电机变频特性范文

2022-05-25

第一篇:电机变频特性范文

变频电机的介绍

1、什么是变频电机?

答:所谓变频,简单说就是改变电源频率。变频技术的核心是它的变频器,变频器是20世纪80年代问世的一种高新技术,它通过对电流的转换来实现电动机运转频率的自动调节,把50Hz的固定电网频率改为30至130Hz的变化频率。同时,还使电源电压范围在一定的频压比下达到142V至270V,解决了由于电网电压的不稳定而影响电器工作的难题。我们生活中的电源频率50Hz(220V)本来是固定的,但变频器会改变电源频率和电源电压。

2、变频电机的构造原理

答:电动机的调速与控制,是工农业各类机械及办公、民生电器设备的基础技术之一。随着电力电子技术、微电子技术的惊人发展,采用“专用变频感应电动机+变频器”的交流调速方式,正在以其卓越的性能和经济性,在调速领域,引导了一场取代传统调速方式的更新换代的变革。它给各行各业带来的福音在于:使机械自动化程度和生产效率大为提高、节约能源、提高产品合格率及产品质量、电源系统容量相应提高、设备小型化、增加舒适性,目前正以很快的速度取代传统的机械调速和直流调速方案。 由于变频电源的特殊性,以及系统对高速或低速运转、转速动态响应等需求,对作为动力主体的电动机,提出了苛刻的要求,给电动机带来了在电磁、结构、绝缘各方面新的课题。

3、变频电机主要特点

答:B级温升设计,F级绝缘制造。

采用高分子绝缘材料及真空压力浸漆制造工艺以及采用特殊的绝缘结构,使电气绕组采用绝缘耐压及机械强度有很大提高,足以胜任马达之高速运转及抵抗变频器高频电流冲击以及电压对绝缘之破坏。

平衡质量高,震动等级为R级(降振级)

机械零部件加工精度高,并采用专用高精度进口轴承,可以高速运转。

强制通风散热系统,全部采用进口轴流风机超静音、高寿命,强劲风力。保障马达在任何转速下,得到有效散热,可实现高速或低速长期运行。

经AMCAD软件设计的YP系列电机,与传统变频电机相比较,具备更宽广的调速范围和更高的设计质量,经特殊的磁场设计,进一步抑制高次谐波磁场,以满足宽频、节能和低噪音的设计指标。

具有宽范围恒转矩与功率调速特性,调速平稳,无转矩脉动。

与各类变频器均具有良好的参数匹配,配合矢量控制,可实现零转速全转矩、低频大力矩与高精度转速控制、位置控制及快速动态响应控制。

YP系列变频专用电机可配制刹车器,编码器供货,这样即可获得精准停车,和通过转速闭环控制实现高精度速度控制。

采用“微电机+变频专用电机+编码器+变频器”实现超低速无级调速的精准控制。 YP系列变频专用电机通用性好,其安装尺寸符合IEC标准,与一般标准型电机具备可互换性。

4、VFG、IAG系列变频调速电机

答:FG系列和IAG系列都属于泛用型变频电动机,可广泛应用于各行各业,由变频器驱动,可获得无级调速和一定的控制特性,在各行业的应用十分广泛,近年以来,该产品的市场需求呈上升态势,随着变频技术的成熟、发展和成本逐步下降,过去普通电机一统天下的市场格局也将由变频电机与之瓜分,后者并呈上升趋势。VFG系列电机是本公司开发的一款以基频制为概念的变频驱动电机,其中132以下型号全部为铝机座结构,160(含)以上型号全部为铁机座结构;IAG系列是在VFG基础上,为扩展机种和应用面而开发的新一代变频驱动电机,IAG系列所有机全部采用铁机座结构,二者均有各自的市场价值。

5、VFXD商用洗衣机用变频电机

答:VFXD系列电机是根据水洗机工况特性,而专门设计开发的新一代节能型洗衣机专用变频调速电机, 本电机低速出力大、电流小、高速加速力强,加速平稳,

与传统洗衣机电机相比, 可节能20%-25%, 尤其突出的优点是电机电流小,可降低变频器容量一至二档,大大降低洗衣机配置成本。

6、YVP变频调速电动机

答:YVP系列变频调速三相异步电动机绝缘为F、H级,防护等级为IP

54、IP

55、IP56。派生产品有变频调速电磁制动电动机(YVPEJ)、变频调速辊道电机、变频调速纺织电机,可附带各种光电编码器(或测速发电机)传感器装置等,同时可提供配套变频调速器。产品适应各种变频电源的高频冲击,确保电机在最低速和最高速时均具良好的工作特性。注:(如有特殊技术要求,可以特殊设计。)

7、YP系列变频专用电动机

答:电动机的调速与控制,是工农业各类机械及办公、民生电器设备所以来的基础技术之一。随着电力电子技术、微电子技术的惊人发展,采用“专用变频感应电动机+变频器”的交流调速方式,正以其卓越的性能和经济性,在调速领域,引导了一场取代传统调速方式的更新换代的变革。它给各行各业带来的福音在于:机械自动化程度、生产效率大为提高、节约能源、提高产品合格率及产品质量、见效电源系统容量、设备小型化、增加舒适性,目前正以很快的速度取代传统的机械调速和直流调速方案。

8、YVF变频电机

答:本系列电动机采用F级绝缘,也可按用户要求制成H级,外壳防护等级为IP54,冷却方式有全封闭自扇冷却(IC411)及全封闭单独轴流风机冷却(IC416),视用户需要而定。 YVF系列电动机额定电压为380V,频率为50Hz,也可根据用户要求确定额定点的电压和频率。中心高250及以下Y接法,中心高250以上为Δ接法。 YVF(YVP)电机F是频率的英文首字母缩写,P是频率的拼音首字母缩写,YVF是现行国家标准! 采用最先进的电磁计算方法,充分考虑目前SPWM技术和矢量控制变频器的控制特点,保证本系列电机具有低频力矩特性无爬行、恒力矩调速范围宽等优点。

9、YPF系列变频电动机

答:YPF系列电动机能与各类SPW间变频装置相配套,构成“变频器+变频调速电视”调速系统,调速范围广、振动小、噪声低,频率< 50HZ时具有恒转矩调速特性,频率> 50HZ对输出恒功率特性,电动机调速平稳,无转矩脉动现象,并具有较高的起动转矩及较小的起动电流;可使用于各种需要调速的传动装置中,如轻工、纺织、冶金、化工、印刷、包衣食品、机床、风机、水泵、输送线等。 YPF系列电动机是全封闭、箱型三相异步电动机,功率等级和安装尸才与YZ系列( P54)三相异步电动机相同,电动机的额定电压为380V、额定频率为50HZ、防护等级为P54.冷却方式为IC416,环境温度不超过十 40oC、最低温度为-15℃、海拔不超过 1000m,工作布式为连续(S1),功率在55KW以下为Y接,55KW以上为△接。

10、YTP系列变频调速三相异步电动机

答:YTP系列电动机效率高、调速范围广、运行稳定、操作和维修方便。其安装尺寸符合国际电工协会(IEC)标准、外壳防护等级为IP44,定额是以连续工作制(S1)为基准的定额。YTP系列电动机的基本极数为4级,额定频率为50Hz,3kW及以下为Y接法,4kW及以上为△接法采用B级绝缘。

11、VF系列电梯专用VF及其派生系列变频调速电动机

答:VF变频调速系列电机用于VVVF变频调速电梯,比一般交流双速电机拖动的电梯节能50%,且电源容量亦可下降50%,比直流电机拖动的电梯节能40%,为用户和社会带来巨大效益。 VF变频调速系列电动机,应用于变频器控制调频、调压自动调速系统,具有起动性能好,低噪音、低振动、高效率的特点。适用于频繁起、制动的电梯运行工况,达到当代国际水平。现生产的各种规格和安装结构的VF电梯电机有:3.7kW、5.5kW、7.5kW、11kW、15kW、18.5kW、22kW等多种产品,也可根据客户要求,设计、研制、开发各种电梯专用电机。

12、QABP变频调速三相异步电动机

答:QABP变频调速三相异步电动机是通过变频器进行调频调速的电动机。电机采用鼠笼型结构,单独装有专用轴流风机,保证电机在不同转速下均有较好的冷却效果。电机经过针对大范围无级调速特殊设计和专门工艺制造,可广泛应用于轻工、纺织、化工、冶金、机床等需要调速动力装置的行业。电机底脚安装尺寸和中心高等指标与M2QA系列电机一致。本系列电机功率从0.25KW-315KW,机座中心高从71mm-355mm。

第二篇:浅谈变频电机试验的功率测量

徐伟专,董行健,方宏

(1.国防科学技术大学,湖南 长沙 410073;湖南银河电气有限公司, 湖南 长沙410073 ;2.西南交通大

学电气工程学院, 四川 成都 610031)

摘要:本文首先对三表法和二表法在电机试验中的测量方式进行了比较,其次分析了电容电流存在时的电机功率测量方法及误差,并对两表法测量进行了改进,最后讨论了电容电流对功率测量的影响以及消除方法。

关键词: 电机试验,功率测量,二表法,三表法,电容电流

1,

21,3

A Brief Talk on Power Measurement of Variable Frequency Electrical Machine

Xu Wei-zhuan,DONG Xing-jian

(1.HuNan Yinhe Electric Co..Ltd, Changsha Hunan 410073, China 2.Department of Electric Engineering, Southwest Jiaotong University, Chengdu Sichuan 610031, China;)

21,2Abstract: The comparison between double meter method and three meter method on Electrical Machine test is firstly introduced. Then the power measurement method and its error with capacitor current existing are analyzed. Next, a method to improve the double meter method is proposed. Finally, the influence and its eliminations are discussed.

Key words: Electrical machine test, Power measurement, Double meter method, Three meter method, Capacitor current 0 引言

随着变频调速技术的高速发展。变频电源作为电机试验电源,存在诸多的优势,但是,与区别于机组电源相比,变频电源存在一些机组电源所未遇到的问题。比如功率测试,《变频器供电三相笼型感应电动机试验方法》[1]报批稿指出,“脉冲频率高的场合不宜使用两表法(Aron接法)。这是因有电容电流存在,输入电流相量之和可能不为零。因此,应采用每相用一个功率表的测量方法”。

本文首先分析了三表法和二表法的功率测量原理,随后就电容电流存在时的功率测量方法和误差,对三表法和二表法进行了对比,最后讨论了实际应用中如何处理电容电流对功率测量的影响。

iAANBCiBiC 图1 Y型三相电路

式中,iA(t)、iB(t)、iC(t)为三相瞬时电流,

uAN(t)、uBN(t)、uCN(t)为三相瞬时电压。

式(1),(2)即为三表法测量功率的原理,图2为三表法的测量电路。

*A*1 三表法和两表法功率测量原理 WW* 三相电路有功功率的测量方法有二种:三表法,两表法 [2,3,4]。图1为Y型接法的三相电路。

三相瞬时功率:

p(t)uAN(t)iA(t)uBN(t)iB(t)uCN(t)iC(t)

(1)

B*CN*W*平均功率:

图2 三表法测量电路

PUANIAcosAUBNIBcosBUCNICcosC

PAPBPC

(2)

由图(2)知,三表法测量功率的前提是三相

四线制,只有三相绕组为Y型连接,才能接成三相四线制。对于Y连接的三相负载,若中线N未引出,则有 iAiBiC0

(3) 另外 UABUANUBN,UCBUCNUBN

(4) 将上述式(3),(4) 代入式(1),有

p(t)uAB(t)iA(t)uCB(t)iC(t)

(5) PUABIAcos1UCBICcos2P1P

2(6) 式中,1为UAB与IA的相位差,2为UCB与IC的相位差。式(5)、(6)即为两表法的测量原理,图3为两表法的测量电路。

*A*WBC*W* 图3 两表法测量电路

△连接时,有同样的结论。图3中,两个功率表的公共端接在B相,显然,两表法的接线方式共有3种,分别以A、B、C相为公共点。由两表法的推导过程可知,两表法的应用前提是iAiBiC0,故两表法适用于中线未引出的Y连接或△连接的三相电路,即适用三相三线制的三相电路功率测量,与负载是否对称无关。相反,三表法由于需要将中性点作为电压的参考点,只能用于三相四线制电路的功率测量,不能用于三相三线制电路的功率测量。可见,两表法和三表法的用途不同,一般而言,两者不能兼容,对于确定的电路,能采用两表法测量的,就不能采用三表法测量,反之,能用三表法测量的,就不能用两表法测量。有一种特殊情况,在三相四线制电路中,若中线无电流(例如,电源对称,负载对称的情况下)既可用三表法,也可用两表法。这也许就是部分人认为两表法只适合三相对称电路测量的原因。显然,这种认识是错误的。首先,对称电路,只在电路分析时有意义,对于测量来讲,并无实际意义。因为测量

是人类认知或检验的一个过程,而对称与否,是测量的结果,测量之前,我们并不知道其是否对称。 其次,对于对称电路来说,只需用一个功率表,读数乘以三即可,无需采用两表法或三表法。

2 存在电容电流时的电机功率测量

2.1 测量方法

对于变频器供电的三相系统中,当载波频率较高时,这些高频电压信号经过传输电缆时,会通过周围的杂散电容形成电容电流,在电机内部,包括轴承电容在内的各种分布电容也会形成电容电流,造成三相电流和不等于零,按照两表法的原理,此时采用两表法测量会造成误差。为此,国家标准《变频器供电三相笼型感应电动机试验方法》报批稿指出,“脉冲频率高的场合不宜使用两表法(Aron接法)。这是因有电容电流存在,输入电流相量之和可能不为零。因此,应采用每相用一个功率表的测量方法”,标准中,未明确实际应用中面临的下述问题:

1. 多高的脉冲频率下,不宜使用两表法?

2.用一个功率表测量每一相是否就是三表法?

3.采用三表法,对于中线未引出的电机,如何测量?

4.采用三表法,是否可以忽略电容电流的影响?

杂散电容根据对功率测量的影响,可以分为两种,第一种,其电流最终回到电源,无中线系统,仍然有iAiBiC0;第二种,其电流通过地回路等泄漏,不再回到电源,可能导致无中线系统

iAiBiC0。本文主要考虑第二种杂散电容的影响,并以电容的对地电流影响为例,图4为存在对地电容电流的三相电路。

iiA1AAiA0iGiBiB1BB0iNiCiC1CC0

图4存在对地电容电流的三相电路

图4中。iA1,iB1,iC1为杂散电容引起的泄漏电流。iA0,iB0,iC0为电机绕组实际相电流,iA,iB,iC为总电流,有:

iAiA0iA1 iBiB0iB

1 (6) iCiC0iC1

T (7) P((uANiA0uBNiB0uCNiC0)dt0T(uAGiA1uBGiB1uCGiC1)dt)/T0 由于电容不消耗功率,式(7)的第二项为零,即: TP(uANiA0uBNiB0uCNiC0)dt /T

(8) 0 式(8)说明了两个问题,首先,功率与电容电流无关,其次,从测量角度看,除非电机三相绕组的始端和末端均引出,否则,iA0、iB0、iC0不易直接通过测量获得。为了方便测量,我们对P进行下述变换: TTP((uANiA0uBNiB0uCNiC0)dt(uAGiA1uBGiB1uCGiC1) dt)/T00TT((uANiAuBNiBuCNiC)dt(uANiA1uBNiB1uCNiC1)dt)/T00TT((uANiA1uBNiB1uCNiC1)dt(uNGiA1uNGiB1uNGiC1)dt)/T00 TT(uANiAuBNiBuCNiC)dt/TuNG(iA1iB1i)dt/T

(9) C100 电机试验中,对于较大功率的电机,往往只引出三根线,式(9)中,第一项可直接测量,第二项不易测量,其值取决于电容电流和负载中性点电位。在电容电流不能忽略的情况下,如何准确测量三相电机的功率,尤其是如何采用两表法准确测量功率,对电机试验功率测量具有现实指导意义。 2.2存在电容电流时的三表法测量误差

采用三表法测量的功率为:

T P3(uANiAuBNiBuCNiC)dt/T0

(10) TPuNG(iA1iB1iC1)dt/T0可见,三表法测量功率,并不能完全消除电容电流的影响,假设电容电流带来的附加误差为EP3,

则有:

TEP3uNG(iA1iB1iC1)dt/T

(11)

0当中性点接地时,uNG0,P3P。

2.3 存在电容电流时的两表法测量误差

以B相为公共端,采用两表法测量的功率为:

TP2B(uABiAuCBiC)dt/T0T

(uANiAuBNiAuCNiCuBNiC)dt/T

0TT(uANiAuBNiBuCNiC)dt/T0uBN(iAiBiC)dt/T0T(uANiAuBNiBuCNiC)dt/T0TuNG(iAiBiC)dt/T0TuBG(iAiBiC)dt/T0

TPu

(12)

BG(iAiBiC)dt/T

0 TEPuBG(iAiBiC)dt/T

(13) 0由于 iA0iB0iC00, 所以 iAiBiCiA1iB1iC1。

TEPuBG(iA1iB1iC1)dt/T

(14)

0同理,有:

TP2APuAG(iA1iB1iC1)dt/T

(15) 0

T

(16)

P2CPuCG(iA1iB1iC1)dt/T0 对于电机试验,一般而言,电机的三相绕组基

本对称,分布电容也存在一定的对称性。即:uNGuAG,uNGuBG,uNGuCG。故三表法测量结果较为准确。

3 两表法测量的改进

电机试验中,中线通常没有引出,导致无法采

用三表法进行测量。如何提高两表法的测量精度,具有积极的现实意义。将分别以A、B、C为同名端的三次两表法测量结果进行平均

PP2BP2C2P2A

3 (17) TPAGuBGuCG)(iA1iB1iC1)dt/3T0(uTP(uANuBNuCN3uNG)(iA1iB1iC1)dt/3T0 由于电机试验时,试验电源一般具有较好的对称性,当电源完全对称时,有uANuBNuCN0, 即 TP

(18) 2PuNG(iA1iB1iC1)dt/T

0 此时,测量结果与三表法测量结果相等,图5为测量原理图,图中采用能测量瞬时值的两个电压表和三个电流表,由于uCAuCBuAB,功率可按照式(17)求取。改进后的两表法的优点是适合三相三线制的功率测量。

AAVBAVCA 图5:改进后两表法测量原理图

4 分析与探讨

4.1电容电流对功率测量的影响

不论是三表法、两表法还是改进后的两表法,功率测量结果均受漏电流大小的影响。且其附加的绝对误差均与iA1iB1iC1成正比,iA1iB1iC1与电源电压有关,电压越高,尤其是高次谐波电压越高,iA1iB1iC1越大。其相对误差与功率P有关,当P越小,相对误差越大。即:电源电压固定时,负载电流越小,相对误差越大;功率因素越低,相对误差越大。就电机试验而言,同样的变频器,对于同一台电机而言,负载试验时,误差较小;空载试验时,误差较大。

4.2 分离负载电流与电容电流

不论是三表法、两表法还是改进后的三表法,功率测量结果均受电容电流大小的影响。在了解测

量方法和误差后,更重要的是如何分离负载电流和电容电流,实现用两表法或三表法准确测量功率。

不论是三表法还是两表法,测量到的线电流为负载电流与电容电流之和,我们称为总电流。电容电流的大小与载波频率有关,载波频率越高,电容电流越大,由于分布电容的容量较小,电容电流主要由高次谐波构成。由于电机负载呈感性,负载电流主要由基波和低次谐波构成。

理论上,我们可以通过对总电流的谐波成分进行分析估计电容电流的大小,较高次的谐波电流,主要是电容电流,基波电流及较低次的谐波电流,主要是负载电流。而实际上,不同特性的电机,对谐波的截止频率不同,我们很难用一个通用的,确切的频率值来衡量这个界限,从而不能有效地指导实际测量。实际测量时,更有效的办法应该是尽量减小电容电流。首先,对于线路电容电流,其大小与载波频率,脉冲上升时间,电缆长度有关,实际测量时,只要将测试设备尽可能靠近电机端,完全可以忽略电容电流的影响,还可减小线路电压降对功率测试的影响。其次,电容电流由高次电压谐波造成,而高次电压谐波除了增加功率测量误差外,还有诸多的危害,如:

1.在电缆传输环节,高次谐波会造成过冲电压,损

坏电机绝缘。 2. 在电机内部,高次谐波导致的轴承电流会损害电

机轴承。

3.高次谐波产生很强的电磁干扰,影响其它设备运

行。

因此,不论是电机试验还是工业运行的变频电源,都应该尽可能减小这种高次谐波。对于变频电机试验而言,若要求试验电源是正谐波电源,需要在变频器的输出加装正谐波滤波器。若要求模拟用户运行环境,可采用诸如dv/dt滤波器等低通滤波器以保护电机。只要采取了上述两种方式中的任意一种,均可大大减小电容电流,提高功率测试精度。

对于载波频率较高,而输出又未加装任何滤波器的变频器,可通过下述方法判断电容电流的大小。不引出中线或将中线悬空,采用三个宽频带的电流传感器,由于iAiBiCiA1iB1iC1,通过对三相电流的高速采样,运算其向量和,该向量和即为电容电流的向量和。

5 结论

电容电流存在,输入电流向量和可能不为零,对两表法或三表法测量均会造成附加误差。改进后的两表法测试误差与三表法基本相当。就电机试验而言,可通过就近测量和附加滤波器等方式减小电容电流,提高测试精度。

【参考文献】

[1]GB/T 22670-2008 变频器供电三相笼型感应电动机试验

方法[ S]. [2].邱关源.《电路(第五版)》[M].北京:高等教育出版

社,2006. [3] 龚立娇,吴延祥,李玲. 三相功率的测量方法[J],石河子大

学学报(自然科学版), 2005,(02) . [4] 刘丽君,伍斌. 三相电功率两表测量接线方法的研究[J],

西南师范大学学报(自然科学版), 2002,(04) .

第三篇:变频压缩机电机主要分类和注意事项介绍

变频压缩机电机主要分类和注意事项介绍变频压缩机电机主要分为交流异步电动机和直流无刷电动机两种。目前国内一些大的压缩机生产厂家如:万宝、松下、上海日立、东芝万家乐等已有能力生产变频压缩机(包括交流机和直流机),交流电动机成本低,制造工艺简单,但其节能效果较差。直流无刷电机拖动由无刷电机本身,转子位置传感器和电子换向开关组成。转子磁极为永磁体,电枢绕组采用自控式换流,定子旋转磁场与转子磁极同步旋转,通常采用按转子磁场定向的定子电流矢量变换控制,既有普通直流电机良好的调速性能和启动性能,又从根本上消除了换向火花、无线电干扰的弊端,具有寿命长、可靠性高和噪声低,控制方便等优点。

以1998年三菱电机公司开发的适用于空调压缩机的节能高效直流无刷电机为例,其具有:转子上安装了8块V字型永久磁体。磁体为埋入式,转子不会在不锈钢外壳中因涡流因而产生损耗;采用了新的压缩机电机驱动方式,效率比普通的无刷电机高,但是这种压缩机电机的价格较高。

开关磁阻电动机(SRM)是80年代新推出的变速传动系统,由磁阻电动机和控制器组成,是新一代机电一体化产品。该电机结构十分简单,但是比普通磁阻电动机多了转子位置检测器(一般为光电检测),总体上比较流异步电动机简单、坚固和便宜,又因为绕组电流是

直流脉冲,只需整流,无需逆变,所以控制电路简单。目前有关SRM的理论尚不够完善,低速时,转矩有些脉动,噪声和震动较大,转速的稳态精度不够高等,有待今后进一步研究解决。

值得注意的是,国外针对变频空调器重新设计了压缩机,把电机从传统的单相电容电机改进为三相交流电机,以具有良好的调速性能。为了适应国内目前大量生产和使用的传统压缩机的变频调速。有必要开发出单相电容电机的变频器。

變頻壓縮機電機主要分為交流異步電動機和直流無刷電動機兩種。目前國內一些大的壓縮機生產廠傢如:萬寶、松下、上海日立、東芝萬傢樂等已有能力生產變頻壓縮機(包括交流機和直流機),交流電動機成本低,制造工藝簡單,但其節能效果較差。直流無刷電機拖動由無刷電機本身,轉子位置傳感器和電子換向開關組成。轉子磁極為永磁體,電樞繞組采用自控式換流,定子旋轉磁場與轉子磁極同步旋轉,通常采用按轉子磁場定向的定子電流矢量變換控制,既有普通直流電機良好的調速性能和啟動性能,又從根本上消除瞭換向火花、無線電幹擾的弊端,具有壽命長、可靠性高和噪聲低,控制方便等優點。

以1998年三菱電機公司開發的適用於空調壓縮機的節能高效直流無刷電機為例,其具有:轉子上安裝瞭8塊V字型永久磁體。磁體為埋入式,轉子不會在不銹鋼外殼中因渦流因而產生損耗;采用瞭新

的壓縮機電機驅動方式,效率比普通的無刷電機高,但是這種壓縮機電機的價格較高。

開關磁阻電動機(SRM)是80年代新推出的變速傳動系統,由磁阻電動機和控制器組成,是新一代機電一體化產品。該電機結構十分簡單,但是比普通磁阻電動機多瞭轉子位置檢測器(一般為光電檢測),總體上比較流異步電動機簡單、堅固和便宜,又因為繞組電流是直流脈沖,隻需整流,無需逆變,所以控制電路簡單。目前有關SRM的理論尚不夠完善,低速時,轉矩有些脈動,噪聲和震動較大,轉速的穩態精度不夠高等,有待今後進一步研究解決。

值得註意的是,國外針對變頻空調器重新設計瞭壓縮機,把電機從傳統的單相電容電機改進為三相交流電機,以具有良好的調速性能。為瞭適應國內目前大量生產和使用的傳統壓縮機的變頻調速。有必要開發出單相電容電機的變頻器。

第四篇:变频器和PLC恒压供水变频器系统的设计

摘要

随着社会的不断发展,工业自动化领域不断走入正规和壮大。对于人们日常生存等需求日益增加,实现工业自动化与智能化已经迫在眉睫。其中在城市供水系统中,可以通过可编程控制器(PLC)、变频器控制电机的转速以及PID控制来实现对城市恒压供水。

从上个世纪80年代至90年代中期,PLC领域得到了快速的发展,在这期间,PLC在处理模拟信号、数字信号以及人机交互等方面的发展,促使PLC技术大量应用于工业自动化控制领域。PLC具有通用性强、使用便捷简单、抗干扰能力强等优点,也使得PLC在工业控制中的地位,在可预见的未来,是无法替代的。

本文是依照西门子三菱 PLC为控制系统,来实现对恒压控制系统的手动及自动控制,通过三菱变频器来直接控制三相异步电动机的转速,从而实现恒压输出。变频器可以接收来自PLC的信号,主要分为手动和自动方式来调节水压。

本文主要针对恒压供水来设计,需要PID控制系统来调节水压,而一些变频器内置了PID功能,这也显示了变频器在工业领域的可实施性。通过压力设定值与压力变送器返回值进行比较,将偏差反馈给变频器内部的PID调节器,PID调节器经过运算处理,得出调节信号,从而实现闭环控制。

关键词:PLC、变频器、恒压、PID控制

1

第一章 绪论

随着社会的迅速发展,工业也逐渐步入了4.0时代,机器人等一些智能化控制也逐渐进入了我们的生活。恒压供水一直以来是工业以及生活中维持生存的命脉。为了实现日常生活和工业生产的正常供水,我们必须寻找一种稳定的供水系统来解决昼夜用水量不同以及用户日益增加的问题。

PLC的快速发展发生在上世纪80年代至90年代中期。在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到了很大的提高和发展。PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。

PID控制是迄今为止最通用的控制方法之一。因为其可靠性高、算法简单、鲁棒性好,所以被广泛应用于过程控制中,尤其适用于可建立精确数学模型的确定性系统。PID控制的效果完全取决于其四个参数,即采样周期ts、比例系数 Kp、积分系数Ki、微分系数Kd。因而,PID参数的整定与优化一直是自动控制领域研究的重要课题。PID在工业过程控制中的应用已有近百年的历史,在此期间虽然有许多控制算法问世,但由于PID算法以它自身的特点,再加上人们在长期使用中积累了丰富经验,使之在工业控制中得到广泛应用。在PID算法中,针对P、I、D三个参数的整定和优化的问题成为关键问题。

1.1 PLC变频调速恒压供水系统的意义

近年来,由于工业迅猛的发展和人们日常物质的需求不断提高,这使得高塔供水系统的水压不稳定,从而影响工业生产和人们日常生活需求。为了提高供水水压的稳定性和恒速输出,我们可以通过三相异步电动机的转速来控制水压以及水速,三相异步电动机可以通过变频器来调节频率来控制电机的转速,为了实现整个恒压供水控制系统的手动以及自动控制,我们可以通过PLC来控制整个系统。

PLC是基于微型计算机技术的通用工业自动控制设备。由于PLC体积小、功能强、速度快、可靠性高,又具有较大的灵活性和可扩展性,目前已被应用到机械制造、冶金、化工、交通、电子、纺织、印刷、建筑等诸多领域。

变频器是应用变频技术与微电子技术,通过改变电机工作电源频率的方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、控制单元、驱动单元、检测单元、微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等。随着工业自动化程度的不断提高,变频器也得

2 到了非常广泛的应用。

通过变频器、PLC以及继电器等元件组成的恒压控制系统具有较高的可靠性,对外界具有较高的抗干扰能力,PLC编程通俗易懂,易于控制,所需成本低等优良特点,使得PLC变频调速恒压供水系统在日常生活用水以及工业生产用水成为可能。

恒压供水系统在无人操作的情况下,可以完成对供水管道的恒压输出,保持供水的恒压输出也就是供水流量的稳定,根据力学原理,水泵的流量与电机的转速成正比。变频恒压供水系统的基本原理是依照系统中的压力传感器对系统供水管道中的压力进行实时检测,并通过过程控制的原理将压力信号和设定值进行比较,反馈给处理器,通过执行机构变频器,来完成对泵机转速的控制,使得在外界干扰的作用下,水压及水流量能稳定在某一范围内,这就是所谓的恒压控制系统。其意义可显而易见,保障恒压供水,可以使人们日常生活及工业生产更加方便和稳定。

1.2 国内外研究现状及发展

现在社会上,随着计算机的普及以及工业技术的不断完善,使得对供水的恒压控制已经成为可能。PLC技术的不断发展以及变频器的广泛应用,也使得恒压供水系统可靠性、实用性等性能得到体现。

从查阅的资料来看,国内供水系统发展比较缓慢,最开始是通过高塔供水系统来提供生活及工业生产供水,高塔供水系统最大缺点就是供水水压不稳定,随着社会的不断发展以及工业技术的不断进步,恒压供水系统是在变频器技术不断改善的基础上发展起来的,最先由于国外生产的变频器功能的局限性,在恒压供水控制系统中,变频器仅仅作为执行机构,就是单单接收控制器信号来控制电机的转速。为了满足供水时的恒压稳定输出,变频器也随之改进,人们在变频器内部囊括了PID控制,通过外部控制器和压力传感器,对压力进行闭环控制。

最初由于变频器技术的不成熟,国外的恒压供水系统在设计时都采用一台变频器控制一台电机的方式,很少使用一台变频器控制多台电机组的形式,这使得整个恒压供水控制系统成本高。随着变频技术的不断改善,以及PLC技术的巩固,使得变频恒压供水系统的稳定性、可靠性的性能显著提高。目前国内有不少公司在做变频恒压供水的工程,大多采用国外的变频器控制水泵的转速,水管管网压力的闭环调节及多台水泵的循环控制,有的采用可编程控制器(PLC)及相应的软件予以实现;有的采用单片机及相应的软件予以实现。但在系统的动态性能、稳定性能、抗扰性能以及开放性等多方面的综合技术指标来说,还远远没能达到所有用户的要求。

变频供水系统目前正在向集成化、维护操作简单化方向发展,在国内外,专门

3 针对供水的变频器集成化越来越高,很多专用供水变频器集成了PLC 或PID,甚至将压力传感器也融入变频组件。同时维护操作也越来越简明显偏高,维护成本也高于国内产品。 目前国内有不少公司在从事进行变频恒压供水的研制推广,国产变频器主要采用进口元件组装或直接进口国外变频器,结合PLC 或PID调节器实现恒压供水,在小容量、控制要求的变频供水领域,国产变频器发展较快,并以其成本低廉的优势占领了相当部分小容量变频恒压供水市场。目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性(EMC),的变频恒压供水系统的水压闭环控制研究得不够。因此,有待于进一步研究改善变频恒压供水系统的性能,使其能被更好的应用于生活、生产实践。

1.3本课题主要研究内容

本设计是按照中小城市自来水厂为研究背景,应用变频技术、PLC技术、过程控制技术等,实现对供水系统的恒压控制。

本设计采用三菱PLC和变频器,通过PLC系统的控制和变频器的变频变压,并且利用变频器内置的PID控制器来完成恒压的闭环控制。本文主要研究内容及结构如下:

1)针对PLC及变频器技术基础展开全文,介绍PLC的发展过程及应用、PLC的基本组成、工作原理等;简单介绍了变频器,包括变频器的基本组成单元、变频器的分类及工作原理。还简单介绍了PID控制技术。

2)针对供水系统的恒压控制的设计。本次设计采用选用三菱FX2N~32MR系列的可编程控制器,变频器选用型号为三菱的FR—A540,首先通过介绍了三菱FX2N~32MR的PID控制器引入主题,通过使用PLC的编程控制、变频器的主电路对电机的控制以及变频器内部PID功能模块对供水输出水压的反馈控制,我们仅需使用两者变实现对恒压供水系统的控制。本章还介绍了供水系统的组成、PLC编程软件等的内容。

4

第二章 PLC和变频器技术基础

PLC是专门应用于工业控制的一种计算机,也就是人们所说的可编程控制器,在工业控制领域,它作为整个系统的控制中心,执行逻辑、顺序、计数、定时等功能,通过模拟量和数字量的输入输出信号,来控制工业生产的正常运行。

2.1 可编程控制技术

2.1.1 可编程控制器的发展过程及应用

PLC起源于美国,在1969年,美国数设备公司成功研制出第一台可编程控制器PDP-14,由于技术的局限,该产品功能比较简单,但这是首次采用程序化的手段应用于工业控制,因此被世界公认为第一台PLC。1971年,日本从美国引进了这项技术,很快也研制出本国的第一台PLC ,被命名为DSC-18。1973年西欧国家也相继研发出他们的产品。我国可编程控制器发展较晚,是从1974开始研制,1977年才应用于工业控制领域。从20世纪70年代开始,随着电子技术的迅猛发展,PLC采用通讯微处理器的技术逐渐发展成熟,使得PLC控制功能得到进一步的增强。20世纪80年代,随着集成电路等微电子技术的发展,以16位和32位微处理器构成的微机化PLC,使得PLC功能进一步加强,如工作速度快,抗干扰能力强、可靠性高、成本低、编程及故障检测更加灵活简单等。目前,PLC已进入成熟阶段,广泛应用于我们的日常生活领域和工业生产领域,如石油、化工、电力、建筑、汽车、环保、水力等各个行业。

2.1.2可编程控制器的组成和工作原理

可编程控制器组成包括CPU控制单元、I/O输入输出单元、内存单元、电源模块、底板或机架。

1.CPU控制单元

CPU控制单元是PLC的核心部分,CPU主要由运算器、控制器、寄存器及实现他们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。CPU按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。内存主要用于存储程序及数据,是PLC不可缺少的组成单元。CPU速度和内存容量是PLC的重要参数,他们决定了PLC的工作速度,I/O输入输出信号点的数量及软件的容量等,因此是PLC控制规模的决定性因素。

2. I/O输入输出模块

5 PLC输入输出模块是PLC控制系统接收信号和发出信号的模块,也就是与电气回路的接口。I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。

常见的I/O信号的分类有:

开关量信号:输入输出信号按电压高低分类,有220VAC、110VAC、24VDC,按隔离方式划分,有集体管隔离和继电器隔离两种。

模拟量信号:按信号类型分,有电流型(4-20mA,0-20mA)、电压型(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。

除了上述通用IO外,还有特殊IO模块,如热电阻、热电偶、脉冲等模块。按I/O点数确定模块规格及数量,I/O模块可多可少,但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数的限制。我们在设计过程中需要根据输入输出信号点的数量以及信号类型来选择PLC的类型。

3. 编程器

编程器的作用是用来供用户进行程序的输入、编辑、调试和监视的。编程器一般分为简易型和智能型两类。简易型只能联机编程,且往往需要将梯形图转化为机器语言助记符后才能送入。而智能型编程器(又称图形编程器),不但可以连机编程,而且还可以脱机编程。操作方便且功能强大。

4. 电源

PLC电源用于为PLC各模块的集成电路提供工作电源。同时,有的还为输入电路提供24V的工作电源。电源输入类型有:交流电源(220VAC或110VAC),直流电源(常用的为24VDC)。 可编程控制器的工作原理: PLC的工作方式与一般的计算机是不同的,它对I/O状态和用户程序作周期性的循环扫描、解释并加以执行,这一周期称为基本扫描周期,由程序长短和CPU指令执行时间所确定,一般为数十毫秒。开关控制输出方式可为继电器、晶闸管或晶体管,连续量输出可为电流或电压。

PLC工作的全过程可用图 2-1 所示的运行框图来表示。

6

图 2-1 可编程控制器运行框图

2.1.3可编程控制器的分类及特点

(一)小型PLC 小型PLC 的I/O 点数一般在128 点以下,其特点是体积小、结构紧凑,整个硬件融为一体,除了开关量I/O以外,还可以连接模拟量I/O 以及其他各种特殊功能模块。它能执行包括逻辑运算、计时、计数、算术、运算数据处理和传送通讯联网以及各种应用指令。

(二)中型PLC 中型PLC 采用模块化结构,其I/O 点数一般在256~1024 点之间,I/O 的处

7 理方式除了采用一般PLC 通用的扫描处理方式外,还能采用直接处理方式即在扫描用户程序的过程中直接读输入刷新输出,它能联接各种特殊功能模块,通讯联网功能更强,指令系统更丰富,内存容量更大,扫描速度更快。

(三)大型PLC 一般I/O 点数在1024 点以上的称为大型PLC,大型PLC 的软硬件功能极强,具有极强的自诊断功能、通讯联网功能强,有各种通讯联网的模块可以构成三级通讯网实现工厂生产管理自动化,大型PLC 还可以采用冗余或三CPU 构成表决式系统使机器的可靠性更高。

2.2 变频器技术

变频器的产生解决了启动电流过大而损耗电机和工作电网不稳等问题,一定程度上它增加了电机的使用寿命,也起到了一定节能的效果。变频器的产生主要是变频技术和微电子技术发展的产物。变频器是通过改变电机电源频率的方式来控制电机的速度。变频器最大特点是可以改变电源的频率,通过改变频率,来实现对交流异步电机的变频调速、软启动、过流保护、过载保护、节能等功能。

2.2.1变频器的组成

变频器通常有四部分组成:整流单元、高容量电容、逆变器、控制器。 整流单元:整流单元的主要是通过变流器或者可逆变流器,将工频交流电源转换为直流电源。

高容量电容:存储转换后的电能。

逆变器:由大功率开关晶体管阵列组成电子开关,将直流电转化成不同频率、宽度、幅度的方波。

控制器:按设定的程序工作,控制输出方波的幅度与脉宽,使叠加为近似正弦波的交流电,驱动交流电动机。

2.2.2变频器工作原理

主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。 它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。按照变换环节有无直流环节,变频器可分为交一交变频器和交一直一交变频器。

交一直一交变频器主电路可分三部分:

8

+三相交流电源VT1VT2VT3ZAUVT4ABVT5VT6CZBZCO-整流电路逆变电路滤波电路

图2-2交一直一交变频器主电路

1. 整流电路:交一直部分整流电路通常由二极管或是可控硅构成的桥式电路组成。根据输入电源不同,可以分为单相和三相桥式整流电路。常用的小型变频器通常为单相220V输入,而较大功率变频器通常为380V三相输入。

2. 中间环节:滤波电路

滤波电路一般可分为电感滤波电路和电容滤波电路。由于流过电感的电流不能突变,电容两端的电压不能突变,所以用电感滤波就构成电流源型变频器,用电容滤波就构成了电压源型变频器。

3. 逆变电路:直一交部分

逆变电路部分是交一直一交变频器的核心之处,其中6个三极管按其导通顺序分别用VT1~VT6表示,与三极管反向并联的二极管起续流作用。

按每个三极管的导通角度又分为120°导通型和180°导通型两种类型。 逆变电路的输出电压为阶梯波,虽然不是正弦波,却是彼此相差120°的交流电压,即实现了从直流电到交流电的逆变。输出电压的频率取决于逆变器开关器件的切换频率,达到了变频的目的。

除此之外,逆变电路还有保护半导体元件的缓冲电路,三极管也可以用门极可关断晶闸管代替。

交一交变频器是指无直流中间环节,直接将电网固定频率的恒压恒频交流电源变换成变压变频交流电源的变频器,被人们称为直接变压变频器,也称为周波变频器。

交一交变频器的基本原理如下:

在有源逆变电路中,若才用两组反向并联的可控整流电路,适当控制各组可控硅的关断和导通,就可以在负载上得到电压极性和大小都改变的直流电压。若再适当控制正反两组可控硅的切换频率,在负载两端就能得到交变的输出电压,从而实现交一交直接变频。

9 2.3 PID控制

在工业电气控制方面,按照控制方式可分为开环控制和闭环控制两种,PID控制是比例积分微分控制的简称,也是闭环控制的一种经典的控制规律。

开环控制方式是指控制装置与被控对象之间,只有顺向作用而没有反向联系的控制过程,按这种方式组成的系统称之为开环控制系统,其特点是系统的输出量不会对系统的控制作用发生影响。开环控制系统可以按给定量控制方式组成,也可以按照扰动控制方式组成。

闭环控制也称为反馈控制,其控制方式是按照偏差进行控制的,其特点是不论什么原因使被控量偏离期望值而出现偏差时,必定会产生一个相应的控制作用去减少或者是消除这个偏差,使被控量与期望值接近相等。按闭环控制方式组成的闭环控制系统,具有抑制任何内、外扰动对被控量产生影响的能力,有较高的控制控制精度。

闭环控制的基本框图如下:

给定值+-调节器D/A转换器被控量执行器过程A/D转换测量变送图2-3 闭环控制框图

上图是闭环控制的一个经典的闭环控制系统的框图。图中用“○”号代表比较元件,它将测量元件检测出的值与输入值进行比较,“—”号代表两者的符号相反,也就是所谓的负反馈;“+”号表示被控量与输入量的符号相同,即正反馈。信号从输入端经过调节器、执行结构等到达输出端,称为前向通道;系统输出量经过测量元件的测量变送,反馈给输入值,此段通道称之为反馈通道。

通常,闭环控制系统的外作用有两种形式,一种是系统的输入量,另一种为外界的干扰因素,即扰动量。在正常的工业生产中,扰动是不可避免的,不同的生产环境,扰动的因素也有所不同,而且它可以在整个控制系统的任何元部件进行干扰作用。也正是因为干扰因素的作用,我们才引入了闭环控制系统。

闭环控制是过程控制的一种类型。过程控制是通过通过各种检测仪表、控制仪表、电子计算机等自动化技术元件,对整个工艺生产过程进行自动检测自动控制、自动监控。对于一个过程控制系统来说,是由被控过程及过程检测仪表两部分构成的,过程控制系统主要有调节器、检测元件、调节阀、变送器等构成。对于过程控制系统的设计经验而讲,主要有两方面,一是工业过程的工艺要求,其

10 次是过程特性,设计时可以根据实际生产需求来选用相应的过程控制仪表,进而创建系统,最后通过PID参数的设定,实现对工业生产过程的最佳控制。

在选择控制器时,我们可根据过程特性来选择,若无法准确的建模或者是过程的数学建模很复杂时,可根据何种控制规律适用于何种过程特性与工艺要求来选择,常用的控制规律有比例控制(P)、比例积分控制(PI)、比例微分控制(PD)、比例积分微分控制(PID)。

1. 比例控制规律(P):

采用比例控制规律能较快地克服扰动的影响,使得系统稳定下来,但是存在余差。它适用于控制通道滞后较小、负荷变化不大、控制要求不高、被控参数允许在一定范围内有余差的场合。

2. 比例积分控制(PI)

在工程设计上,比例积分控制是应用最常见的一种控制方式,其最大的特点是能消除余差,它适用于控制滞后较小、负荷变化不大、被控参数不允许有余差等范畴。如某些流量、液位等要求无余差的控制系统。

3.比例微分控制(PD)

比例微分控制的特点是具有超前作用,对于具有容量滞后的控制特性,可以使用微分控制规律来改善系统的动态性能指标。因此对于控制通道的时间常数或是容量滞后较大的场合,为了提高系统的稳定性,减少动态偏差等可选择使用比例微分控制,但是对于纯滞后较大,测量信号有噪声或是周期性扰动的系统,则不宜采用微分控制。

4.比例积分微分控制(PID)

比例积分微分控制是一种较理想的控制规律,它在比例的基础上应用积分的作用,来消除余差,再通过微分的作用,可以提高系统的稳定性。它适用于控制系统时间常数或是容量滞后较大、控制要求高的现场。如恒压、恒温的控制等。

PID控制器参数的设定是整个控制系统的核心内容,它决定了整个系统稳定性能,参数设定主要包括PID控制器的比例系数、微分时间和积分时间。PID控制参数设定方法主要分为两大类:一是工程设定方法,主要通过工程的积累经验,直接通过在控制系统的调试中进行,由于其通俗易懂、容易掌握,被工程调试广泛应用。二是通过数学理论设定,它主要是根据数学理论模型,按照一定的数学运算规律来确定控制器的各个参数变量,这种参数计算方法一般不能直接应用到工业调试中,还需要结合现场实际情况进行调整和修改。

现场调试一般使用工程整定的方法来调节参数,主要有临界比例法、衰减法和反应曲线三种方法。临界比例法是最常见的一种设定方法。其整定步骤如下:

1) 预设定一个足够短的采样周期来让控制系统工作。

2)仅加入比例控制参数进行调节,直到控制系统对输入的阶跃响应出现临界

11 震荡现象,记下纯比例控制的放大系数和临界状态下的震荡周期

3)在一定的控制力度下,使用公式计算得到相应的PID控制器的参数。

12

第三章 恒压控制电路的设计

本次设计是为了实现对供水系统的恒压控制,通过使用PLC和变频器可以完成对恒压供水系统的设计。通过查阅资料和现场实践,本文选用三菱FX2N~32MR系列的可编程控制器,变频器选用型号为三菱的FR—A540,FR-A540变频器内置PID控制模块。压力传感器选择没什么特殊的要求,我们在此选用一般的压力表Y-100和XMT-1270数显仪实现压力的显示、检测及传送信号的功能。采用两台泵机来提供动力,使得系统稳定保障大大提高。

3.1三菱FR-A540变频器的PID功能

三菱变频器在工业应用非常广泛,在设计供/排水系统时选用三菱变频器后常会用到PID控制功能。目前所有的三菱变频器均有PID控制功能。FR-A540变频器采用矢量控制方式,使得驱动性能更加好,由于使用了智能功率模块和调制原理,使得变频器的噪声降低、抗干扰性能更高、变频器的输出波形更加稳定。同时FR-A540内部置入PID控制单元、顺序制动、变频、工频顺序切换、停电减速制动等功能,使得FR-A540变频器得到广泛的应用。

三菱变频器内部PID控制单元,通过对水压的给定值和压力检测装置的输入信号进行对比,将偏差直接传送给内部PID控制单元,按照预先设定的调节规律进行计算,得出调节信号,再直接控制变频器的输出电压和频率,实现对泵机的转速控制,进而保持整个供水系统管道的恒压控制。

控制框图如下:

给定值+-反馈值偏差变频器驱动回路电机MPID运算测量变送图3-1 PID控制框图

3.2 恒压供水系统的设计思路

根据水厂的日常生产来看,工作人员通过操作系统控制面板上的按钮以及指示灯的提示来完成对恒压供水系统的实现。为了保障整个操作系统的稳定的前提下,必须尽可能的考虑到系统操作简便易懂,安全系数高等因素。

13 本文通过手动和自动两种运行形式来实现对变频恒压供水系统的控制。手动运行方式是通过操作面板上的按钮来控制相应的设备,比如各个泵机的运行、停止等。在水厂正常运行期间,很少使用手动运行方式来控制供水的恒压输出,然而手动方式仍是必不可少的,手动运行方式的作用主要有:

1)方便调试。在整个系统正处于测试阶段,还未进入生产时,可以通过手动的运行方式来试验是否整个系统的各个环节已具备自动运行的条件。

2)有利于日后的维护、维修及保养。若出现某一电机不能正常运行或者警示灯闪烁等现象时,我们可以在手动运行的方式下进行检测、维修相应的故障设备,日后也可以对相应的设备进行保养等。

系统的自动运行方式主要是通过对输出水管的压力和设备运行状态的动态检测,从而保证管道的正常供水。通过自动启动的一键启动运行,整个系统便处于自动状态,之后整个系统无需人为的进行操作控制。启动系统时,变频器软启动其中的一台水泵,水泵开始工作,供水管道的压力逐渐上升,同时,系统中的压力检测装置将检测的水压转换成电流或是电压的形式将电信号传给变频器中的PID控制器,再经过与设定的压力参数进行比较,得到的偏差再传送给该变频器的主电路,再由变频器来改变输出频率,从而实现供水管道的恒压控制。

3.3 恒压供水系统组成设计

现今,恒压供水系统主要由变频控制系统、PLC控制系统以及PID过程控制系统三部分组成。如图3-2所示,该图为中小型恒压供水系统的整体组成。主要组成单元有电气控制柜(主要包括PLC及变频器等电控器件)、泵机、压力传感器、蓄水池、通水管道等。

电气控制柜变频器主电路PLCPID控制器反馈信号蓄水池用户用水水泵电机通水管道压力传感器图3-2 恒压供水系统组成图

电气控制柜:电气控制柜在工业现场应用非常广泛,它一定程度上保证了一些电气元件的工作环境的稳定。本设计电气控制柜主要安装PLC、变频器、接触器、继电器等元器件。电气控制柜是本设计的电气控制中心。

压力传感器:通水管道的压力作用于压力传感器上,压力传感器将检测的压

14 力值以一定的转换方式,转变为电信号,将电信号传送给控制器,起到测量、变送的功能。本设计选用压电式压力传感器,其工作原理是基于某些晶体材料的压电效应。压电效应指,某些离子型晶体电介质沿着某一个方向受力而发生机械形变(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷,此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。当外力撤消后,又重新回到不带电状态。

泵机:泵机是整个系统的执行机构,它是供水的基础,水压可以通过泵机的转速来控制,结合变频器和PLC可以实现恒压输出的目的。

蓄水池:该设备是水厂的储水装置,是供水的保障。

通水管道:通水管道是输送用水的动脉,它是用户用水与供水厂的媒介。

3.4 恒压供水系统主电路设计

根据实际应用,恒压供水系统一般采用一台变频器控制多台泵机并联运行的控制方式,本次设计采用一台变频器对两台水泵的控制,主电路如图3-3所示。

KM1A泵机三菱变频器FR-540三相电源KM3B泵机~KM2KM4

图3-3 恒压供水系统主电路

在手动状态下,通过继电器和接触器的关断作用,可以分别对A、B泵进行变频控制和工频控制。注意的是在PLC编程设计时,手动状态下应该保证仅有一种工作状态运行,这种情况下,可以在软件上进行互锁的方式实现,或者在硬件上实现,比如通过使用接触器的常闭触点来进行关联。当自动运行的条件满足时,自动启动按钮按下,通过外部感应器件的检测变送、变频器、PLC控制器的控制执行,从而实现恒压供水正常的自动运行。

KM

1、KM2及KM

3、KM4的关断可以控制A和B泵在工频和变频之间的切换,通过PLC编程设计可以实现;接触器之间需要互锁,防止接触器同时吸合,

15 发生故障。在自动运行的情况下,通过PLC的信号给出,首先给A泵通电信号,即KM1吸合,使得变频器仅作用A泵运行,变频器逐步控制A泵电机的输入频率,直至达到设定的信号值,若输入频率达到工频时仍然没有达到设定的信号值,即一台泵机无法满足流量及压力的需求,此时要将A泵机切换到工频的控制方式,同时以变频的启动方式启动B泵机,通过B泵机的变频调速,直至达到预期值。

当用户用水量的减少时,此时若不改变泵机的工作频率,水压会升高,所以当水压升高时,需要相应的减少泵机的工作频率,通过PLC及变频器的作用,首先将B泵机运行速度逐渐降低,直至使得管道压力达到预定值,若仍无法达到预定值时,可以将B泵机电源切断,同时将A泵机进入工频运行模式,最后通过回复A泵机的变频模式来控制泵机运行,从而控制水压稳定输出。

在正常生产时,由于会出现一台泵机总是处于工作状态,然而另一台泵机处于待机状态。本设计可以通过PLC中的时间定时器来控制两台泵机在 上述情况下的运行切换。

3.5变频器设计

变频器端子接线图如下:变频器的L

1、L

2、L3端接三相电的供电端,U、V、W端为变频器的输出端,输出端的电压和频率会发生相应的改变,这主要取决于对变频器的人为设置。其次还有接入PLC的输入端和输出端的端子,主要有频率上限信号点、频率下限信号点、故障信号点、正转信号点、停止运行信号点。针对变频器中的内置PID控制模块,通过设定电位器设定,并将压力传感器检测的压力值传送给变频器

4、5号端子,两者相互比较,有内部PID控制模块处理,最终使变频器输出相应的频率和电压,与此同时变频器也会给PLC相应的信号,促使PLC做出相应的处理,PLC经过处理在将处理后的信号传送给继电器、变频器、接触器等执行机构。

16

变频器三相电源L1L2UV输出电源PLC输入X4X4X5COMPLC输出Y11Y12COMFR-A540-3.7CHL3W10254FUSUACSESTFMRSSD反馈信号压力传感器24VDC

图3-4 变频器接线图

变频器参数设定主要是在现场中根据实际情况,来进行调试确定,但参数的设定是具有一定规律的,从供水系统的特性以及泵机为平方律负载等方面来比较,变频器的参数设置主要有一下几点需要注意:

1)下限频率的设置。一般来说,转速过低,由于泵机的实际工作性质,泵机容易产生“空转”现象;再者,对于电机而言,在低频的情况下运行时间过长时,电机会发热厉害,对电机的寿命有一定的影响,所以下限频率不能太低。

2)最高频率设置。由于泵机属于平方律负载,若泵机的实际转速超过额定转速时,转矩将以平方的形式增加,使得泵机的寿命缩短,且很容易烧坏电机,因此变频器的最大输出频率不能超过泵机的额定工作频率,最高可以为泵机额定频率。

3)上限频率设置。在恒压供水系统设计中,理论上将设置的上限频率与额定工作频率相等时,即在工频下运行最好,但实际情况下,由于变频器内部往往具有转差补偿的功能,所以应该将上限频率设置的略低于额定频率。

4) PID控制器参数的设置。设置PID参数时,需要保证整个恒压控制系统稳定的条件下,来减小静态误差和提高动态响应。在调试过程中,通过对供水系统压力传感器的实际测量值的观察及分析,通过调节各参数,进而维持系统的稳定性。

17 3.6 恒压供水系统中PLC电气设计 3.6.1三菱FX2N系列PLC的概述

三菱FX2N系列PLC是高性能、高运行速度、小型化的控制装置,它也是FX系列中最高档的超小控制装置。FX系列的PLC具有无可匹及的运行速度,高级的定位控制及功能逻辑选件等优点。FX2N系列的可编程控制器的基本组成如下:

1)基本单元包括CPU、存储器、输入输出口及电源。

CPU: CPU的功能作用有接收并存储用户程序和数据;诊断电源、编程的语法错误及PLC的工作状态;接收输入输出信号,送入数据寄存器并保存;运行时顺序读取、解释、执行用户程序,完成用户程序的各种操作;将用户程序的执行结果送至输出端。FX2N系列有各种不同性能档次的CPU模块可供使用,各种CPU有各种不同的性能。

存储器:包括系统程序存储器、系统数据存储器和用户存储器。系统存储器其功能是存放系统工作程序;存放模块化应用功能子程序;存放命令解释程序;存放功能子程序的调用管理程序;存放存储系统参数。用户存储器作用是存放用户工作程序和存放工作数据。

输入输出口:包括输入单元和输出单元,输入输出单元均为带光电隔离电路。输入单元有多种辅助电源类型,有AC电源DC24V输入、DC电源DC24V输入、DC电源DC12V输入、开关量信号、模拟量信号等类型。输出单元输出方式有晶体管、晶闸管和继电器三种方式,其中晶体管输出方式为驱动直流负载,晶闸管为驱动非频繁动作的交/直流负载,继电器为驱动频繁动作的交/直流负载。

通讯及编程接口:采用RS-485或RS-422串行总线。功能有连接专用编程器(FX-20P、FX-10P);连接个人PC机,实现编程及在线监控;连接工控机,实现编程及在线监控;连接网络设备,实现远程通讯;连接打印机等计算机外设装置。

I/O扩展接口:采用并行通讯的方式。主要分为扩展I/O模块、扩展位置控制模块、扩展通讯模块、扩展模拟量控制模块。

3.6.2 PLC电气电路设计

针对电气PLC的电路设计,本文主要包括电气主控柜的设计、PLC控制器的外部端子接线设计、PLC编程设计。 1.电气控制柜设计

按照工业生产的需求以及安全生产的要求,需要对控制柜进行相应的操作和保护等设计。电气控制柜内装载了安装板,用来安装电气元件,在安装元器件时应该注意元器件的分布,尽可能将大功率大电流用电器与控制器及信号线远离,

18 在允许的条件下可以使用屏蔽措施屏蔽,工业现场非常复杂,外界干扰很难杜绝,也很难解决。通过控制柜元器件的合理布置、线路的合理分布及接地的合理应用,可以使得设计人员在现场调试更加容易快捷。下面本节先介绍一下控制柜面板,如下图3-5所示:

红灯黄灯绿灯蜂鸣器故障报警三相电源控制电源指示指示指示24V电源指示系统运行指示A泵运行指示B泵运行指示手自动控制旋钮启/停 旋钮A泵运行按钮B泵运行按钮备用按钮系统启动报警消音备用备用故障复位急停按钮图3-5 恒压控制系统电气控制柜面板

指示灯:加入故障报警指示、三相电源指示、控制电源指示、24V直流电源指示、系统运行指示、A泵运行指示、B泵运行指示。

柱形灯:有红灯、黄灯、绿灯指示,还有蜂鸣器四部分组成,通过PLC输出端子给定信号。红灯主要起到变频器故障、断电停机、延时保护等指示。黄灯主要起到A、B泵机的运行状态,黄灯闪烁一般为泵机开始运行。绿灯指示可有可无,本次设计使用绿灯来指示系统无故障可进行正常工作的指示。

控制按钮:包括带自锁的急停按钮、系统启动旋钮、手自动控制旋钮、启停旋钮、A泵机运行按钮、B泵机运行按钮、报警消音按钮、故障复位按钮。急停按钮是在出现紧急情况下,按下该按钮,此按钮由220V控制电源直接控制,一旦该按钮按下,则从硬件上直接将控制回路断电,从而将整个系统停止运行。系统启动旋钮采用钥匙旋钮,来实现对系统的开启,选用钥匙旋钮可以防止非操作人员或维修人员的误操作。手自动旋钮采用两位自锁旋钮,分为手动档和自动档,来实现系统的手自动运行。启停按钮,配合A、B泵机运行按钮来控制A、B泵的启

19 动和停止。报警消音按钮选用白色的平头按钮,用来消除蜂鸣器的噪声。故障复位选用普通的非自锁旋钮,用来在故障信号解决的情况下,恢复系统的正常运行。

电压表、电流表:用来显示主回路的电压和电流。 2.PLC外部接线设计

本设计采用FX2N~32MR的三菱PLC控制器,I/O信号点为16个数字输入量和16个数字输出量。PLC的I/O端子分配及接线设计如下:

电源FX2N-32MRCOMXOX1X2X3X4X5X6X7X10X11X12X13X14X15X16YOY1Y2Y3Y4Y5Y6Y7Y10Y11Y12Y13Y14Y15X1-X16为输入信号Y1-15为输出信号

图3-5 PLC的IO接线图

3.PLC编程设计

本设计采用三菱FX2N系列的PLC,需要使用相应的编程软件来对系统进行设计编程。本文采用GX Developer编程软件对三菱FX2N系列PLC进行编程。下面简单介绍编程过程。

1)首先打开编程软件GX Developer,显示如下主画面

20

2)打开工程选项,新建新工程,会弹出如下画面,选择使用的PLC系列及类型,并选择程序编写的类型,创建工程名为PLC与变频器的恒压供水系统,新工程创建完成。

3)创建完工程,点击创建新工程窗口的确定按钮,会弹出如下框图,在如下框图完成对可编程控制器的程序编程和PLC参数的修改。

21

主程序在工程项目内MAIN里编写。编写程序时应该注意程序的互锁,例如电机的正反转问题;注重保护程序的编写,大约为整个程序的30%左右,保护程序决定了日常的正常生产。在编程中应多使用中间继电器,可以使得程序简短,通俗易懂,编写程序应在保证安全的基础上尽量简捷。

22

结束语

本文通过使用三菱PLC及变频器,应用过程控制中经典的PID控制,对供水厂实现恒压供水控制。通过采用PLC的可编程控制、变频器的变频变压输出以及PID闭环控制,得到了一个精度比较高、反应比较迅速的恒压供水控制系统。该系统主要特点如下:

1)运行方式为手动模式和自动模式。

采用手自动模式来控制系统,既实现了恒压供水的自动控制,在维护维修等非正常工作的情况下,又能通过手动操作完成相应的控制。手自动模式的切换使得整个恒压供水系统操作更加灵活方便。

2)采用一台变频器控制两台泵机来实现恒压输出。

使用两台泵机调节水压,在一定程度上存在冗余的现象,但这使得供水系统更加可靠,而且对用水量的承载能力翻倍。在用水量少的情况下,通过两台泵机的轮流切换运行,可以使得整个恒压供水控制系统更加安全可靠。采用一台变频器来控制两台泵机,使得系统的设计成本降低,符合工业设计要求。 3)采用PID控制技术

PID控制是过程控制中的经典控制规律,通过对各个参数的设定,可以较精确的对供水压力进行控制。

当然,本设计内容还有很多不足之处。比如说,恒压供水系统管道破裂检测、蓄水池水位检测、通水管道阀门的控制、消防供水等都没有进行相应的设计。另外本文利用闭环控制系统中的简单PID算法来实现对恒压供水系统的设计,随着工业技术的发展,工业领域不断涌现出新型的PID控制算法,例如模糊控制算法、自适应控制算法、智能控制算法,这些先进的控制算法已经从一些高端的工业控制领域逐渐发展起来了,先进控制技术的引入可以使得恒压供水系统更加可靠稳定。除此之外,随着集成电路的发展,PLC与变频器可以集成一体,将恒压供水系统的控制机构与执行机构融为一体,只需外加一个压力检测装置,即可方便地控制供水系统的恒压输出。

23

致谢

在毕业设计即将顺利完成之际,回顾整个学习过程,首先我要特别感谢我的指导老师。我的指导老师教学工作繁忙,但在我们毕业设计的各个阶段,包括从开题、外出实习到查阅资料、方案修改都给予了我们无微不至的关心和帮助。他时刻地督促我们,激励我们,使我们不断的学习成长。我的指导老师严谨的治学精神、精益求精的工作作风以及忘我的奉献精神,深深地感染和激励着我们。

毕业设计是对大学所学知识的检阅与升华。在设计过程中,遇到了很多问题,需要不断分析问题和解决问题,使我查漏补缺的同时学到了很多课本无法涉及到的知识,体会到了工程设计的复杂与艰辛,和每次突破后都会感到的兴奋。问题的解决以至毕业设计的完美结束,有我个人的努力,还有来自老师和同学们耐心的指导和帮助。在此感谢给予我帮助的同学,感谢他们仔细的为我寻找设计中的缺陷,感谢他们耐心的为我解答难题。

大学生活在师长、亲友的支持下即将划上一个句号,而对于人生而言只是一个逗号。学习仍要继续,学习之路漫长而崎岖。而我们积累的大量知识应该使我们更加沉稳和自信,相信自己可以像解决现在的问题一样解决未来的问题。在此希望即将步入社会熔炉的我们都能够百炼成钢!

最后,向本届毕业答辩委员会组织致以崇高的敬意!向担任本次本专业毕业设计评审和答辩的所有老师们表示我最衷心的感谢和美好的祝福!

24

参考文献

[1] 黄立培,张学.变频器应用技术及电动机调速[M].人民邮电出版社,1999. [2] 邵裕森,戴先中.过程控制工程(第二版)[M],北京:机械工业出版社,2000 [3] 胡寿松.自动控制原理(第五版)[M],北京:科技出版社,2007 [4] 三菱微型可编程控制器[Z].日本三菱公司,1998. [5] 戴剑飞.变频微控调速装置在恒压供水系统中的应用[J].中国设备工程,2010,12. [6] 赵承荻,杨利军.电机与电气控制技术.北京:高等教育出版社,2007.04 [7] Jeffery Robert Turner.PLC Control Systems-Operating Principles,Hardware Configuration,and Closed-Loop Feedback Control System Design[D].University of Louisville,1999(7):78~79.

25

第五篇:变频空调

传统常规空调是直接更具温度控制让压缩机运转或者停止来维持室内的温度范围。变频空调由于可以根据温度控制指令,利用变频电源频率让压缩机在800-7800转/分范围内变化,从而调节氟利昂这种空调的冷媒流量来调节室内温度范围。下面我们详细看看变频空调机的工作原理:

变频空调中都装有变频器,这个变频控制器是如何工作的呢?国内规定的电压220V,频率50Hz的电流经整流滤波后得到310V左右的直流电,此直流电经过逆变后,就可以得到用以控制压缩机运转的变频电源,这就能将50赫兹的电网频率转变为30-130赫兹,

变频式空调器一般带有微机(电脑)控制。它检测室内外信号如温度(室内外温、蒸发器温、冷凝器温、吸气管口温、膨胀阀出入口温、变频开头散热片温等),风机转速,电动机电流等。并由微机发出风机、压缩 机运转速、制冷剂流量、阔的切换、安全保护等信号。此类机装有电子膨胀间节流。它随微处理器发出的信号,随时改变制冷剂流量,故它的效率比普遍使用毛细管节流方式的高。同时在制冷方式中,无化霜烦恼(化霜不停机)。因此空调在制热时不会像普通机在除霜倒泵逆转时,吹出冷风使室温下降

变频空调还能在142-270伏范围的电网电压正常使用,根据温度控制指令,在压缩机连续运行时会改变频率,当产冷量要求大时则高速运转,反之低速运转。由于变频机无频繁的启动大电流冲击,且一直工作在低速上

上一篇:大轰炸观后感范文下一篇:读经典演讲稿范文