高中数学竞赛全套讲义

2022-12-10

第一篇:高中数学竞赛全套讲义

高中数学竞赛讲义(八)平面向量

高中数学竞赛讲义

(八) ──平面向量

一、基础知识

定义1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。

定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。

定理1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。

定理2 非零向量a, b共线的充要条件是存在实数

0,使得a=

f

定理3 平面向量的基本定理,若平面内的向量a, b不共线,则对同一平面内任意向是c,存在唯一一对实数x, y,使得c=xa+yb,其中a, b称为一组基底。

定义3 向量的坐标,在直角坐标系中,取与x轴,y轴方向相同的两个单位向量i, j作为基底,任取一个向量c,由定理3可知存在唯一一组实数x, y,使得c=xi+yi,则(x, y)叫做c坐标。

定义4 向量的数量积,若非零向量a, b的夹角为,则a, b的数量积记作a·b=|a|·|b|cos=|a|·|b|cos,也称内积,其中|b|cos叫做b在a上的投影(注:投影可能为负值)。 定理4 平面向量的坐标运算:若a=(x1, y1), b=(x2, y2), 1.a+b=(x1+x2, y1+y2), a-b=(x1-x2, y1-y2), 2.λa=(λx1, λy1), a·(b+c)=a·b+a·c,

3.a·b=x1x2+y1y2, cos(a, b)=4. a//bx1y2=x2y1, a

b

x1x2+y1y2=0.

(a, b0),

定义5 若点P是直线P1P2上异于p1,p2的一点,则存在唯一实数λ,使

,λ叫P分所成的比,若O为平面内任意一点,则。由此可得若P1,P,P2的坐标分别为(x1, y1), (x, y), (x2, y2),则

讲义八

1 / 8

定义6 设F是坐标平面内的一个图形,将F上所有的点按照向量a=(h, k)的方向,平移|a|=个单位得到图形

,这一过程叫做平移。设p(x, y)是F上任意一点,平移到上对应的点为,则称为平移公式。

定理5 对于任意向量a=(x1, y1), b=(x2, y2), |a·b|≤|a|·|b|,并且|a+b|≤|a|+|b|. 【证明】 因为|a|2·|b|2-|a·b|2=

-(x1x2+y1y2)2=(x1y2-x2y1)2≥0,又|a·b|≥0, |a|·|b|≥0,

所以|a|·|b|≥|a·b|.

由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.

注:本定理的两个结论均可推广。1)对n维向量,a=(x1, x2,…,xn),b=(y1, y2, …, yn),同样有|a·b|≤|a|·|b|,化简即为柯西不等式:

(x1y1+x2y2+…+xnyn)2≥0,又|a·b|≥0, |a|·|b|≥0,

所以|a|·|b|≥|a·b|.

由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.

注:本定理的两个结论均可推广。1)对n维向量,a=(x1, x2,…,xn), b=(y1, y2, …, yn),同样有|a·b|≤|a|·|b|,化简即为柯西不等式:(x1y1+x2y2+…+xnyn)2。

2)对于任意n个向量,a1, a2, …,an,有| a1, a2, …,an|≤| a1|+|a2|+…+|an|。

二、方向与例题

1.向量定义和运算法则的运用。

例1 设O是正n边形A1A2…An的中心,求证:

【证明】 记后与原正n边形重合,所以

,若

不变,这不可能,所以

,则将正n边形绕中心O旋转

例2 给定△ABC,求证:G是△ABC重心的充要条件是【证明】必要性。如图所示,设各边中点分别为D,E,F,延长AD至P,使DP=GD,则

又因为BC与GP互相平分, 所以BPCG为平行四边形,所以BG所以

PC,所以

讲义八

2 / 8

充分性。若因为

,延长AG交BC于D,使GP=AG,连结CP,则,则

,所以GB

CP,所以AG平分BC。

同理BG平分CA。

所以G为重心。

例3 在凸四边形ABCD中,P和Q分别为对角线BD和AC的中点,求证:AB2+BC2+CD2+DA2=AC2+BD2+4PQ2。

【证明】 如图所示,结结BQ,QD。

因为所以==又因为同理

, ② , ③

由①,②,③可得

。得证。

2.证利用定理2证明共线。

例4 △ABC外心为O,垂心为H,重心为G。求证:O,G,H为共线,且OG:GH=1:2。

·

【证明】 首先

=

其次设BO交外接圆于另一点E,则连结CE后得CE又AH又EABC,所以AH//CE。 AB,CH

AB,所以AHCE为平行四边形。

讲义八

3 / 8

所以所以所以所以与

共线,所以O,G,H共线。

所以OG:GH=1:2。

3.利用数量积证明垂直。

例5 给定非零向量a, b. 求证:|a+b|=|a-b|的充要条件是a【证明】|a+b|=|a-b|

(a+b)2=(a-b)

2b.

a·b=0

a

b.

a2+2a·b+b2=a2-2a·b+b2例6 已知△ABC内接于⊙O,AB=AC,D为AB中点,E为△ACD重心。求证:OECD。

【证明】 设

则,

又,

所以

a·(b-c). (因为|a|2=|b|2=|c|2=|OH|2)

又因为AB=AC,OB=OC,所以OA为BC的中垂线。 所以a·(b-c)=0. 所以OE

CD。

4.向量的坐标运算。

例7 已知四边形ABCD是正方形,BE//AC,AC=CE,EC的延长线交BA的延长线于点F,求证:AF=AE。

讲义八

4 / 8

【证明】 如图所示,以CD所在的直线为x轴,以C为原点建立直角坐标系,设正方形边长为1,则A,B坐标分别为(-1,1)和(0,1),设E点的坐标为(x, y),则y-1), 又因为,因为

,所以-x-(y-1)=0.

=(x,

,所以x2+y2=2.

由①,②解得

所以

设所以所以,则

,即F=4+

。由和,

共线得

,所以AF=AE。

三、基础训练题

1.以下命题中正确的是__________. ①a=b的充要条件是|a|=|b|,且a//b;②(a·b)·c=(a·c)·b;③若a·b=a·c,则b=c;④若a, b不共线,则xa+yb=ma+nb的充要条件是x=m, y=n;⑤若在b=(-3, 4)上的投影为-4。

2.已知正六边形ABCDEF,在下列表达式中:①③ ;④

,相等的有__________.

;②

;

,且a, b共线,则A,B,C,D共线;⑥a=(8, 1)3.已知a=y-x, b=2x-y, |a|=|b|=1, a·b=0,则|x|+|y|=__________. 4.设s, t为非零实数,a, b为单位向量,若|sa+tb|=|ta-sb|,则a和b的夹角为__________. 5.已知a, b不共线,条件.

6.在△ABC中,M是AC中点,N是AB的三等分点,且于D,若7.已知__________.

8.已知

=b, a·b=|a-b|=2,当△AOB面积最大时,a与b的夹角为__________.

讲义八

5 / 8

=a+kb, =la+b,则“kl-1=0”是“M,N,P共线”的__________

,BM与CN交,则λ=__________. 不共线,点C分

所成的比为2,

,则9.把函数y=2x2-4x+5的图象按向量a平移后得到y=2x2的图象,c=(1, -1), 若c·b=4,则b的坐标为__________.

,10.将向量a=(2, 1)绕原点按逆时针方向旋转得到向量b,则b的坐标为__________.

与11.在Rt△BAC中,已知BC=a,若长为2a的线段PQ以点A为中点,试问的夹角取何值时

的值最大?并求出这个最大值。

12.在四边形ABCD中,,如果a·b=b·c=c·d=d·a,试判断四边形ABCD的形状。

四、高考水平训练题

1.点O是平面上一定点,A,B,C是此平面上不共线的三个点,动点P满足

则点P的轨迹一定通过△ABC的________心。

2.在△ABC中,3.非零向量=__________.

4.若O为△ABC 的内心,且为__________.

5.设O点在△ABC 内部,且__________.

6.P是△ABC所在平面上一点,若__________心.

7.已知

,则|

|的取值范

,则P是△ABC 的

,则△AOB与△AOC的面积比为

,则△ABC 的形状

,且a·b<0,则△ABC的形状是__________. ,若点B关于

所在直线对称的点为B1,则围是__________.

8.已知a=(2, 1), b=(λ, 1),若a与b的夹角为锐角,则λ的取值范围是__________.

9.在△ABC中,O为中线AM上的一个动点,若AM=2,则值为__________.

10.已知集合M={a|a=(1, 2)+ λ(3, 4), λ∈R},集合N={a|a=(-2, -2)+ λ(4, 5), λ∈R},mj MN=__________.

讲义八

6 / 8

的最小11.设G为△ABO的重心,过G的直线与边OA和OB分别交于P和Q,已知

,△OAB与△OPQ的面积分别为S和T,

(1)求y=f(x)的解析式及定义域;(2)求的取值范围。

12.已知两点M(-1,0),N(1,0),有一点P使得成公差小于零的等差数列。

(1)试问点P的轨迹是什么?(2)若点P坐标为(x0, y0), 求tan.五、联赛一试水平训练题

1.在直角坐标系内,O为原点,点A,B坐标分别为(1,0),(0,2),当实数p, q

的夹角,满足时,若点C,D分别在x轴,y轴上,且,则直线CD恒过一个定点,这个定点的坐标为___________.

2.p为△ABC内心,角A,B,C所对边长分别为a, b, c. O为平面内任意一点,

=___________(用a, b, c, x, y, z表示).

3.已知平面上三个向量a, b, c均为单位向量,且两两的夹角均为1200,若|ka+b+c|>1(k∈R),则k的取值范围是___________.

4.平面内四点A,B,C,D满足

,则的取值有___________个.

5.已知A1A2A3A4A5是半径为r的⊙O内接正五边形,P为⊙O上任意一点,则

取值的集合是___________.

6.O为△ABC所在平面内一点,A,B,C为△ABC 的角,若sinA·+sinC·,则点O为△ABC 的___________心.

(a-b)”的___________条件.

,又(c·b):(b·a):(a·c)=1:2:3,则△ABC

+sinB·7.对于非零向量a, b, “|a|=|b|”是“(a+b)8.在△ABC 中,三边长之比|a|:|b|:|c|=____________.

9.已知P为△ABC内一点,且

,CP交AB于D,求证:

讲义八

7 / 8

10.已知△ABC的垂心为H,△HBC,△HCA,△HAB的外心分别为O1,O2,O3,令

,求证:(1)2p=b+c-a;(2)H为△O1O2O3的外心。

11.设坐标平面上全部向量的集合为V,a=(a1, a2)为V中的一个单位向量,已知从V到的变换T,由T(x)=-x+2(x·a)a(x∈V)确定,

(1)对于V的任意两个向量x, y, 求证:T(x)·T(y)=x·y;

(2)对于V的任意向量x,计算T[T(x)]-x; (3)设u=(1, 0);

,若

,求a.

六、联赛二试水平训练题

1.已知A,B为两条定直线AX,BY上的定点,P和R为射线AX上两点,Q和S为射线BY上的两点,为定比,M,N,T分别为线段AB,PQ,RS上的点,为另一定比,试问M,N,T三点的位置关系如何?证明你的结论。

2.已知AC,CE是正六边形ABCDEF的两条对角线,点M,N分别内分AC,CE,使得AM:AC=CN:CE=r,如果B,M,N三点共线,求r.

3.在矩形ABCD的外接圆的弧AB上取一个不同于顶点A,B的点M,点P,Q,R,S是M分别在直线AD,AB,BC,CD上的射影,求证:直线PQ与RS互相垂直。

4.在△ABC内,设D及E是BC的三等分点,D在B和F之间,F是AC的中点,G是AB的中点,又设H是线段EG和DF的交点,求比值EH:HG。

5.是否存在四个平面向量,两两不共线,其中任何两个向量之和均与其余两个向量之和垂直?

6.已知点O在凸多边形A1A2…An内,考虑所有的AiOAj,这里的i, j为1至n中不同的自然数,求证:其中至少有n-1个不是锐角。

7.如图,在△ABC中,O为外心,三条高AD,BE,CF交于点H,直线ED和AB交于点M,FD和AC交于点N,求证:(1)OB

DF,OC

DE,(2)OH

MN。

8.平面上两个正三角形△A1B1C1和△A2B2C2,字母排列顺序一致,过平面上一点O作

,求证△ABC为正三角形。

9.在平面上给出和为

的向量a, b, c, d,任何两个不共线,求证:

|a|+|b|+|c|+|d|≥|a+d|+|b+d|+|c+d|.

讲义八

8 / 8

第二篇:2011全国高中数学竞赛讲义-不等式的证明(练习题)

数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://

§14不等式的证明

课后练习

1.选择题

(1)方程x-y=105的正整数解有().(A)一组 (B)二组(C)三组(D)四组

(2)在0,1,2,…,50这51个整数中,能同时被2,3,4整除的有().

(A)3个 (B)4个(C)5个(D)6个

2.填空题

(1)的个位数分别为_________及_________.

45422(2)满足不

________. 等式10≢A≢10的整数A的个数是x×10+1,则x的值

(3)已知整数y被7除余数为5,那么y被7除时余数为________.

(4)求出任何一组满足方程x-51y=1的自然数解x和y_________.

3.求三个正整数x、y、z满足

22

3.4.在数列4,8,17,77,97,106,125,238中相邻若干个数之和是3的倍数,而不是9的倍数的数组共有多少组?

5.求的整数解.

6.求证可被37整除.

7.求满足条件的整数x,y的所有可能的值.

数学教育网http://

8.已知直角三角形的两直角边长分别为l厘米、m厘米,斜边长为n厘米,且l,m,n均为正整数,l为质数.证明:2(l+m+n)是完全平方数.

9.如果p、q、、都是整数,并且p>1,q>1,试求p+q的值. 课后练习答案

1.D.C.2.(1)9及1.

(2)9.

(3)4.

(4)原方程可变形为x=(7y+1)+2y(y-7),令y=7可得x=50. 2

23.不妨设x≢y≢z,则,故x≢3.又有故x≣2.若x=2,则,故y≢6.又有,故y≣4.若y=4,则z=20.若y=5,则z=10.若y=6,则z无整数解.若x=3,类似可以确定3≢y≢4,y=3或4,z都不能是整数.

4.可仿例2解.

5. 分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换的方法. ..

略解:ab2ab,同理bc2bc,ca2ca;三式相加再除以2即得证. 评述:(1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧. 如x1222232

2x2x22x3xn2x1x1x2xn,可在不等式两边同时加上

x2x3xnx1.再如证(a1)(b1)(ac)(bc)256abc(a,b,c0)时,可连续使用基本不3322

3等式.

(2)基本不等式有各种变式如(ab

2)2ab

222等.但其本质特征不等式两边的次

数及系数是相等的.如上式左右两边次数均为2,系数和为1.

6.8888≡8(mod37),∴8888

33332222≡8(mod37). 222227777≡7(mod37),7777≡7(mod37),8888

238+7=407,37|407,∴37|N.

223+77773333≡(8+7)(mod37),而237.简解:原方程变形为3x-(3y+7)x+3y-7y=0由关于x的二次方程有解的条件△≣0

及y为整数可得0≢y≢5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4,5)、(5,4).

8.∵l+m=n,∴l=(n+m)(n-m).∵l为质数,且n+m>n-m>0,∴n+m=l,n-m=1.于是2222l=n+m=(m+1)+m=2m+1,2m=l-1,2(l+m+1)=2l+2+2m=l+2l+1=(l+1).即2(l+m+1)是完全平方数. 2222

29.易知p≠q,不妨设p>q.令

(4-mn)p=m+2,解此方程可得p、q之值.

=n,则m>n由此可得不定方程

第三篇:数学竞赛教案讲义(5)——数列

第五章 数列

一、基础知识

定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,…. 数列分有穷数列和无穷数列两种,数列{an}的一般形式通常记作a1, a2, a3,…,an或a1, a2, a3,…,an…。其中a1叫做数列的首项,an是关于n的具体表达式,称为数列的通项。

定理1 若Sn表示{an}的前n项和,则S1=a1, 当n>1时,an=Sn-Sn-1. w.w.w.k.s.5.u.c.o.m 定义2 等差数列,如果对任意的正整数n,都有an+1-an=d(常数),则{an}称为等差数列,d叫做公差。若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d. 定理2 等差数列的性质:1)通项公式an=a1+(n-1)d;2)前n项和公式:Sn=n(a1an)n(n1)na1d;3)an-am=(n-m)d,其中n, m为正整数;4)若n+m=p+q,22则an+am=ap+aq;5)对任意正整数p, q,恒有ap-aq=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{an}是等差数列的充要条件是Sn=An2+Bn. 定义3 等比数列,若对任意的正整数n,都有

an1q,则{an}称为等比数列,q叫做公比。 ana1(1qn)定理3 等比数列的性质:1)an=a1q;2)前n项和Sn,当q1时,Sn=;当

1qn-1q=1时,Sn=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则aman=apaq。

定义4 极限,给定数列{an}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|an-A|<,则称A为n→+∞时数列{an}的极限,记作limanA.

n定义5 无穷递缩等比数列,若等比数列{an}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n项和Sn的极限(即其所有项的和)为

a1(由极限的定义可得)。 1q定理3 第一数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。

竞赛常用定理 定理4 第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切n≤k的自然数n都成立时(k≥n0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。

定理5 对于齐次二阶线性递归数列xn=axn-1+bxn-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则xn=c1an-1+c2βxn=(c1n+c2) αn-

1n-1

,其中c1, c2由初始条件x1, x2的值确定;(2)若α=β,则,其中c1, c2的值由x1, x2的值确定。

二、方法与例题 1.不完全归纳法。

这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。

例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。

例2 已知数列{an}满足a1=

例3 设0

2迭代法。

数列的通项an或前n项和Sn中的n通常是对任意n∈N成立,因此可将其中的n换成n+

11,a1+a2+…+an=n2an, n≥1,求通项an. 21,求证:对任意n∈N+,有an>1. an或n-1等,这种办法通常称迭代或递推。

例4 数列{an}满足an+pan-1+qan-2=0, n≥3,q0,求证:存在常数c,使得22nan1pan1·an+qancq0.

2例5 已知a1=0, an+1=5an+24an1,求证:an都是整数,n∈N+.

3.数列求和法。

数列求和法主要有倒写相加、裂项求和法、错项相消法等。 例6 已知an=

例7 求和:Sn

例8 已知数列{an}满足a1=a2=1,an+2=an+1+an, Sn为数列

4.特征方程法。

例9 已知数列{an}满足a1=3, a2=6, an+2=4n+1-4an,求an. 1(n=1, 2, …),求S99=a1+a2+…+a99. 4n2100111+…+. n(n1)(n2)123234an的前n项和,求证:Sn<2。 n2

例10 已知数列{an}满足a1=3, a2=6, an+2=2an+1+3an,求通项an.

5.构造等差或等比数列。

例11 正数列a0,a1,…,an,…满足anan2

2xn2例12

已知数列{xn}满足x1=2, xn+1=,n∈N+, 求通项。

2xnan1an2=2an-1(n≥2)且a0=a1=1,求通项。

三、基础训练题

1. 数列{xn}满足x1=2, xn+1=Sn+(n+1),其中Sn为{xn}前n项和,当n≥2时,xn=_________. 2. 数列{xn}满足x1=

2xn1,xn+1=,则{xn}的通项xn=_________.

3xn223. 数列{xn}满足x1=1,xn=

1xn1+2n-1(n≥2),则{xn}的通项xn=_________. 24. 等差数列{an}满足3a8=5a13,且a1>0, Sn为前n项之和,则当Sn最大时,n=_________. 5. 等比数列{an}前n项之和记为Sn,若S10=10,S30=70,则S40=_________. 6. 数列{xn}满足xn+1=xn-xn-1(n≥2),x1=a, x2=b, Sn=x1+x2+…+ xn,则S100=_________. 7. 数列{an}中,Sn=a1+a2+…+an=n2-4n+1则|a1|+|a2|+…+|a10|=_________. 8. 若

x3xnx1x2,并且x1+x2+…+ xn=8,则x1=_________. x11x23x35xn2n1Sna2n,则limn=_________.

nb3n1Tnn9. 等差数列{an},{bn}的前n项和分别为Sn和Tn,若

2007n2n110. 若n!=n(n-1)…2·1, 则(1)=_________.

n!n1n11.若{an}是无穷等比数列,an为正整数,且满足a5+a6=48, log2a2·log2a3+ log2a2·log2a5+ log2a2·log2a6+ log2a5·log2a6=36,求1的通项。 ann12.已知数列{an}是公差不为零的等差数列,数列{ab}是公比为q的等比数列,且b1=1, b2=5, b3=17, 求:(1)q的值;(2)数列{bn}的前n项和Sn。

四、高考水平训练题

1x21.已知函数f(x)=2x1x1则a2006=_____________.

1x271+

x1,若数列{an}满足a1=,an+1=f(an)(n∈N),

32(x1)2.已知数列{an}满足a1=1, an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项an=1(n1)(n2). 3. 若an=n2+n, 且{an}是递增数列,则实数的取值范围是__________. 4. 设正项等比数列{an}的首项a1=an=_____________.

1, 前n项和为Sn, 且210S30-(210+1)S20+S10=0,则23n15. 已知limn1,则a的取值范围是______________. n3(a1)n36.数列{an}满足an+1=3an+n(n ∈N+) ,存在_________个a1值,使{an}成等差数列;存在________个a1值,使{an}成等比数列。 7.已知ann401n402(n ∈N+),则在数列{an}的前50项中,最大项与最小项分别是____________. 8.有4个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和中16,第二个数与第三个数的和是12,则这四个数分别为____________. 9. 设{an}是由正数组成的数列,对于所有自然数n, an与2的等差中项等于Sn与2的等比中项,则an=____________. 10. 在公比大于1的等比数列中,最多连续有__________项是在100与1000之间的整数. 11.已知数列{an}中,an0,求证:数列{an}成等差数列的充要条件是

11111(n≥2)①恒成立。 a1a2a2a3a3a4anan1a1an112.已知数列{an}和{bn}中有an=an-1bn, bn=

bn1(n≥2), 当a1=p, b1=q(p>0, q>0)且p+q=1时,21an1an;(3)求数列limbn.

nan1(1)求证:an>0, bn>0且an+bn=1(n∈N);(2)求证:an+1=13.是否存在常数a, b, c,使题设等式 1·22+2·32+…+n·(n+1)2=

n(n1)

2(an+bn+c) 12对于一切自然数n都成立?证明你的结论。

五、联赛一试水平训练题

1.设等差数列的首项及公差均为非负整数,项数不少于3,且各项和为972,这样的数列共有_________个。 2.设数列{xn}满足x1=1, xn=

4xn12,则通项xn=__________.

2xn17253. 设数列{an}满足a1=3, an>0,且3anan1,则通项an=__________. 4. 已知数列a0, a1, a2, …, an, …满足关系式(3-an+1)·(6+an)=18,且a0=3,则ai0n1i=__________. 5. 等比数列a+log23, a+log43, a+log83的公比为=__________. 6. 各项均为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的数列至多有__________项. 7. 数列{an}满足a1=2, a2=6, 且

an2an=2,则

an11lima1a2ann2n________. 8. 数列{an} 称为等差比数列,当且仅当此数列满足a0=0, {an+1-qan}构成公比为q的等比数列,q称为此等差比数列的差比。那么,由100以内的自然数构成等差比数列而差比大于1时,项数最多有__________项.

an9.设h∈N+,数列{an}定义为:a0=1, an+1=2ahn在大于0的整数n,使得an=1?

an为偶数an为奇数。问:对于怎样的h,存10.设{ak}k≥1为一非负整数列,且对任意k≥1,满足ak≥a2k+a2k+1,(1)求证:对任意正整数n,数列中存在n个连续项为0;(2)求出一个满足以上条件,且其存在无限个非零项的数列。

11.求证:存在唯一的正整数数列a1,a2,…,使得 a1=1, a2>1, an+1(an+1-1)=

anan23anan2111.

六、联赛二试水平训练题

1.设an为下述自然数N的个数:N的各位数字之和为n且每位数字只能取1,3或4,求证:a2n是完全平方数,这里n=1, 2,…. 2.设a1, a2,…, an表示整数1,2,…,n的任一排列,f(n)是这些排列中满足如下性质的排列数目:①a1=1; ②|ai-ai+1|≤2, i=1,2,…,n-1。 试问f(2007)能否被3整除?

3.设数列{an}和{bn}满足a0=1,b0=0,且

an17an6bn3, bn18an7bn4,n0,1,2,.求证:an (n=0,1,2,…)是完全平方数。

4.无穷正实数数列{xn}具有以下性质:x0=1,xi+1

22x0xnx121≥3.999(1)求证:对具有上述性质的任一数列,总能找到一个n≥1,使

x1x2xn均成立;

22x0xnx121<4对任一n均成立。 (2)寻求这样的一个数列使不等式

x1x2xn5.设x1,x2,…,xn是各项都不大于M的正整数序列且满足xk=|xk-1-xk-2|(k=3,4,…,n)①.试问这样的序列最多有多少项?

2(12an2)an116.设a1=a2=,且当n=3,4,5,…时,an=, 222an14an2an1an23(ⅰ)求数列{an}的通项公式;(ⅱ)求证:

12是整数的平方。 an7.整数列u0,u1,u2,u3,…满足u0=1,且对每个正整数n, un+1un-1=kuu,这里k是某个固定的正整数。如果u2000=2000,求k的所有可能的值。

8.求证:存在无穷有界数列{xn},使得对任何不同的m, k,有|xm-xk|≥

1. mk9.已知n个正整数a0,a1,…,an和实数q,其中0

第四篇:湖南省长沙市一中高中数学必修5教案(全套)高一数学《等比数列复习》 (1)

等比数列

【1】 在等比数列{an}中,a1+a2+a3=-3,a1a2a3=8 ①求通项公式,②求a1a3a5a7a9.【2】 有四个数,前三个成等差,后三个成等比,首末两项和37,中间两项和36,求这四个数.

【3】等比数列{an}中, (1)、已知a24,a51,求通项公式. 2(2)、已知a3a4a5=8,求a2a3a4a5a6的值.

【4】 设{an}是等差数列,bn()n,已知b1b2b3an. 5】 若数列{an}成等比数列,且an>0,前n项和为80,其中最大项为54,前2n项之和为6560,求S100=?

5、利用an,Sn的公式及等比数列的性质解题. 【例6】 数列{an}中,a1=1,且anan+1=4n,求前n项和Sn. 解析:由已知得anan+1=4n

……①

12a211,b1b2b3,求等差数列的通项88

an+1an+2=4n1 ……② +a1≠0,②÷①得∴a1,a3,a5,…,a2n-1,…; . a2,a4,a6,…,a2n,…都是公比q=4的等比数列,a1=1,a2=4. ①当n为奇数时,

作业:《学案》P48面双基训练

第五篇:高中数学竞赛大纲

高中数学竞赛大纲(修订讨论稿)

中国数学会普及工作委员会制定

(2006年8月)

从1981年中国数学会普及工作委员会举办全国高中数学联赛以来,在“普及的基础上不断提高”的方针指导下,全国数学竞赛活动方兴未艾,每年一次的数学竞赛吸引了上百万学生参加。1985年我国步入国际数学奥林匹克殿堂,加强了数学课外教育的国际交流,20年来我国已跻身于IMO强国之列。数学竞赛活动对于开发学生智力、开拓视野、促进教学改革、提高教学水平、发现和培养数学人才都有着积极的作用。这项活动也激励着广大青少年学习数学的兴趣,吸引他们去进行积极的探索,不断培养和提高他们的创造性思维能力。数学竞赛的教育功能显示出这项活动已成为中学数学教育的一个重要组成部分。

为了使全国数学竞赛活动持久、健康、逐步深入地开展,中国数学会普及工作委员会于1994年制定了《高中数学竞赛大纲》,这份大纲的制定对高中数学竞赛活动的开展起到了很好的指导性作用,我国高中数学竞赛活动日趋规范化和正规化。

近年来,新的教学大纲的实施在一定程度上改变了我国中学数学课程的体系、内容和要求。同时,随着国内外数学竞赛活动的发展,对竞赛活动所涉及的知识、思想和方法等方面也有了一些新的要求,原来的《高中数学竞赛大纲》已经不能适应新形势的发展和要求。经过广泛征求意见和多次讨论, 对《高中数学竞赛大纲》进行了修订。

本大纲是在《全日制普通高级中学数学教学大纲》的精神和基础上制定的。《全日制普通高级中学数学教学大纲》指出:“要促进每一个学生的发展,既要为所有的学生打好共同基础,也要注意发展学生的个性和特长;„„在课内外教学中宜从学生的实际出发,兼顾学习有困难和学有余力的学生,通过多种途径和方法,满足他们的学习需求,发展他们的数学才能 。”

学生的数学学习活动应当是一个生动活泼、富有个性的过程,不应只限于接受、记忆、模仿和练习,还应倡导阅读自学、自主探索、动手实践、合作交流等学习数学的方式,这些方式有助于发挥学生学习的主动性。教师要根据学生的不同基础、不同水平、不同兴趣和发展方向给予具体的指导。教师应引导学生主动地从事数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学的思想和方法,获得广泛的数学活动经验。对于学有余力并对数学有浓厚兴趣的学生,教师要为他们设置一些选学内容,提供足够的材料,指导他们阅读,发展他们的数学才能。

教育部2000年《全日制普通高级中学数学教学大纲》中所列出的内容,是教学的要求,也是竞赛的最低要求。在竞赛中对同样的知识内容,在理解程度、灵活运用能力以及方法与技巧掌握的熟练程度等方面有更高的要求。“课堂教学为主,课外活动为辅”是必须遵循的原则。因此,本大纲所列的课外讲授内容必须充分考虑学生的实际情况,使不同程度的学生在数学上得到相应的发展,并且要贯彻“少而精”的原则。

高中数学联赛

全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》。

全国高中数学联赛(加试)在知识方面有所扩展,适当增加一些教学大纲之外的内容,所增加内容是:

1.平面几何

几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理;三角形旁心、费马点、欧拉线;

几何不等式;

几何极值问题;

几何中的变换:对称、平移、旋转;

圆的幂和根轴:

面积方法,复数方法,向量方法,解析几何方法。

2.代数

周期函数,带绝对值的函数;

三角公式,三角恒等式,三角方程,三角不等式,反三角函数;

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式;第二数学归纳法;

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数及其应用;

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根;

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*;

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理;函数迭代,求n次迭代*,简单的函数方程*。

3.初等数论

同余,欧几里得除法,裴蜀定理,完全剩余系,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法*,欧拉定理*,孙子定理*。

4.组合问题

圆排列,有重复元素的排列与组合,组合恒等式;

组合计数,组合几何;

抽屉原理;

容斥原理;

极端原理;

图论问题;

集合的划分;

覆盖;

平面凸集、凸包及应用*。

(有*号的内容加试中暂不考,但在冬令营中可能考。)

注:上述大纲在2006年第十四次普及工作会上讨论通过

初中数学竞赛大纲(修订讨论稿)

中国数学会普及工作委员会制定

(2006年8月)

数学竞赛活动对于开发学生智力、开拓视野、促进教学改革、提高教学水平、发现和培养数学人才都有着积极的作用。这项活动也激励着广大青少年学习数学的兴趣,吸引他们去进行积极的探索,不断培养和提高他们的创造性思维能力。数学竞赛的教育功能显示出这项活动已成为中学数学教育的一个重要组成部分。

为了使全国数学竞赛活动持久、健康地开展,中国数学会普及工作委员会于1994年制定了《初中数学竞赛大纲》,这份大纲的制定对全国初中数学竞赛活动的开展起到了很好的指导性作用,使我国初中数学竞赛活动日趋规范化和正规化。

近年来,课程改革的实践在一定程度上改变了初中数学课程的体系、内容和要求。同时,随着国内外数学竞赛活动的发展,对竞赛活动所涉及的知识、思想和方法等方面也有了一些新的要求,原来的《初中数学竞赛大纲》已经不能适应新形势的发展和要求。经过广泛征求意见和多次讨论,对《初中数学竞赛大纲》进行了修订。

本大纲是《全日制义务教育数学课程标准(实验稿)》的精神和基础上制定的。在《全日制义务教育数学课程标准(实验稿)》中提到:“„„要激发学生的学习潜能,鼓励学生大胆创新与实践;„„要关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展;„„”由于各种步同的因素,学生在数学知识、技能、能力方面和志趣上存在着差异,教学中要承认这种差异,区别对待,因材施教,因势利导。应根据基本要求和通过选学内容,适应学生的各种不同需要;对学有余力的学生,要通过讲授选学内容和组织课外活动等多咱形式,满足他们的学习愿望,发展他们的教学才能;鼓励学生积极参加形式多样的课外实践活动。

学生的数学学习活动应当是一个生动活泼、主动的和富有个性的过程,不应只限于接受、记忆、模仿和练习,还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。教师要根据学生的不同基础、不同水平、不同兴趣和发展方向给予具体的指导,引导学生主动地从事数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学的思想和方法,获得广泛的数学活动经验。

《全日制义务教育数学课程标准(实验稿)》中所列出的内容,是教学的要求,也是竞赛的最低要求。在竞赛中对同样的知识内容,在理解度、灵活运用能力以及方法与技巧掌握的熟练程度等方面有更高的要求。而“课堂教学为主,课外活动为辅”是必须遵循的原则。因此,本大纲所列的课外讲授内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,重在培养学生的学习兴趣、学习习惯和学习方法,使不同的学生在数学上都得到相应的发展,并且要贯彻“少而精”的原则,处理好普及与提高的关注,这样才能加强基础,不断提高。

1.数

整数及进位制表示法,整除性及其判定;

素数和合数,最大公约数与最小公倍数;

奇数和偶数,奇偶性分析;

带余除法和利用余数分类;

完全平方数;

因数分解的表示法,约数个数的计算;

有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

2.代数式

综合除法、余式定理;

因式分解;

拆项、添项、配方、待定系数法;

对称式和轮换对称式;

整式、分式、根式的恒等变形;

恒等式的证明。·

3.方程和不等式

含字母系数的一元一次方程、一元二次方程的解法,一元二次方程根的分布; 含绝对值的一元一次方程、一元二次方程的解法;

含字母系数的一元一次不等式的解法,一元二次不等式的解法;

含绝对值的一元一次不等式;

简单的多元方程组;

简单的不定方程(组)。

4.函数

yaxb,yax2bxc,yax2bxc的图象和性质; 二次函数在给定区间上的最值,简单分式函数的最值;

含字母系数的二次函数。

5.几何

三角形中的边角之间的不等关系;

面积及等积变换;

三角形的心(内心、外心、垂心、重心)及其性质;

相似形的概念和性质;

圆,四点共圆,圆幂定理;

四种命题及其关系。

6.逻辑推理问题

抽屉原理及其简单应用;

简单的组合问题;

简单的逻辑推理问题,反证法;

极端原理的简单应用;

枚举法及其简单应用。

注:上述大纲在2006年第十四次普及工作会上讨论通过

上一篇:高中校园安全工作计划下一篇:高中生物老师述职报告

本站热搜