钕铁硼检测-实习报告

2024-04-21

钕铁硼检测-实习报告(通用5篇)

篇1:钕铁硼检测-实习报告

检测室实习报告

(金力永磁技术部 彭文彪)

检测室是我入职的第一个实习部门,在此实习了近一个月,分别在毛坯磁性能检测组和毛坯外观组各实习了一个星期,并参与处理客户投诉与产品质量分析改善,通过这段时间实习,我基本上熟悉检测室职能及基本流程,能对烧结毛坯磁性能、密度、尺寸、外观进行测试和检查,并能对毛坯进行初步综合判断。现就这段时期的实习工作和体会做一个简短的小结。

一、实习工作内容和职责

1.在磁性能检测室,我主要参与了烧结毛坯取样,平磨、线切割、切片等样品处理(制样),磁性能测试操作,不合格品处理表填写及相关检测结果数据的的打印和呈送,协助技术部和其他相关部门人员分析和处理产品出现的问题。

2.在毛坯外观组,我主要参与烧结出炉产品清点,取样,尺寸和密度测试,产品外观全检,产品入库清点及入库烧结流转单和标示卡等表单的填写,并协助班长做好毛坯现场管理工作。

3.参与客户投诉及产品质量分析工作。

二、实习工作收获

1.基本熟悉了检测室日常工作流程,基本作业规范,并掌握了相关知识和技能。

从最开始的不了解,到之后的不断学习、请教和实际操作,我渐渐融入其中,成为其中组员,能独立做好成型,烧结与入库之间的检测和产品流转相关工作。

1.1磁性能组作业基本流程:

取样:根据烧结工段人员做的不同炉位标记进行抽样(一般炉前和炉后最上层和最下层各取一块,共4块,炉中不同层、不同料盒任取3块),不要挑选氧化、开裂等影响磁性能的样品,但尽量挑选小缺角等外观缺陷但是对性能影响很小的产品制样。

降温:将取回的需要直接测试的毛坯样品放到空调底下降温至22℃左右。

制样:将需要制样的的毛坯拿到机加工去处理。圆柱用砂轮打磨2个端面,方块平磨6个面,需要高温的样品进行线割,其它形状按要求按要求打磨。测试样品尺寸应误差一般小于0.1%。

吹干:将机加加工好的样品拉回检测室放置于空调底下吹干。

磁性能测试:将吹干且降温的机加工完的样品或毛坯根据要求对样品进行常温或高温测试,在磁测仪上绘出退磁曲线,检查各项磁性能参数(剩磁Br、内禀矫顽力Hcj、矫顽力Hcb、最大此能及BHmax及曲线方形度)是否全部符合要求。全部符合要求方能判定为合格。对于合格批次产品打印出磁性能表放到毛坯现场对应区域。

不合格品处理:若发现有任何磁性能参数不达标,及时填写《不合格品处理表》,并将判定结果通知生产部门和相关技术部人员,作出处理意见。

对于判定反烧时,检测室转填开具《返工返修通知单》,通知烧结进行反烧;对于反烧超过2次以上,性能或方形度仍不合格,必须作为降级或不合格品处理;对于判定需要再抽检或加抽时,检测室在3小时内完成毛坯再抽检或加抽并通知相关人员;涉及批次不合格需要报废时,检测室及时开出《报废申请单》,并在3小时内完成会签,做成《毛坯检验入库报告》;对于判定属于质量事故的不良物料必须开出《纠正及预防措施报告》,执行《不合格品控制程序》,及时分析和改进。

退磁:对测试完的样品按不同牌号放入对应料盒,到一定数量(300kg~400kg)及时拉到指定区域,转交给烧结人员集中一炉子退磁处理。

1.2毛坯尺寸和外观组作业主要基本流程如下:

产品出炉清点:与烧结和成型代表一起对出炉产品进行现场核对(特别注意牌号和数量的清点和确认,并在《烧结产品送检入库单》上签名确定。

取样:按照不同批数产品进行不同数量的抽检(如:批数≤50抽样3个,批样在50~100之间抽样5个,批样≥500方块不少于7个,圆柱为5个),对于特殊情况执行具体的检验标准。

降温:将样品放到空调底下降温至22℃左右。

尺寸测量:采用游标卡尺、千分尺对毛坯进行尺寸测量,每个面至少测3

个位置,并填写《毛坯尺寸测量记录》。

密度测试:利用阿基米德原理对样品密度测量,并填写《毛坯密度测量记录》。外观全检:对尺寸、密度、磁性能都合格的产品进行外观全检。检验外观是否有明显缺陷,如:掉角、掉边、弯曲变形、裂纹、表面是否有严重氧化、是否起泡脱皮、是否有杂质突起。对于合格批次产品,根据要求用不同木箱或塑料盒分装,并清点数目,填写产品《烧结产品送检入库单》和合格标示卡,对于小缺陷缺角等不严重影响性能的产品做单独流转标识,最后清点产品数目,没有错误后,及时通知烧结入库。

不合格品处理:若发现有尺寸、密度或外观严重缺陷不合格品,填写《不合格品处理表》,并移交给检测室质量员或相关技术部人员,给出处理意见。

1.3客户投诉处理基本流程

接收投诉:接受客户投诉单,确认客户名称、问题产品发送接收日期、批号、牌号、数量、不良率及具体投诉内容等。

投诉内容分析:对客户投诉内容进行初步分析,如:短装、混料、缺角、磁性能不合格、尺寸不合格、亮片不合格、盐雾试验不达标、表磁不达标等,确定是否是公司的过失造成的还是客户测试方法不对引起的。

制定初步方案:对不同问题进行相对应的处理方案,如短装可直接写补货意见;如轻微缺角等不涉及性能的问题,可与客户协商,得到客户书面认同,可特采出货或按一定的补偿计算补货;若是涉及到产品性能方面的问题,若测试问题确实存在,可进行补货,并与技术部或相关工段负责人交流,进行相关试验分析,查出问题原因。

填写质量分析报告:填写投诉产品问题描述、临时处理措施、产生原因、分析结论、纠正预防措施等,并交给领导审核。

通过这段时间学习,我了解到一些我公司产品常见质量问题发生的可能原因如下:

1)磁性能这方面:剩磁Br低(密度低、晶粒生长异常、取向不够、成分错误);方形度低(烧结曲线异常、密度低、晶粒生长异常、成分错误);矫顽力Hc低(氧化、烧结曲线异常、晶粒生长异常、成分错误);表磁

低/磁通低(氧化、磁性能不够、镀层影响、尺寸重量);存在弱磁区(杂质、氧化、晶粒长大、反压料)。

2)对于产品外观质量问题:开裂(杂质、磨具、烧结温度和真空度);缺角(成型压制、剥油、烧结内应力、人为磕碰);尺寸异常(磨具、粉料重量、杂质);变形弯曲(氧化、烧结内应力)

2.规范数据管理

如何有效的管理好各类数据和其他资料,特别是部门共享中的电子版数据,提升空间和效率,对工作有序且高效的开展起到相当关键的作用。同时体现出公司科学化,精细化管理水平。

检测室的数据资料是非常庞大的,如:生产日报表,各类测试记录,不合格品处理相关表,KPI统计报表,绩效考核,重要设备调试、维护、检修记录,会议记录,客户投诉及其他各类统计数据、标准体系、公司文件、重要管理和培训资料等,如何有效的管理好各类数据,对新人培训,各小组工作的开展,质量问题汇总分析起到非常重要的作用。

通过这段时间的实习,我觉得各部门电子数据管理应当遵循以下一些基本规则:

1)统一的规范标准。各类数据都设定好各自统一的规范和格式,并统一编号,按年月日或其他类型分类,并做好存档。

2)数据录入和修改必须保证真实性、准确性、时效性。所以要求部门领导及各小组应权责分明,各司其职,负责好各组数据的管理,并及时更新最新数据。无关人员不能擅自修改或删除。

3)对重要数据进行定期存档和备份,对不完整数据及时补充,对错误数据及时修正,对垃圾数据及时清理,对数据优化处理,提高系统运行效率。

4)共享或公用电脑中若有重要涉及到公司或国家机密数据应加密,防止机密数据被有意无意外流。

若数据资料管理意识淡薄,员工对数据不重视,带有个人随意性,最终结果可能会是庞大的数据堆集在一起,呈现一片混乱的迹象,对今后各项工作的开展

非常不利,所以我们应该高度重视部门数据的规范和管理工作。

3.通过这段时间从事最基础工作,每天实实在在接触各类毛坯产品,我深刻感受到:“任何一个金力人都责任重大,要把自己的工作看当做事业”。

为什么某些人总是感觉整天面对的知识单调重复的工作,为什么不能继续保持这份工作热情?通过这段实习我更深刻的体会到志向要远大,但做事应脚踏实地,把自己做的任何工作事情当做事业来做,才能保持良好的工作热情,才能在平凡中做出不平凡的事。如果我们工作学习只是好高骛远,走马观花,不愿意脚踏实地的去做,那么看似什么都简单,似乎什么都懂那么一些,到头来还是什么都没学到。

例如毛坯外观检测,当作为一个旁观者时,看到的仅仅是别人将毛坯从铁盒取出,目示一下外观,然后装箱。但是当自己操作时,我发现流程一样,但是感觉完全不同:每当拿起一块产品时,我能体会到它的来之不易,是经过了多少员工的辛勤劳动才铸造出来的,我们应把产品当宝宝看待、爱护,而每当看到产品出现缺角,弯曲,尺寸异常,氧化,杂质等问题时,我也能感受到“产品的哭泣声”。同时脑子里也产生很多疑问:“为什么会这样?”“是哪道工序出了问题?”“作为一个技术人员,我以后工作中能否发现解决这些问题”。同时我也体会到,虽然这只是一道很简单的工序,但却必不可少,也很重要。

三、实习工作遇到的问题和建议

1.工作效率、产品流通速度有待提高

由于烧结出炉毛坯需要磁性能组和外观组数据测试完全合格后方能入库。所以如果有一个测试结果没出来,烧结人员都不能进行毛坯入库。有时候某个时间段烧结出炉产品量非常大,检测室若测试不及时,特别是磁性能组由于需要去机加工制样或者磨样,耗费时间比较多。会造成毛坯放置区存放大量产品,严重影响产品后续流通,由于产品长时间放置造成产品氧化、还可能引起混料、现场难以管理。

为了提高产品流通速度,我觉得应该做到以下几点:及时和烧结成型负责人沟通,了解当日出炉数量,做到心中有底,提醒当日值班人员,若数量过多,可

事先加派人手;班组长做好现场管理工作,确保现场能时刻有序进行工作,产品能定时定位摆放好;加强员工时间观念,严格把握好各工序所耗时间;加强员工培训,提高员工技能和意识,特别注重新员工培养,使其尽快成长。2.工作责任感和集体感需更加加强

每一个金力人,不管以什么原因加盟金力,不管具体从事什么工作,不管是管理层还是基层,都应该看到自己肩负的责任。即使自己本职工作每天似乎都是简单的重复,但是对于整个公司大集体来说这些都是必不可少的部分,甚至非常重要。例如检测室工作,或许在有些人看来每天只是单调的重复,但是从整个公司,甚至同行业来看,检测室是一个权威机构,这里任何一个检测员发布出来的数据经审核都具有权威性。后续的产品分析,不合格品的处理和各工段工艺的改进都要以这些数据为基本参考。

在实习期间我也发现少数人员工作积极性不高,部分数据有些人为性波动,缺少团队合作,责任感和集体感有待进一步加强。这种责任心除了是遵守部门规定,用自己的知识和技能完成每天任务,更应该以公司,部门利益为出发点,工作时全身心的投入,热情助人,加强组员、组间、部门之间的互动合作。当我们对工作充满责任感是,能学到更多知识和经验,能全身心的投入工作并从中找到快乐。虽然部门有计件工资激励,部门经理、主管及班长都能以身作表,每天都有早会,不定期也会组织培训,但时间一长,有些东西就沦为了形式。如何才能更有效的实施改革,提高员工素养、责任心,这就需要管理层和基层多多交流、探讨,在大的公司制度背景下,因地制宜的改善改革,做到制度更加合理化,人性化,营造一个积极、有强烈责任感的良好集体氛围。3.培训体系有待进一步改善和加强

公司短短2年多的运营时间,就建立了高标准的体系,引入先进的管理理念,以科学的方法管理企业。说明了高层领导高瞻远瞩,具有卓越的远见。但有些东西需要长时间的沉淀,慢慢积累,很多制度虽然比较科学,但执行起来会遇到这样或那样的问题,短时间很难达到预期的效果,需要一定的时间不断探索和适应才能深入人心。

公司每个星期都会组织高管对班长以上管理干部和大学生进行相关培训。我相信这样做的目的不仅仅是提高管理层的素养,培养其管理能力,更重要的是能

把公司的制度和先进理念传达下来,能让全体基层员工都能渐渐的接触和接受,以高标准规范指导行为,潜移默化地形成习惯,最终提高全体员工素养。所以最大的问题就是中下层管理层如何才能有效地对基层员工进行培训,从而不造成中间的脱节。

这段时期实习过程中关于培训我也发现一些问题,如有些内部培训流于形式,甚至出现照宣照读公司文件;有些培训仅仅只涉及具体操作技能,但欠缺相关理论指导,致使有些员工操作了很长一段时间,但还是没弄懂为什么要这样去做;还有就是培训文件没有十分的系统化,规范化,有些也没及时更新和完善。我觉得首先是要提高基层干部的管理能力,知识水平和个人素养,这是解决所有问题的基础。其次应该加强管理层和基层,各小组,部门交流,相互学习借鉴,在顺应公司大的方针制度前提下,摸索出适合自己培训和运行模式。

四:自我检讨和反思

在检测室实习期间我通过时间动手,不仅学到了一些基本技术知识,培养了自己的动手能力,更学习了不少质量方面相关知识,但是在此期间未能提供一些实质性的建议和帮助,深表惭愧,此外我到毛坯现场动手多,但是主要关注于外观检测和6s现场管理工作,在磁性能测试动手较少,一般不允许新手操作磁测仪,做困难点的客户投诉和质量分析工作时觉得有点不知道下手,说明了自己对前工序的不熟悉以及钕铁硼专业知识还是相当缺乏。同时我深知现在我看的再多,学的再好,也仅仅是冰山一角。“任重道远”,对于我的工作生涯来说,目前还只是一个起点,道路遥远且不平坦,只要能把握好正确方向,以后更加投入百分的热情,以坚韧的毅力,脚踏实地的去闯,我就能实现自我价值和梦想。

篇2:钕铁硼检测-实习报告

实习内容:熟悉工艺流程掌握抛丸机、熔炼等设备的原理以及各牌号产品工艺控制参数及质量控制点。

经过一个礼拜关于熔炼的实习,使我对熔炼操作的了解大大加深。因为现在产品基本上是高牌号产品,而且产量并不特别多,所以600kg速凝炉的使用比较频繁。600kg速凝炉的基本操作规范如下:作业准备→装料→抽真空→烘料→充氩→加热→精炼→浇铸→冷却出炉→铸片检验。其中装料前需先对坩埚进行检查,若坩埚内的炉渣较多就必须进行清理,否则会影响产品的成材率。同时,一个坩埚在使用40-50炉后需要换新的坩埚。装料时,也要严格按照要求来进行,先加入铁,再加钕,然后加入一些其他材料,最后再加入钕。下一步是抽真空,在溶解室真空度达10Pa以下时,进行烘料,待真空度达5Pa以下后充氩。充氩完成后进行加热,等溶解室压力计显示27000Pa后,停止送功率,对溶液进行测温,一般浇铸温度在1450±7℃,此后需再加大功率使温度高于浇铸温度,目的是为了让金属充分熔化。下一步就是进行浇铸,浇铸过程中操作人员应不停地观察,控制流速,防止过快而冲坏铜辊。产品出炉后需要对袋中充入氮气,防止产品过热氧化。

在实习过程中,也遇到了一些问题,询问了班长和其他人员才得知答案。比如说为什么熔炼中是充氩气而不是氮气?这是因为氩气是惰性气体,不会跟材料发生反应,而氮气相对较活泼,在温度较高的时候会和铁等发生反应。又比如为什么产品有些发黑或者发蓝?这原因比较多,有可能是因为炉内漏气或者材料问题等等。为什么要安装中间包?中间包起均匀、降温的作用,防止铁水直接冲到铜辊上而烧坏铜辊。中间包的材料是水晶磨来石,需要经常更换。

篇3:钕铁硼

强力磁铁行业的信息化起步早、应用面宽,具有广泛基础。根据目前强力磁铁行业的信息化目标需求的多样性、推进步骤的渐进性和实施过程的艰巨性。钕铁硼永磁也清楚如今磁铁行业市场上将要面临多样化社会的各种考验。

然而,在恒生的新型功能性强力磁铁材料行业作为强力磁铁行业的一个分支,属于强力磁铁行业的高端领域,是近年来迅速崛起的新兴产业。

新型功能性强力磁铁材料是以优质低碳强磁等为基材,与无机非磁材料经强化、强化磁场,两者产生紧密化学键形成的磁铁材料。既有强磁等基材的坚韧、抗冲击等特性,又有无机强力磁铁层超强耐酸碱、耐久、耐磨、不燃、易洁、美观、无辐射等特点。

如今,工业用强力磁铁是目前新型功能性强力磁铁材料中发展最为成熟的部分,已成为地下空间内饰景观设计首选材料,在我国磁悬浮列车领域应用快速扩张,且与我国磁悬浮列车建设步伐同步。

所以,现在我司主导产品工业用强力磁铁和强力磁铁波纹板传热元件作为主要的新型功能性强力磁铁材料,目前已广泛应用于工业立面铸造、航空航天,电子电声,皮具手袋,五金玩具,工艺品,礼盒包装等行业等多个领域,未来拥有巨大的市场空间。

磁悬浮列车建设步伐同步的念头,让钕铁硼永磁预计2010-2020年,仅按目前已规划的新增磁悬浮列车运营里程计算,未来10年将新增站点2600个以上,预计工业用强力磁铁的市场容量在300万平方米以上。加上城市隧道、地下人行通道等地下交通设施的巨大建设需求,未来相当一段时期内,工业用强力磁铁的市场需求仍将保持迅速增长趋势。

强力磁铁元件是工业保护强力磁铁材料的代表性产品之一,在电厂、节能设施中广泛使用,是燃煤发电厂。在未来较长时期内,燃煤电厂仍将是电力供应主体且持续增长。因此,强力磁铁波纹板传热元件拥有巨大市场空间,且随电力投资增长需求还将进一步提升。

篇4:烧结钕铁硼永磁材料国家标准

本标准是以GB/T 1.3 一1997《标准化工作导则 第l 单元:标准的起草与表述规则 第 3 部分:产品标准编写规定》为原则,对GB/T 13560 一1992《烧结钕铁硼永磁材料》的修订。

在修订本标准时,依据国内生产厂家的产品情况及用户对产品的要求,参考了IEC 404-8-1(1986)及其补充2(1992)《磁性材料 第8部分:特殊材料规范 第一节 硬磁材料标 准规范》和国内外有关企业标准。对原标准的技术内容进行了必要的补充和修改。本标准参考 了IEC 标准的永磁材料分类,钕铁硼合金的小类分类代号为R7。

本标准与GB/T 13560 一1992 的主要技术差异如下:

1.在“引用标准”项中增加了标准GB/T 8170-1987《数值修约规则》、GB/T 9637-1988 《磁学基本术语和定义》和GB/T 17803一1999《稀土产品牌号表示方法》。

2.对原标准中“术语、符号、单位”修改为“术语与定义”。由于引用GB/T 9637—1988 《磁学基本术语和定义》,取消了原来的磁学术语定义。采用了IEC 404-8-l(1986)对永磁材料 的磁性能划分为主要磁性能和辅助磁性能的方法,并对这两个术语分别进行了定义。3.修改并增加了材料的牌号。

4.对附录A 的机械物理性能范围值修订为典型值。

5.新增加了附录C“钕铁硼永磁材料的主要成分、制造工艺及应用”内容。本标准自实施之日起代替GB/T 13560一1992。本标准的附录A、附录B、附录C 均为提示的附录。本标准由国家发展计划委员会稀土办公室提出。本标准由全国稀土标准化技术委员会归口。本标准由包头稀土研究院负责起草。

本标准主要起草人:刘国征、马 婕、王 标、李泽军。1 范围

本标准规定了烧结钕铁硼永磁材料的主要磁性能、试验方法、检验规则和标志、包装、运 输、贮存。本标准同时给出了主要机械性能和辅助磁性能等其他物理性能的典型值。本标准适用于粉末冶金工艺生产的烧结钕铁硼永磁材料。引用标准

下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所 示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可 能性。

GB/T 2828 一1987 逐批检查计数抽样程序及抽样表(适用于连续批的检查)GB/T 3217—1992 永磁(硬磁)材料磁性试验方法 GB/T 8170 一1987 数值修约规则 GB/T 9637 一1988 磁学基本术语和定义 GB/T 17803—1999 稀土产品牌号表示方法 术语与定义

本标准采用下列定义,其它术语定义按G/T 9637 规定。3.1 主要磁性能principal magnetic properties 包括永磁材料的剩磁(Br、磁极化强度矫顽力(内禀矫顽力)(Hcj)、磁感应强度矫顽力(Hcb)、最大磁能积((BH)max)。

3.2 辅助磁性能 additional magnetic properties.包括永磁材料的相对回复磁导率(μrec)、剩磁温度系数(α(Br))、磁极化强度矫顽力温度系 数(α(Hcj))、居里温度(Tc)。材料分类与牌号

4.1 材料分类

烧结钕铁硼永磁材料按磁极化强度矫顽力大小分为低矫顽力N、中等矫顽力M、高矫顽力H、特高矫顽力SH、超高矫顽力UH、极高矫顽力EH六类产品。4.2 牌号

每类产品按最大磁能积大小划分为若干个牌号(详见表1)。4.3 牌号表示方法 4.3.1 数字牌号

04 80 ××

第三层次 表示钕产品级别(规格)第二层次 表示钕次类产品(应用产品)第一层次 表示钕大类产品(钕)

牌号示例:048021 表示(BH)max为366~398kJ/m3,Hcj为800kA/m的烧结钕铁硼永磁材料。4.3.2 字符牌号

烧结钕铁硼永磁材料的牌号由主称和两种磁特性三部分组成。第一部分为主称,有钕元素 的化学符号Nd、铁元素的化学符号Fe 和硼元素化学符号B 组成,即NdFeB。第二部分为斜线前 的数字,是材料最大磁能积(BH)max的标称值(单位为kJ/m3);第三部分为斜线后的数字,是 磁极化强度矫顽力Hcj值(单位为kA/m)的十分之一,数值采用四舍五入取整。

牌号示例:NdFeB380/80 表示(BH)max为366~398kJ/m3,Hcj为800kA/m的烧结钕铁硼永 磁材料。要求

5.1 材料在23℃±3℃下的主要磁性能应符合表l的规定。如需方有特殊要求,供需双方可另 行协商。

材料的辅助磁性能仅供用户设计使用参考,不作验收依据。

表1 烧结钕铁硼永磁材料23℃±3℃下的磁性能 材 料 主要磁性能 Br T Hcj kA/m Hcb kA/m(BH)max 种 类 数字牌号 字符牌号 kJ/m3 最小值 最小值 最小值 范围值

048021 NdFeB 380/80 1.38 800 677 366~398 048022 NdFeB 350/96 1.33 960 756 335~366 048023 NdFeB 320/96 1.27 960 876 302~335 048024 NdFeB 300/96 1.23 960 860 287~320 048025 NdFeB 280/96 1.18 960 860 263~295 048026 NdFeB 260/96 1.14 960 836 247~279 N 048027 NdFeB 240/96 1.03 960 796 223~256 048031 NdFeB 320/110 1.27 l100 910 302~335 M 048032 NdFeB 300/110 1.23 1100 876 287~320 048033 NdFeB 280/110 1.18 1100 860 263~295 H 048041 NdFeB 300/135 1.23 l350 890 287~318 048042 NdFeB 280/135 1.18 l350 876 263~295 048043 NdFeB 260/135 l.14 1350 844 247~279 048044 NdFeB 240/135 1.08 1350 812 223~255 表1(完)

材 料 主要磁性能 Br T Hcj kA/m Hcb kA/m(BH)max 种 类 数字牌号 字符牌号 kJ/m3 最小值 最小值 最小值 范围值

048051 NdFeB 280/160 1.18 1600 876 263~295 048052 NdFeB 260/160 1.14 1600 836 247~279 048053 NdFeB 240/160 1.08 1600 796 223~255 SH 048054 NdFeB 220/160 1.05 1600 756 207~239 048061 NdFeB 240/220 1.08 2000 756 223~255 UH 048062 NdFeB 220/200 1.05 2000 756 207~239 048063 NdFeB 210/200 1.02 2000 732 191~223 048071 NdFeB 240/240 1.08 2400 756 223~255 EH 048072 NdFeB 240/220 1.05 2400 756 207~239 辅助磁性能的典型值:

α(Br)=-0.12%/K 测量温度范围为298~413K α(Hcj)=-0.6%/K 测量温度范围为298~413K μrec-1.05 Tc=585 K 注:

1.厂商可提供其它补充牌号的材料,如低温度系数等牌号的材料。

2.α(Br)和α(Hcj)的温度范围是298~413K,但并不排除这些材料可以在这温度范围以外的使用。3.SI与CGS单位制下磁性能的换算关系:1T=10kGs,1kOe=79.6kA/m,lMGOe=7.96kJ/m3。4.产品磁性能检验结果的数值修约按GB/T 8170规定进行。

5.2 材料的主要机械物理性能参见附录A(提示的附录)。

5.3 材料的尺寸偏差、形状和位置偏差(简称形位偏差)参见附录B(提示的附录)。具体要求有 供需双方共同商定。

5.4 材料的主要成分、制造工艺及应用参见附录C(提示的附录)。

5.5 产品表面部允许有影响使用的裂纹、砂眼、夹杂、和边角脱落等缺陷,具体要求由供需双方 共同商定。6.1 材料磁性能试验方法按GB/T 3217规定执行。

6.2 产品尺寸、行为偏差采用满足精度要求且符合国家计量标准的量具检测,或由供需双方确认 的专用量具检验。

6.3 产品外观质量检查用目测。7 检验规则 7.1 检查与验收

7.1.1 产品由供方质量技术监督部门进行检验,保证产品符合本标准规定,并填写质量证明书。7.1.2 需方应对收到的产品按本标准的规定进行检验。如检验结果与本标准规定不符时,应在 自收到

产品之日起,一个月内向供方提出,由供需双方协商解决。如需仲裁,可委托双方认可的单位 进行,并在需方共同取样。7.2 组批

每批产品应由同一牌号、同一生产工艺制成的同一规格和尺寸的材料组成。7.3 检验项目

每批产品应进行磁性能、尺寸、形位偏差、外观质量和合同中规定项目的检验,7.4 取样

检验用抽样数量按GB/T 2828 规定,其材料的主要磁性能合格水平为特殊检查水平S2 的 1.5 级,其它项目检验合格水平为检查水平Ⅱ的1.5 级。7.5 检验结果判定

产品主要磁性能检验结果与本标准规定不符时,则从该批产品中取双倍试样对不合格项目 进行复验,如仍不合格,则判定该批产品为不合格。8 标志、包装、运输、贮存 8.1 标志、包装

8.1.1 产品一般以磁中性状态交货。如需方要求充磁并在合同中注明,可充磁交货,对取向方 向不易辨别的产品,应标明充磁方向。

8.1.2 产品用箱(盒)包装,并保证在运输和贮存过程中不损坏。充磁产品的包装要求,应符 合运输和贮存方式的相应规定。每个包装箱(盒)应附标签,注明:供方名称、产品名称、牌号、规格尺寸、批号、件数、净质量、出厂日期。8.2 运输、贮存

产品的运输过程应小心轻放,存放于通风、干燥、无腐蚀气氛的场所。8.3 质量证明书

每批产品应附质量证明书,注明: a)供方名称;

b)产品名称、牌号、规格尺寸; c)批号; d)净质量、件数;

5.6 每一牌号的材料可分为毛坯状态和机加工状态。试验方法

磁学名词

关于钕铁硼永磁体常用的衡量指标有以下四种:

剩磁(Br)单位为特斯拉(T)和高斯(Gs)1T=10000Gs

将一个磁体在外磁场的作用下充磁到技术饱和后撤消外磁场,此时磁体表现的磁感应强度我们称之为剩磁。它表示磁体所能提供的最大的磁通值。从退磁曲线上可见,它对应于气隙为零时的情况,故在实际磁路中没有多少实际的用处。钕铁硼的剩磁一般是11500高斯以上。

磁感矫顽力(Hcb)单位是奥斯特(Oe)或安/米(A/m)1A/m=79.6Oe 磁体在反向充磁时,使磁感应强度降为零所需反向磁场强度的值称之为磁感矫顽力(Hcb)。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。钕铁硼的矫顽力一般是10000Oe以上。

内禀矫顽力(Hcj)单位为奥斯特(Oe)或安/米(A/m)

使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。在磁体使用中,磁体矫顽力越高,温度稳定性越好。磁能积((BH)max)单位为兆高·奥(MGOe)或焦/米3(J/m3)

退磁曲线上任何一点的B和H的乘积既BH我们称为磁能积,而B×H的最大值称之为最大磁能积,为退磁曲线上的D点。磁能积是恒量磁体所储存能量大小的重要参数之一。在磁体使用时对应于一定能量的磁体,要求磁体的体积尽可能小。

·各向同性磁体: 任何方向磁性能都相同的磁体。

·各向异性磁体: 不同方向上磁性能会有不同;且存在一个方向,在该方向取向时所得磁性能最高的磁体。

烧结钕铁硼永磁体是各向异性磁体。

·取向方向: 各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。也称作“取向轴”,“易磁化轴”。·磁滞回线: 铁磁材料在经过充磁、退磁、反向充磁、再退磁周期性变化时,所获得的关于磁感应强度(横坐标)相对于磁场强度(纵坐标)变化的闭合曲线。

退磁曲线(即B-H曲线):磁滞回线中,位于第二象限中的部分我们称之为退磁曲线。也即我们所说的B-H的曲线。如图所示:·退磁曲线的膝点: 磁体退磁曲线上发生突变、明显发生弯曲的点。室温时退磁曲线呈直线的磁体,在温度升高到一定程度时都会出现膝点。如果磁体的工作点在膝点以下,磁体在动态磁路中工作时会产生不可逆损失。

·负载线: 连接工作点和退磁曲线坐标原点的一条直线(见上图)。·磁化强度: 指材料内部单位体积的磁矩矢量和,用M表示,单位是安/米(A/m)。·磁感应强度: 磁感应强度B的定义是:B=μ0(H+M),其中H和M分别是磁化强度和磁场强度,而μ0是真空导磁率。磁感应强度又称为磁通密度,即单位面积内的磁通量。单位是特斯拉(T)。CGS 单位制中的单位为高斯(Gauss)。

·磁通: 给定面积内的总磁感应强度。当磁感应强度B均匀分布于磁体表面A时,磁通?的一般算式为? =B×A。磁通的SI单位是麦克斯韦。

·漏磁通: 磁体回路中未能通过工作气隙而被泄漏的那部分磁通。

·磁场强度: 指空间某处磁场的大小,用H表示,它的单位是安/米(A/m)。

·相对磁导率: 媒介磁导率相对于真空磁导率的比值,即μr = μ/μo。在CGS单位制中,μo=1。另外,空气的磁导率在实际使用中往往值取为1。

·磁导: 磁通Φ与磁动势F的比值,类似于电路中的电导。是反映材料导磁能力的一个物理量。

·磁导系数,Pc : 即为导磁率,磁感应强度Bd与其磁化强度的比率,即Pc = Bd/Hd。也即我们所说的“负载线”或磁体的工作点。导磁率可用来衡量磁性材料被磁化的容易程度,或者说是材料对外部磁场的灵敏程度。磁导系数可用来估计各种条件下的磁通值。在磁路中,近似有:Bd/Hd = lm/Lg,其中lm是磁体的长度;Lg是相对应磁体气隙的长度。因此Pc是磁路设计中的一个重要的物理量。

·居里温度: 对于所有的磁性材料来说,并不是在任何温度下都具有磁性。一般地,磁性材料具有一个临界温度Tc,在这个温度以上,由于高温下原子的剧烈热运动,原子磁矩的排列由有序变成无序。在此温度以下,原子磁矩一致排列,产生自发磁化,材料呈铁磁性。

·磁路: 磁通流经的回路称为磁路。永磁体和磁轭、气隙、极靴等构成闭合磁路。·气隙: 磁回路中磁导率为1的间隙部分,一般为空气间隙,但是也可为其它介质。·气隙长度-Lg: 磁路中气隙的长度。

·磁动势-F: 它是磁路中任意两点间磁势的差值,类似于电路中的电压。

·磁阻-R: 磁动势与磁通的比值称为磁阻,即R= F/?(类似于欧姆定律),其中F是磁动势,? 是磁通(CGS单位制)。类同于电路中的电阻。

·磁轭: 放置在磁体回路或两磁极中心、引导磁力线通过以减少磁通损失的高磁导率材料,一般为软磁铁、纯铁或低碳钢。·极靴: 放置在磁极处的用来约束磁束的分布及改变其流向的铁磁性材料。

·涡流: 当磁场发生变化时,传导电流之中所产生的环形电流称之为涡流。涡流能产生反向磁场。涡流对于转动速度或者其它大多数磁路设计都是有害的,故涡流应尽量降低到最小。

·磁饱和度: 任何可导磁材料在一定条件下都可达到饱和的状态。铁磁材料在将其磁化时会达到饱和。钢铁的磁饱和度为16000到20000高斯。

·稳定性: 是衡量磁体抗退磁能力的物理量;影响磁体稳定性的因素有温度或外磁场等。·可逆温度系数: 一个衡量由温度变化引起的磁性能可逆变化的物理量。

日本磁性材料的现状及发展唐敏

磁性材料是电磁力学的主要支柱材料。在社会生活中,它的作用相当于能量仓库的钥匙,可用以取出“能量”并使其发挥作用,成为国民经济发展的一种必不可少的“维生素”。磁性材料及其应用产品是典型的节能、节材、资源综合利用及出口创汇产品,因此,磁性材料的产量是表示一个国家或地区工业发达程度的指标,其需求量则能粗略体现一个国家或地区的国民生活水平。

由于日本在磁性材料的开发生产、推广应用等方面居世界之首,也是磁性材料最大的市场,该国的情况是一只“晴雨表”。因此,了解日本磁性材料的现状及发展动向,对我国该行业的进一步发展有着非常重要的意义。

日本磁性材料的生产及应用现状

从总的情况看,在各类磁性材料中,自90年代初期以来,日本除了在新兴的第三代稀土永磁—NdFeB上仍有较大发展外,其它磁性材料的产量、产值均为负增长或持平。其中,日本铁氧体软磁的产量、产值由1991年的约4.9万吨、7.7亿美元降至1998年的4.3万吨、5.8亿美元,年递减分别为2.0%和3.9%,其产量约占世界总量的17%,产品主要用于消费类家用电器(包括小家电)、开关电源及抗电磁干扰等领域。在烧结永磁中,烧结铁氧体永磁的产量、产值由8.1万砘、4.2亿美元降至到4.8万吨、2.9亿美元,年均分别减少7.1%和5.2%,目前占世界产量的12.6%,产品主要用在汽车、摩托车电机及电声器件上;烧结稀土永磁由1698吨、3.9亿美元增至4600吨、6.1亿美元,年增长率分别达15.3%和6.6%,但这种高速增长主要发生在NdFeB永磁上,1999年日本烧结NdFeB已达6404吨,占世界产量的42.4%,处于绝对的领先地位,产品大部分用在计算机硬盘驱动器(HDD)用音圈电机(VCM)、核磁共振成像仪(MRI)及其它电机上;烧结Sm-Co稀土永磁近年来呈下滑趋势,目前日本年产量约350吨,占世界产量的50%,产品主要作在军用电子对抗、电机及导航系统上。铸造AlNiCo永磁由于处在廉价铁氧体和高性能NdFeB永磁的夹攻中,加之贵金属Co的价格居高不下,在日本的发展也不乐观,其产量、产值呈下降趋势,年均分别减少6.5%和7.4%,目前产量约为1000吨,占世界的16.4%,产品主要用于工作条件恶劣、温度稳定性要求很高的仪表领域(如汽车传感器等)。

适应电子信息整机轻、薄、短、小要求而发展起来的粘结永磁,可分为粘结铁氧体和粘结稀土两类。其中粘结铁氧体永磁应用最早、用量最大,但发展趋势于平缓,目前日本年产约2万吨(产值近1.9亿美元),占世界产量的33%,传统用途是电冰箱门封条、复印机和打印机磁辊及各种磁片;粘结Sm-Co永磁60年代末进入市场,在粘结NdFeB出现后其产量明显下降,但因其热稳定性好,在精密电机和大功率电机中仍有一席之地,目前日本的产量约70吨,占世界产量的44%,预计今后几年日本的粘结氧体和粘结Sm-Co的产量将保持相对稳定;在粘结永磁中发展最快的是1987年才开始商品化的各向同性粘结稀土NdFeB,日本的产量由1987年的约15吨增至1999年的930吨左右,年均增长高达45.5%,目前约占世界的60%,产品主要用在HDD、FDD(软驱)CD-ROM、DVD-ROM及家电中的微型直流主轴电机和步进电机上。

对于性能更优异、潜在应用市场更广阔的各向异性粘结NdFeB永磁,目前日本三菱和旭化成等公司已开始进行小批量生产。这类磁体将给汽车挡风玻璃雨刮驱动电机、玻璃清结电机、观后镜驱动电机、电动门锁和电动调节座椅电机等带来使用性变化。预计2004年日本各向异性粘结NdFeB永磁产量将达到3000吨以上。值得一提的是,从上述数据中虽反映出日本近年来多种磁性材料的产量和产值均为负增长,但这并不意味着日本磁性材料需求量的相应用下降,比如铁氧体永磁,该国正继续将其生产转移到海外,以低成本来对付日元升值、劳动力成本增加以及满足日本在海外生产的整机的需求。目前日本在海外工厂生产的铁氧体永磁已高达8万吨,加上本土生产的约5万吨,这就是说其实际产量在13万吨左右,仍比中国的产量略高,中国要成为真正的世界第一尚需持续努力。表1是不完全统计的日本在海外发展的铁氧体永磁工厂情况。

而在NdFeB永磁上,日本之所以能不断增长,主要有三方面的原因:一是新用途不断被开发出来;二是计算机领域的需求量不断增大;三是国外特别是我国价格低廉的NdFeB永磁(仅为日本产品价格的1/3左右)无法进入受专利保护的日本市场,使其受冲击较少。

日本现约有60家厂商在从事磁性材料的开发与生产,其中TDK公司生产各类磁性材料元器件及磁应用制品,是全球磁性材料品种最全的生产厂家,该公司在铁氧体软磁、铁氧体永磁生产上长期稳居世界第一位,其稀土永磁生产也颇具有规模(在日本排第三位),是举世公认的磁性材料王国中的“王中王”。住友特殊金属公司是世界烧结NdFeB永磁的专利拥有者和最大生产厂家,其AlNiCo永磁在日本也排第一位(其次是三菱制钢公司)。但日本磁性材料行业一些人士评论,日本信越化学工业公司的NdFeB生产有可能赶超住友公司。在粘结稀土永磁的开发生产上,日本精工—爱普森公司多年来一直稳坐世界“第一把交椅”,目前其产量在400吨以上,占日本总产量的40%左右;紧跟其后的是大同特殊金属公司,该公司于1992年停止生产铁氧体永磁而把重心放在发展粘结稀土永磁上。此外,意欲在永磁方面不落后于其它大公司而对产品结构作调整的还有日立金属、东北金属、三菱制钢等著名磁材公司。

日本磁性材料的科研进展

在铁氧体软磁高频低功耗材料方面,自70~90年代,日本TDK、FDK、东京铁氧体川崎制铁等铁氧体知名公司已先后开发出四代开关电源用功率铁氧体材料,目前这些公司都能大批量生产PC40、PC44、PC50等第三、四代材料,其使用频率一般可达数百kHz~1MHz,为开关电源的小型化作出了显著贡献。另外,为适应计算机显示器和HDTV发展的需要,TDK等公司在90年代初还开发出用于制作回扫变压器的HV22、HV38、HV45高频铁氧体材料,也有极低的功耗和高饱和磁感应强度。在铁氧体高磁导率(ui)材料方面,TDK公司在过去生产H5C2(ui=1000)的基础上,90年代又先后开发出H5C3(ui=13000)、H5D(ui=15000)和H5E(ui=18000)材料;FDK、东京铁氧体等公司也相继开发出ui=12000~15000的材料。用这类材料制作的电感器、滤波器、扼流圈、宽带变压器和脉冲变压器,需求量很大,可广泛用在数字技术和光纤通信等高新技术领域。

在铁氧体抗电磁干扰材料及元件方面,目前TDK公司已开发出6种EMI吸收材料、23个抗EMI器件71个品种,是目前世界上开发生产铁氧体吸收材料及抗EMI元器件品种最全、水平最高的企业。

在铁氧体永磁方面,尽管日本早已实现“444”即Br≥4000Gs(0.4T)、HCJ≥4000Oe(320kA/m)、(BH)m≥4MGOe(32kJ/m3)的目标,但因离铁氧体的理论值还有一段不长不短的路要走,为此许多日本企业仍在想办法推进永磁性能的发展。如TDK公司继在90年代初率先推出具有世界领先水平的FB5、FB6系列材料后,近年又通过选用高纯原材料、合理调整配方、掺杂、提高取向和密度、严格控制产品的显微结构等措施铁氧体永磁的性能指标再次发生飞跃,已大大接近其理论值(FB9系列)。

日本铁氧体磁体开发的另一个动向,是从磁性能的改进转入便于使用的改进上,如发展超大弧度、超长、超厚磁体等等。

在NdFeB永磁方面,日本科研开发的方向主要有四个方面,一是向高磁能积方向发展,目前批量生产水平在400kJ/m3左右,如住友特殊金属公司的Neomax50、Neomax48BH、TDK公司的Neorec-50、日立金属公司的Hirorex-super52等;二是向特高内禀矫顽力方向发展,如住友特殊金属公司的28EH、32EH产品,其HCJ超过2000kA/m(25kOe),工作温度最高可达240℃;三是研究开发(BH)m≥256kJ/m3、耐腐蚀性优于烧结磁体的各向异性粘结NdFeB永磁;四是积极探索纳米复合双相稀土永磁,向(BH)m≥800kJ/m3的目标迈进。表2列出了当前日本高档磁性材料大批量生产的代理牌号及水平。

篇5:钕铁硼检测-实习报告

基本信息

【英文名称】Materials for sintered neodymium iron boron permanent magnets 【标准状态】被代替 【全文语种】中文简体 【发布日期】1992/7/9 【实施日期】2000/11/1 【修订日期】2000/6/5 【中国标准分类号】H65 【国际标准分类号】77.150.99

关联标准

【代替标准】GB 13560-1992 【被代替标准】GB/T 13560-2009 【引用标准】GB/T 2828-1987,GB/T 3217-1992,GB/T 8170-1987,GB/T 9637-1988,GB/T 17803-1999

适用范围&文摘

上一篇:街道办2012党风建设上半年工作总结下一篇:苏教版四年级下册数学期末试卷带答案