垂直于切线的直线一定经过圆心,因此可以得到两个推论:

推论1 经过圆心且垂直于切线的直线必经过切点.

推论2 经过切点且垂直于切线的直线必经过圆心.

引导学生分析性质定理及两个推论的条件和结论间的关系,总结出如下结论:如果一条直线具备下列三个条件中的任意两个,就可推出第三个.

(1)垂直于切线;(2)过切点;(3)过圆心.

相交弦定理

:圆内的两条相交弦,被交点分成的两条线

段长的积相等

几何语言:

若弦AB、CD交于点P

则PA·PB=PC·PD(相交弦定理)

推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

几何语言:

若AB是直径,CD垂直AB于点P,

则PC=PA·PB(相交弦定理推论)

割线定理:

割线定理:从圆外一点引圆的两条割线则有这点到割线与圆交点的两条线段的积相等.要证PT2=PA·PB, 可以证明 ,为此可证以 PA·PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB。容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证:

直线ABP和CDT是自点P引的⊙O的两条割线,则PA·PB=PC·PD

证明:连接AD、BC

∵∠A和∠C都对弧BD

∴由圆周角定理,得 ∠A=∠C

又∵∠APD=∠CPB

∴△ADP∽△CBP

∴AP:CP=DP:BP, 也就是AP·BP=CP·DP

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.

圆内接四边形的判断定理定理1:圆内接四边形的对角互补;定理2:圆内接四边形的外角等于它的内角的对角。

圆幂定理

圆幂的定义:一点P对半径R的圆O的幂定义如下:OPR

所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。

圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。

(1) 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

2

2如图,AB、CD为圆O的两条任意弦。相交于点P,连接AD、BC,则∠D=∠B, ∠A=∠C。所以△APD∽△BPC。所以 APPDAPBPPCPD PCBP

(2) 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点

的两条线段长的比例中项。

如图,PT为圆切线,PAB为割线。连接TA,TB,则∠PTA=∠B(弦切角等于同弧圆周角)所以△PTA∽△PBT,所以

PTPAPT2PAPB PBPT

(3) 割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D 则有

PA·PB=PC·PD。

这个证明就比较简单了。可以过P做圆的切线,也可以连接CB和AD。证相似。 存在:PAPBPCPD

进一步升华(推论):

过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于

A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则 PCPD(POR)(POR)PO2R2|PO2R2|(一定要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值)

若点P在圆内,类似可得定值为RPO|POR|

故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝 对值。(这就是“圆幂”的由来)

2222

上一篇:是金子在哪都会发光下一篇:水利工程施工合同书

本站热搜