弗兰克赫兹实验计算

2024-04-21

弗兰克赫兹实验计算(精选3篇)

篇1:弗兰克赫兹实验计算

弗兰克赫兹实验报告

弗兰克赫兹实验报告1

姓名:xxx学号:xxxxxxxxxx 班级:本硕xxx班

实验日期:xxx年10 月13日

夫兰克-赫兹实验

【实验目的】

1、测量氩原子的第一激发电势,证明原子能级的存在,从而加深对量子化概念的认识。

2、加深对热电子发射的理解,学习将电子与原子碰撞微观过程与宏观物理量相结合的实验设计方法。

【历史背景】

19,卢瑟福根据α粒子散射实验,提出了原子核模型。19,玻尔将普朗克量子假说运用到原子有核模型,建立了与经典理论相违背的两个重要概念:原子定态能级和能级跃迁概念。电子在能级之间迁跃时伴随电磁波的吸收和发射,电磁波频率的大小取决于原子所处两定态能级间的能量差,并满足普朗克频率定则。随着英国物理学家埃万斯(E.J.Evans)对光谱的研究,玻尔理论被确立。

19,德国科学家夫兰克和他的助手赫兹采用慢电子与稀薄气体中原子碰撞的方法(与光谱研究相独立),简单而巧妙地直接证实了原子能级的存在,并且实现了对原子的可控激发。

1925年,由于他二人的卓越贡献,他们获得了当年的诺贝尔物理学奖。夫兰克-赫兹实验至今仍是探索原子内部结构的主要手段之一。所以,在近代物理实验中,仍把它作为传统的经典实验。

【实验原理】

根据玻尔的原子理论,原子只能处于一系列不连续的稳定状态之中,其中每一种状态相应于一定的能量值Ei(i=1,2,3‥),这些能量值称为能级。最低能级所对应的状态称为基态,其它高能级所对应的态称为激发态。

当原子从一个稳定状态过渡到另一个稳定状态时就会吸收或辐射一定频率的电磁波,频率大小决定于原子所处两定态能级间的能量差,并满足普朗克频率选择定则:

( h为普朗克常数)

本实验中是利用一定能量的电子与原子碰撞交换能量而实现,并满足能量选择定则:

ev=E-E(1) 110

E为第一激发能量(第一激发态是距基态最近的一个能态),E为基态能量,ev为该原子第一激发能。 式(1)中,101实验原理如图(1)所示:在充氩的夫兰克—赫兹管中,电子由阴极K发出,阴极K和第一栅极G1之间的加速电压VG1K及与第二栅极G2之间的加速电压VG2K使电子加速。在极板A和第二栅极G2之间可设置减速电压VG2A。

注意:第一栅极G1和阴极K之间的加速电压VG1K约2V,用于消除空间电荷对发射电子的影响。

当灯丝加热时,阴极被灯丝灼热而发射电子,电子在G1和G2间的电场作用下被加速而取得越来越大的能量,但在起始阶段,由于电压VG2K较低,电子的能量较小,即使在运动过程中,它与原子相碰撞(弹性碰撞)的能量交换非常小,此时可认为它们之间没有能量交换。这样,穿过第二栅极的电子所形成的电流IA随第二栅极电压VG2K的增加而增加。

当VG2K达到氩原子的第一激发电位时,电子在第二栅极附近与氩原子相碰撞(此时产生非弹性碰撞)。电子把从加速电场中获得的全部能量传递给氩原子,使氩原子从基态激发到第一激发态,而电子本身由于把全部能量传递给了氩原子,它即使穿过了第二栅极,也不能克服反向拒斥电压而被折回第二栅极。所以阳极电流IA将显著减小。氩原子在第一激发态不稳定,会跃迁到激发态,同时以光量子形式向外辐射能量。以后随着第二栅极电压VG2K的增加,电子的能量也随之增加,与氩原子相碰撞后还留下足够的能量,这就可以克服拒斥电压的作用力而到达阳极A,这时电流又开始上升,直到VG2K是2倍氩原子的第一激发电位时,电子在G2和K之间又会因第二次非弹性碰撞而失去能量,因而又造成了第二次阳极电流IA的下降,这种能量转移随着加速电压的增加而呈周期性的变化。

若以VG2K为横坐标,以阳极电流值IA为纵坐标就可以得到谱峰曲线,两相邻谷点(或峰尖)间的加速电压值,即为氩原子的第一激发电位值。

这个实验说明了夫兰克—赫兹管内的电子缓慢的与氩原子碰撞,能使原子从低能级被激发到高能级,通过测量氩的第一激发电位值(13.1V是一个定值,即吸收和发射的能量是完全确定的,不连续的),也就是说明了原子内部存在不连续的能级,即波尔原子能级的存在。

【实验仪器】

夫兰克—赫兹实验仪(含夫兰克-赫兹管、微电流放大器等)微机等。

【实验步骤】

1,拨动电源开关,接通电源,点亮数码管,将手动—自动切换开关,换至“手动”位置,逆时针方向旋转“扫描幅度调节”旋钮到最小位置,预热三分钟后开始做实验。

2,将电压分档切换开关拨到“5V”挡,旋转“5V”调节旋钮,使电压读数为2V。这时阴极至第一栅极电压VG1K为2V。

3,将电压分档切换开关拨到“15V”挡,旋转“15V”调节旋钮,使电压读数为7.5V。这时阳极至第二栅极电压VG2A(拒斥电压)为7.5V。

4,将电压分档切换开关拨到“100V”挡,旋转“100V”调节旋钮,使电压读数为0V。这时阳极至第二栅极电压VG2A(加速电压)为0V。

5,将电流显示选择波段开关切换到10 A挡,并调节调零旋钮使电流显示指示为零。

6,将将手动—自动切换开关,换至“手动”位置,旋转加速电压旋钮VG2A,同时观察电流表,电压表的示数变化,并根据电流表的数值大小调节好“电流显示选择”档位,随着(加速电压)的增加,电流表的值出现周期性峰值和谷值,记录相应的电压、电流值,以输出电流为纵坐标,电压为横坐标,作出谱峰曲线。

【注意事项】

1,实验中(手动档位)电压加到60V以后,要注意电流输出指示,当电流表指示突然骤增,应立即减小电压,以免管子损坏。

2,实验过程中如果要改变第一栅极与阴极和第二栅极与阴极之间的电压及灯丝电压时,要将0—100V旋钮逆时针旋到底,在改变以上电压值。

3,本实验灯丝电压分别可以设为3V、3.5V、4V、4.5V、5V、5.5V、6.3V,可以在不同的灯丝电压下重复上述实验。如果发现波形上端切顶,则阳极输出电流过大,引起放大器失真,因减小灯丝电压。

【数据记录及处理】

以输出电流为纵坐标,电压为横坐标,作出谱峰曲线。

相邻峰—峰之间的电位差:

U1=42.6-31.1=11.5

U2=54.3-42.6=11.7

平均值:

U=(U1+U2)/2

=(11.5+11.7)/2=11.6V

相邻谷—谷之间的电位差:

U3=37-24.9=12.1

U4=48.1-37=11.1

平均值:

U=(U3+U4)/2

=(12.1+11.1)/2=11.6V

则本实验测得氩原子第一激发电位为11.6V。

【思考题及讨论】

1,第一激发电位的物理含义是什么?有没有第二激发电位?

答:第一激发电位:如初始能量为零的电子在电位差为U0 的加速电场中运动,则电子可获得的能量为 eU0;如果加速电压U0恰好使电子能量 eU0 等于原子的临界能量,即 eU0=E2—E1,则 U0称为第一激发电位,或临界电位。

第二激发电位:电子碰撞原子使其从基态到第二激发态所需的最低能量叫第二激发电位。

怎样测第二激发电位:加速电压 Ug1k和 U2A都是标准参数,不能改变,而要测第二激发电位需要使电子获得能量,必须增大 Ug1k。

2.夫兰克—赫兹管中还能充什么其它气体,为什么?

答:汞蒸气或其他稀有气体。因为汞是单原子分子,结构简单,而且在常温下是液 态,只要改变温度就能大幅度改变汞原子的密度,同时还由于汞的原子量大,电 子与其原子碰撞时,能量损失极小。

3、什么是能级?玻尔的能级跃迁理论是如何描述的?

答:在玻尔的原子模型中,原子是由原子核和核外电子所组成,原子核 位于原子的中心,电子沿着以核为中心的各种不同直径的轨道运动。在一 定轨道上运动的电子,具有对应的能量,轨道不同,能量的大小也不相同。 这些与轨道相联系、大小不连续的能量构成了能级。 当原子状态改变时,伴随着能量的变化。若原子从低能级En 跃迁到高 能级Em,则原子需吸收一定的能量,该能量的大小为△E:

△E=Em-En

若电子从高能级Em 跃迁到低能级En,则原子将放出能量△E。

4,为什么 IG2A-UG2K 曲线上的各谷点电流随 UG2K 的增大而增大?

答:电子与汞原子的碰撞有一定的几率,总会有一些电子逃避了碰撞, 穿过栅极而到达板极。 随着 UG2K 的增大, 这些电子的能量增大, 因此在 IG2A -UG2K 曲线上的各谷点电流也随着增大。

5,本实验的误差来源有哪些?

答:1、由于预热不足,使测量值产生误差;

2、在实验时,由于电压的步差不可能连续,故测量的峰值会有一定的误差;3、仪器本身存在一定的误差。

篇2:弗兰克赫兹实验计算

弗兰克-赫兹管(简称F-H管)、加热炉、温控装置、F-H管电源组、扫描电源和微电流放大器、微机X-Y记录仪。

F-H管是特别的充汞四极管,它由阴极、第一栅极、第二栅极及板极组成。为了使F-H管内保持一定的汞蒸气饱和蒸气压,实验时要把F-H管置于控温加热炉内。加热炉的温度由控温装置设定和控制。炉温高时,F-H管内汞的饱和蒸气压高,平均自由程较小,电子碰撞汞原子的概率高,一个电子在两次与汞原子碰撞的间隔内不会因栅极加速电压作用而积累较高的能量。温度低时,管内汞蒸气压较低,平均自由程较大,因而电子在两次碰撞间隔内有可能积累较高的能量,受高能量的电子轰击,就可能引起汞原子电离,使管内出现辉光放电现象。辉光放电会降低管子的使用寿命,实验中要注意防止。

F-H管电源组用来提供F-H管各极所需的工作电压。其中包括灯丝电压UF,直流1V~5V连续可调;第一栅极电压UG1,直流0~5V连续可调;第二栅极电压UG2,直流0~15V连续可调。

扫描电源和微电流放大器,提供0~90V的手动可调直流电压或自动慢扫描输出锯齿波电压,作为F-H管的加速电压,供手动测量或函数记录仪测量。微电流放大器用来检测F-H管的板流,其测量范围为10^-8A、10^-7A、10^-6A三挡。

微机X-Y记录仪是基于微机的集数据采集分析和结果显示为一体的仪器。供自动慢扫描测量时,数据采集、图像显示及结果分析用。

原理

玻尔的原子理论指出:①原子只能处于一些不连续的能量状态E1、E2……,处在这些状态的原子是稳定的,称为定态。原子的能量不论通过什么方式发生改变,只能是使原子从一个定态跃迁到另一个定态;②原子从一个定态跃迁到另一个定态时,它将发射或吸收辐射的频率是一定的。如果用Em和En分别代表原子的两个定态的能量,则发射或吸收辐射的频率由以下关系决定:

hv=|Em-En|(1)

式中:h为普朗克常量。

原子从低能级向高能级跃迁,也可以通过具有一定能量的电子与原子相碰撞进行能量交换来实现。本实验即让电子在真空中与汞蒸气原子相碰撞。设汞原子的基态能量为E1,第一激发态的能量为E2,从基态跃迁到第一激发态所需的能量就是E2-E1。初速度为零的电子在电位差为U的加速电场作用下具有能量eU,若eU小于E2-E1这份能量,则电子与汞原子只能发生弹性碰撞,二者之间几乎没有能量转移。当电子的能量eU≥E2-E1时,电子与汞原子就会发生非弹性碰撞,汞原子将从电子的能量中吸收相当于E2-E1的那一份,使自己从基态跃迁到第一激发态,而多余的部分仍留给电子。设使电子具有E2-E1能量所需加速电场的电位差为U0,则

eu0=E2-E1(2)

式中:U0为汞原子的第一激发电位(或中肯电位),是本实验要测的物理量。

实验方法是,在充汞的F-H管中,电子由热阴极发出,阴极K和第二栅极G2之间的加速电压UG2K使电子加速。第一栅极对电子加速起缓冲作用,避免加速电压过高时将阴极损伤。在板极P和G2间加反向拒斥电压UpG2。当电子通过KG2空间,如果具有较大的能量(≥eUpG2)就能冲过反向拒斥电场而达到板极形成板流,被微电流计pA检测出来。如果电子在KG2空间因与汞原子碰撞,部分能量给了汞原子,使其激发,本身所剩能量太小,以致通过栅极后不足以克服拒斥电场而折回,通过电流计pA的电流就将显著减小。实验时,使栅极电压UG2K由零逐渐增加,观测pA表的板流指示,就会得出如图2所示Ip~UG2K关系曲线。它反映了汞原子在KG2空间与电子进行能量交换的情况。当UG2K逐渐增加时,电子在加速过程中能量也逐渐增大,但电压在初升阶段,大部分电子达不到激发汞原子的动能,与汞原子只是发生弹性碰撞,基本上不损失能量,于是穿过栅极到达板极,形成的板流Ip随UG2K的增加而增大,如曲线的oa段。当UG2K接近和达到汞原子的第一激发电位U0时,电子在栅极附近与汞原子相碰撞,使汞原子获得能量后从基态跃迁到第一激发态。碰撞使电子损失了大部分动能,即使穿过栅极,也会因不能克服反向拒斥电场而折回栅极。所以Ip显著减小,如曲线的ab段。当UG2K超过汞原子第一激发电位,电子在到达栅极以前就可能与汞原子发生非弹性碰撞,然后继续获得加速,到达栅极时积累起穿过拒斥电场的能量而到达板极,使电流回升(曲线的bc段)。直到栅压UG2K接近二倍汞原子的第一激发电位(2U0)时,电子在KG2间又会因两次与汞原子碰撞使自身能量降低到不能克服拒斥电场,使板流第二次下降(曲线的cd段)。同理,凡 (3) 处,Ip都会下跌,形成规则起伏变化的Ip~UG2K曲线。而相邻两次板流Ip下降所对应的栅极电压之差,就是汞原子的第一激发电位U0。

处于第一激发态的汞原子经历极短时间就会返回基态,这时应有相当于eU0的能量以电磁波的形式辐射出来。由式(2)得

eU0=hν=h·c/λ(4)

式中:c为真空中的光速;λ为辐射光波的波长。

利用光谱仪从F-H管可以分析出这条波长λ=253.7(nm)的紫外线。

附:几种常见元素的第一激发电势(U0)

元素

钠(Na)

钾(K)

锂(Li)

镁(Mg)

汞(Hg)

氦(He)

氖(Ne)

U0/V

2.12

1.63

1.84

3.2

4.9

21.2

18.6

实验要求

1)测绘F-H管Ip~UG2K曲线,确定汞原子的第一激发电位

(1)加热炉加热控温。将温度计棒插入炉顶小孔,温度计棒上有一固定夹用来调节此棒插入炉中的深度,固定夹的位置已调整好,温度计棒插入小孔即可。温度计棒尾端电缆线连接到“传感器”专用插头上,将此传感器插头插入控温仪后面板专用插座上。接通控温电源,调节控温旋钮,设定加热温度(本实验约180℃),让加热炉升温30min,待温控继电器跳变时(指示灯同时跳变)已达到预定的炉温。

(2)测量F-H管的Ip~UG2K曲线。实验仪的整体连接可参考图3,将电源部分的UF调节电位器、扫描电源部分的“手动调节”电位器旋钮旋至最小(逆时针方向)。扫描选择置于“手动”挡。微电流放大器量程可置于10-7A或10-8A挡(对充汞管)。待炉温到达预定温度后,接通两台仪器电源。根据提供的F-H管参考工作电压数据,分别调节好UF、UG1、UG2,预热3~5min。

(a)手动工作方式测量。缓慢调节“手动调节”电位器,增大加速电压,并注意观察微电流放大器出现的峰谷电流信号。加速电压达到50V~60V时约有10个峰出现。在测量过程中,当加速电压加到较大时,若发现电流表突然大幅度量程过载,应立即将加速电压减少到零,然后检查灯丝电压是否偏大,或适当减小灯丝电压(每次减小0.1V~0.2V为宜)再进行一次全过程测量。逐点测量Ip~UG2K的变化关系,然后,取适当比例在毫米方格纸上作出Ip~UG2K曲线。从曲线上确定出Ip的各个峰值和谷值所对应的两组UG2K值,把两组数据分别用逐差法求出汞原子的第一激发电位U0的两个值再取平均,并与标准值4.9V比较,求出百分差。若在全过程测量中,电流表指示偏小,可适当加大灯丝电压(每次增大0.1V~0.2V为宜)

(b)自动扫描方式测量。将“手动调节”电位器旋到零,函数记录仪先不通电,调节“自动上限”电位器,设定锯齿波加速电压的上限值。可先将电位器逆时针方向旋到最小,此时输出锯齿波加速电压的上限值约为50V,然后将“扫描选择”开关拨到“自动”位置。当输出锯齿波加速电压时,从电流表观察到峰谷信号。锯齿波扫描电压达到上限值后,会重新回复零,开始一次新的扫描。在数字电压表、电流表上观察到正常的自动扫描及信号后,可采用函数记录仪记录。记录仪的X输入量程可置于5V/cm档,Y输入量程可按电流信号大小来选择,一般可先置于0.1V/cm档。开启记录仪,即可绘出完整的Ip变化曲线。

注意事项

(1)实验装置使用220V交流单相电源,电源进线中的地线要接触良好,以防干扰和确保安全。

(2)函数记录仪的X输入负端不能与Y输入的负端连接,也不能与记录仪的地线(⊥)连接,否则要损坏仪器。

(3)实验过程中若产生电离击穿(即电流表严重过载现象)时,要立即将加速电压减少到零。以免损坏管子。

(4)加热炉外壳温度较高,移动时注意用把手,导线也不要靠在炉壁上,以免灼伤和塑料线软化。

★ 弗兰克赫兹实验报告内容

★ 实验报告范文

★ 实验报告格式

★ 有机化学实验报告

★ 短时记忆实验报告

★ 化学实验报告模板

★ 上机实验报告范文

★ 气垫导轨实验报告

★ 初中化学实验报告

篇3:弗兰克赫兹实验计算

智能化夫兰克-赫兹实验仪灯丝电流采集部分设计

智能化夫兰克-赫兹实验中,通过测量灯丝电流的峰-谷点变化来确定管内所充物质的第一激发电位,灯丝电流的.测量直接影响到实验的精度.本文介绍了智能化夫兰克-赫兹实验仪中灯丝电流信号的数据采集模块CS5506,给出了CS5506 A/D转换模块与Atmega16的接口电路和软件程序.最后用该实验仪进行不同温度参数的实验,测量获得理想的实验曲线和实验数据表.

作 者:张明长 ZHANG Ming-chang 作者单位:北京印刷学院,基础部,北京,102600刊 名:物理实验 PKU英文刊名:PHYSICS EXPERIMENTATION年,卷(期):200929(9)分类号:O562.1关键词:夫兰克-赫兹实验 CS5506 A/D转换器 实验数据

上一篇:最简单的辞职报告怎么写下一篇:著名的公关策划案

本站热搜

    相关推荐