遥感技术在农业应用

2024-05-22

遥感技术在农业应用(通用8篇)

篇1:遥感技术在农业应用

龙源期刊网 http://.cn

遥感技术在农业中的应用与发展

作者:刘歆

来源:《科技创新导报》2011年第27期

摘 要:作为现代信息技术的前沿技术,遥感技术能够快速准确地收集农业资源和农业生产的信息,可以实现信息收集和分析的定时、定量、定位,客观性强。因此,在农业发展的新阶段,运用遥感技术开展农业资源调查、灾情监测与预报、农业环境保护以及农作物估产等方面的应用将促使农业决策科学化提高到一个新的水平,同时也将为农业生产提供高质量的服务。本文阐述了遥感技术在我国农业生产上的应用概况,探讨了遥感技术发展的新趋势。

关键词:遥感技术农业应用

中图分类号:TP7 文献标识码:A 文章编号:1674-098X(2011)9(c)-0144-02

引言

遥感技术是20世纪60年代蓬勃发展起来的一门新兴的、综合性的探测技术,随着空间技术、信息技术、电子计算机技术和环境科学的发展,从而逐步形成发展的一门新兴交叉学科技术。遥感技术(遥感图像是一种综合的地理信息源,它包括各种地理要素,是一种非常重要的空间信息,为资源特征的空间分析提供定位、定性和定量的数据),地理信息系统技术(它是以采集、贮存、管理、分析和描述整个或部分地球表面包括大气层在内与空间和地理分布有关的数据的空间信息系统)和全球定位系统技术(是对海陆空设施进行精确导航和定位系统)构成了完整的遥感技术体系,是对地观测的重要手段,也是信息技术的一个重要分支。而农业遥感是随遥感技术的发展而发展的,在农业领域内最早应用的主要是航空照片。当前应用较多的领域是农作物估产、作物生长状态监测、土地调查、农作物生态环境监测与自然灾害及病虫害监测等方面。同时,农业是遥感技术的最大用户。农业遥感的工作十分广泛。我国是农业大国,改变农业管理水平,合理利用资源以及粮食生产等十分需要该项技术为政府决策部门提供准确信息。1 遥感的概念及技术特点

遥感(Remote Sensing)即遥远的感知,从广义上说是泛指从远处探测、感知物体或事物的技术,即不直接接触物体本身,从远处通过仪器(传感器)探测和接收来自目标物体的信息(如电场、磁场、电磁波、地震波等信息),经过信息的传输及其处理分析,揭示出物体的特征性质及其变化、分布等特征的综合性探测技术[1]。其工作原理是利用遥感器从空中来探测地面物体性质的。它根据不同物体对波谱产生不同响应的原理。识别地面上各类地物,具有遥远感知事物的能力。也就是利用地面上空的飞机、飞船、卫星等飞行物上的遥感器收集地面数据资料,并从中获取信息,经记录、传送、分析和判读来识别地物。其技术特点如下:

1.1 可获取大范围数据资料

遥感用航摄飞机飞行高度为10km左右,陆地卫星的卫星轨道高度达910km左右,从而,可及时获取大范围的信息。

1.2 获取信息的速度快、周期短

由于卫星围绕地球运转,从而能及时获取所经地区的各种自然现象的最新资料。以便更新原有资料或根据新旧资料变化进行动态监测。这是人工实地测量和航空摄影测量无法比拟的。

1.3 获取信息受条件限制少

在地球上有很多地方,自然条件极为恶劣,人类难以到达,如沙漠、沼泽、高山峻岭等。采用不受地面条件限制的遥感技术,特别是航天遥感可方便及时地获取各种宝贵资料。

1.4 获取信息的手段多,信息量大

根据不同的任务,遥感技术可选用不同波段和遥感仪器来获取信息。例如可采用可见光探测物体,也可采用紫外线,红外线和微波探测物体。利用不同波段对物体不同的穿透性,还可获取地物内部信息。[2]遥感技术在农业生产与发展方面的综合应用

遥感技术可以客观、准确、及时地提供作物生态环境和作物生长的各种信息,它是精确农业获得田间数据的重要来源。遥感技术在精确农业中应用主要有以下几个方面:

2.1 农作物实际播种面积的遥感监测与估算

在我国,由于耕地的数量减少与质量下降,耕地保护已经成为实现农业可持续发展的一个重要战略任务。遥感信息因其信息量丰富、覆盖面大、实时性和现实性强、获取速度快、周期短和可靠准确性以及省时、省力、费用低等优点,被广泛用于测定农业用地的数量和质量的动态变化。通过遥感卫星监测并记录下农作物覆盖面积数据,在此基础上可以对农作物进行分类,估算出每种作物的播种面积。遥感估产是建立作物光谱与产量之间联系的一种技术,通过光谱来获取作物的生长信息。在实际工作中,常常用绿度或植被指数作为评价作物生长状况的标准,植被指数中包括了作物长势和面积两方面的信息。

2.2 农作物的长势与产量的遥感监测与估算

作物长势是作物生育状况总体评价的综合参数。农作物长势监测指对作物的苗情、生长状况及其变化的宏观监测。不同作物的发育期不同、长势不同,它们的光谱反率不同,叶面积和生物产量有很好的线性关系。利用这一特性可以测定叶面积指数,从而监测作物长势,进行估产。也可以利用0.6~0.7mm的可见光与0.75~1.00mm的近红外两个波长范围的反射率比值来估算生长量,比值愈大说明作物生长愈好,反之生长不良。再根据比值与干物重建立回归关系,求出回

归系数,从而获得单位面积产量的近似公式。利用卫星遥感技术监测我国广大农业区作物生产状况,做估测作物产量提供的监测与预测结果,逐步成为指导和决策农业生产不可缺少的重要信息,将产生显著的社会效益和经济效益。

2.3 作物长势与产量预报遥感模型的建立与应用

农业模型已被公认为农业研究的一个新方法。农业模型由于将农业过程数字化,使得农业科学从经验水平提高到理论水平,是农业科学在方法论上的一个新突破。我国作物模型的研究开始于20世纪80年代中期,机理性较强的有高亮之的水稻模型RICEMOD、戚昌翰的水稻模型RICAM、冯利平的小麦模型WHEATSM、尚宗波的玉米模型MPESM等。这些模型能够反映作物生长和发育的基本生理生态机理和过程,具有动态性和通用性。但是,各种模型本身对作物的描述有简有繁,许多模型中采取了一系列的假设来描述未知生理过程,使得精度降低。另外,模型所描述的大量气候、土壤和作物特性资料不易得到,也增加了应用难度,需要进行深入的研究和矫正。[3-4]

2.4 农作物生态环境监测

农作物生态环境监测利用遥感技术可以对土壤侵蚀、土壤盐碱化面积、主要分布区域与土地盐碱化变化趋势进行监测,也可以对土壤水份和其他作物生态环境进行监测,这些信息有助于田间管理者采取相应措施。德国、日本、印度等国应用卫星成像系统,早期辨别农作物病虫害,及时采取对策,有效地减少了病虫害的危害程度,提高了经济效益。

2.5 农业灾害监测

对重大灾害进行动态监测和灾情评估,减轻自然灾害所造成的损失是遥感技术应用的重要领域。利用遥感技术,结合各种自然灾害的实际应用模型,研究监测各种自然灾害的发生、发展、灾情、损失、评估等,同时对监测到的灾情及时预报,从而最大限度地减轻自然灾害所造成的损失。目前遥感灾害监测已经比较成熟地应用在干旱、洪涝、冻害等农业气象灾害的监测中。气候异常对作物生长有一定影响,利用遥感技术可以监测和定量评估作物受灾害程度,作物受旱灾涝灾影响的面积,对作物损失进行评估,然后针对具体受灾情况,进行补种、浇水、施肥或排水等抗灾措施。

2.6 农业结构调整和区域发展

在不同资源条件对发展农业生产的适宜性之间常常出现互不一致的矛盾,采用遥感技术可把各项资源条件的不尽一致的适宜性进行空间分析,便于集中反映出各因素适宜性的空间组台,从而因地制宜地为指导农业生产提供科学依据,提高资源可持续利用的效率。农业结构调整中,农业区划必须根据客观规律,特别是地域分异规律的要求,阐明自然条件(地貌、土壤、气候、植被、动物、水文、地质等)发生、发展和分布的规律;阐明社会经济条件(人口、劳动力、技术、收入分配、地理位置等)发展、变化和分布规律,查明和评价这些农业生产条件中的资源数量、质量和空间分布对农业生产的影响,研究根据地域生产综合体内的相似性及其潜力如何开发、利用、保护,提出发展方向、合理结构、决策性指标和战略性措施,从而为农业规划提供科学依据和论证。分区划片和形成合理的农业生产结构和布局更需要强大的空间分析技术和稳定的空间数据信息来支持。

2.7 数字农业

数字农业是遥感、地理信息系统、全球定位系统、机电一体化与农业的有机结合,是遥感技术在农业领域应用的集中体现。数字农业是一个信息密集型的技术,对信息获取、处理技术具有极高的要求,也是信息技术发展到一定程度的必然结果;另外,数字农业也是一项环境友好的技术,因为农业生产中农药和化肥的过量施用,会造成严重的环境污染,农业耕作过度也将导致诸如水土流失等环境的破坏。因而,发展数字农业技术也是环境保护和可持续发展的需要。[5]3 遥感技术在农业发展中的应用前景与展望

随着遥感技术的广泛应用,近年来在农业上的应用向深、宽、广发展。从农业部门的实际应用来看:及时掌握农业资源状况和演变趋势,提出合理可持续利用的科学对策,是实现资源和生产力要素优化配置,保证国民经济持续、稳定、协调发展的重要手段;及时掌握主要农作物的播种面积、长势和产量,对于国家制订合理的农产品贸易政策有重要意义。

3.1 发展新的遥感信息模型

遥感信息模型是遥感应用深入发展的关键.应用遥感信息模型.可计算和反演对实际应用非常有价值的农业参数。在过去几年中。尽管人们发展了许多遥感信息模型.如绿度指数模型、作物估产模型、农田蒸散估算模型、土壤水分监测模型、干旱指数模型及温度指数模型等,但远不能满足当前遥感应用的需要。因此发展新的遥感信息模型仍然是当前遥感技术研究的前沿。

3.2 综合应用遥感技术防治病虫害

植物病虫害初期,其叶片结构已发生改变,从其近红外光谱反射率可以准确地显示出来。但植物的叶绿素的数量和质量还没有发生改变,其可见光的波段的光谱反射率不会发生明显变化,肉眼也很难观察到。可以利用红外遥感技术及时、准确地进行预测预报。并能分辨植物的受害程度,把病虫害消灭在萌芽状态。如利用0.7~0.9mm的近红外照片可揭示燕麦、小麦的黑锈病

[6]。

3.3 微波遥感技术

微波遥感技术是当前国际遥感技术发展重点之一,其全天候性、穿透性和纹理特性是其他遥感方法不具备的。利用这些特性对解决,恶劣气象条件下的灾害监测以及冰雪覆盖区、云雾覆盖区、松散层掩盖区及国土资源勘查等将有重大作用。

3.4 高光谱传感器的应用

通过高光谱遥感数据对主要作物生物化学参数的高光谱遥感监测以及设计水稻、棉花和玉米不同播种期处理的试验,获取不同生育期的生物化学和相应的高光谱反射数据,分析和研究这些作物在不同发育期的高光谱反射特征及其与生物化学参数的关系,确定能反映它们生物化学参数的高光谱遥感敏感波段。提取对应不同生物化学参数的高光谱遥感特征参数,摸索不同生物化学参数的高光谱遥感监测方法,建立其估算模型。高光谱和超高光谱传感器的研制和应用.将是未来遥感技术发展的重要方向。[7]建议

虽然我国在20世纪70年代末就开始了农业遥感的应用研究,在土地利用现状调查、盐碱地调查、耕地调查、农作物长势监测、测产预报方面作了大量的工作,取得了很多成果。但对大面积的农作物种植面积调查、农作物病虫害预警及土地动态监测方面等都缺乏有效的手段。在工作的精度和深度上都有待提高。遥感的新技术、新手段要求我们农业科研人员探索和学习空间信息转化技术,借鉴国外先进技术建立符合我国特点的农业遥感监测系统,继续挖掘遥感在数字农业中的作用。

参考文献

[1] 梅安新,等.遥感导论[M].北京:高等教育出版社,2001,7.[2] 孟未来,周建英.浅议遥感技术在农业上的应用[J].农业网络信息,2008(2).[3] 陈会明.浅谈遥感技术在农业生产中的应用[J].安徽农学通报,2009,15(19).[4] 赵英时等著.遥感应用分析原理与方法[M].北京:科学出版社,2003,6.

[5] 唐华俊.遥感技术在农业资源区划中的应用与展望,中国农业资源与区划,20(4),1999.[6] 刘洋,高雪莲.遥感与农业[J].科技简讯.[7] 申广荣,王人潮.植被高光谱遥感的应用研究综述[J].上海交通大学学

报,2001,19(4):315~321.

[8] 杜培军.遥感原理与应用[D].徐州:中国矿业大学出版社,2006,7.

篇2:遥感技术在农业应用

摘要:随着时代的进步,科技的发展,气象雷达与卫星遥感在不同领域都发挥着巨大的作用。农业遥感对世界许多国家的农业生产、粮食安全、进出口调整、农业政策及计划制度、以及保护国家利益等方面都起到了巨大的作用。

关键字:气象雷达,遥感技术

一、气象雷达

1、气象雷达的工作原理

雷达发射机产生电磁能量,雷达天线将电磁能量集中形成向某一方向传播的波,由雷达

4天线以电磁波的方式辐射出去,电磁能在大气中以光速(29.98×10km/s)传播。当传播着的电磁波遇到了目标物后便产生散射波,而且这种散射波分布在目标周围的各个方向上。其中有一部分沿着与辐射波相反的路径传播到雷达的接收天线,被接收的这一部分散射能量,称为目标的后向散射,也就是回波信号,对这种回波信号的检测可以确定目标的空间位置。雷达是用测量回波信号的延迟时间来测量距离的。假设目标离开雷达的斜距用R表示,则发射信号在R距离上往返两次经历的时间用Δt表示,目标的斜距R便可由下式给出(1/2)cΔt,其中c为光速。雷达测量目标的方位角和仰角是依靠天线的定向作用去完成的,它辐射的电磁波能量只集中在一个极狭小的角度内。空间上任一目标的方位角和仰角,都可以用定向天线辐射的电磁波束的最大值(即波束的轴向)来对准目标,同时接收目标的回波信号,这时天线所指的方位角和仰角便是目标的方位角和仰角。雷达天线装在传动系统上,可以固定方位角而在仰角范围内扫描,或固定仰角而在方位角范围内扫描,从而可以得到各个方向和探测距离内目标的信息。

世界上最高的气象探测站

2、气象雷达的组成

典型的气象雷达的主要由发射系统、天线系统、接收系统、信号处理器和显示系统等部分组成。电子线路组成部分见下图

3、气象雷达在农业方面的应用

无论是农业气象监测、农业气象情报、农业气象灾害防御,农业气候区划及资源开发利用、农作物产量预报等方面,我国气象工作者都开展了大量卓有成效的工作,为保障和促进我国农业生产做出了显著贡献。农业气象业务已成为现代气象业务体系中最重要的领域,而我国基层的气象为农服务又是其中最基础、最不可或缺的部分

在实施人工增雨(雪)、人工防雹及森林灭火中,采用雷达进行时实天气跟踪探测,可以有效监测云雨过程的发生和演变规律[1],是不可缺少的重要工具。目前,随着气候变暖,灾害性天气,如冰雹、洪水、干旱和森林火灾等时有发生。在气象应急服务时,快速应对异常天气变化,及时准确地提供

二、卫星遥感

1、遥感技术在国际农业上的应用状况

在农田信息采集和服务方面充分应用了卫星遥感系统。

1)在农业资源清查、核算、评估与监测方面.遥感系统强大的图形分析与制作功能,可编绘出土地利用现状图、植被分布图、地形地貌图、水系图、气候图、交通规划图等一系列社会经济指标统计图,也可进行多种专题图的重叠而获得综合信息.实现对具有时空变化特点的农业资源存量和价值量的测算以及资源现状、潜力和质量的客观评估.从而真实反映农业资源状况,为科学利用和管理农业资源提供强有力的决策依据。

2)在农业区划方面,遥感系统通过构建区划模型,进行不同区划方案空间过程动态模拟与评价,可使农业区划从野外调查、资料收集、信息处理、计算模拟、目标决策、规划成图到监督实施全过程实现现代化。

3)在土地资源与土地利用研究方面,遥感系统能方便获取资源数量和质量变化,提供研究区域土地面积、土壤特性、地形、地貌、水文、植被及社会、经济及自然环境的真实信息,直观反映土地利用现状、利用条件、开发利用特点和动态变化规律。

年降水量分布图

4)在作物估产与长势监测方面,遥感系统多时相影像信息.可反映出宏观植被生长发育的节律特征,可通过对各种数据信息空间分析,识别作物类型,统计量算播种面积,分析作物生长过程中自身态势和生长环境的变化,构建不同条件下作物生长模型和多种估产模式,根据各种模型预估作物产量。

5)在农业灾害预警及应急反应方面,遥感系统可追踪害虫群集密集、飞行状况、生活习性及迁移方向等.通过分析处理,可给出农作物病虫害发生图、分布图及可能蔓延区图,为防虫治害提供及时、准确、直观的决策依据。另外,可实现洪涝灾、旱灾、水土污染等农业重大灾害预测预报、灾情演变趋势模拟和灾情变化动态、灾情损失估算等,为防灾、抗灾、救灾预警及应急措施提供准确的决策信息。

6)在农业环境监测和管理方面,遥感系统能够对农业资源环境质量变化进行动态监测,及时发现情况进行预警:能够建立农业资源环境空间数据库,管理、分析和处理环境数据,高效汇总、汲取有用的决策信息;能够建立若干环境污染模型,模拟区域农业资源环境污染演变状况及发展趋势。

农业气象与遥感监测

2、遥感技术展望

1)高光谱传感器的应用

美国目前正在对高光谱传感器进行矿产、油气、环境及农业等4大领域的应用试验。人们希望通过高光谱遥感数据对主要作物生物化学参数的高光谱遥感监测以及设计水稻、棉花和玉米不同播种期处理的试验.获取不同生育期的生物化学和相应的高光谱反射数据.分析和研究这些作物在不同发育期的高光谱反射特征及其与生物化学参数的关系.确定能反映它们生物化学参数的高光谱遥感敏感波段:提取对应不同生物化学参数的高光谱遥感特征参数:摸索不同生物化学参数的高光谱遥感监测方法.建立其估算模型。高光谱和超高光谱传感器的研制和应用.将是未来遥感技术发展的重要方向。

2)发展新的遥感信息模型

遥感信息模型是遥感应用深入发展的关键.应用遥感信息模型.可计算和反演对实际应用非常有价值的农业参数。在过去几年中.尽管人们发展了许多遥感信息模型,如绿度指数模型、作物估产模型、农田蒸散估算模型、土壤水分监测模型、干旱指数模型及温度指数模型等.但远不能满足当前遥感应用的需要.因此发展新的遥感信息模型仍然是当前遥感技术研究的前沿。如收集整理前人大量研究结果.进一步分析明确决定水稻品质的主要生化组分及其与品种和环境条件之间的关系.建立植株叶绿素、氮素及水分等主要环境因子与籽粒蛋白、淀粉特性相关的农学机理和模型.着重研究水稻营养器官碳氮库、碳氮运转效率与籽粒品质指标间的关系;构建水稻品质特征光谱参量识别模型、光谱反演模型和水稻品质光谱数据库.建立基于光谱数据库的多尺度(光谱、空间、时间)、多平台(地面平台、卫星平台)水稻品质遥感信息模拟与评价模型:建立农学模型与遥感模型之间的链接模型.开发出具有预测预报功能的水稻品质光谱和卫星监测信息系统。并以优质高效为目标.建立基于遥感信息的调优栽培体系及预测预报系统。

3)综合应用遥感技术防治病虫害

对全世界的蝗虫主要源地.利用陆地卫星监测滋生状况.利用航空雷达追踪飞蝗路径.利用气象卫星确定风向界面.加以围堵歼灭。综合应用遥感技术防治病虫害.对我国西部经济开发.东部湿地保护.都是大有作为的应用新领域。4)微波遥感技术

微波遥感技术是当前国际遥感技术发展重点之一,其全天候性、穿透性和纹理特性是其他遥感方法不具备的。利用这些特性对解决海况监测.恶劣气象条件下的灾害监测以及冰雪覆盖区、云雾覆盖区、松散层掩盖区及国土资源勘查等将有重大作用。

总之.近年来遥感技术越来越受到各国的普遍重视.世界遥感技术面临着突飞猛进的发展.新的传感器将使遥感技术应用的领域进一步拓宽.监测精度不断提高.新的遥感处理软件将使科技人员的工作效率大大提高.使综合使用各种遥感资料变为可能。随着人们对遥感技术的重视进一步提高.遥感技术在农业上将得到更加广泛的应用。

三、总结

农业是国民经济的基础,农业生产和气象条件有着非常密切的关系,特别是北方地区旱涝、风暴等气象灾害对农业生产影响很严重,同时农村又是遭受气象灾害最为严重的地区。加快发展现代农业,建设社会主义新农村,保障粮食生产,气象服务在其中具有重要作用。同时,还必须重视合理利用气候资源,强化气象科技的支撑,面对新农场建设的需求,必须完善农业气象服务体系和农村气象灾害防御体系,大力发展农村公共气象服务,充分发挥气象在防灾减灾、应对气侯变化和利用气候资源中的作用,有效防御气象灾害,确保农业增产、农民增收。

参考资料:

1、百度百科,《气象雷达》

2、百度百科,《卫星遥感》

篇3:遥感技术在红星农场农业上的应用

1 发展现状

2010年以来, 红星农场与中国科学院遥感与数字地球研究所合作, 开展卫星遥感技术在精准农业上的应用研究与示范。通过几年来的地面标定工作和一系列空间遥感模型的建立, 利用遥感技术, 已经对全场所有地块作物的生物量及生理参数进行监测, 及时反馈全场农作物的分布、长势、养分等情况, 为专家的决策提供了技术支撑和数据支持。同时, 研究工作还得到了国家发改委和财政部2012年关于组织实施卫星及应用产业发展专项“利用卫星支持规模化农业条件下的精准耕作应用示范”的支持。

在数据源上主要选择我国自主研发的HJ-1星 (环境减灾星) 的免费2级产品。HJ-1星由多平台的多传感器组成, 具有30m分辨率, 基本可以满足我国东北地区农田尺度开展监测的需求。

2015年红星农场积极开展积雪融化程度、农田尺度作物长势、土壤养分、作物单产、作物成熟期、作物水分胁迫、作物收割情况等的遥感监测, 累计处理遥感数据近10G, 制作遥感专题图35副, 定期交付农场农业科、农机科、科技园区等业务部门, 为农场管理层对各作物各阶段的管理提供决策支持与科学指导。目前可以定期制作的遥感监测图主要包括以下几方面。

1.1 春播期遥感监测

在春播期, 根据农事活动需求, 可以提供以下几种遥感监测图:①以地块为单元的冬雪融化状态遥感监测图;②以地块为单元的春季旱涝 (土壤墒情) 状态遥感监测图;③以地块为单元的播种适宜期遥感监测图 (生成适宜播种地号顺序序号图和机车行车路线图, 指导播种作业) 。

1.2 苗期遥感监测

苗期遥感监测主要是以玉米、大豆为主的作物各生育期监测, 依据作物生长模拟专家系统, 生成专家决策数据, 评价各生育期间气象条件和作物生长情况, 生成影响生长、产量的数据) 。主要提供以下几种遥感监测图:①以地块为单元的出苗状况遥感监测图 (重点监测有否出苗或出苗重复情况, 判定重播或漏播情况, 指导农民及时查田补种或减掉多余苗) ;②以地块为单元的作物识别, 生成种植作物分布图, 确定种植计划的完成情况;③以地块为单元的作物长势监测, 评定作物长势优劣;④以地块为单元的作物养分监测 (N、P、K) , 生成作物养分图, 依据农业生产管理专家系统来指导变量追肥和变量喷施叶面肥作业;⑤以地块为单元的土壤墒情 (旱涝灾害) 及气象灾害 (风、雹) 状况遥感监测图。

1.3 收获期遥感监测

在收获期主要提供以下几种遥感监测图:①以地块为单元的土壤墒情 (旱涝) 状况遥感监测, 结合作物成熟期, 来确定最佳行车路线图;②以地块为单元的作物产量遥感监测, 生成作物产量图;③各作物以地块为单元的收获情况监测图, 对各作物已收地块和未收地块进行监测, 便于统筹决策;④以地块为单元的地块有机质状况遥感监测, 生成土壤有机质图。

2 存在的问题

通过几年来的应用总结, 主要有以下几方面的问题。

a.精度问题由于受大气状况、数据质量以及反演模型本身的适用性等因素的影响, 总体上农田尺度作物的生理参数、生化参数和环境参数的反演精度通常只能达到80%~85%, 甚至更低, 这一精度还不能很好地满足精准农业对农田信息的需求。

b.农田参数信息利用问题基于遥感技术获取的农田参数信息通常以空间分布图的形式提供给用户, 然而对系统的大多数末端用户 (农户) 来说, 这一信息过于复杂, 且不易理解。

c.非技术因素除了技术上的问题外, 遥感数据获取和分析的成本, 以及遥感技术使用过程中, 对使用人员的专业素质要求也是制约其在精准农业领域进一步推广的重要因素。

3 未来展望

a.持续开展地面观测数据的获取, 结合新的观测数据对各遥感模型进行全面标定, 提高监测精度与准度。

b.改进监测方法, 提高观测水平, 获取更准确、更全面的基础数据。

c.在完善系统建设的同时, 开展监测技术与系统的应用示范, 让遥感提供的农田信息产品进入农业生产管理流程, 以实现农业生产的优化, 同时通过应用示范发现问题, 不断完善监测技术与系统。

篇4:遥感技术在农业应用

关键词:无人机;光学遥感技术;土壤湿度;节约用水

一、我国的干旱状况及干旱预警机制

(一)我国干旱现状

我国是一个严重干旱缺水的农业大国。很多省份的人均水资源量低于500立方米。我国人均水资源占有量在世界银行统计的153个国家中仅排第88位。水资源分布也很不平衡,长江流域及其以南地区,面积只占全国的36.5%,但水资源量却占全国的81%;其以北地区,面积占全国的63.5%,但水资源量仅占19%,所以水资源短缺是我国面临的严峻问题。并且我国的农业生产几乎全部依靠灌溉,因此发展安全节约高效的精准农业是我国农业发展的一个目标。

(二)我国干旱预警机制

我国干旱预警主要是通过国家各级人民政府抗旱防汛指挥部负责管理。依据国家的相关法律法规、农牧业、水利、气象等部门向同级人民政府递交干旱监测、预测预警决策信息,政府部门根据干旱灾害的严重程度启动不同的预警应急预案,不同部门之间开展的常规干旱监测、预警评估业务信息,供内部业务使用或通过授权的媒体上发布。所以我们一般得到的天气及干旱情况是比较笼统的大范围的天气状况。但是现在的精准农业上的需要的则是应比较详细的、精准的。同时由于地理环境以及土壤环境的差异即使在同一块土地中不同部分的土壤含水量也会出现差异,更重要的是我国的地理环境比较复杂,想要准确的监测土壤湿度就更难了。

二、无人机在旱情监测上的应用

通过发展安全高效节约的精准化农业是农业现代化的重要标志,也是我国发展农业的一个目标。无人机已经成为一种新型的信息获取途径,在农业现代化的建设进程中,其在精准农业发展中占有的地位会越来越重要,尤其是在农业旱情监测以及农业灌溉上的应用。

(一)无人机遥感技术

传统遥感技术一般采用卫星和大型飞机作为遥感平台,进行大面积观测并获得丰富的综合性数据。但是,传统遥感在小时空尺度的数据采集分析上存在分辨率不足的问题。如果采用小型无人机作为低成本的新型遥感平台,就很好的弥补了传统遥感的缺陷,在局部遥感和应急监测方面会取得巨大的成功。

无人机遥感技术要求搭载的仪器所占空间小、重量轻、抗震性优良。光学遥感技术具有所占空间小、时间短、成像简单、费用少等一系列优点。无人机通过搭载有合成的多功能探测器,以近红外光作为遥感测量的手段,采集多波段光谱数据,依靠地面的操作站对无人机实施操控。

(二)土壤湿度监测与土地灌溉

土壤的含水量是农作物生长的重要指标,农作物的生长都有适宜的土壤湿度范围,在现代的农业生产中我们往往需要及时的了解大面积农田的土壤湿度。传统的土壤水分测量方法有:种子散射法、重力土壤采样法、张力计法、土壤蒸渗法和土壤电阻法。但是这些方法采样时间长且是点数据,不能满足大面积空间、长期的土壤湿度动态要求,没有显著的代表性。微波遥感技术就可以很好解决这些问题,微波遥感监测土壤水分的基础是土壤的介电特性与水分含量间的密切关系,因为土壤的介电常数受水的影响很大。无人机通过搭载遥感设备,对收集到的土壤反射回的微波图像数据进行综合分析,和建立的模型进行对比得到具体的土壤湿度含量,并且可以对图像模糊的区域通过自动或人工对无人机实时进行任务设定、航线调整进行重新的观测。可以更加全面的对土壤进行监测,然后将再次传回的数据与图像进行数据处理分析,得到更加具体的土壤湿度。

农业灌溉是农业生产中最基本的问题,作为下一个严重缺水的国家,发展现代农业是我国农业建设的首要任务。节水灌溉技术在广义上是指相对于传统灌溉技术更加能节约、高效用水的灌溉方法,措施和制度的总称。狭义上是指以现代农业作为前提,根据地域性和作物生长规律的不同,以实现农业产量最高和生态效益最好为目标而进行的水资源开发和灌溉技术的总称。

合理高效的农田灌溉,是保证作物生长和节约用水的基本准则。现代农业中常采用的节水灌溉技术有沟灌、喷灌、滴灌等技术。我们通过得到的不同的土壤湿度对灌溉进行合理的安排,这样既能保证作物产量又能达到节约用水的目的。

三、结语

现代农业的快速发展对农业航空的需求日益增长,决定了农用无人机必定成为农业生产操作的主要力量之一。随着无人机遥感技术的不断发展及其在农业上的应用,为现代的精准化农业的发展提供了更为有利的技术支持,其不仅可以应用在土壤湿度的监测和农业灌溉上,还可以应用在其他农业的信息采集上,对农业生产进行实时监测,从而将农业生产的风险降到最低,保证农业产量,加快推进我国的农业精准化建设。

参考文献:

[1]高占义.中国的灌溉发展及其作用[J].水利经济,2006,24(1):36-39.

[2]朱平.区域水资源预警方法研究[D].扬州大学,2007.

[3]于宝珠.旱情风险评价模型及其预警机制的研究[D].东北农业大学,2012.

[4]孙伟.中国农业节水技术推广关键影响因素研究[D].东北农业大学,2012.

篇5:遥感技术在地理科学中的应用

3.1 遥感技术在地质灾害中的应用

遥感技术应用于大面积的地质灾害调查, 可达到及时、详细、准确且经济的目的。在不同地质地貌背景下能监测出地质灾害隐患区段, 还能对突发性地质灾害进行实时或准实时的灾情调查、动态监测和损失评估。为此,我国设立了专门的“地质灾害遥感综合调查”课题, 经过近20年的实践,已摸索了一套较为合理、有效的滑坡、泥石流等地质灾害遥感调查方法。在“5.12”汶川大地震的后续救援工作中,遥感技术就发挥了突出作用,第一时间提供了地质地貌变化情况,为政府作出正确决策提供了依据。

3.2 遥感技术在生态环境中的应用

伴随着社会的进步和发展,气候变化、环境污染成为了人类世界所面临的发展瓶颈。遥感技术应用于宏观生态环境要素的监测,具有视野广阔、获取的信息量多、效率高、适应性强、可用于动态监测等众多优点,同时其技术方法成熟。为此,采用卫星遥感这一面向全球的先进技术,是环境科学研究的必要途径,它不仅可以为我们提供大面积、全天时、全天候的环境监测手段,更重要的是能够为我们提供常规环境监测手段难以获得的全球性的环境遥感数据,这些数据将成为我们进行环境监测、预报和科学研究不可缺少的基础。

遥感技术应用于环境监测上既可宏观观测空气、土壤、植被和水质状况,为环境保护提供决策依据,也可实时快速跟踪和监测突发环境污染事件的发生、发展,及时制定处理措施,减少污染造成的损失。其从空中对地表环境进行大面积同步连续监测,突破了以往从地面研究环境的局限性。

如赤潮遥感监测。1995年至1997年国家海洋局第二海洋研究所开展了“海洋水产养殖区赤潮监测及其短期预报试验研究” ,该项目成功地监测和预报了1997年11月发生在广东沿海和1997年7月发生在浙江的赤潮。开创了国内赤潮卫星遥感实时监测和预测的先河。

3.3 遥感技术在农业气象灾害中的应用

篇6:遥感技术在地籍测绘中的应用论文

遥感技术在地籍测绘中的应用论文【1】

【摘要】随着科学技术以及计算机技术不断地发展以及进步,在地籍测绘工作中,对于遥感技术的使用已经越来越成熟。

自遥感技术被开发应用以来,得到了广泛的推广以及实际应用,作为现代化技术中具有代表性的一种,其在建设、水利、规划以及农业等各个领域发挥了不俗的能力。

【关键词】遥感技术 地籍测绘 应用

引言:遥感,就是利用地面上空的飞机、飞船、卫星等飞行物上的遥感器收集地面数据资料,同时从里面获得有关信息,经过有关记录、传送、分析和判读来识别地物。

遥感由空基系统、地基系统和研究技术支持系统组成。

遥感技术是一门实用的,先进的空间探测技术,在国民经济中发挥着越来越重要的作用。

测绘工作,特别是基础测绘是国民经济和社会发展不可缺少的一项基础性、前期性和公益性工作。

遥感技术应用于基础测绘,可以高速度、高质量的测绘地图。

一、遥感技术的特点

遥感技术具有获取数据资料范围大、获取信息的速度快,周期短、获取信息受条件限制少、获取信息的手段多,信息量大等特点。

航空遥感具有技术成熟、成像比例尺大、地面分辨率高、适于大面积地形测绘和小面积详查以及不需要复杂的地面处理设备等优点。

缺点是飞行高度、续航能力、姿态控制、全天候作业能力以及大范围的动态监测能力较差。

但作为一种探测和研究地球资源与环境的手段,仍是方兴未艾、不可取代的。

二、遥感技术应用时的流程

动态的遥感技术在进行应用的时候,流程一般是选取数据、对数据进行处理、对发生变化的信息进行提取和对检测的精度进行评定。

1、选取数据

现在遥感技术选取数据一般是通过卫星。

在检测的时候应该和相关的土地利用图进行结合,并且进行对比,在检测的时候把一些生态、人文等指标加入材料中去,从而不断提高获取信息的精度。

若是要求精度特别高的时候,还有必要将GPS 获取的影像资料补充进来。

2、对数据进行处理

感技术直接获取到的一些数据是无法进行直接识别的,必须经过计算机技术的转化,才能进行识别,并且还要对数据进行一定的修正,提高信息的精确度。

3、对发生变化的信息进行提取

所谓的变化信息便是新发生变化的地理信息,对变化信息进行提取是地籍测绘的过程中遥感技术非常重要的应用。

通过时间先后,来进行变化信息量的获取,并且根据时间变化对未来进行一定预测,以备参考的时候使用。

4、对检测的精度进行评定

精度在某种程度上决定了遥感技术的质量,通过对于数据的分析和记录,便能够获取信息的真实精确度。

三、在测绘工作中遥感技术的应用

1、在专题图制作过程中的应用

所谓遥感专题地图的制作即在计算机制图的环境下利用遥感资料编制出各类专题地图,这是遥感信息在地理研究和测绘制图中的重要应用之一。

(1)制图比例尺以及空间分辨率的选择

空间分辨率也就是地面分辨率,是指遥感仪器所能分辨出的最小目标的实际尺寸,也就是遥感图像上面一个像元相对应的地面范围的大小。

因为遥感制图是利用遥感的图像来提取专题的制图信息,所以在选择图像空间分辨率时一定要考虑到下面两个因素:一是解译目标最小尺寸,二是地图成图比例尺。

空间不同规模的制图对象的识别,在遥感图像的空间分辨率方面都有一定的要求。

地图比例尺与遥感图像的空间分辨率有着密切的关系。

所以进行普通地图的修测更新和遥感专题制图时,对不同平台的图像信息源,应该结合研究宗旨、精度、成图比例尺和用途等要求,进行分析选用,以达到经济、实用的效果。

(2)波段以及波普分辨率的选择

在进行波普分辨率选择的时候,必须注意波段的选择。

波段的数目、波段的宽度以及波段的长度都能决定波普分辨率。

(3)时间分辨率和时相。

由于时间分辨率在遥感图像中的差别比较大,所以制图的时候,必须充分的了解其变化的周期,找出最能够揭示其本质的最佳时相。

2、在地籍测绘过程中的应用

(1)动态监测

随着遥感技术和计算机的发展、进步,日趋成熟的动态监测应用已融入地籍测绘中,例如遥感技术与地理信息系统结合,以及GPS定位技术等,给土地测绘带来了诸多的`方便。

在地籍测绘中应用遥感技术,最直接便捷的一点就是动态监测。

动态监测也就是应用遥感技术,对土地调查和动态、土地的变更进行监测。

在地籍测绘中,动态遥感监测技术是对土地的利用率和相关调查的资料,通过图形以及数字等难识别的对象为基础,利用计算机的相关技术,对难以识别的信息进行相关处理,变成可识别的图像和文字,从而记录相关的数据信息,合理的确定监测周期,以便对土地利用的变化情况进行全新的监测,各个时期的数据进行对比,从而得出最优。

技术上的进步给人们带来了越来越多的便利,随着计算机图像处理技术的成熟以及完善,动态监测技术应用于地籍测绘,在将来一定会越来越方便。

(2)遥感技术

在地籍测绘中,动态遥感监测技术的应用,一般通过以下流程来运作:数据的选取、处理、变化信息的提取和监测精度的评定。

①数据的选取,大家都知道地籍管理具备连续性、高精度性以及综合性等特征,目前的遥感技术对数据的选取,一般通过法国和美国的Landsat?TM、SPOT两种卫星数据来实现。

然而监测的精度一直以来都是遥感技术最关键的部分,为了提高精度需要,有时必须结合相关土地利用图,来作为监测的对比,并将生态、人文等相关指标列入地籍测绘资料中。

当精度的要求特别高时,必须借助GPS等高分辨率卫星影像当作补充资料。

②变化信息的提取,所谓变化信息,即在固定的时间段、土地的相关资料产生变化的相关量的大小来提取变化信息,这是遥感技术在地籍测绘中最为重要的应用,通过时间差来计算不同时间段的变化信息量,从而来预计出土地未来的变化规律,为今后的整体规划提供一定的参考。

(3) GPS RTK的勘测定界

在现在的土地勘测中,首先采用遥感影像上粗略标注勘界的位置,然后再到野外进行GPS-RTK测量。

建设用地中的土地勘测定界是实地的确定土地使用的界线范围,量测使用界线范围内各类土地面积并计算用地面积,测定界桩的位置等测绘技术工作,它不仅给各级政府的国管部门审批地籍管理、土地提供可靠依据而且提供了基础资料。

建设用地勘测定界的工作顺序为,审查用地文件DD现场的勘测DD图上的红线设计DD实地的放样DD审核测量DD面积测量与计算DD绘制建设用的地界图DD填绘建设用的地管理图DD资料的整理DD建档,经反复实地的勘测、图上的设计、权属的调查后制定出放样的数据。

利用GPS RTK技术勘测定界放样,能够避免关系距离法和解析法放样等放样方法复杂性,也简化了在建设用地勘测定界的工作工程,特别是对铁路、公路、输电线路、河道等线性工程以及特大型工程的放样尤为实用。

其是遥感与摄影测量科学的前沿内容。

结语:地籍测绘工作繁杂,在进行实际工作中,必须通过对高科技技术的运用才能有效地完成相应的工作,遥感技术的开发以及研究,给地籍测绘工作带来了极大的便利,并且随着科学技术不断地发展以及进步,遥感技术也将更加成熟。

篇7:遥感技术在农业应用

在当前我国经济不断向前发展的大形势之下,遥感技术的应用已经成为当前城市化进程不断向前推进的一个重要的措施。之所以会产生这样的情况,主要原因就在于当前城市所在的一些区域内部对土地的利用和覆盖情况已经发生了较大的变化与不同。当前我国众多城市的人口增长情况主要显示为人口增长过快过多,与此同时就是城市化进程过快的情况,在这样的情况之下,我国众多城市的城市面貌都得到了极大程度上的改进与变化。“内部结构重组”和“外围地域扩展”成为当今城市空间结构变化的主要方式。在面对当前我国这个快速发展与变化的城市系统的时候,首要任务就是要及时而又准确的掌握其对土地的利用情况与发展情况,只有这样才能有效的实现对当前我国土地的合理利用与配置。[

]

经过我国当前土地等相关的工作人员们对现有状况的认真分析与研究,不难发现的就是,我国过去传统、较为陈旧的对土地利用状况进行的调查的形式,是一种耗时又耗力的一种方法,这种方法在一定程度上不利于我国城市的发展。遥感技术作为当前一种较为先进的内容与技术,可以有效的实现对城市土地利用的变化研究提供多时相、大范围的实时信息。与此同时,要想获得更加有效的监测效果,还可以将这一技术与当前同样发展较为成熟的图像处理技术、识别模式的技术进行有机的结合,正是这样的效果与情况,可以有效的为我国当前的城市土地的利用动态方面出现的变化研究提供多时相、大范围的实时信息。在对我国土地情况进行一定的监测的情况之下,可以通过对遥感技术的实际应用获得与土地利用情况相关的一些类型与位置。这些变化信息的记录不单单可以有效的实现对前期开发效果进行有效的处理与开发,还可以有效的实现对日后我国相关城市内部开发的第治理与规划情况,从而有效的促进我国众多城市能够更加可持续的发展。[2]

国内外相关内容方面的研究综述

2.1

国外的研究成果

国外在关于遥感技术在城市土地利用动态发展的监测方面的研究,最早是在二十世纪六十年代,加拿大的Tomlinson最先提出了对相关内容进行一定研究的具体方法,即将当前收集到的大量土地利用数据通过计算机这一先进的科学技术进行综合的分析与研究。到了二十世纪九十年代,主要是由当前属于国际社会科学会的HDP这一组织进行的了解,主要借此对当前我国土地的利用情况进行了一个较为详细的总结与预测。[

]

不得不说的是,这一方面的监测内容与措施在二十世纪九十年代所举办的一次学术会议上,曾经使人们第一次认真的意识到当前全世界发展的最主要的因素就是对土地的合理利用。在这次学术会议上,使人们第一次认识到对土地进行合理的利用是当前全世界不断发展的重要因素,与此同时,还有效的明确了LUCC是当前世界上与环境变化相关的人文计划的几个主要的遥感技术在相关研究中的研究方向之一。这样一来,有效的实现了对当前土地的有效利用与实践。上个世纪九十年代末,国际地圈生物计划与IHDP共同联合在一起,着重推出了LUCC这个项目以及其自身的科学计划。在1994年,LUCC再一次提出了许多与土地遥感动态监测信息相关的设计研究,这些研究在一定程度上有效的实现了对当前土地利用情况的分析与研究。联合国环境规划署是在上个世纪九十年代末,初步启动了“土地覆盖评价和模拟”的项目;而在1995年,由国际应用系统对当时的研究工作启动了“欧洲和北亚土地利用”的项目。另外,美国的全球变化在一定程度上将臭氧层对人们生活环境所产生的环境进行了认真的分析与研究,随之而来的就是日本提出的“为全球环境保护的土地利用研究项目”,这一观点与项目的提出,主要阐述的是与当时土地发展的情况与现状,而这些相关的研究成果在一定程度上有效的实现了对我国土地利用情况的详细而又认真的分析与研究。以上的这些项目,都对世界上的与土地利用技术相关的详细技术进行一定的详细的分析与总结,在这样的情况之下,能够在极大程度上实现对土地的合理利用的终极目标,从而能够更加有效的实现对当前全世界具体情况的分析与了解。

然而,虽然当前遥感技术在土地利用监测方面展现出了其自身独特的特点与优势,但是当前国际方面在对土地利用情况进行详细而又认真的分析之时,仍然发现了一些对未来土地事业发展的情况产生消极影响的现象。这种消极的情况与现象,主要表现为缺乏对土地利用情况的驱动机制的重视,还在一定程度上忽略了对当前土地资源进行可持续利用等内容。这些都会直接或间接的影响到未来我国土地资源在利用与覆盖方面进行的一些预测与分析工作。[

]

2.2

国内的研究成果

我国在经历了多个五年计划以后,在科技上已经得到了极大程度的提高与发展。随之而来的就是我国的技术在遥感技术、地理信息技术方面已经有了一定的科学积累。其中,遥感技术主要是由我国农业合作部与科学院合作而进行的一项宏观调查与研究。我国在过去的几十年中,与土地利用工作相关的工作人员们已经对全国范围内的土地资源进行了一个整体的调查,这次调查中,相关的工作人员们主要开展了一系列认真的分析与研究工作,主要包括以下几个方面。首先,是对当前国外在此方面内容上已有的研究成果与资料进行研究与整理;其次,是对当前土地利用的变化情况对粮食的产生造成什么样的消极影响。

在以上这些内容方面,我国在与国外情况进行对比的情况下可以发现的是,当前我国在对土地利用情况方面进行的研究对我国的社会经济发展情况产生了一定的影响。为了能够使我国的土地利用变化研究跟上世界的发展潮流,学者们积极向国际组织看齐,对中国土地利用与土地覆被变化进行深入的研究。

举例子来说,刘家福等一些技术人员积极主动的将当前先进的遥感技术实践到我国日常土地利用动态变化的研究过程中。与此同时,张海玲也在自己所发表的文章中,具体而又成系统的对当前的应用遥感与地理信息系统技术做出了详细的阐述,并且在一定程度上有效的介绍了当前利用土地动态监测的重大意义,还在最后对当前的遥感与地理信息系统的有机结合进行动态监测自身独特的优势及方法进行了详细的分析与总结。潘耀钟先生作为我国北京师范大学的一名知名教授,他在经过不断的研究与实践的基础上,有效的实现了对当前遥感技术与信息技术得到一定有效的结合,并且将其技术与当前众多的多元遥感数据进行了一定的结合与融合,他的观点对于我国在土地利用方面起到了一定积极有效的促进、借鉴作用。[

]

课题研究(或设计)的内容

本文主要论述的是当前我国在土地利用动态监测方面的发展现状,针对当前的发展形势与内容作出了一定的努力与创新。土地利用动态监测的目的,主要是认真考虑到了运用遥感技术在内等众多先进技术的方法,建立起一个具有一定实效性的土地利用监测体系,这样将会对我国的土地利用情况产生一定的有效作用。本文通过对当前众多监测方法进行认真的分析与总结之后,认真的对其中的几个较为突出的方法进行了分别论述和阐述,主要目的就是能为本人的研究提供一定的数据、内容方面的资料与内容。通过对前人在我国土地利用动态监测方面的研究,我们可以看到的就是,在相关的理论对土地利用实际情况等方面存在一定的问题与不足,这些问题都对我国土地利用动态监测的事业产生了一定的直接影响。

本文主要的论述目标不单单是为了能够在理论知识方面取得一定有效的成就,更多的还是希望能够通过论文方面的指导加强对相关工作内容的实践,为日后我国在土地利用动态监测的这些方面的内容上起到一定的促进作用,从而能够为我国在类似的工作方面的进步与创新起到积极的促进作用。研究方法上主要是对扬州的实际情况进行分析与总结,这个过程中需要同学们之间进行良好的沟通与合作,在实施之前做好认真的分配工作,从而有效的提高收集资料的效率与质量。[

]

对我国当前在遥感技术土地利用监测中的研究方法

经过近些年来我国在遥感技术动态监测方面的分析与研究可以发现的是,当前进行监测有很多种方法,而其中比较有效的方法主要有两种,以下便将对这两种方法分别进行认真的阐述与论证。[

]

首先,是逐个像元比较法。这种对土地动态监测的方法主要的工作原理就是对不同时相的遥感图像像元进行比较,其主要目的是得到监测像元是否发生了一些变化。其次,是分类后比较。这种对土地动态监测的方法主要的工作原理就是对各时相的遥感影像进行单独分类,按照比较之后得到的结果进行认真的分类。这种方法主要是对当前各时相的遥感影像进行单独分类,经过认真的分析与总结,得到在监测土地等方面是否存在利用数量、类型与位置等方面的变化。[

]

总的来说,这两种较为主要的方法在实际应用的过程中,都具有自身各自不同的利于弊。对于第一种方法的实践效果来说,虽然这种方法的步骤十分简单,但是只能简单的测算出像元具体的变化情况,并不能十分有效的得到土地变化方面的详细类型与内容。然而,第二种方法因为受到了两时相数据分类精度的影响,导致监测精度累计了两次分类的误差,这样一来就会使得监测结果的精确程度很低,并不能十分有效的对相关工作起到一定的指导作用与意义。[

]

在当前从事土地利用动态监测工作方面的相关工作人员们对当前我国土地利用情况进行认真的分析与研究以后,对这两种较为主要的监测方法进行一定的总结与整合,从而在此基础之上得到了更多的能够有效实现对土地进行监测的有效措施与方法。以下笔者将会着重对其中的集中方法进行描述与阐述。

4.1

目视解译法

目视解译法这种方法是我国相关行业发展历史中的一种最简单、最基本的遥感解译方法。这种遥感解译方法主要是由较大比例尺卫片、以及土地详查成果图这二者综合在一起产生的,这种方法主要是以目视解译为主、计算机识别为辅的一种人机交互式的具体方法。这种方法好在判读精度较高,其仍然有一些缺点。例如,工作步骤较为麻烦复杂、对解译人员的个人素质和专业知识要求比较高。

4.2

分类后对比法

分类后对比法这种方法是我国相关行业发展历史中的一个较为重要的方法,也是当前比较常用的一种方法。这一方法首先是对不用时相遥感图像分别进行分类,然后再对分类结果进行比较分析,获取土地利用变化信息。从这种方法被研究出来以后,我国便有很多的学者对其进行了一定详细而又认真的分析与研究。[

]

唐伶戴昌达应用北京地区1987--1992年这四年中的时间,进行认真而又仔细的分析与研究,通过对试验区八年之间在城镇土地利用等方面的详细情况的记录与分析后,可以有效的制定出城市扩展的变化图件。另外,还有范作江范作江等以北京地区十年的城市扩展情况为例子,主要应用的是地理信息系统与遥感两种方法有机结合的一种方法,其主要目的就是能够更有效的实现对城市扩展的研究与分析。采用这种对比的方法可以有效的使得城市实体扩展的范围得到一定的扩展,并且有效的实现将此种内容进行有效的叠加,从而能够研究出更多时期的特点与内容。[

]

采用分类后对比法,可以有效的实现对城市的实体范围进行有效的扩展,并且还能在同一时期的城市专题方面将图像进行叠加,从而有效的研究了不同时间内城市扩展的不同特点与特征。沙晋明等相关的技术工作人员们经过认真的分析与研究后,得到了对浙江省绍兴市城镇土地扩展的详细内容进行了一定的研究。主要是采用了具体问题具体分析这一较为主要的方法,即在经过对该地区实际情况有了详细的了解以后,制订了与之相适应的图像处理技术,从而有效的获得了不同时期之内的城镇边界范围,为我国日后在土地动态监测工作方面的顺利进行打下了坚实的基础。[

]

虽然这种方法具有其自身独特的特点与优势,例如变化区域的土地利用类型与范围用分类后对比法可以被直观的监测出,但是其自身仍然存在着极大的缺点与不足,即多次单独分类难以避免形成累积误差,使监测总精度受到一定程度的影响。这样一来,便会对当前土地动态情况的研究产生一定消极的影响。然而,在认识到这种方法所存在的有点与缺点以后,就在一定程度上更加有利于相关的工作人员们对自己日后的研究与实践方向进行一定的合理规划,从而实现对其自身综合能力的提高与发展。[

]

4.3

影像比值差值法

影像比值差值法这种方法是我国相关行业发展历史中一个同样重要的方法与措施。这种方法主要针对的是当前不同年份、而时相又十分相近的影像,将其进行几何匹配以后,用年份相近的一份遥感影像某一波段像元,除以或者减去年份较远的遥感影像相对应波段的相应像元。当影像表现为正常的色调纹理,则表示土地利用类型未发生变化;当影像表现为较为突兀的色调与纹理,与周围的地物极为不协调时,表明土地利用类型发生变化,我们可以由此判断变化信息,该方法可以快速进行土地利用动态监测。[

]

比值差值法在实践操作方面具有极高的应用价值,作为一种比较典型的操作逐个像元比较方法,这种方法在数据源方面的要求就是,其数据源一定要保证是在同一季节的数据,如果不是这样,则会在一定程度上引发同物异谱现象,在一定程度上会影响到其自身数据的精准程度。[

]

4.4

主成分分析法

主成分分析法这种方法是我国在土地利用监测事业方面比较常用的一种方法,是对不同时相的数据进行一定的主分量变换,以此来更好的达到压缩数据的目的,从而更加有效的突出其内部较为主要的信息与内容、提取变化信息。这种方法将多光谱图像中各个波段那些高度相关的信息集中到少数的几个波段,不断的保证这些波段的信息能够互相不干涉的情况与现状,即用几个综合性波段代表多波段的原图像,使处理的数据量减少。[

]

黎夏等人主要将这种方法应用于相关的实践过程中去,提出使用主成分将全色

SPOT

影像与具有

米分辨率的多光谱

IKNOS

影像叠加作主分量变换,然后选取适宜的特征分量进行假彩色合成的方法,来生成光谱特征变异影像以突出变化信息,充分展示了

IKNOS

影像的应用巨大潜力。这种具体的组合方式不单单能够有效的实现对原有图像信息的保留与丰富,还能有效地做到将相关的数字信息进行有效的凸显与变化。[

]

4.5

影像融合法

影像融合法这种方法是我国在土地利用监测事业方面比较常用的一种方法,这种方法的目的主要就是发现其自身变化的特点约特征,而具体的手段与方法则是将两种不同的时相数据进行结合。这样一来,在两种不同的数据中,统一地面位置将会对应着相应的地面目标,也会有效地反映出一些相似的光谱特征。一旦两个不同源的数据如若受到实际土地利用变化的影响,不同时相的影像在相同的位置则对应不同的地面目标,从而导致光谱特征不一致,使该处的融合影像上出现光谱突变,并与周围的地物在光谱上失去协调性,从而检测出土地变化信息。[

]

这种方法主要是建立在图像融合技术之上的一种变化的提取方式,这种方法十分有利于不同时相、不同数据源的遥感融合影像,也能准确的确定土地利用变化所在的位置与范围。[

]然而,有优势的同时它也存在一定的缺陷与不足。这种缺陷与不足主要表现为,它只能在与相近季相的遥感影像融合的时候才能认真的判断出变化的范围,否则,将会存在一定细小的误差。

实施计划

5.1

对扬州地理图像的收集

扬州的地理位置刚好处于12037和12038两轨道的交界地带,经对两景影像无缝拼接并按照扬州市的行政区划边界进行图像剪切。[

]

结果如图1、图2所示。[

]

5.2

扬州市绿地信息的提取

利用ENVI图像处理软件提取ISAV指数[

],ISAV指数的公式为ISAV=(Rir-Rr)(1+L)

/(Rir+Rr+L)[

],其中Rir为第4波段,Rr为第3波段,L取值0.5。将其与第4波段和第3波段融合成彩色图像,转换成.img格式后,在ERDAS中进行非监督分类,并进行重编码。结果如图3、图4所示。扬州市区总面积为1

010

km2,由图3、图4的统计数值得6月份的植被覆盖率为60%,1月份的植被覆盖率为61%,植被覆盖主要为大田作物,其中以小麦为主。[

]将扬州市城区(维扬区、广陵区、邗江区、开发区以及新城西区)绿地信息取出来,并将分类结果进行叠加得到扬州市城区植被覆盖变化图(图略)。扬州市城区面积为156

km2,6月份植被覆盖率为56%,1月份植被覆盖率为51%,由图3可以看出:运河以东以及维扬区西北角和东北角有大片大田作物,市区6月份的植被覆盖率明显比1月份要高很多,可见常绿植物所占的比率比较低。[

篇8:遥感技术在农业应用

遥感 (RS) 是20世纪60年代发展起来的对地表观测综合性技术。遥感一词源于英语Remote Sensing, 即遥远的感知, 是应用探测器, 不与探测目标相接触而从远处把目标的电磁波特性记录下来, 通过分析, 揭示出物体的特征性质及其变化的综合性探测技术[1]。遥感技术能动态、快速、周期性地获取地表信息, 与传统的信息获取手段比较, 遥感技术大大地节省了人力、物力、财力和时间, 可带来很高的经济效益和社会效益。

遥感技术迅猛发展, 搭载的传感器种类越来越丰富, 其空间分辨率得到了极大的提高, 如表1所示。作为其最大受益者的农业, 不论在监测方法还是信息获取手段都得到了前所未有的发展。遥感技术以其快速、简便、宏观、无损及客观等优点, 越来越广泛应用于农业生产各个环节当中, 并逐渐成为农业遥感应用的重要前沿技术手段之一[4]。本文主要针对遥感在农业田间信息获取方法的应用展开相应的阐述与分析。

1 田间信息采集

1.1 病虫害监测

作物病虫害是农业生产的主要障碍, 是限制作物产量的主要因素之一, 同时也是制约优质、高效益农业持续发展的主导因素之一[2~3]。尽早发现病虫害, 并掌握病虫害的发生发展情况, 是提高农作物产量, 减少因病虫害造成经济损失的有效保障。传统的监测作物病虫害的方法, 因为受到当时生产条件及科技水平的限制, 只能在实地采用自测或者手查等方法。这些方法不仅费时费力, 而且其获取信息的滞后性也严重影响了病虫害预报的准确率。高光谱遥感又称成像遥感, 主要是指在电磁波谱的紫外、可见光、近红外和中红外区域获取许多非常窄且光谱连续的图像数据技术, 高光谱能准确获得作物病虫害发生、发展的定性和定量空间分布信息, 为决策者在病虫害未造成严重危害时实施防控提供数据支撑。

作物受到病虫害感染后会呈现许多症状, 诸如卷叶、叶片枯萎、作物矮小、叶片大面积凋落以及影响作物的正常光合作用等[5]。一般健康的植物其光谱曲线总是呈现明显的“峰和谷”特征, 当作物发生病虫害时, 致使作物病虫害产生的症状使得光谱曲线的波谱特征会出现某些变化。基于此种变化, 使得应用高光谱实施监测病害作物成为可能。

为研究作物吸收反射光谱特征, 通常情况下是通过提取作物光谱的一些特征参数, 达到增强有用信息而抑制无用信息的目的, 并以这些参数来鉴别目标物的各组分及模拟、反演它的生物物理、化学参数进行病虫害的监测。主要方法有原始光谱导数变换及对数变换、光谱位置和面积的特征参数提取、光谱吸收特征参数提取和基于连续同去除的特征参数提取4种方法。

我国从“六五”开始, 就开展了小麦和水稻种植面积的遥感监测研究, 1983年开始, 农业部启动了北京近郊小麦及北方6省、直辖市的小麦监测。“八五”期间, 作物估算监测由小区域向大区域过渡, 针对小区域的作物监测主要采用TM影像进行。到了“十五”期间, 作物监测方法逐渐完善, 构建了面积变化遥感监测模型, 并在此基础上建立了面积监测业务系统。近年来, 随着更多高分辨率卫星影像的出现, 使基于遥感技术的面积监测精度得到了大大提高。

总体来说, 农业作物面积监测有3个方面的发展:空间尺度上, 从小范围的面积监测试点研究逐步扩展到全国;数据应用上, 从地空间分辨率的卫星逐渐过渡到高空间分辨率卫星影像;方法上, 从单一的植被指数法到种植成数估算法。应用高光谱遥感进行病虫害监测的主要流程图如下图1所示。

1.2 生产面积监测

作物生产面积估算及作物种植区域显示对政府相关部门及时掌握相关作物的生产情况有重要意义, 并可以依据生产面积对市场情况进行预测, 为国民经济宏观调控政策制定提供一定的科学支撑。传统的作物面积监测是采用统计方法进行, 该方法不仅费时费力, 而且由于统计数据的滞后性致使面积监测的精度受到一定的影响。遥感技术具有的覆盖范围广、现实性强、费用低和能对地物周期性监测等特点为快速准确进行作物面积监测提供了写的监测技术手段。应用遥感进行作物面积监测的主要流程图如下图2所示。

1.3 产量估算监测

与发达国家农业种植相比, 我国的农业生产水平相对滞后, 影响作物生长状况的因素很多, 如何准确地对作物产量进行预测, 对国家政策的制定、市场信息宏观调控以及国际贸易等内容都有极为重要的作用。传统的作物估产方法是通过采用人工区域调查方法获得, 该方法获得数据的速度慢, 需要大量的人力物力, 花费时间也多。

应用遥感技术进行作物估产是根据生物学原理, 在收集分析各种作物类型、监测作物长势之后通过卫星传感器记录的地表信息, 并在此基础上进行作物产量预测。典型绿色植物的发射光谱曲线, 在蓝光区和红光区各有一个叶绿素吸收带 (吸收中心在0.45μm及0.65μm) , 在近红外区则呈现高反射, 形成叶绿素特有的红外陡坡效应。依据遥感器在红外及近红外波段出的反射率值 (CH1及CH2) , 就可以推断叶片面积和叶绿素浓度。NDVI与作物的叶面积指数和生物量成正相关;NDVI值越大, 表明作物叶绿素浓度越高、作物长势越好, 作物进行光合作用的能力也越强, 进而可以推算出其单位面积的作物产量也会越高。依据此理论, 可用于准确实时的作物长势动态连续监测和产量估计[6~7]。

归一化植被指数是最为常用的一种植被指数, 其算式为:

其中CH1、CH2分别为红光与近红外波段的反射率值。

应用遥感进行作物面积监测的主要流程图如图3所示。

1.4 土壤水分含量监测

土壤水分含量可以直接反映作物的干旱情况, 为防范作物干旱给国民经济带来损失, 进行土壤水分含量监测极为重要, 也是必须的。常规的土壤水分监测方法有土钻取土称质、电阻法 (TDR法) 、时域反射法 (FDR法) 及种子散射法等, 但这些方法不仅测点少、而且较难进行大范围、动态实监测, 不利于作物干旱监测的发展。遥感影像中的可见光、近红外和热红外波段能够较为准确地提取一些地表特征参数和热信息为应用遥感技术进行土壤水分监测提供了信息的技术方法。

国外应用遥感技术进行土壤水分含量监测研究开始于20世纪70年代, 应用影像实施水分含量监测主要分3类, 即可见光遥感影像进行监测、近红外遥感影像波段获取地表温度以及应用可见光、近红外和热红外提出干旱监测指标。国内该领域的研究主要集中在光学遥感上, 即可见光——反射红外遥感和热红外遥感, 以常用的惯量法为例说明土壤水分含量监测的原理。

热惯量法主要是应用土壤水分的热特性进行干旱监测, 其定义为:

式中, P为热惯量[J/ (m2·K·s1/2) ];λ为热导率[J/ (m·K·s) ];ρ为密度 (kg/m3) ;c为比热[J/ (kg·K) ]。

随后依据该定义提出了一个可用卫星资料推算的表观热惯量模型:

式中, ATI (Apparent Thermal Inertia) 为表现热惯量模型;S为太阳常数;V为大气透过率;α为地表反射率;C1为太阳赤纬和经纬度的函数;ω为地球自转率;Q为太阳总辐射通量;ΔT为地表日最高最低温度差。式中的α和ΔT可以通过可见光——近红外通道的遥感影像资料中获取, 依据ATI与土壤含水量之间的相关关系, 可以求算出土壤含水量。

作物土壤含水量监测的大体流程见图4所示。

1.5 养分含量监测

叶绿素是吸收光能的物质, 对作物的光能利用有直接影响。叶绿素含量和作物的光合能力、发育阶段以及氮素状况有较好的相关性。由于叶绿素之间的氮含量与氮素状况有较好的相关性, 以及由于叶绿素之间的氮含量和叶变化趋势相似, 通常认为通过测定叶绿素可监测作物氮素营养。

叶绿素的常规测定使用分光光度计法, 因为这种方法要进行组织提取和分光光度计的测定, 所以既耗时间又对植被造成损伤。另外, 从大田到实验室的运输和样本制备过程中很可能损失叶绿素, 进而导致叶绿素含量发生变化。目前, 采用最多的是应用叶绿素仪及高光谱仪进行作物养分测量。

叶绿素仪的工作原理, 是采用两个不同波长的光源分别照射植物叶片表面, 通过比较穿过叶片的透射光光密度差异而得出SPAD值。因此, SPAD值是一个无量纲的比值, 与叶片中的叶绿素含量成正相关。在叶绿素仪应用的研究中, 各研究者所采用的测定部位都大体相同, 即作物生长前期取新展开的第一片完全展开叶作为测定部位, 生长后期则取功能叶作为测定部位。

便携式高光谱仪是一种非损伤性测定叶绿素的方法, 它通过测定绿色植物叶片的反射率、透射率和吸收率来测定叶绿素含量, 这决定了高光谱技术在作物叶绿素含量评价研究中具有不可替代的作用。

应用遥感技术进行作物养分监测的基本流程见图5所示。

2 建立监测与信息管理系统

随着现代信息技术的飞速发展, 运用现代高新技术, 建立农情田间信息监测及信息管理系统, 及时掌握土地利用状况、种植面积、长势及预期产量等重要农情, 为各级政府进行宏观调控提供依据, 指导农民更有预见地适应市场需要, 并在主要作物生育期, 根据监测获得的信息帮助农民进行合理施肥、灌溉、排水和防治病虫害, 不断提高科学种田水平。

田间信息管理系统平台的建立, 可以加快精准农业的建设, GPS (Global Positiong System) 技术可以获取采样点的经纬度信息, 通过相应的成图软件可以得出田块的形状和面积等, 差分DGPS技术的应用更使得获取信息的精度得到了大大的提高。这些信息在精准农业中可以知道田间机械进行和作业、如何行使、如何转向和何时转向;RS主要是应用获取作物病虫害、生产面积、产量及土壤肥力等内容;GIS主要用来对获取的数据信息进行分析处理。在精准农业中, GIS也越来越深入地应用与管理农田参数信息、土壤养分含量和施肥量等数据。综合GIS、RS及GIS可以实现田间信息的高效管理。

应用”3S”技术构建的农业田间信息管理系统流程见图6所示

参考文献

[1]梅安新, 彭望琭, 秦其明等.遥感导论[D].北京:高等教育出版社P1.

[2]陈兵, 李少昆, 王克如等.作物病虫害遥感监测研究进展[J].棉花学报, 2007, 19 (1) :57-63.

[3]陈鹏程, 张建华, 雷勇辉等.高光谱遥感监测农作物病虫害研究进展[J].中国农学通报, 2006, 22 (2) :388-391.

[4]姚云军, 秦其明, 张自力等.高光谱技术在农业遥感中的应用研究进展[J].农业工程学报, 2008, 24 (7) :301-306.

[5]Hartmut K.Lichtenthaler, Fatbardha Babani.Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence[J].Plant Physiol.Biochem., 2000, 38:889-895.

[6]邢素丽, 张广录.我国农业遥感的应用与展望[J].农业工程学报, 2003, 19 (6) :174-178.

[7]戴昌达.卫星遥感在农业中的应用与展望[J].中国航天, 1999, 5:3-7.

上一篇:语文晨读下一篇:师徒结队工作总结