凝聚态物理专业描述

2022-08-20

第一篇:凝聚态物理专业描述

2014年考研专业之凝聚态物理专业排名与就业分析

专业名称:凝聚态物理 所属一级学科:物理学 所属门类:理学

一、凝聚态物理专业概述

凝聚态物理专业是研究凝聚态物质的空间结构、电子结构以及相关的各种物理性质。凝聚态物质是由大量的粒子(原子、分子、离子、电子)组成的。凝聚态物理的研究对象为晶体、非晶体、准晶体等固相物质和稠密气体、液体以及于液态和固态之间的各类居间凝聚相。迄今,传统的固体物理各分支,如半导体物理、金属物理、磁学、低温物理和电介质物理的研究更加深入,各分支之间联系更趋密切。此外,许多新的分支不断涌现,如强关联电子体系物理学、无序体系物理学、准晶物理学、介观物理与团簇物理等。凝聚态物理的基础与高新技术紧密相联,其成果是一系列新技术、新材料和新器件的源泉。近年来,凝聚态物理的研究成果、研究方法和技术,日益向邻近学科渗透、扩展,促进了化学物理、生物物理、信息科学和地球物理等交叉学科的发展。综上可见,凝聚态物理学已成为当今物理学中最重要的分支学科之一。

二、凝聚态物理重点学科单位

物理学一级国家重点学科:北京大学、清华大学、复旦大学、南京大学、中国科学技术大学 凝聚态物理二级国家重点学科:吉林大学、上海交通大学、浙江大学、厦门大学、山东大学、郑州大学、武汉大学、中山大学

凝聚态物理国家重点培育学科:同济大学、四川大学

三、凝聚态物理专业院校排名

第一档次(A++):南京大学、中国科学技术大学、北京大学、复旦大学

第二档次(A+):清华大学、浙江大学、吉林大学、山东大学、中山大学、上海交通大学、武汉大学

第三档次(A):郑州大学、厦门大学、四川大学、北京师范大学、北京科技大学、华中科技大学、南开大学、兰州大学

第四档次(B+):上海大学、湖南大学、北京航空航天大学、大连理工大学、同济大学、西北工业大学、重庆大学、北京工业大学、北京理工大学、燕山大学、哈尔滨工业大学、南京航

空航天大学、苏州大学、湘潭大学、东南大学、湖南师范大学、河北师范大学、电子科技大学、河南大学、山西大学、西安交通大学、中南大学、华中师范大学、华东师范大学、东北师范大学、天津大学、广西大学、中国人民大学、西北大学、河南师范大学、暨南大学、华南理工大学、首都师范大学、宁波大学、兰州理工大学、广州大学、扬州大学、华南师范大学、西北师范大学

第五档次(B):湖北大学、北京化工大学、东北大学、大连海事大学、中国矿业大学、青岛大学、南京师范大学、武汉理工大学、西南科技大学、内蒙古大学、北京交通大学、温州大学、浙江师范大学、福建师范大学、聊城大学、中北大学、杭州师范大学、曲阜师范大学、宁夏大学、西南交通大学、陕西师范大学、西南大学、云南师范大学、四川师范大学、江西师范大学、哈尔滨理工大学、长春理工大学、哈尔滨师范大学、内蒙古师范大学、太原理工大学、内蒙古科技大学、新疆大学、上海理工大学、吉首大学、长沙理工大学、江苏工业学院、贵州大学等

四、凝聚态物理专业就业分析

目前凝聚态物理学正处在枝繁叶茂的兴旺时期。并且,由于凝聚态物理的基础性研究往往与实际的技术应用有着紧密的联系,凝聚态物理学的成果是一系列新技术、新材料 和新器件,在当今世界的高新科技领域起着关键性的不可替代的作用。近年来凝聚态物理学的研究成果、研究方法和技术日益向相邻学科渗透、扩展,有力的促进了诸如化学、物理、生物物理和地球物理等交叉学科的发展,与此相应此专业的相关人才应用范围很广,前景还是很乐观的。

本专业的硕士毕业生主要就业方向是高等院校、科研院所和高科技公司,做研究员、工程师、技术骨干等

第二篇:物理学专业描述

专业描述

师范本科,标准学制四年。修完教学计划规定课程,修满规定学分,准予毕业,经学院学位委员会审核确认符合《中华人民共和国学位条例》规定者,授予学士学位。本专业培养德、智、体、美全面发展,能适应21世纪的科学技术发展和教育事业发展需要的,受到严格的科学实验训练和科学研究初步训练,掌握物理学科基础理论和基础知识及实验技能,具有较好的实际操作能力,能正确应用科学的教育教学理论组织教学,熟练掌握和运用一门外语及计算机网络应用技术能力,能够在中等学校进行物理教学及研究的教育工作者、科学技术人才和管理人才。主干学科:物理学。主要专业课程:高等数学、力学、热学、电磁学、光学、原子物理学、普通物理实验、电路分析、电子技术基础、中学物理教学法、理论力学、数学物理方法、热力学与统计物理学、电动力学、量子力学、固体物理学、电视原理、C语言程序设计、计算机技术应用等。主要专业实验:力学实验、热学实验、电磁学实验、光学实验、电子技术基础实验、近代物理实验、中学物理实验研究等。本专业有完备的计划和手段、师资条件和硬件条件来保障学生的专业理论知识的培养和实践动手技能的训练,注重学生的科研创新能力和综合素质的提升,使学生具有较强的就业竞争力。

第三篇:中山大学凝聚态物理(或者理论物理)考研初试经验

【前言】

九个多月跨度的考研过程结束了,这里总结一下我的考研经验以及感想给大家参考。我在网上搜索过中山大学凝聚态物理的考研经验帖,结果发现没有。另外我在考研过程中着实遇到过一些困难、疑惑加之自学过程中有过一些对学习生活的感想,于这是便下定决心写下我的考研经验与感想。本想初试完后就着手写这篇经验文章的,但认为自己没得出好成绩就写这篇文章多少缺乏点说服力。这里我首先告诫大家的是七月一号以后如若你还想继续考研,那么除很特殊的情況下(例如自己考研是为了找好工作的并且自已着实找到了自己认为很好的工作时),请务必坚持下去。坚持下去即使失败了你也会有一些收获的,说不定这种收获是很宝贵的。至少你努力过,待到将来你考研后比如找不到好工作时,你不会懊悔自己没能坚持下来。好了,进入正题,下面我首先写下我是怎么进行复习的。毕竟他山之石可以攻玉,总能或多或少起借鉴作用。

【我的学习进程】

复习中我们用到的书往往比较多,所以我会特别在后面列出张书目表格二拱参考。我是2013级一名普普通通的毕业生,在考研队伍里算是往届生了。过程按时间顺序如下:

【我所用的参考书】

【考研注意事项补充】

1.休息很重要,要懂得劳逸结合。单调的学习所得(例如只学习四门考研科目)绝对不与所花时间多少成正比。超过了度绝对会随时间收敛于零。问题解不出的时候去喝喝茶或听听歌什么的,再或者去散散步。另外,可以适度地在一星期里放一天假。我就是这么做的,我自认为自己不能每天复习。不过后期要是觉得时间紧的话,那么就要少休假了,学习过程中适当休息就行了。

2.可以在复习过程中做一些自己的爱好(适度的话绝对对全部的考研学习效率有积极作用),例如,我喜欢唱歌,所以做题做烦了就在家里哼上几曲(我一直在家里一个人复习)。后来才发现我不仅考研初试成绩很不错,并且唱歌水平有了很大提高。

3.可以找本课外书读一读,从书中找找精神动力。学习不要局限于考试内容,尽量丰富些。例如我复习期间还读了读尼采的《查拉图斯特拉如是说》、《道德经》、罗曼·罗兰的《名人传》。说真的,尼采的书真是难读懂,尽是一些散文诗、暗喻、想象。睡前看的,用来催眠绝对有神奇功效,呵呵呵。

以上的建议旨在告诉大家注意休息以及让自己的学习生活尽量丰富些。这里我形象说明下考研的时间分配效果。假如你的学习时间只有10小时,那么,用一小时休息(或做些其他事)且用九小时学习往往要比10个小时的全程学习带来的效率要高并且前者带来的学习所得总量要比后者的大。这也能减轻单调的考研复习但来的痛苦。痛苦减少了,不是更容坚持下来吗?如果你有一点小爱好的话那就更好了。

[计划每天学习的时间段(大概的,随着月份增加而变动)]

上午9:00~11:30(普通物理) 下午14:30~16:3(高数A)

晚上19:00~9:30(英语以及思想政治)

以上总共七个半小时(没有计入闲暇的背单词时间)。我非严格守时的学霸,大家都多少有些磨蹭的习惯以及中途要休息,所以真正的学习时间肯定要缩水。每过一段时间可以调整一天的复习顺序,如上午高数下午普通物理。

【附加提醒】

1.我是将单词抄写在小纸条上并且带在身上随身记忆的,或者将赠送的单词册裁剪下来随身记忆。主要记下那些不熟悉的单词,很多都学过,学过的不用记忆了。每天散步,去吃饭走路过程中记两三张纸条没啥问题。(切记过马路或者走路别一直盯着纸条,否则出事故不怪。看一遍单词后盯着路况边走边回忆就行)总之要充分利用闲暇时间背单词,久而久之单词背几遍不是问题。我的背单词方法很简单,就是看英文回想中文,这样不断地重复重复,单词见多了就认识了。就像熟悉陌生人一样。在这里要切记不要担心自己记不住,你在接触陌生人时没有担心自己记不住人家长什么样后来还不照样记住了人家。忧虑是学习与记忆的大敌,我以前就吃过这方面的亏。

2.以上所有我的信息仅作为参考,大家应该摸索出适合自己的计划、安排、方法。 3.普通物理书目及范围:

【结语】

考研不是特别困难的事,最困难只是你能不能坚持。坚持下来你就胜利了一大半。人不是死的,可以调动你的各方面聪明才智让你坚持下来。各位要有点信心。祝各位有个好的初试成绩。

以上可能有不妥之处,我可能会有更新。

我还有一篇复试经验要完成,大家可以留意我的复试经验。

2014.5.7

第四篇:浅谈凝聚态物理学的历史发展与研究

摘要:所谓“凝聚态”,指的是由大量粒子组成,并且粒子间有很强相互作用的系统。自然界中存在着各种各样的凝聚态物质。固态和液态是最常见的凝聚态。低温下的超流态,超导态,玻色- 爱因斯坦凝聚态,磁介质中的铁磁态,反铁磁态等,也都是凝聚态。当代物理学把固态物质和液态物质统称为凝聚态物质。本文就凝聚态物理的内容和发展进行综合性的概述。

关键词:凝聚态凝聚态物理固体物理超导物理

引言: 凝聚态物理学是当今物理学最大也是最重要的分支学科之一。研究由大量微观粒子(原子、分子、离子、电子)组成的凝聚态物质的微观结构、粒子间的相互作用、运动规律及其物质性质与应用的科学。它是以固体物理学为主干,进一步拓宽研究对象,深化研究层次形成的学科。其研究对象除了晶体、非晶体与准晶体等固体物质外,还包括稠密气体、液体以及介于液体与固体之间的各种凝聚态物质,内容十分广泛。其研究层次,从宏观、介观到微观,进一步从微观层次统一认识各种凝聚态物理现象;物质维数,从三维到低维和分数维;结构从周期到非周期和准周期,完整到不完整和近完整;外界环境从常规条件到极端条件和多种极端条件交叉作用等,形成了比固体物理学更深刻更普遍的理论体系。经过半个世纪的发展,凝聚态物理学已成为物理学中最重要、最丰富和最活跃的分支学科,在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起关键性作用,为发展新材料、新器件和新工艺提供了科学基础。前沿研究热点层出不穷,新兴交叉分支学科不断出现,是凝聚态物理学科的一个重要特点;与生产实践密切联系是它的另一重要特点,许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力.

一、凝聚态物理学的历史和发展

凝聚态物理学起源于19世纪固体物理学和低温物理学的发展。70年代特别是80年代之后, 由于固体物理学和研究范围在不断扩大,其涉及的概念体系也开始变迁的转移,固体物理学这一名词常被“凝聚态物理学”所取代。随着液体物理,半导体物理,超导物理,纳米材料等科学的发展,凝聚态物理学逐渐成为物理学科内一门不可或缺的分支。

1.1. 凝聚态物理学的萌芽时期——固体物理学的建立

固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。

19世纪,人们对晶体的认识逐渐深入。1840年法国物理学家奥古斯特·布拉维导出了三维晶体的所有14种排列方式,即布拉维点阵。1912年,德国物理学家冯·劳厄发现了X射线在晶体上的衍射,开创了固体物理学的新时代,从此,人们可以通过X射线的衍射条纹研究晶体的微观结构。

1984年发现准周期结构以及分形结构中波的传播都存在一些新现象。在低温下考虑波的相干性,电输运现象会出现一些新结果,在介观物理领域中观测到一系列反映量子相干性的效应。由此看来,固体物理学范式扩大,由周期结构到非周期结构,可以容纳许多物理学研究的新领域。能带理论是建立在单电子近似的基础上的,也就是说忽略了电子间的相互作用。但实际上这种相互作用总是存在,

因而在能带的计算中需要引入相应的修正项。50—60年代发展起来的电子密度泛函理论较好地处理了这一问题,朗道的费米液体理论也表明了其元激发(准粒子)仍和费米气体相似,而相互作用则导致这些粒子“穿衣戴帽”。但是电子的相互作用也可能导致质的跃变;交换相互作用引起了铁磁性与反铁磁性,电子与声子相互作用导致了电子的配对(BCS理论)而出现超导电性。另外,电子间的相互作用也引发了金属到绝缘体的转变(莫特转变)。这些工作引起科学家对相变问题的重视。也引导了从固体物理学渐变为凝聚态物理学。

1.2凝聚态物理学的发展——诸多物理学科的融入

70年代特别是80年代之后, 由于固体物理学和研究范围在不断扩大,其涉及的概念体系也开始变迁的转移,固体物理学这一名词常被“凝聚态物理学”所取代。固体物理学的不足之处是对粒子之间相互作用不够重视也变得非常明显,凝聚态物理学的诞生正好弥补其不足之处。

从固体物理到凝聚态物理,凝聚态物理学的内容不断被充实、拓展,进而融入了液体物理,半导体物理,超导物理,纳米材料等,凝聚态物理逐渐成为了一门十分重要的物理学科。

1.3凝聚态物理学的现状——最重要的分支学科之一

凝聚态物理学是当今物理学最大也是最重要的分支学科之一。研究由大量微观粒子(原子、分子、离子、电子)组成的凝聚态物质的微观结构、粒子间的相互作用、运动规律及其物质性质与应用的科学。它是以固体物理学为主干,进一步拓宽研究对象,深化研究层次形成的学科。其研究对象除了晶体、非晶体与准晶体等固体物质外,还包括稠密气体、液体以及介于液体与固体之间的各种凝聚态物质,内容十分广泛。

近年,对于凝聚态物理的研究方向主要有:高温超导及相关强关联体系的基本电子性质、低维自旋和电荷系统、纳米功能材料的基本电子性质研究、自旋电子学材料基本性质等。

以下为近20年来凝聚态物理的研究热点:

1.准晶态的发现(1984年)

2.高温超导体的发现YBaCuO2(钇钡铜氧化物)(1986年)

3.纳米科学(1984年)

4.材料的巨磁阻效应LaSrMnO3(1992年)

5.新的高温超导材料MgB2(2001年)

二、凝聚态物理学的研究

凝聚态物理的研究对象,从最开始的固体物理,拓展到了液体物理,从晶体拓展到了非晶体,更有超导物理,纳米材料等。凝聚态物理的研究获得了巨大的进展。目前,凝聚态物理的研究方向主要有:高温超导及相关强关联体系的基本电子性质、低维自旋和电荷系统、纳米功能材料的基本电子性质研究、自旋电子学材料基本性质等。

2.1半导体物理的研究

布洛赫的能带理论为半导体物理的形成奠定了理论基础。此后,威尔逊在用能带理论解释金属、绝缘体、半导体的区别的基础上,又提出了杂质能级的概念,对半导体导电机理有了新的认识。1939年,原苏联的达维多夫、英国的莫特、德国的肖特基各自独立提出了有关半导体整流作用的理论。

在理论探索的同时,从20-30 年代开始,有人试图制造晶体管,但未能获得成功。

晶体管的发明是固体物理学发展的产物。而通过制订严密规划并组织科学家攻关,则促进了这一成果的取得。从30年代起,贝尔实验室研究部下属真空管分部主任凯利一直考虑用某种新的器件取代真空管,因为真空管有许多缺点,不能满足电子技术日益发展的要求。凯利认为,应制订一个研究规划,深入地探索半导体,而先不考虑实用。1939年,凯利集中了一批优秀的青年科学家,给他们提供良好的条件和充分的研究自由。1945年,贝尔实验室成立了固体物理研究组。理论物理学家肖克利任组长,成员有巴丁和布拉顿等人。他们拟订了周密的研究和实验方案,进行了艰苦的探索。肖克利提出了“场效应”的预言。巴丁提出了半导体表面态和表面能级的概念。这些都对半导体理论的发展做出了贡献。随着每一个新观点的提出,他们不断修正实验方案。1947年12月23日,他们终于成功了。巴丁和布拉顿在一块锗晶片表面安放了两根非常细的钨金属针。一根固定,另一根是加有负电压的可精密移动的探针。锗片背面焊有一根粗一点的金属丝。当探针移动到距离固定针0.05毫米处时,流过探针的电流发生微小起伏,竟引起固定针与锗片背面粗金属丝之间电流的大幅度变化。他们终于制成了世界上第一只点接触晶体管。肖克利等三人获1956年诺贝尔物理奖。1949年,肖克利小组又提出了PN结的整流理论。1951年,他们又制造出NPN型和PNP型晶体管。1954年,美国得克萨斯仪器公司研制的第一只硅晶体管上市。1960年,霍恩尼公司和法尔奇德公司相继发明出平面晶体管,使半导体器件发展到一个新阶段,并为集成电路的产生和发展开辟了道路。

晶体管的出现,促进了半导体物理的发展。1958年,日本的江崎玲於奈发现半导体中的隧道效应现象,并制造了隧道二极管。近年来发现的" 电子- 空穴液滴" 现象引起人们的兴趣。1978年,科学家获得了电子- 空穴液滴的照片,取得了研究的进展。物理学家希望对此研究会完全弄清纯半导体内的各种元激发间的相互作用,并开辟更广阔的应用前景。

2.2超导物理的研究

19世纪,英国著名物理学家法拉第在低温下液化了大部分当时已知的气体。1908年,荷兰物理学家海克·卡末林·昂内斯将最后一种难以液化的气体氦气液化,创造了人造低温的新纪录-269 °C(4K),并且发现了金属在低温下的超导现象。超导具有广阔的应用前景,超导的理论和实验研究在20世纪获得了长足进展,临界转变温度最高纪录不断刷新,超导研究已经成为凝聚态物理学中最热门的领域之一。

早在1911年,荷兰的昂纳斯首次发现了在4.2K时水银电阻突然消失的超导电现象。1933年,迈斯纳(1891-1959)发现超导体内部的磁场是保持不变的,而且实际上为零。这种完全抗磁性是超导体的另一个基本特性,被称为迈斯纳效应。1935年,伦敦兄弟(F.London,1900-1954;H.Lon -don, 1907-1970)提出了描述超导体的宏观电动力学方程——伦敦方程。

第二次世界大战以后,超导物理研究发展很快。1950年,弗留里希提出电子和晶格振动之间的相互作用导致电子间的相互吸引是引起超导电性的原因。同年,麦克斯弗和雷诺等人同时独立发现,超导的各种同位素的超导转变温度T.与同位素原子质量M 之间存在如下关系:Tc∝M ↑-α;对于一般元素,α~1/2 . 这叫同位素效应。1957年,巴丁、库柏和施里弗共同提出了超导电性的微观理论:当成对的电子有相同的总动量时,超导体处于最低能态;电子对的相同动量

是由电子之间的集体相互作用引起的,它在一定条件下导致超流动性;电子对的集体行为意味着宏观量子态的存在。这就是著名的BCS 理论。它成功地解释了超导现象,标志着超导理论的形成,对后来的超导研究产生了极大的影响。1972年,巴丁三人共同荣获诺贝尔物理奖。1962年,英国年仅22岁的研究生约瑟夫森根据BCS 理论计算出,由于量子隧道的作用,可以有一直流电流通过两个超导金属中间的薄绝缘势垒。这就是直流的约瑟夫森效应。

他还提出了交流的约瑟夫森效应。他的预言被以后的实验证实。人们利用约瑟夫森效应制成了极其灵敏的探测器。1973年,约瑟夫森获诺贝尔物理奖。 自超导电性发现起,人们就尝试利用它为人类服务。但超导电性还不能在各领域广泛应用的障碍在于超导体的临界温度太低。因此,从昂纳斯的时代开始,人们一直在寻找高临界温度的材料。80年代以来,高温超导材料的研究取得长足进展。

1986年1 月,瑞士的缪勒和柏诺兹经过3 年艰苦探索,用钡镧氧化物获得了30K 的超导转变温度。1986年4 月,他们在德国的《物理学杂志》宣布了这一成果,但未引起同行重视。其原因之一是论文只提到了这一材料的零电阻效应,而没有对抗磁性作探讨。1986年10月,他们再次投稿,肯定了所制备的样品具有完全抗磁性。不过这篇论文迟至1987年才发表。1986年11月,日本的内田等人按照缪勒等人的配方制出了类似材料,并证实了它的完全抗磁性。至此,缪勒和柏诺兹的研究工作得到公认。缪勒二人共获1987年诺贝尔物理学奖。 1987年初,围绕高温超导材料展开了一场激烈的国际角逐,掀起了全球超导热。1987年2 月,美籍华裔科学家朱经武用钇代替镧,获得了起始转变温度为90K的高温超导陶瓷。3 天以后,中国科学院物理所赵忠贤研究组用钇钡铜氧化物获得了起始转变温度93K 的超导体。各国实验室不甘落后,纷纷用各种化合物进行探索。一段时间内,超导材料临界温度直线上升,简直是日新月异。1990年,日本日立研究所超导中心发现了钒系高温超导材料,其临界温度达132K,并更新了铜系超导理论。中国国家超导研究中心同年研制出锑铋系材料,临界温度也达132K.超导材料的应用也获得蓬勃发展。1990年7 月,日本宣布制成大型核反应堆必不可少的超导线圈,效果提高了近千倍;此外还研制成世界上第一艘超导电磁推动船。中国科学院物理所于1990年9 月研制出高温超导薄膜,达到世界先进水平。中国研制的高温超导量子干涉探测器已试用于野外地磁测量,初步试验结果令人满意,达到了世界先进的技术性能指标。

超导研究的下一个目标是使超导临界温度达到常温。人们正在探索新的途径,尝试用氟、氮、碳部分取代氧,或在钇钡铜氧化物中加钪、锶和其他一些金属元素。金属氢的超导电性也是目前科学家极力研究的一个课题。高温超导材料的突破,将导致一大群新技术的兴起,并将对人类文明产生深远的影响。

2.3纳米材料的研究

地位所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。

科学家们在研究物质构成的过程中,发现纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。

而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。

从迄今为止的研究状况看,关于纳米技术分为三种概念。第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术未取得重大进展。第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即便发展下去,从理论上讲终将会达到限度。这是因为,如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构纳米科技现在已经包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到前所未有的高度。

虽然距离应用阶段还有较长的距离要走,但是由于纳米科技所孕育的极为广阔的应用前景,美国、日本、英国等发达国家都对纳米科技给予高度重视,纷纷制定研究计划,进行相关研究。

三、凝聚态物理学的展望

通过半个多世纪的努力,凝聚态物质的研究已经取得了一系列令人注目的成果,其中既有重要的基础理论成果,如固体的能带理论、点阵动力学理论,磁性理论,超导电性理论,相变与临界现象理论等,又有震动世界的技术性成果,如半导体晶体管与激光器的诞生,新型铁磁性材料的发展等。仅半导体的研究就有11位科学家获得诺贝尔奖,超导体研究有8位科学家获得了诺贝尔奖,预期这一领域还会有人获奖。应该说多数成果还是在结构比较简单的材料中获得的,下一步应朝向物质结构复杂化的方向推进,这已成为科学界的共识。

结束语:凝聚态物理学所研究的对象是的我们人类的生产和生活有着密切的联系,对社会生产力的提高起着巨大的推动作用,每一项技术的发展,首先要有相应的材料作基础,新材料和器件的突破往往导致新的技术和及其产业的诞生。由于新结构、新现象和新机制层出不穷,对人类的智力构成强有力的挑战、跨学科的渗透,可以预见在将来很长的时间内,凝聚态物理学都一直会具有非常强的生命力,凝聚态物理学家们肯定也会大有作为。

参考文献:

【1】 李正中,《固体理论》 ,高等教育出版社,2002年

【2】 冯端,金国钧,《凝聚态物理学》 ,高等教育出版社,2003年

【3】 曹茂盛,《纳米材料导论》 ,哈尔滨工业大学出版社,2001年

【4】 张裕恒,《超导物理》(第三版) ,中国科学技术大学出版社,2009年

【5】 田强,涂清云,《凝聚态物理学进展》(第二版) ,科学出版社,2013年

【6】 基泰尔(美)著,项金钟,吴兴惠译,《固体物理导论》,化学工业出版社

第五篇:2018年北京师范大学凝聚态物理考研成功学姐分享备考指南

2018年北京师范大学凝聚态物理专业考研指导

该专业考研的基本情况是:

本专业考试科目为:政治、英语

一、普通物理、量子力学 本专业考研报考录取情况为:报录比约4:1 本专业考研考试特点:注重基础知识,计算量相对较少,侧重考查对基本概念和定律的理解与运用,考试范围紧扣考纲,出题风格相对稳定。

需要的资料:

参考书目:学校官网未指定参考书目,需参照学校研究生院提供的考试大纲及历年真题及实际情况安排复习内容。 历年真题:2000—2015年专业课真题 内部资料:新祥旭内部讲义及期末试题 参考复习计划:

考研一定要讲究方法,必须有策略,尤其在专业课的学习上。本课程安排如下:

第一阶段,对指定教材知识点进行全面梳理,同时将依据考试大纲,对各个章节的主要考点分别予以详细讲解;同时结合本人备考经验,为考生进一步提炼每章节考研的重点、难点、必考点,让考生全面熟悉知识点。

第二阶段,讲解近年考研真题。这是很关键的一步,让考生能抓住出题风格,同时了解常考内容、重点内容,加深对专业课知识点巩固。 第三阶段,复习串讲所有知识点,形成系统知识,能灵活运用,同时

新祥旭shuoedu.com

讲解答题技巧。 寻求新祥旭专业辅导:

1、

2、

3、 免费提供考前应试指导; 免费提供复试咨询;

协助联系导师或者提供导师联系方式。

新祥旭shuoedu.com

上一篇:你的青春之路怎么走下一篇:农村宅基地管理规定

本站热搜