企业智能制造发展规划

2024-05-21

企业智能制造发展规划(共6篇)

篇1:企业智能制造发展规划

智能 制造规划 拟

制:

核:

准:

期:

目录 1.概述..........................................................2.需求分析......................................................

2.1 仓储....................................................2.2 生产....................................................2.3 其他....................................................3.企业信息化现状分析............................................

4.智能制造方案..................................................

4.1 系统架构................................................4.2 子系统耦合关系分析......................................4.3 工业大数据中心方案......................................4.3.1 工业大数据平台框架..................................4.3.2 工业大数据平台特点..................................4.4 现场层系统..............................................4.4.1 数据采集方案........................................4.4.2 机器视觉检测系统....................................4.4.3 生产测试管理平台....................................4.5 应用层系统..............................................4.5.1 智能仓储系统方案....................................4.5.2 项目管理系统方案....................................4.5.3 设备管理系统方案....................................4.5.4 PLM 系统方案.........................................4.5.5 能耗管理系统........................................4.5.6 CRM 系统方案.........................................4.5.7 GIS+BIM 构建虚拟车间.................................5.系统建设路线..................................................

5.1 实施策略................................................5.2 实施路线(建议)

........................................版本信息 日期 作者 版本 备注 2016.10.24 蒋中能 PA1 初版方案 2016.10.25 蒋中能 PA2 修改实施路线内容;在第一章前增加“阅读说明”

阅读 说明

1.概述:简述背景和本案的基本内容; 2.需求分析:主要描述现场调研情况及简要分析; 3.企业信息化现状:描述企业现阶段的信息化系统及使用情况,作出简要分析; 4.智能制造方案:描述总体架构;按照三个层级(数据层、现场层、应用层)进行系统方案描述; 5.系统建设路线:阐述天衡电科的智能制造实施策略,针对九州实际情况给出简要的实施路线建议。

1.概述 在工业 4.0、互联网+以及大数据、机器人和人工智能等技术日趋成熟的背景下,智能工厂建设的可能性逐渐明朗。

根据目前的技术成熟度,当前制造业转型的现实目标应当是建设数字化工厂、探索数字化管理和重构优化工作流程以满足数字化的要求。其主要原因有二:

其一:人工智能方法的成熟度上不能完全被可靠的利用到制造过程中,在当前只能通过数据感知获取一些知识,而判断的工作依然需要人来完成。因此,希望一步到位的实现智能工厂还不现实。但实现全数字化的工厂,将所有环节的数据采集和流转全部实现虚拟化并提供交互功能是完全可以做到的,这种形态的工厂即数字化工厂。

其二:数字化工厂是走向智能化工厂的必经道路。目前科学界普遍的共识是通过数据感知是获取智能的途径,因此数据是智能工厂最为核心和关键的部分,也是实现智能的基础。

而数字化工厂建设最为核心的内容是数据平台的建设。包括了数据的采集、传输、预处理、分类、规约、访问控制、相干性保证等诸多方面的内容;需要动用传感器技术、信号处理技术、数据通信技术、分布式计算技术、数据存储技术、软件技术、WEB 技术等众多 ICT 领域的关键技术。

数据平台的建设是一个有意义而又有挑战的工作。

在这一背景下,本案拟对数字化工厂的数据平台建设作一个方案规划。为数据平台建设的实施提供指导和依据。

本案的主要内容包括:

1.数据平台架构介绍:一般意义上的框架性介绍,建立一个基本的广泛适应性的数据平台框架,并标明其关键技术。

2.数据平台的应用背景:针对实际的应用,对企业的规模、业务过程、数据采集的类型和要求、数据量等具体应用相关情况进行描述。

3.数据平台方案规划:依据框架和具体的应用背景,具体给出某企业的数据平台的方案,指明需要的数据类型、数量以及实现方法等。

4.软硬件部署设计:对系统部署实施阶段所需的软件和硬件环境做出规定。

2.需求 分析

2.1 仓储 调研情况 :

1.储藏类型有三种:器件、半成品(原材料)、成品 2.所有三种类型的产品都存在外购和自产。

3.入库流程为:待验——检验——入库。其中待验环节主要是核对物料信息(外包装铭牌)以及抽样检查数量;检验为全检。

4.出库分为领料和销售出库两种。

5.领料流程为:技术中心下发 BOM 清单——PMC 部做计划单,发送领料单——库管发料——生产配套区 6.销售流程为:营销公司——运输中心——库管 7.入库数据为人工在 ERP 软件中录入对应号码。

分析 :

1.出入库数据需人工在 ERP 软件中录入,较繁琐。

2.仓库堆料为人工,存在摆放不合理以及快速查找响应慢等问题。

2.2 生产 调研情况 :

1.有 11 条产线,每条产线独立工作。

2.每条产线的生产情况由人工统计,在现场表现为小黑板展示,在后台为人工输入电脑。

3.华为专线生产线有 MES 系统,并配套扫码枪。

4.PCM 部向生产部门下发总生产计划,生产部门根据实际产线情况制定排产计划。

5.PCM 部下发的 BOM 清单会在生产部做一次比对,如果发现有问题则反追溯;如果没问题,则实施配料。

6.新产线数据目前已做到在上位机进行数据读取,使用的是设备配套的软件,读取的信息类型较丰富;旧产线数据能否读取尚不清楚。

7.新产线设备的数据传递口为 LAN 口。

分析 :

1.PLM 系统产生的 BOM 清单在修改时,由于系统间传递信息的时间不对称,会造成生产部门的 BOM 清单与最新的 BOM 清单不匹配的问题,使配料环节产生问题。

2.华为专线的 MES 系统据现场工作人员反应,并不好用,原因有几点:

a)数据统计不准确,主要原因为扫码枪有时读取不到产品信息。

b)MES 系统上线仓促,在流程和功能匹配度上存在问题。

2.3 其他 1.提供制造前端的物理量数据采集;如各类传感器数据。

2.提供制造前端各种设备(装备)的状态数据、过程数据和工艺数据等关心的数据采集(针对现阶段没有的设备)

3.提供制造前端所需的数据录入和搜集所需的人机交互界面,实现人工录入信息的采集。

4.保证数据采集过程中的数据传输安全。

5.保证设备接入网络后的工作状态可靠和信息安全。

6.提供数据存储、查询、分析等所需的软件。

7.提供该数据平台与其他应用系统集成时所需的软件接口。

8.数据采集前端的类型、数量能够在不影响原有数据平台的基础上扩展。

9.数据接口完全开发,具备自生长和可扩展性。

3.企业信息化 现状 分析 现状:

1.具备五个系统,分别是:ERP(金蝶 K3,12.3 版)、OA(大通 2015)、PLM(金蝶 13.1 版)、条形码系统、MES 系统。

2.ERP 系统上线于 2007 年,功能:

a)供应链 b)生产制造(生产计划、BOM 清单、车间管理)

c)财务结算 d)基础数据(与 PLM 系统的 BOM 清单同步)

3.OA 系统上线于 2015 年,功能:

a)审批流 b)财务报销

c)初步的 BI 分析(财务报表)

d)集成应用(物资借用、付款申请、基础资料)

4.PLM 系统上线于 2014 年,功能:

a)资料电子化(审批流程)

b)资料数据化(BOM)

c)物料申请(与 ERP 系统同步)

d)项目管理(下一步目标)

5.条形码系统上线于 2005 年,功能:

a)成品下线、质检、出入库、售后 b)物料信息、出入库单与 ERP 系统同步 6.MES 系统上线于 2015 年,功能:

a)SMT 管理(追溯物料,板卡与批次绑定)

b)DIP(插件)追溯 c)组测包(生产过程管控)

d)库存发货管理 e)物料信息、出入库单、BOM 与 ERP 系统同步 分析 :

1.所有系统以 ERP 系统为核心,其余系统与 ERP 系统进行部分数据交互,由于各系统中有自己独立的流程,所以在数据共时性上会存在数据同步的问题。

2.每个系统有独立的数据库和自身的数据格式,在进行系统间数据传递时有报错的风险(目前九州内部采用各系统中加审批流程来进行规避)。

4.智能 制造 方案 4.1 系统 架构

工业人工智能引擎生产计划管理平台集中采购管理平台物料管理平台生产过程管理平台生产质量管理平台生产测试管理平台用电侧能耗管理平台MES系统自动化运维平台……存储服务 计算服务工业大数据中心工业网络安全系统机器视觉检测系统现场电子测量系统智能装备 自动化设备 机器人现场数据采集系统应用层数据层现场层图 4-1 数字化制造系统架构图 按照工业大数据平台构建数字系统的思路,数字化工厂的总体框架和子系统划分定义如下图所示:

图 4-2 数字化工厂的总体框架 上图给出了该车间可能用到的系统模块。按照功能关系划分为三大部分,每一个部分的功能也稍作了细化。

子系统 1.1~1.8 都是部署在现场的各种软硬件系统。

子系统 2.1 是大数据平台。

子系统 3.1~3.7 是应用软件系统。

需要指出:1.1~1.8 之外,还可以扩展其他的现场应用系统,只要其数据接口和通信协议与大数据平台的要求相符即可;3.1~3.7 之外,还可以扩展其他应用管理系统,包括 ERP、OA 等相关功能都可以在这一层实现扩展。

4.2 子系统 耦合关系分析 表 4-1 子系统耦合关系表

从耦合关系可以看出,前端系统(1.x)各个部分之间耦合很小,应用系统(3.x)各个部分之间的耦合也很小。所有的耦合关系都集中在大数据平台,因此大数据平台的建设是最为关键的步骤。

4.3 工业 大数据中心 方案 4.3.1 工业大数据平台 框架 4.数据中心各类数据库(关系、非关系数据库)网络服务器计算服务器3.数据网1.前端数据采集系统2.工业防火墙1.前端数据采集系统2.工业防火墙1.前端数据采集系统2.工业防火墙1.前端数据采集系统2.工业防火墙 …… …… 企业网其他应用系统(MES、ERP、CRM、PDM、PLM等)图 4-3 工业大数据平台一般性框架 工业大数据平台分为三部分:

1.前端数据采集系统:包括数据采集器、嵌入式软硬件、已经必要的数据调理设备等。实现前端的各种数据提取,并进行传输编码、协议封装等

预处理工作。

2.工业防火墙:实现前端设备与数据网中其他设备之间的隔离,以保护设备本身工作状态稳定可靠,不受威胁。PLC、RTU 等设备在过去一般是不接入网络的,自然也不需要安全防护,但在数字化工厂建设的大背景下,设备接入网络是不可回避的问题,因此安全隔离自然也成为必须要考虑的要素。

3.数据网:指工业现场的各种传输协议,常见的有 RS485、MODBUS 等总线形式,大多数采用通用的协议控制器连接即可,技术很成熟,不再赘述。

4.数据中心:数据中心的主要任务是:1)数据的存储 2)数据计算 3)数据请求服务响应。在数字化工厂建设的背景下,要求各个业务端的数据能够实现实时流转、实时交叉分析,对数据的逻辑关系和时间关系的正确性提出了严格的要求,只有用大数据技术的方法来实现数据的整体统筹才能解决这个问题。同时,鉴于数字化工厂网智能工厂进化的过程中,需要不断的增加各种数据,添加系统功能等,这要求数据平台具有可扩展性,或者称之为自生长性。因此,本案采用大数据架构来搭建数据中心,可以保证系统良好的开放性,为未来扩展做好准备。

4.3.2 工业 大数据平台 特点 该数据平台架构的主要特点有:

1.采用大数据平台架构,保证系统的开放性。如此一来,其他的数据应用系统都可以随时方便的接入到该平台上。同时,也可以保证整个系统的功能可扩展性。因此,这是一个可生长的平台。

2.引入工业防火墙。在保证数据采集全面的情况下,兼顾设备运行的安全性。制造型企业设备运行可靠性一旦受到威胁,其后果和损失十分巨大,因此必须仔细考虑前端的信息安全防护。

3.采用分布式计算架构。有两层含义:1)采集前端部署计算资源,对现场数据采集所需的信号处理、协议封装、数据预处理或必要的实时处理进行直接计算,将结果直接反馈给数据中心;2)数据中心中,采用虚拟化的方法,实现并行的分布式计算,提高系统运行和计算效率。

4.平台软件采用 SOA 架构。以服务为中心,将数据与应用软件剥离开,在软件功能增加、修改的时候不影响数据;使系统的可维护性和可扩展性大大增强。

4.4 现场层系统 4.4.1 数据 采集方案 4.4.1.1 生产 数据采集 生产数据包括但不限于:

1)产品型号 2)产品批次号 3)产品原料来源 4)产品数量 5)产品质检结论 6)产品生产时间戳 数字化工厂生产数据的采集来源于四种:

1)设备自读取:具备通信接口的设备有自带软件将产品生产信息导出,该数据的格式存在不确定性,可能需要规约之后放入系统数据库。

2)传感器采集:在生产关键节点加装传感器进行数据采集,这种方式应科学规划传感器的部署,否则可能会造成数据记录遗漏或错误。

3)电子计数设备:例如扫码枪等,其原理与(2)类似。

4)其他系统导入:通过开放的数据接口,从其他系统导入或导出。

4.4.1.2 设备 数据采集 设备数据包括但不限于:

1)设备运行数据:来源于设备本身,以时间戳来标示 2)设备状态数据:异常信息记录 3)设备档案数据:设备 PDM 系统 4)设备维护数据:设备保养、维修数据记录 4.4.1.3 环境 数据采集 环境数据的采集有三种:

1.无线 传感模块

无线传感模块集成了大量传感器,如:烟雾传感器、灰尘传感器、湿度

传感器、温度传感器、热释电传感器、光线传感器、气体传感器等。其通信方式采用 WIFI、ZigBee、MQTT 等,根据需要也可采用有线以太网通信的方式。

模块由嵌入式处理器控制,尺寸小巧,架设方便。在接入网络后直接将现场环境数据采集上传至数据中心,数据的应用场景不限于安防、环境监控、工厂虚拟再现等。

图 4-4 无线传感器模块 2.生物 识别

生物识别技术,常见的是指纹、虹膜、脸相等一系列生物特征提取和识别方法。本案中,采用人体手掌静脉识别技术作为身份识别和授权依据,具有更高的安全性。

该技术的主要优点如下:

1)活体识别:掌静脉图像只有活体才有,非活体是得不到掌静脉特征的;因此无法伪造。

2)无损伤:采用非接触式被动方法获取生物内部特征,对生物体无任何损害。

3)安全级别高:由于无法伪造,且提取的是生物体的内部特征,其总体安全级别是目前所有生物识别技术中安全级别最高的一种。

生物识别技术可用于车间出入人员管理,设备使用授权等,其授权记录也被纳入大数据平台中。

3.室内 定位

Position 室内定位系统采用超宽带技术,对现场人员动行动轨迹进行记录。其接入点可达上万个,选用多维定位模式,定位精度达到厘米级并提供开放的软件接口。

在车间安防应用中,其采集的数据可用轨迹回溯、互监放单,多样报警等。在保密性较高的场合尤为适用。

4.4.1.4 数据 服务  数据库

制造现场属离散制造,其数据基数适中,可采用 Orale 或 Mssql 数据库

作数据存储。Mssql 可搭建于 Windows Server 操作系统上,便于后期维护管理。

数据库采用主备架构,该架构可提供了一个高效、全面的灾难恢复和高可用性解决方案。自动故障切换和易于管理的转换功能允许主数据库和备用数据库之间的快速角色转换,从而使主数据库因计划中和计划外的中断所导致的停机时间减到最少。主备数据库可在两台服务器上分别布置,见下图:

图 4-5 Oracle Data Guard 系统  工业 防火墙

在工业现场,对智能设备的安全防护是必不可少的,在通信技术高速发展,设备智能化不断提高的同时,也带来了安全隐患。

尤其是在自动化程度较高的制造现场,如果设备受到恶意代码的攻击,其带来的损失将不堪设想。所以,在设备与网络接口之间架设工业防火墙是十分必要的。

工业防火墙的目的是提供一套可控、可靠、可管理的工控网络纵深安全防御体系。工控防火墙可信网络管理平台的功能包括:检测流经的异常数据,收集、管理黑白名单、智能学习、漏洞挖掘和制定相应安全策略。结合监控、审计模块,有效组织恶意攻击的渗透,实现整个工作站的“白环境”。

图 4-6 工业控制系统安全保障体系 4.4.2 机器 视觉检测系统 4.4.2.1 总体 架构 完整的视觉检测系统主要由三部分构成:现场工作站、视觉算法层以及数据中心。

首先是现场工作站,它是视觉检测的一个关键环节,也是整个软件系统的基础。现场工作站主要由一些光学设备及自动化运行系统构成。光学系统一般包括工业相机、光源、棱镜等。工业相机一般采用触发式,由检测平台发出的信号触发拍照。自动化设备主要负责传送带运行和筛选环境,这部分可以根据实际情况简化。光学系统的选型和布置是和待测件密切相关的,应根据待测件的状态选择合适的光学配置,这样就可以减少软件系统在处理过程中的压力,提高系统运行效率。

高性能电脑则是视觉算法的载体,它将负责与现场工业相机通信,获取图片,并执行检测。除此之外,它还负责将检测结果反馈给控制器,并如对实时性要求较高,则可能需要高性能的处理器及 GPU。视觉检测系统总体方案见下图:

图 4-7 视觉检测系统总体方案 4.4.2.2 工作 流程 当物料经过相机时,传感器将触发一个脉冲信号通知相机进行拍照。视觉软件的数据接收线程将通过千兆以太网或 USB 从相机中异步获取图片数据。在实时性要求较高的场合,相机应根据需要慎重选择。图片的分辨率、清晰度、物体在图中的大小、图像曝光度及图像的颜色通道等都应该被综合考虑,拍摄的照片应尽可能的减少图像算法的预处理工作量,以保证对运行时间的优化集中在软件层面,下图为 LED 视觉检测流程示意:

图 4-8 LED 视觉检测软件流程图 软件将在现场终端上实现。在收到图片信息后,接收线程准备异步读取下一张图片,并等待残次检测完毕。同时,缺陷检测线程池内的线程将被激活,开始对图片数据进行分析,图形算法的主体将在此过程中完成。

线程池采用等待句柄保持同步,即当某一线程执行完毕后将结果放入传输队列,随即被挂起,等待其他所有线程进入终止态。当所有检测线程进入终止态后,数据处理线程被激活,同时触发下一次图像采集。

数据处理线程将在第一时间判断是否存在瑕疵,根据瑕疵优先级向 PLC 发出对应 NG 信号,数据同时被送往其他线程。这些数据包括每项检测的基本参数指标、瑕疵品的细节参数、时间戳以及产品批次等信息。这些数据将存放在大数据中心,供其他系统调用,向企业管理者和工艺人员提供产线状态报告。

4.4.2.3 数据 集成 图 4-9 视觉系统在企业生态圈示意图 机器视觉核心是视觉算法,而经过的复杂算法产出的珍贵数据应该被充分的利用起来。将检测结果发给自动化设备完成视觉筛选是视觉系统的主要职责,但是这样并没有对产品出现残次的根源进行进一步的挖掘。所以视觉算法产出的数据应当被放入企业数据中心,从中提取有用数据。

例如,对于每件检测到的残次品,它的批次、产品制造工艺、原料供应商、缺陷类型、缺陷程度、生产人员等信息都将在数据中心中体现。其中视觉系统提供与缺陷相关的参数,这便和企业原有的产品管理、供应商管理、客户管理、制造执行等系统互联起来。通过分布式计算从中发掘出有用的信息,从而进一步提升产品的质量及生产效率。

4.4.2.4 实际 应用 激光 IO 触发的方式通常要求机械臂在抓取待测件前待测件的姿态保持固定。因为系统中不存在反馈,机械臂只知道有待测件进入测试区域,并不知道待测件的姿态,这就要求在传送带末端设计相应的机械结构是的 IO 触发时被测件处于特定姿态,让机械臂进行准确的抓取和放置。

图 4-10 待测物体识别 图 4-11 抓取位置获取 引入机器视觉系统可以很好的解决这个问题。机器人和工业相机的结合使整套系统形成了一个闭环网络。无论待测件以什么姿态进入,工业相机和机械臂都可形成一条的反馈回路,实时追踪被测件的位置和姿态,从特定的位置抓起被测件并插入测试槽中。即使有多个被测件进入,视觉系统也能从容应对。如有杂物进入识别区,还可将其识别触发报警,避免可能带来的损失。

针对本案,测试平台可采用固定式相机搭配线性光源的结构,易于安装和配置。视觉系统同样采用千兆以太网通信,其数据吞吐量大,不但可以与机械臂协同工作,还可以将出现的异常或测试不过的图像信息经工业以太网发送至云端数据中心。

视觉机器人系统可以充分发挥信息自动化的优势,实现与大数据平台和 MES系统对接,为技术人员提供完备的数据流,从而形成更加系统的测试体系。

4.4.3 生产 测试 管理平台 4.4.3.1 总体 框架 图 4-12 测试互联网架构 从图中可以看到,每个测试台被当做一个数据生产终端,通过互联网进行连接,构成测试互联网。

测试台之间通过通用的工业互联网协议实现数据交互,而每一个测试台内部则采用 VISA(Virtual Instrument Software Architecture)协议实现控制指

令和数据交互,而支持的主要总线形式包括 RS232、RS485、USB、GPIB、TCP/IP等。

系统的功能逻辑关系见下图:

测试台1测试上位机及自动测试软件VISA测试仪器温箱其他测试设备测试台2测试上位机及自动测试软件VISA测试仪器温箱其他测试设备测试台n测试上位机及自动测试软件VISA测试仪器温箱其他测试设备… … 交换机安全隔离数字化工厂数据平台 测试数据库 产品数据库 其他数据库服务器图 4-13 测试互联网功能逻辑框图 4.4.3.2平台 功能 在数字化工厂的测试管理平台不能单纯的当做一个个独立工作的测试台来考虑,另外,测试管理平台的软件功能也不再只是实现简单的自动化测试和数据采集,而是应当把被测产品的信息、测试工具管理、测试数据管理、测试任务管理等功能进行融合,满足测试工作在数字化工厂运作方式中的要求。

本案的测试管理平台软件的主要功能有:

1.测试任务管理功能:根据生产的需要,对指定型号的产品进行测试任务定义和下发,并跟踪测试过程,检查测试任务进展的状态。

2.被测产品信息管理:将被测产品与测试数据进行融合,便于未来对测试数据与产品之间的交叉分析。如果企业已有 PDM 系统,则可以与之对接,直接使用其提供的产品信息。

3.测试软件工具集成化管理:该软件平台提供一个综合的集成图形界面,将测试过程中需要使用的各种测试工具都“包”在该界面中,类似于一

个软件容器,用户可以通过该用户界面对测试工具进行访问,避免测试工具的碎片化,易于管理。且测试工具的添加和删除可以根据用户的需求进行增减。

4.测试设备状态管理:产线中的测试设备由于使用频率高,维护频率也远高于研发使用场景。该软件同时提供测试设备的健康状态管理,以协助用户对测试设备进行维修、校准等维护。

5.测试数据管理:该软件以大数据架构的工业数据平台作为数据管理支撑,为用户提供数据的存储、查询、导出、计算等功能。

6.测试数据分析功能:为用户提供数据的常见统计、交叉、可视化等处理软件工具。

7.自动报表功能:自动生成用户需要的测试报告,并自动存入数据平台中,便于未来查阅和追溯。

测试数据管理平台软件界面截图如下:

图 4-14 测试数据管理平台软件截图 4.4.3.3平台 特点 1.是一个完全按照数字化工厂需求设计的基于互联网架构的测试平台。

2.采用 VISA 架构设计测试工具软件,对仪器设备的型号有广泛的支持性。

3.采用分布式部署架构,特别适合生产测试场景。

4.集成化的测试工具和数据管理客户端软件,将生产测试过程中的各种过程数据采集工具都进行了整合,避免了工具的碎片化。

5.以大数据架构的数据平台支撑测试数据的后处理,可以很方便的与工厂的数据平台进行对接和融合。

6.系统架构为开放式。可以不影响原有系统工作的情况下自由的增加测试台或测试软件工具。

7.是一个以测试数据为核心设计的测试管理平台。一开始的时候就是为测试数据的采集和利用设计的,数据的后处理功能和可扩展性好。

8.仪器驱动层为开放式设计。可以很方便的添加新的仪器型号,或利用原有的仪器设备,而不需要对测试流程管理软件进行修改。

9.SOA 软件架构。

4.4.3.4 操作 自动化 方案 操作自动化的主要目标是实现将待测件从传送带入口到测试平台再到传送带出口的过程。整个过程无需人工干预,结合自动化测试设备,最终实现无人测试。

图 4-15 自动测试流程图 当被测件加工完毕后,从传送带上被分配到测试子系统,在进入测试系统范围后通过激光或机器视觉发出一个就位信号。这时机械臂开始动作,将待测件抓起,准确放置到指定地点,测试过程启动。测试完成后将返回测试结果,如果不通过则机械臂将其分配到残次品流水线,合格则分配到良品流水线。在这期间产生的所有流程数据、测试数据都将被记录。

图 4-16 自动测试平台结构示意图 采用工业机器人作为生产与自动测试平台间的桥梁,不仅可以提高效率,还为今后进一步升级改造打下了基础,其带来的优势主要有:

1)快速、准确、高效; 2)便于集成,提供以太网口,可与大数据平台及 MES 系统高效融合; 3)安装角度自定; 4)编程门槛低,灵活度高,可根据具体需求进行二次开发; 5)可搭配机器视觉等子系统,持续升级。

工业领域中使用的四轴、六轴的小型机器人已具有很高的灵活性和快速性,同时兼顾了准确性,其重复定位精度通常可达±0.02mm,可满足九州公司中对测试件抓取、放置,甚至接插的需求。

小型机器人的负载通常在 3KG 至 10KG,可根据待测件类型进行考虑,如成品测试通常比板测要求负载量更大。末端的抓取结构可根据被测件选用机器爪或真空气泵,在对空气气体洁净度需求较高的场合,通常选用前者,当然也可以选用实验室级别的机械臂。

4.4.3.5 测试 自动化方案 测试台的自动化主要通过两个渠道来实现:

1.通过矩阵开关和适配器实现被测件和测试设备之间连线关系的自动化切换。

2.通过软件控制被测件、矩阵开关、适配器和测试仪器实现测试流程,完成自动化的测试和数据采集,并通过数据通信接口将测试数据上传到数据中心。

测试台的系统逻辑构成框图如下:

图 4-17 测试台系统构成逻辑框图 测试平台为面向各种不同型号的被测件,需要充分考虑被测信号与测试仪表的连接和路由问题。通常采取通用开关矩阵解决测试信号与仪表的路由问题、采取专用适配器解决被测件信号与通用开关矩阵连接问题。示意图如下:

图 4-18 通用开关矩阵及适配网络路由方式示意图 开关矩阵采用 MxN 的网络形式,可以将开关矩阵两侧的任意两个端口或多个端口进行路由和导通。为控制矩阵规模和可靠性考虑,将测试信号按频率的高低进行划分,高频信号配备高频开关矩阵网络,低频信号配备低频开关矩阵网络。开关一般由 TTL 电平进行控制,而 TTL 电平的产生由控制电路板构成。控制电路板的输入接口是 RS232、GPIB、USB 或 TCP/IP 等常见的 VISA 协议,其输出口是GPIO,可以配置为需要的 TTL 电平输出。

专用适配器作为被测件与通用开关矩阵的接口转换匹配模块,可以将不同被测件的借口类型转换为高频、低频信号连接端口集合,与通用开关矩阵相连。因此,针对不同型号的被测件,需要专门设计专用适配网络,以匹配不同信号被测件的不同接口形式和数目的要求。专用适配网络的设计示意如下:

图 4-19 接插线适配器设计示意图 航空电子设备模块的接口类型和数量较多,更换被测模块时相关的连线操作较为繁琐和浪费时间。适配器的接口设计和特定模块的接头类型、位置、数量相对应的相匹配,将模块的所有接头集成在适配器上,通过操作适配器,一次性完成对整个模块的接插线操作。通过适配器内部的转换,可以将各个信号经由相对比较统一的接线簇与通用开关矩阵相连。同时,可以将各模块测试所需的一些外部配件,如衰减器、功分器、合路器、滤波器等集成在专用适配盒内,最大程度避免接线难度。

4.5 应用层 系统 4.5.1 智能仓储 系统 方案

4.5.1.1 仓储 管理 仓库管理的目标如下:

1.系统联网运行,仓库的库存信息能够实时地、准确地共享,方便各部门、科室、人员的查询和使用。

2.实现仓库对物料的信息化管理,将区位化和等精细化管理思想运用于系统中,相关人员通过对系统的查询,均能够得到所需查询物料准确的数量信息和精确的位置信息。

3.系统的库存信息可以实时反馈给数据流上游的采购部门、财务部门等,具体信息由系统按规范格式自动生成,从而减少相关人员对物料信息的人工输入,大大降低由人工二次输入引起的错误。

4.系统能够保证信息的安全性,区分各类人员对系统的使用范围和操作权限,权责明晰。

仓库管理可分为 5 个主要功能模块:出入库管理、库存管理、盘存管理、库存预警管理。

 出入库管理 主要分为出库管理和入库管理两个部分。入库管理又可以分为入库和入库记录查询。入库是指对库存进行一次增加操作,入库记录查询指的是对历史的入库操作信息进行查询。出库管理与入库管理类似,也包括出库和出库记录查询。

图 4-20 出入库管理用例图  库存 管理 库存管理模块主要是对仓库信息、物料信息的维护,以及库存信息的展示。仓库信息、物料信息的维护主要包括仓库信息和物料信息的添加、删除、修改等功能。库存信息的展示包括当前库存状态以及库存查询统计和各种报表生成。其中当前库存状态能提供即时库存;信息查询要提供对各类信息的综合查询功能,主要包括仓库基本信息查询,物料基本信息查询,库存信息查询以及出入库记录查询。

图 4-21 库存管理用例图 其中信息查询又包括仓库基本信息查询,货物基本信息查询,库存

信息查询以及出入库记录查询。

图 4-22 库存信息查询用例图  盘存管理:

库存盘点是库存管理的日常工作。该模块主要分为库存盘点和物料报损两部分,其中库存盘点又包括冻结盘点和循环盘点两种。库存盘点提供年终、月终结算处理;支持按数量、单价、金额的明细核算及统计分析;完成物料收发存的成本核算,能够正确及时的核算出材料成本;提供暂估入出库成本计算、差异核算、出库差异分摊、凭证生成等业务处理;提供业务和财务的对帐功能能与业务及财务系统实时集成,保证业务财务信息的一致。

图 4-23 盘存管理用例图  库存 预警管理:

适量的库存是保证生产不间断进行的重要保证,随着生产过程的持续进行,物料不断的被消耗。由于物料的采购通常要受到供方生产周期、货运周期等诸多因素的影响,因此从采购指令下达到物料进入库房之间存在着一个提前期。所以,物料补充指令的下达应该在提前期之前做出。因此,为了确保在最合适的时间发出物料补充指令,从而保证供应安全,必须对库存进行监测。另一方面,如果有库存过量,会造成资金的极大占用和浪费,因此在库存管理过程中,一方面要预防缺货的发生,另一方面还要防止出现库存积压状态。

图 4-24 库存预警管理用例图 关于库存的控制有多种方法,其中定期订货法需要对库存进行固定周期的监测,由于这种检测方法的固有周期性,其监测结果经常会出现尚未到达临界订货点即进行补充的状况;MRP 对库存的控制则是基于对物料需求进行统筹、有效的科学分析基础之上的;JIT 则是在库存管理高度有效运转的前提下追求零库存控制策略。

4.5.1.2 备料 辅助 传统的仓库具有空间利用率低、灵活性差、差错率高、扩展性能差、联动性差等缺点。

在数字化仓库建设中,备料辅助系统(可看做是仓储物流系统)的作用是快速存放和取用所需的器件或产品。其结构如下图:

备料辅助系统自动化高架库 自动化输送 自动物料追踪 人机交互 仓储综合管理端拾器具存储 端拾器具输送 端拾器具追踪 人员操作指示仓库管理相关内容图 4-25 备料辅助系统结构图  自动化高架库:用自动化堆垛机、货架系统实现物料存取;  自动化输送系统:用自动化输送装备实现物料的交接和搬运;  自动物料追踪系统:用 RFID 实现物料操作过程的追踪; 下图为一个自动化备料系统仿真设计图:

图 4-26 自动化备料系统仿真示意图 在系统设计中需要考虑的因素有如下:

 托盘物品:存放对象、物料重量、物料尺寸等  空托盘垛:存放位置、顶层高度等  组合式货架:材料、尺寸、间隙等  堆垛机:载荷参数、控制方式、速度  输送机:AGV 小车参数、传送带参数 下图为一个备料系统硬件组成示意图:

图 4-27 自动化备料系统物理组成示意图 自动化备料系统的软件设计以物料管理系统提供的信息为参考,在生产计划阶段,下发命令到仓库,取料,并更新仓储数据;在采购阶段,物料入库数据自动更新,并反馈给生产计划部门以准备生产。

4.5.2 项目 管理 系统 方案 4.5.2.1 项目 管理 项目管理的一般流程见下图:

图 4-28 项目管理一般流程

项目管理包括如下内容:

1.项目任务管理 根据企业情况,项目任务的来源分为订单来源和生产预估计划来源。订单来源指企业接收到新产品订单后,成立项目管理小组,任命项目经理对该项目的全过程进行管理,其过程包括研发规划、设计定型、产品试制、生产准备、小批量生产、批量生产。生产预估计划来源,指企业根据往年情况,能预估其固化产品在今年的需求量,从而指导生产计划的制定,对于这种项目来源,项目流程一般仅为批量生产。

2.项目状态管理 项目立项之后,项目组成员即可根据对应权限对项目状态进行管理。包括项目状态及进度查询、项目状态更新、项目暂停、项目终止、项目内容更改、项目负责人更改、项目合并等。

4.5.2.2 成本 管理 成本控制是企业的一项重要的工作内容。企业通过对成本的计划、控制、监督、考核和分析等来促使企业各单位与部门加强管理,不断优化资源的利用,努力降低成本,提高经济效益。成本管理系统就是通过对于成本的不同方式的确认、计量、分析和比较,确保这种系统控制能最终落实到资源消耗上。使得企业的管理者能够得到更加准确和及时的数据。

成本管理 ER 关系见如下几图:

图 4-29 成本用例示意图 图 4-30 成本核算分析用例示意图 图 4-31 多系统集成管理用例示意图 成本管理系统承担的工作是计算出生产计划中,成本消耗和产品的产出之间的投入产出比。针对产品和项目核算出产品料工费,可以统计出单位产品的材料成本消耗。另外成本管理系统还可以根据采购的原材料而把成本细分,根据产品的工序和结构,对产品进行成本细化分析。

图 4-32 项目成本信息 ER 图 同时,根据产品的常规投入,制定产品的成本标准,这个标准是在一定的物价水平和劳动力价格下制定的成本标准,而根据标准成本,在每一批次的产品中

计算出实际成本在各项之间,计算出实际成本和标准成本之间的数据差额,从而改进成产工序等,从而更好的实现产品成本或者项目成本的更好控制。

图 4-33 产品成本信息 ER 图 在项目的成本核算分析中,根据项目的周期,首先进行事前成本分析,根据项目的程度,对项目进行事前的成本的预估计,对包括劳动力、原材料成本、车床损耗、生产损耗等进行预先的成本估计,以期对项目的成本进行大概的预估计。

然后在项目进行的过程中,分阶段,分周期的对项目成本进行阶段性分析,对之前的成本花费进行汇总,并且根据原先制定的计划,对成本花费与以后的花费进行修正或者调整,以使其按照预先估计的方向进行发展。最后,项目的完成阶段,对成本进行事后分析,对项目成本的事后分析,包括多方面的分析,包括对项目中花费的汇总和总结,对项目进行完整的成本分析。

同时,每一个产品是由多个工序实现的,在计算整体生产成本的同时,还需要对每一步骤,或者分产品进行投入产出分析,以使其达到最高的成本效率控制。同时,对产品成本和项目的成本分析结果都应该在多系统子模块之间进行数据共享。使各个模块都可以对产品或者项目的成本进行更好的把握和掌控,最终实现整个生产效率的完美提高。

4.5.2.3 风险 管理 项目风险管理是指对项目风险从识别到分析乃至采取应对措施等一系列过程,它包括将积极因素所产生项目风险管理流程的影响最大化和使消极因素产生的影响最小化两方面内容。

风险管理的主要内容是风险识别,包含两方面内容:

1.识别哪些风险可能影响项目进展及记录具体风险的各方面特征。风险识别 不是一次性行为,而应有规律的贯穿整个项目中。

2.风险识别包括识别内在风险及外在风险。内在风险指项目工作组能加以控制和影响的风险,如人事任免和成本估计等。外在风险指超出项目工作组控制力和影响力之外的风险,如市场转向或政府行为等。

风险管理的工具和方法如下:

1.核对表一般根据风险要素编纂。包括项目的环境,其它程序的输出,项目产品或技术资料,以及内部因素。

2.流量表能帮助项目组易于理解风险的缘由和影响。

3.风险量化。

风险控制的基本措施为:

1.对风险对策控制的输入项  风险管理方案。?  实际风险事件。有些已识别了的风险事件会发生,有些则不会。发生了的风险事件是实际风险事件或说是风险的起源,而项目管理人员应总结已发生的风险事件以便进行进一步的对策研究。?  附加风险识别。当项目进程受到评价和总结时,事先未被识别的潜在风险事件或风险的起源将会浮出水面。

2.风险对策实施控制的工具和方法  工作区:对消极的风险事件而言,工作区是一种不列入方案的对策。所谓不列入方案是指在感觉上它并未定义在风险事件发生前。?  附加风险策略研究。如果风险事件未被预料到,或后果远大于预料,那么计划的风险策略将会不充分,这时就有必要再次重复进行风险对策研究甚至风险管理程序。

3.风险对策实施控制输出项  校正行为:校正行为首先包括实施已计划的风险对策(比如实施预防性计划或工作区计划)。

实时调整风险管理计划。一个预料之中的风险事件发生或没发生,对实际风险事件后果的评估,对风险系数和风险机率的评估,以及风险管理方案的其它方面,都应进行实时的更新调整。

4.5.3 设备 管理系统方案 设备状态管理主要包括:设备档案管理、运行监控、保养及维修管理等。

 设备档案管理 设备档案管理将基础信息分类与查询-型号,采购价格,供应商信息,设备折旧信息,关键参数信息,产品说明书,维修手册,提供设备档案与之关联,形成数字化模型进行设备的档案管理。同时提供计算设备在其全生命周期过程中发生的采购费用、折旧费用、保险费用、保修费用,为财务提供全面的成本信息。

 设备运行监控 设备运行监控包括运行相关数据,便于实时掌握各类设备的运行状态,发生故障时及时报警,统计设备运行负荷信息,实现保养提醒。

该功能为一线的生产运行人员提供设备运行情况的数据记录与查询功能,使运行管理人员准确记录设备的运行情况,发现设备故障时及时报修。

其方式包括:

1.调取视频监控画面和现场数据采集 设备运行监控与现场的视频监控集成,同时与众多工程现场的自动控制系统进行集成。视频监控的调取不但可以立体显示标定所有视频监视设备的安装位置,而且可以远程遥控视频设备的云台控制视角和景深,通过网络链接使控制中心能及时了解现场的情况。

2.设备运行数据直观展示与分析 通过对设备运行数据的分析,可以通过相应设备对应的三维模型进行颜色的区分,以及设备运行曲线等直观方式展示设备运行状态,对于处于亚健康以及报警预警设备进行及时的提醒和分析。

3.设备运行健康状态自诊断、自适应 该功能利用设备,环境,操作,维修,保养,供应商等多个类型的数据,准确预测设备故障,提升设备效能,降低维护成本。正是因综合不同数据源的数据,并自动检测故障模式,主动部署维护和维修资源,可大大节省下游成本。

自适应自诊断,包括电子系统自动诊断和模块式置换装置,把远距离设备的传感器数据连续提供给中央工作站。通过这个工作站,维护专家可以得到专家系统和神经网络的智能支持,以完成决策任务。然后将向远方的现场发布命令,开始维护例行程序,这些程序可能涉及调整报警参数值、启动机器上的试验振动装置、驱动备用系统或子系统。

 保养及维修管理 设备保养及维修管理贯彻“预防为主”和“维护与计划检修相结合”的原则,通过平台设备保养和维修管理,做到正确使用、精心维护,使设备经常处于良好状态,以保证设备的长周期、安全稳定运转,并可通过历史数据对设备进行保养和维修周期提示。

4.5.4 PLM 系统方案 4.5.4.1 数据 关系管理 图 4-34 产品数据 ER 图 产品数据包括:

1.需求数据:主要指产品在设计前期从各渠道得到的技术需求,包括功能及技术指标等。

2.设计数据:产品在实际开发过程中的所有数据。包括文档、图纸、技术参数、BOM 清单等。

3.质量数据:产品在开发完成之后的质检数据,一般以报表的形式展现。

文档 数据 版本 管理规则 文档作为 PLM 系统中最为常见的数据形式,其生命周期管理是最为关键的部分。而实现其生命周期管理的途径是版本管理。

图 4-35 文档版本管理流程 产品 分层编号规则

在常见的 PLM 系统中,为了实现产品的层级管理,一般需要按照一定的规则对本单位所使用的各种产品按照层级编号,这样才能按照 BOM 有序的索引到所有的产品,并进行管理。

一般而做法是通过前缀来实现产品的分级区分,而为了控制系统的复杂度,产品的层级划分一般不超过 4 级。下图是一个 4 级结构的产品层级划分示意图:

图 4-36 产品层级划分 数据 关系管理规则

一般而言,在 PLM 系统中,以产品和项目两种实体作为数据关系实体的纲领,这种方法是十分清晰和易于管理的方式。所有的工程数据以文档的形式体现,因此在 PLM 系统中的 Data 指的就是文档,这一点首先需要明确。至此,已经可以明确的确定 PLM 系统的任务是处理产品、项目和文档三者之间的关系。其逻辑关系见下图:

图 4-37 产品、项目、文档逻辑关系图

PLM 系统中,产品和文档都有版本跟踪,项目需要有状态变化和跟踪;也就是说,产品、项目和文档的状态都随时在发生改变,怎样实现版本关系的跟踪是系统设计中需要考虑的问题。详细的处理过程见下图:

图 4-38 版本跟踪处理 其中的基本原则如下:

 在项目或产品状态开放时间区间内才能建立或修改文档与之对应的关系;  项目或产品状态一旦锁定,关联关系同时被锁定;  只有被批准过的文档才能与项目状态或产品状态相关联; 4.5.4.2 PLM 系统 PLM 系统设计原则包括:功能定制化、开放性、易维护性和可靠性。

产品数据管理系统,主要任务是管理如下数据:

1.产品相关技术文档,包括但不限于:设计需求、CAD 图纸、工艺要求规范、BOM 表、验证规范、验证报告; 2.零部件相关技术文档,包括但不限于:零部件规格资料、零部件图纸; 3.项目文档,包括但不限于:项目预算、项目结算报告、项目时间计划、项目风险管理、项目总结;(该部分主要针对以研发项目进行开发设计的企业)

4.运维文档,包括但不限于:维修记录、产品缺陷报告、产品使用反馈调查表。

顾名思义,该系统的主要任务是管理数据,在实际过程中,数据都是以各种各样的计算机文件的形式进行保存...

篇2:企业智能制造发展规划

报告筛选出22个样本国家,评价结果显示,美国、日本和德国名列第一梯队,是智能制造发展的“引领型”国家;韩国、英国、中国、瑞典、瑞士、芬兰、法国、奥地利和加拿大名列第二梯队,是智能制造发展的“先进型”国家。

中国经济信息社指数中心相关负责人在发布会上说,全球智能制造发展指数,是对全球范围内符合一定条件的国家进行综合评价,通过对智能制造密切相关因素的综合分析,建立系统、全面、特色的评价体系,并运用相应的指数化评价方法进行量化测评,旨在全面衡量并真实反映一定时期内国家智能制造产业发展综合实力,简明直观、客观公正地体现国家智能制造发展水平和状态,为全球智能制造发展提供指导和参考。

从发展格局来看,传统的制造业强国依然呈现较强的竞争实力,而亚洲等新兴经济体在世界工厂时代的积累也让他们呈现出较大的竞争优势(爱基,净值,资讯)。当前以中国为代表的制造业转型升级(爱基,净值,资讯)与美、欧等发达国家“重振制造业”的政策方向形成共振,这使得智能制造的世界格局处在一种快速发展的动态平衡中。而大数据、物联网、云计算等新一代信息技术为智能制造的快速发展与突破提供了必要条件。

中国在全球智能制造发展指数中综合排名第6位,然而,在智能制造的发展环境、要素支撑、发展基础和制造业智能化应用水平方面均存在一定的“非均衡”特征,政、产、学、用、资的`融合有待进一步加强。全球智能制造发展指数评价结果显示,中国的智能制造发展环境和发展基础较好,在22个样本国家中分别位列第3位和第4位;然而,要素支撑和制造业智能化应用水平有待提升,分别位列全球第13位和第10位。

目前,中国智能制造发展呈现以下特征:首先,从智能技术研发和智能技术的应用情况来看,较多的学术研究成果与较低的制造业智能化应用水平形成反差。

其次,从中国现阶段制造业生产效率和智能装备的使用情况来看,中国正在由“高投入、高消耗、高污染”的传统制造业发展模式向“数字化、智能化、信息化”的创新发展模式转型。

第三,从中国智能装备的国际贸易情况来看,中国的进出口总额与日本、德国相当,然而,日本、德国以出口智能装备为主,中国进口装备规模远高于出口规模,而且中国高端设备核心部件的数控系统也主要依赖进口,中国高端装备对外依存度高。

由中国经济信息社指数中心编发的全球智能制造发展指数构建了包含4个一级指标、10个二级指标和22个三级指标的评价体系。其中,一级指标主要从发展环境、要素支撑、发展基础以及制造业的智能化应用水平四个维度表征国家智能制造发展的内在规律。二级指标是基于功能属性对一级指标的具体展开,考虑了真实性与全面性,同时考虑数据可获得性,各层次之间通过指标加权后逐级合成。所有指标均来自于权威机构发布,可以由公开渠道获取的原始数据,或通过系统且科学的方法合成计算,并有专业组织维护并定期更新的数据源。

中国经济信息社是新华社直属企业,中国规模最大、服务领域最广、产品种类最全的经济信息服务机构之一。

中国经济信息社在国内设有30家分公司,为海内外3万多家用户提供经济信息服务。

中国经济信息社的产品集群和服务平台主要包括:新华财经、新华丝路、政务信息、行业信息、舆情监测、战略咨询、新华指数、新华征信等。

篇3:企业智能制造发展规划

改革开放30年来, 我国机械制造业取得了巨大的成就, 从引进消化吸收向自主创新迈出了坚实的步伐。我国的科技创新体系建设稳步推进, 在全国范围内形成了以广东、沈阳、徐州、湖南、浙江为代表的、颇有影响力的产业集聚地。我国无论是大型装备、交通运输装备、制造装备, 还是航天、海洋工程, 其自主化水平都得到了全面提高。2008年, 我国作为世界机械制造大国, 机械、电气与交通运输设备出口第二大国, 已经屹立于世界机械制造大国之林。

1.1 从引进消化吸收走向自主创新

1.1.1 科技创新体系建设稳步推进

我国科技创新相关法律法规和政策体系已逐步完善, 科技投入亦实现较快增长。2008年, 全国研发经费支出达4570亿元, 是2005年的1.87倍。世界知识产权组织 (WIPO) 数据显示, 中国《专利合作条约》 (PCT) 申请量在2005年首次跻身十强的基础上, 2008年以全年6089件的申请量超越英国, 跃居世界第六位, 同比增幅为11.9%。我国企业已成为投入和研发的主体, 在全国范围内, 大中型工业企业研发经费投入占总投入的比例达50%以上。截至2008年上半年, 我国已建成国家重点实验室220个, 覆盖了大部分学科领域, 这些实验室已成为我国制造业创新和发展的坚强后盾。

1.1.2 机械制造工业自主化水平显著提高

机械主导产品的技术来源于国内的比例已从20世纪80年代的24.5%上升到目前的60%。在此基础上, 我国机械产品国内市场自给率由改革开放之初不足60%升至2008年的80%以上。

1.1.2.1 大型装备

(1) 能源设备。截至2008年底, 我国已制造超临界机组158台, 其中600MW超临界机组107台, 1000MW超超临界机组51台, 火电装备水平有了很大提高。随着电力科技水平的迅速提升, 我国超超临界机组技术的应用达到国际先进水平, 大型空冷发电机组的开发应用居国际领先地位, 同时我国也是世界上大型循环流化床锅炉应用最多的国家, 整体煤气化联合循环发电技术 (IGCC) 的关键设备——气化炉的自主化研制也已进入工程试用阶段, F级大型燃气轮机联合循环发电机组的整套设备已经实现国产化。我国已能独立设计制造三峡右岸单机容量700MW的水电机组, 其容量和性能都代表了当今世界先进水平;在轴流式机组方面, 国内制造的水口电站机组单机容量达到200MW, 这也是世界上同类机组中容量最大的;国内制造的贯流式机组最大单机容量为45MW, 最大转轮直径6.9m, 已具备自主设计制造大型贯流式机组的能力;在抽水蓄能机组方面, 国内机组的制造水平与国外差距较大, 但已引进了国外先进技术。秦山二期扩建工程3号机组堆内构件首次实现全部国产化, 标志着我国核电反应堆关键设备的设计制造技术已达到国际先进水平。此外, 体现国际最高锻造水平的核电关键部件——整体顶盖在中国第一重型机械集团公司147MN水压机上完成锻造, 各项技术参数均达到了国际先进水平。2008年中国新增风电装机容量6300MW, 新增量位列全球第二, 截至2008年底风电总装机容量达到12 210MW, 同比增长106%, 总装机容量位列全球第四。最近, 具有自主知识产权的国内首批3台国产化3MW海上风电机组在首个国家海上风电示范工程——上海东海大桥100MW海上风电场正式投入运行。中国有近70家企业涉足风电整机制造, 中国风机已开始出口国际市场。

(2) 石化设备。2009年1月, 我国首台百万吨级乙烯裂解气压缩机组由沈阳鼓风机集团制造并试车成功, 标志着我国已具备百万吨级乙烯“三机”制造能力。2009年3月, 由中国石油宝石机械公司研制的我国首台12 000m特深井钻机投入使用, 标志着我国陆地和海洋深水油气田、大位移井及其他复杂油气田超深油气藏的勘探开发钻井水平已经提高到一个新层次。目前, 我国1000万吨炼油设备国产化率已经达到90%, 30万吨合成氨和52万吨尿素成套设备实现了国产化。

(3) 冶金设备。我国冶金设备从引进消化吸收到自主创新, 其技术水平现已跻身世界先进行列。宝钢的建设与发展, 大力推动了国内冶金及装备工业的发展, 参与宝钢工程设计、安装、设备制造和物资配套的企业通过消化宝钢的引进技术, 大大缩短了与国际先进水平的差距。宝钢一期工程建设时, 我国还不具备制造大型现代化冶金设备的能力, 主体装备成套引进, 少部分设备国内制造, 设备国产化率只有12%;宝钢三期工程以国内设计和制造的装备为主, 部分设备采用“点菜式”引进并在国内总成, 将设备国产化率提升到80%以上, 而且国产设备还进入了高难度、高技术的“心脏”部位;宝钢“十五”项目建设的国产化率则进一步上升到88%。

1.1.2.2 交通运输设备

我国汽车制造业实现了多领域、全方位的快速发展。2009年10月, 中国首次迈进千万辆级汽车生产大国的行列, 中国汽车工业用最近7年的时间创造了过去53年的总产量。我国在新能源汽车的研制方面也取得了初步成就, 北京奥运会上有350辆各类车型是节能与新能源国产汽车, 我国正在开展“十城千辆” (已增至13个城市) 城市电动公共汽车运营试点。中国已成为世界上少数几个能制造时速350km/h高速列车的国家之一, 已完全掌握了动车组列车的总成、车体、转向架、列车网络控制和制动系统等九大关键技术及10项主要配套技术。预计在2011年交付的京沪高铁采用的动车组的国产化程度将达85%以上。我国船舶制造业已形成了一批标准化、系列化船型, 而且在一些高度复杂的船舶和海洋工程装备方面也取得了重大突破, 具备了自主设计大型自升式钻井平台和半潜式海洋平台的能力。我国率先开发的17.5万吨绿色环保好望角型散货船已成为国际品牌;自主开发的30万吨超大型油船 (VLCC) 的性能受到国内外船东的好评;具有自主知识产权的集装箱船已成系列。飞机制造业已逐步形成涡扇支线客机、涡桨支线飞机、中型货运飞机、小型直升机、中型直升机、大型直升机、客货混装多用途飞机、农林专用飞机、小型通用飞机、教练机十大自主产品系列, 成为少数几个能够生产系列航空产品的国家之一。

1.1.2.3 制造装备

高档数控机床和大型基础制造装备是工业现代化的基石, 是高技术产业发展的支撑。我国数控机床产量从2001年的1.7万台增至2008年的12.2万台, 数控机床产量跃居世界第一, 95%的经济型数控系统和一些中高档数控系统由国内制造。精密加工技术有了新进展, 数控金属切削机床的加工精度已提升到微米级, 有些品种已达到0.05μm左右。2009年, 中国兵器工业集团自主研制的352.8MN黑色金属垂直挤压机在北方重工公司成功完成热调试, 标志着我国大口径厚壁无缝钢管制造技术打破国外垄断并达到世界领先水平。

1.1.2.4 工程机械

目前, 我国工程机械行业形成了独立自主的新产品研发体系和现代化研发手段, 新产品开发周期缩短到1年左右, 大大提高了应对市场的能力, 每年有70~80个新产品投放市场, 新产品产值平均每年达到25%左右。重点骨干企业科研开发经费已经占到销售额的2%以上, 少数企业达到5%的国际先进水平。2009年公布的全球工程机械50强中, 中国企业占有8席。

1.1.2.5 航天工程

我国运载火箭和卫星技术已达到国际先进水平, 先后研制了14个型号的长征系列运载火箭, 具备发射各种轨道空间飞行器的能力, 在可靠性、安全性、成功率和入轨精度等方面都达到了国际一流水平。我国在载人航天和深空探测领域也取得了重大突破, 20余项技术达到国际先进水平。我国航天技术应用达到新水平, 在1000多种新材料中, 近80%是在航天需求的牵引下研制的, 有近2000项航天科技成果已移植到国民经济各部门。航天科技工业的发展带动了微电子技术、计算机技术、光电技术、新材料技术、新能源技术、生物技术、纳米技术等高新技术产业群的崛起, 有力地提升了我国科学技术的整体水平。

1.2 我国已成为世界制造大国和出口大国

1.2.1 制造大国

(1) 我国制造业增加值在世界的份额不断提高。按照2000年不变价计算, 我国制造业增加值占世界的份额由1995年的5.1%上升到2007年的11.4%。在22个工业大类中, 我国制造业占世界比重在7个大类中名列第一, 在15个大类中名列前三。而在发展中国家中, 除了一个大类名列第11位外, 其他21个大类所占份额都名列首位。

(2) 改革开放30年来, 我国机械制造业取得了突飞猛进的发展。自2003年以来, 我国机械工业产值增幅均在20%以上。2008年机械工业总产值9.07万亿元, 为1978年的80多倍。

(3) 我国机械制造业已形成门类齐全、具有相当规模和一定水平的产业体系。截至2008年, 我国机械工业拥有规模以上企业7.88万家, 资产总额6.68万亿元, 从业人员1466万人, 2008年全年完成工业总产值突破9万亿元, 完成工业增加值2.28万亿元, 实现利润4605亿元, 税金2491亿元, 2008年机械工业多项指标增速居全国工业各行业首位。

(4) 我国已成为世界机械制造大国。德国机械设备制造业联合会公布的一项评估称, 2008年中国已超过德国成为世界机械制造大国。我国有210余种工业产品产量居世界第一。其中, 发电设备产量、数控金属切削机床产量均位居世界第一。在常规发电设备、输变电设备、港口装卸机械、水泥成套设备等制造领域, 不仅早已替代进口, 并已占领了重要的海外市场。

1.2.2 出口大国

根据联合国的统计, 2008年, 我国出口总额达14 306.9亿美元, 位居全球第二, 仅比第一位的德国低354.5亿美元, 比第三位的美国高出1307.9亿美元。世界贸易组织 (WTO) 首席经济学家Patrick Low预测, 中国可能会在2009年超过德国, 成为世界第一出口大国。

中国机械工业对全球机械产品出口贸易增长的贡献不断加大。据联合国统计, 2008年, 我国机械、电气与运输设备出口额 (按照联合国贸易标准分类的第三版格式, 即SITC-3, 选择其中的一位数分类——7大类之机械、电气与运输设备统计) 达到6740.65亿美元, 居全球第二位 (德国第一, 美国第三, 日本第四) 。

1.3 我国已形成了一批著名企业、制造产业集聚地

截至目前, 我国装备工业领域已形成了一批具有综合实力的大型企业集团和专业化企业, 如一汽等四大汽车企业集团、上海电气集团、南车集团、北车集团、中航工业集团、国机集团、通用集团等;一批具有较强综合实力的股份制企业和民营企业正在成长, 如中联重科、三一重工、沈阳机床、大连机床、特变电工、天马轴承、万向集团等;一批由科研院所和大学创办的高科技企业正在崛起, 如振华港机、南瑞继保、山河智能等。在国家大力倡导和推动下, 我国各地及相关企业都在加快区域布局调整, 推进产业集聚。例如:广东省已成为全国最大的光电产业基地;沈阳市先进装备制造业基地建设取得新突破;以徐工集团为核心的徐州工程机械产业经济总量已经占到了全国同行业的25%, 工程机械企业已经发展到1000多家, 形成庞大的产业集群, 在技术、规模、品牌、配套能力4个主要方面, 在国内均处于行业领先地位;长沙有29家规模以上工程机械企业, 其中大中型企业6家, 生产的产品涉及12个大类100多个小类400多个品种规格;浙江作为我国模具制造大省, 2008年, 模具出口总额为3.22亿美元, 占全国模具出口总额的16.73%。

2 我国机械制造业面临的挑战

改革开放30年来, 我国机械制造业取得了令人瞩目的成绩, 但还面临着一些必须充分重视的挑战和问题。总体来看面临着以下几个关键性问题:首先, 虽然自主创新能力得到稳步提升, 但创新能力不强, 导致核心竞争力不足;其次, 长期的“世界工厂”的发展模式, 导致了机械产品附加值低, 忽视品牌价值;另外, 能耗高、利用率水平较低, 信息化程度不足, 在未来的竞争中对我国机械制造业的制约也将进一步凸显。

2.1 创新能力不强, 核心竞争力不足

截至2008年底, 我国有效专利共计119.5196万件, 其中, 国内权利人的有效专利 (简称国内有效专利) 92.3797万件, 国外权利人的有效专利 (简称国外有效专利) 27.1399万件, 分别占总数的77.3%和22.7%。

在国内有效专利中, 有效发明专利12.7596万件, 有效实用新型专利46.3342万件, 有效外观设计专利33.2859万件。由此可以看出, 国内有效专利以实用新型和外观设计专利为主, 发明专利所占比重相对较低。而在国外有效专利中, 发明专利20.9619万件, 远高于国内有效发明专利数量;实用新型专利有6387件, 外观设计专利共5.5393万件, 分别低于国内有效实用新型和外观设计专利。

截至2008年, 我国机械工程领域国内有效专利数量远低于国外在我国的有效专利数量。

按WIPO最新修订的技术领域分类标准, 在35个技术领域中, 国内有效发明专利数量在食品化学、药品、材料冶金等9个领域占据优势, 但在如光学、半导体、计算机技术等高新技术领域, 国外有效发明专利数量仍高于国内有效发明专利数量。

2.2 产品附加值较低, 品牌竞争力弱

由于我国制造业产品处于国际产业链的低端, 所以往往依据客户提供的产品规格与制造规范进行生产与组装, 在产品设计、品牌经营、销售及售后服务等环节投入较少, 致使我国制造业在品牌方面竞争力不足, 目前, 我国多数出口产品是贴牌生产, 出口企业中拥有自主品牌的不足20%。

由于我国产品附加值低, 因而往往采用低价竞争和模仿国外新产品的方式来赢得订单, 在国际市场上频繁遭遇贸易摩擦。2008年, 我国已连续14年成为反倾销调查的最大受害国;我国产品居美国337调查的被调查首位, 居美国CPSC (美国消费品安全委员会) 召回首位, 居欧盟RAPEX (欧盟非食品类快速预警系统) 通报首位。

2.3 能耗高、效率低

目前, 我国的制造业整体一直未能摆脱高损耗和低效率的困局, 这制约着我国制造业竞争力的提高。我国的传统制造业在创造巨大财富的同时, 也已成为能源消耗的大户。我国的能源利用率是33%, 比发达国家低约10个百分点。

2.4 信息化水平较低

我国制造业企业的信息化水平在国内相对于其他行业较高。在2008年度中国企业信息化500强调查中, 参评企业销售收入总额11.6万亿元, 相当于当年GDP的38.6%。2008年入选企业中制造业企业的比例为58.7%。而我国制造业的信息化整体水平与世界发达国家相比尚存一定差距。入选信息化500强的企业中, 有34.5%达到中等发达国家水平, 6.4%居于国际领先水平。同时, 大型企业信息化水平较高, 民营企业水平较低。入选信息化500强的企业中, 有12家是世界500强企业, 174家企业是中国500强企业, 信息化500强覆盖了国民经济的骨干成分。信息化500强中民营企业的数量虽然比以往有所提高, 但所占比例仅为16.8%。

3 全球机械制造业的发展趋势

当今社会, 环境和能源问题已成为大家所关注的焦点。全球范围内环境、能源约束与经济社会发展之间的矛盾进一步凸显, 由此决定了制造业必须改变以往粗放式发展方式;环境和能源问题所带来的不仅是挑战, 也是机遇, 战略性新兴产业在金融危机助推下将应运而生, 谁抓住了机遇, 谁将在未来竞争中取得主动地位, 而任何战略性新兴产业的发展都离不开机械制造业的进步, 这也向机械制造业提出了更高的要求。

3.1 环境对机械制造业提出更高要求

3.1.1 世界范围内环境与经济社会发展间的矛盾突出

世界200多年的工业化历程, 仅使不到10亿人口的发达国家实现了现代化, 但资源和生态却付出了沉重的代价。世界上3/4以上的人口生活在生态环境退化速度超过自我更新速度的国家。全球环境资源消耗速度超过地球生态自我更新速度达30%。美国和中国排在全球资源消耗最大的国家之列。

2008年, 我国CO2排量占世界总量的21.8%, 美国占20.2%, 我国已成为世界上排放CO2最多的国家。

可持续发展是现代化的永恒主题, 这要求制造业再也不能延续传统的经济增长方式和发展模式, 而要体现循环经济的可持续发展理念, 走一条科技含量高、经济效益好、资源消耗低、环境污染少、人力资源得到充分发挥的新型工业化道路。中国的有限资源难以支撑传统工业粗放型增长方式。综合世界银行、中国科学院和国家环保总局的测算, 我国每年因环境污染造成的损失约占GDP 的10%左右。目前, 我国所有造成环境污染的排放物中, 70%来源于制造业。

3.1.2 各国纷纷制定绿色计划和减排目标

美国奥巴马政府已把新能源的创新和发展作为国家优先战略, 制定了一揽子政策, 重点资助清洁能源和可再生能源技术开发与产业发展。

2008年1月, 欧盟委员会提出了欧盟能源气候一揽子计划, 这将有助于实现到2020年的减排目标;欧盟将在今后6年内投资约10亿欧元用于燃料电池和氢能源的研究和发展。

日本早在1991年就推出了“绿色行业计划”, 致力于资源保护、减少能源和材料消耗、减少固体废物和温室气体, 通过公共教育、环境先导、节能建筑、全生命周期评价以及DFE和ISO14000认证系统实现绿色制造以提升企业竞争力。2008年7月, 日本政府公布了为实现低碳社会而制订的行动计划草案。

3.1.3 环境法规、标准和绿色壁垒日益增多

欧盟关于环境方面的立法较早、较多, 影响较大的有 WEEE指令 (自2005年8月13日起, 欧盟市场上流通的电子电气设备的生产商必须在法律意义上承担起支付自己报废产品回收费用的责任) , RoHS指令 (自2006年7月1日起, 所有在欧盟市场上出售的电子电气设备必须禁止使用铅、水银、镉、六价铬等重金属, 以及聚溴二苯醚 (PBDE) 和聚溴联苯 (PBB) 等阻燃剂) , 以及EuP指令 (关于制定用能产品生态设计要求框架的指令) 。

日本较早就制定了一系列相关的法律法规, 形成了较为完善的循环型社会的法律保障体系。主要法规包括:①2000年制定的《循环型社会基本法》, 提出了建立循环型经济社会的基本原则;②固体废弃物管理法, 在一定程度上执行了“污染者付费原则 (PPP) ”;③促进资源有效利用法, 要求行业主体将3R原则 (减量化、再利用和再循环) 从产品的生产贯穿至回收处理;④家用电器回收法;⑤绿色采购法;⑥J-MOSS法规。

美国已经建立了一个庞大的联邦环境法规体系。截至2009年6月, 美国有20个州颁布了电子废弃物回收的法案/法律, 主要针对电视机、笔记本电脑、台式电脑、计算机显示器等视频显示设备, 有些也包括其他音视频产品以及计算机外围设备。

可以看出, 为应对环境和能源问题, 各国环境法规和标准日益严格, 国际绿色贸易壁垒不断增多。绿色贸易壁垒对我国对外贸易的影响巨大。因不符合环保要求, 中国每年有74亿美元的商品出口受阻。我国出口贸易相当部分是初级低附加值产品, 而产品的出口市场又主要集中在发达国家和部分新兴工业国家。由于这些国家在绿色贸易壁垒方面制定了苛刻的标准和严格的合格评定程序, 因而严重影响了我国产品市场的范围和产品出口增长速度, 尤其在农产品、食品、机电产品、纺织、服装、纸张、服务贸易、产品包装等方面的影响更大, 涉及到的主要标准有食品中的农药残留量、陶瓷产品中的含铅量、皮革的PCP残留量、机电及玩具产品的安全性指标、包装物的可回收性指标、纺织品染料指标、保护臭氧层受控物质等。

3.1.4 “绿色标志”逐渐被消费者所认识

尽管遭遇了金融危机, 欧洲消费者对绿色产品的需求仍在增长。波士顿咨询公司于2009年1月发布的报告显示, 在对欧洲2000名年收入在35 000美元以上的消费者的调查中, 经常购买绿色产品的消费者比例由2007年的32%增加到2008年的34%, 可以接受绿色产品价格较普通产品高的消费者比例由2007年的20%增加到2008年的24%。

在欧盟和美国最近购买过绿色产品的消费者中, 认为绿色产品比普通产品质量要好的消费者分别占41%和43%, 而认为质量要差的消费者分别只各占5%;可以接受绿色产品价格较普通产品高10%以内的消费者分别占58%和59%, 另外还各有23%的消费者可以接受绿色产品价格较普通产品高10%以上。

3.2 机械制造业向能源节约型转变成为当务之急

随着全球经济的飞速发展, 人类对于能源的需求正以惊人的速度上升。 可用的能源 (包括自然资源和能源物质) 的自然增长已经远远落后于需求。能源问题越来越受到各国政府的重视, 全球范围内能源安全观随着时代发展也在发生着深刻变化, 正由过去主要应对市场短期供应中断, 向能源供应的长期可持续性转变。

我国能源利用率不高, 导致了能源消费量大。2008年我国能源消费总量相当于2002.5Mt油当量, 位居世界第二。国际能源署 (IEA) 在2009年11月公布的全球能源展望年度报告中称, 到2025年, 中国将超越美国成为全球最大的能源和天然气消费国, 届时能源消费的前三大国将依次为中国、美国和印度。

(1) 我国能源结构短期内难有较大改变。

我国能耗结构以煤炭为主, 而煤炭在多种能源中利用率最低。煤炭在我国能源结构中所占比例最大, 达70.2%, 接下来依次是石油 (18.8%) 、水电 (6.6%) 、天然气 (3.6%) 、核电 (0.8%) 。至少到本世纪中叶, 我国仍要以煤炭、石油等传统能源为主, 这使得提高能源利用率、实现向能源节约型增长方式的转变已成为当务之急。我国《可再生能源中长期发展规划》指出, 力争到2010年使可再生能源消费量占能源消费总量的10%左右, 到2020年达到15%左右。按照规划和目前可再生能源发展速度推算, 到2020年可再生能源消费量将达到能源消费总量的15%~20%, 届时, 传统能源发电所占比例将为80%~85%左右, 仍以传统能源为主。目前, 我国正处在工业化和城镇化的加速发展时期, 以资金密集型和资源消耗型的重工业为主的产业结构短期内难有较大幅度改变。因此, 降低重工业的能源消耗、提升能源利用率已成首要任务。

(2) 我国油气进口依存度大, 易受国际市场价格冲击。

我国油气资源的进口依存度较高, 这在一定程度上制约了我国制造业的发展。2008年, 我国石油对外依存度已达51.3%。2009年, 据中国能源蓝皮书预测, 在石油消费需求快速增加和国内资源限制的共同影响下, 2020年中国石油对外依存度将上升至64.5%。由于石油进口依存度大, 石油价格波动对中国经济安全性影响较大, 因此需要对制造业的结构进行调整, 在大力推进科技创新的基础上, 降低单位GDP能源消耗, 从根本上减小国际能源价格波动对我国经济的影响, 从而加强和提高我国经济的安全性。

3.3 战略性新兴产业对机械制造业提出新要求

全球科技将进入一个新的创新时代, 各国都把争夺经济科技制高点作为战略重点, 把科技创新投资作为最重要的战略投资, 把发展高技术及产业作为带动经济社会发展的战略突破口, 这将加速相关新兴产业的发展。

新能源及新能源所催生的新产品 (如新能源汽车产业) 、生物医学等领域成为各国竞相发展的重点领域。美国总统奥巴马2009年2月签署的总额为7870亿美元的经济刺激方案中约有1200亿美元投向科技领域用以支持高新产业发展, 其中, 新能源和提升能源利用率占了468亿美元, 生物医学领域的基础性投入也占到了100亿美元。欧盟下属的融资机构欧洲投资银行 (EIB) 连续5年对新能源汽车产业给予优惠贷款。2009年上半年, 该银行又向欧盟汽车业发放了70亿欧元的贷款, 用于环保汽车的研发和推广。日本对新能源开发、试验、推广普及的预算投入逐年增加, 在本轮的新车销售刺激计划中投入了40亿美元扶持节能型汽车, 提出到2020年实现半数新车转换成电动车的目标。

我国也在5个领域提出了大力发展战略性新兴产业的要求:①新能源产业发展, 创新发展可再生能源技术、节能减排技术、清洁煤技术及核能技术, 大力推进节能环保和资源循环利用, 加快构建以低碳排放为特征的工业、建筑、交通体系;②着力发展传感网、物联网关键技术;③加快微电子和光电子材料和器件、新型功能材料、高性能结构材料、纳米技术和材料等领域的科技攻关;④运用生命科学推动农业和医药产业发展;⑤大胆探索空间、海洋和地球深部, 促进海洋资源合理开发和海洋产业发展, 努力提高地球深部资源探测水平, 充分挖掘和利用好各种资源。

战略性新兴产业对制造业提出了新的要求, 要求机械制造业能够为其提供高效率、高精度、环境友好型和能源节约型的装备和产品。

4 走向绿色制造和智能制造

当前, 环境对制造业提出了更高的要求, 能源紧缺对制造业的制约日益加剧, 中国制造业必须要增强自主创新能力, 以人为本, 实现人与自然协调发展, 提升附加值和国际品牌竞争力, 实现由制造大国向制造强国的历史跨越。而发展绿色制造和智能制造则是实现该历史跨越的关键所在。

4.1 绿色制造

绿色制造 (green manufacturing, GM) , 是在保证产品的功能、质量和成本的前提下, 综合考虑环境影响和资源效率的现代制造模式。绿色制造使产品在从设计、制造、使用到报废的整个产品生命周期中不产生环境污染或使环境污染最小化, 符合环保要求;绿色制造节约资源和能源, 使资源利用率最高, 能源消耗最低, 并使企业经济效益和社会生态效益协调最优化。绿色制造已成为21世纪机械制造业的发展趋势, 是实现资源和能源高效清洁循环利用与环境影响的最小化, 有效保障我国现代化进程与装备制造的有效供给与有效利用, 建立资源节约型、环境友好型社会的重要途径, 且具有相当的紧迫性。

4.1.1 改进制造工艺, 减少资源消耗

改进制造工艺, 开发新的工艺技术, 采用能够使资源和能源利用率高、原材料转化率高、污染物产生量少的新工艺, 以减少制造过程中资源浪费和污染物的产生, 使中间废弃物能够回收再利用、最终废弃物可以分解处理, 最大限度实现少废或无废生产。在机械加工中, 铸造、锻造冲压、焊接、热处理、表面保护等过程都可以实行绿色制造工艺。具体可以从以下几方面入手:改进工艺, 提高产品合格率, 采用合理工艺, 简化产品加工流程, 减少加工工序, 谋求生产过程的废料最少化, 避免不安全因素, 减少产品生产过程中的污染物排放, 如减少切削液的使用或使用绿色切削液等。目前干式切削技术得到了较大发展。

4.1.2 采用节能设备或改造老设备

要在生产加工过程中实施清洁生产, 也需要从绿色制造设备与装备等入手。采用节能设备, 研发新设备或改造老设备, 实现节能降耗。在机械设备中, 电气传动系统所耗费的电能占到了60%~70%, 采用节能的传动系统可以为机械设备降低更多的能源消耗。通过采用变频调速技术改变电机、风机及水泵的控制方式, 能够产生十分可观的节能效果, 这已成为当前广泛使用的节能方式。例如在一条纺织机械生产线上, 变频器除调节生产线的电机运行速度外, 还可以对生产环境进行恒温及恒湿控制, 这种对工艺流程的改变不仅提高生产质量, 还减少了故障率, 降低了能耗。

在改造设备方面效果最为突出的是宝山钢铁公司, 宝钢是我国的超大型企业, 是耗能耗材大户。为降低资源和能源消耗, 宝钢制定了19项节能降耗的环境目标和7项节约材料的目标, 使本来管理和技术水平已经属世界先进水平的宝钢又上了一个台阶。宝钢实施上述管理和技术体系的11个月中, 降低原材料消耗的效益达3700万元, 节能的效益为1.25亿元, 使吨钢综合煤耗水平在原来已达世界先进水平的基础上再降29kg。

4.1.3 采用绿色设计与全生命周期评价方法

绿色设计从可持续发展的高度审视产品的整个生命周期, 强调在产品开发阶段按照全生命周期的观点进行系统性的分析与评价, 消除潜在的对环境的负面影响, 力求形成“从摇篮到再生”的过程。

产品全生命周期评价 (life cycle assessment, LCA) 技术正在成为实施绿色设计和绿色制造的重要工具, 是绿色制造前沿技术之一, 同时也是实施绿色设计和制造的关键和共性基础技术。根据ISO 的定义, 产品全生命周期评价是对某一产品系统全生命周期的输入、输出及其潜在环境影响进行评价的过程。

生命周期评价提供了产品整个生命周期的能源、资源消耗和环境排放物的广泛信息, 并可提出环境负荷改善的措施和建议, 是一种具有巨大潜力的环境影响评价理论工具。

4.1.4 采用回收再生和复用技术, 实现可再生循环

可再生循环的制造过程主要应用拆卸技术和循环再利用技术。拆卸技术指依据最小附加成本及产品被拆卸后所能获取最大综合利用价值的原则, 开发最佳的拆卸程序和方法。通过二次制造将已用过的产品的性能特征恢复到接近于新产品的状态, 不仅延长产品寿命而且促进了部件和材料的循环再利用。循环再利用技术是对拆卸下来的零部件或者分解、还原的材料进行二次利用的技术, 在产品的设计制造中考虑两个因素:回收和分解。回收设计致力于开发材料回收技术, 如废弃金属粉碎重熔。分解设计是指通过将产品分解为最基本的组分而尽可能地使产品中几乎所有的材料能够循环利用, 金属和非金属材料可通过分解而回收, 避免废物产生污染环境。

4.1.5 构建一体化循环经济产业链, 促进资源节约和再利用

我国高度重视循环经济的发展, 目前已被批准建立的国家生态工业示范园有24个。长沙黄兴生态工业园是我国第一个全新规划的综合类生态工业园, 主要发展电子信息产业、新材料产业、生物医药产业和环保产业。目前园内共有企业34家, 分为物质生产者、技术生产者、消费者、分解者及虚拟企业。构建的多条产业链使园区内四大行业通过物质流、能量流和信息流相互连接在一起, 形成了多种物质能量链接的生态链网络。在这个生态链网上, 核心行业、附属企业和虚拟企业之间通过物质流形成了一个虚实结合的生态工业园区, 每个核心行业的产业链以企业群落为主体, 通过中间产品的交换, 加强了工业小区中各个企业间的相互联系, 有效延长产品链。同时四大行业间的物质流构成了横向连接, 形成了产业链网, 通过信息流加强同工业区外虚拟企业产业链条的对接, 使物质集成的空间尺度扩大。

4.1.6 加快节能减排核心技术的突破

采用绿色制造技术, 在提高产品质量和附加值的同时, 努力降低资源的能耗, 这是未来制造业的发展方向。为此, 我们需要加紧研制具有先进技术性能的能源技术装备, 包括:煤的清洁高效开发利用、液化及多联产;复杂地质油气资源勘探开发利用;第三代200MW级高温气冷堆核电厂;提高可再生能源技术研发能力和产业化水平 , 包括风电机组、太阳能发电、生物质发电、地热利用等关键技术;节能工业设备和终端用能设备的开发。

4.2 智能制造

智能制造 (intelligent manufacturing, IM) 系统是一种由智能机器和人类专家共同组成的人机一体化智能系统, 它在制造过程中能进行智能活动, 诸如分析、推理、判断、构思和决策等。通过人与智能机器的合作共事, 去扩大、延伸和部分地取代人类专家在制造过程中的脑力劳动。它对制造自动化的概念进行了更新, 扩展到柔性化、智能化和高度集成化。智能制造系统最终要从以人为主要决策核心的人机和谐系统向以机器为主体的自主运行转变。

(1) 智能化能够提升传统制造水平。

智能化将进一步提高制造系统的柔性化和自动化水平, 使生产系统具有更完善的判断与适应能力, 也将会显著减少制造过程物耗、能耗, 提升传统制造业的水平。

(2) 智能化能够满足高技术发展要求。

伴随着机械制造业用户行业的技术不断发展, 对产品的质量要求也越来越高, 对机械制造业提出了更高的要求。计算机技术、网络通信技术在装备上的迅速应用, 使用户行业的工艺技术不断集成在装备中, 与装备制造业的产品技术相结合, 形成了新的装备, 满足了用户不断增长的需求。装备制造业的产品技术正向信息集成、接口集成、系统集成的方向发展, 同时生产过程自动化、智能化水平不断提高。

(3) 智能化有助于缓解环境和能源对机械制造业的瓶颈制约。

智能化在提高专业化分工与协作配套, 促进生产要素的有效集聚和优化配置, 降低成本以及节约社会资源、能源等方面具有重要作用。例如, 日本的ICT创新战略实际上是由信息化、智能化促进节能, 推进绿色高附加值制造。

(4) 信息化、智能化技术将推动机械制造业生产方式发生全新的改变。

未来的机械制造将是由信息主导的, 并采用先进生产模式、先进制造系统、先进制造技术和先进组织管理方式的全新的机械制造业。我国的离散型制造主要集中在机械加工、电子元器件制造、汽车等行业, 信息化为具有离散特点的机械制造业进行协同制造创造了条件。信息技术将促进设计技术的现代化, 加工制造的精密化、快速化, 自动化技术的柔性化、智能化, 整个制造过程的网络化、智能化、全球化。各种先进生产模式也无不以智能信息技术的发展为支撑。智能信息技术将改变机械制造业的设计方式、生产方式、管理方式和服务方式。

(5) 信息化、智能化技术为现代制造服务业提供了技术保障。

现代制造服务业是面向制造业的生产性社会化的服务业, 已成为制造业增加值的主要来源。开展增值服务是机械制造业转型升级的重要途径。在德国机械设备制造企业中, 服务收入在营业额中的比重从1999年的13%升至2005年的20%, 如蒂森克虏伯集团2007年的服务收入为167亿欧元, 占集团销售收入的比例达32.3%, 而我国的制造服务业尚处于起步阶段。借助信息化技术手段, 制造业服务的模式得以不断改进和优化, 服务得以向业务链的前后端延伸, 能够不断优化服务内容, 持续改进服务质量。进入21世纪以来, 发达国家纷纷调整其产业政策与技术政策, 将高新技术的重点和科技发展的热点转向产业技术主要是智能化制造技术领域, 使智能化制造技术由传统意义上的单纯机械加工技术转变为集机械、电子、材料、信息和管理等诸多技术于一体的先进制造技术, 并加速用现代智能化制造技术改造和提升传统制造业, 实现制造业的高技术化。当前, 国际智能化制造业采用或准备采用的先进制造技术主要体现在:①新型 (非常规) 加工方法的发展, 包括激光加工技术、电磁加工技术、超塑加工技术及两种以上加工方法复合应用等;②专业、学科间交叉融合, 冷热加工、加工过程、检测过程、物流过程、设计、材料应用、制造等方面, 界限逐渐淡化;③工艺研究由“经验”走向“定量分析”;④高新技术与传统工艺紧密结合, 使传统工艺产生显著的、本质的变化, 极大地提高生产效率和产品质量;⑤常规制造工艺的优化, 以形成优质高效、低耗、少污染的制造技术为主要目标;⑥以计算机与网络技术为核心。

(6) 智能化与智理化。

智能制造系统最终要从以人为主要决策核心的人机和谐系统向以机器为主体的自主运行转变, 这就要求智能系统最终必须能够像人一样具备作出符合人文伦理和生态环境伦理的行为。因此, 当前, 在我国智能化发展初期就应当明确智理化 (既智能又符合伦理标准) 发展的大方向。

4.3 绿色和智能制造也要面向大多数人

收入结构决定了我国在发展绿色和智能制造的过程中, 既要注重高端、高附加值产品的开发, 同时也要大力发展面向大多数中低收入人群的高质量、低成本的产品开发。2007年, 我国的基尼系数为0.48, 已经超过了国际上0.4的警戒线。同时, 研究发现, 目前我国的收入结构是呈倒丁字形, 上部是高收入和中高收入的人群, 底部是大量的低收入和中低收入者。按照世界银行的划分标准, 2008年, 我国人均国民总收入为2770美元, 我国仍处于世界中等偏下收入国家行列。因此, 制造业发展要有市场需求并且能为消费能力所接受, 就不能只注重高端产品的开发, 而忽视了大多数人的需求。

4.4 完善绿色和智能制造方面的相关政策措施

从各国的做法来看, 绿色和智能制造成为机械制造业产业结构升级和优化的必由之路。要推动绿色和智能制造的发展, 为其营造良好的政策环境是关键。首先是采取措施大力发展绿色和智能工程教育。创新是工程教育的本质属性, 当前中国的工程教育多注重知识的传授, 而忽视工程训练、解决问题和创新能力的培养, 导致工程教育与市场需求脱节。可以在重点大学及其他工程技术教育单位建立培养创新能力的工程实验室和创新设计机构, 作为学生工程创新基地。要鼓励企业建立工程教育基地, 为学生提供优良的工程实践场所。其次, 通过金融、税收和信贷政策方面的支持来鼓励绿色和智能方面的技术研发和创新。同时, 应在绿色和智能制造方面, 逐步建立和完善产学研相结合、以企业为主的自主创新体系, 并建 () ()

立产学研合作的工程创新中心, 加快行业的技术与产品的升级换代。

4.5 绿色制造、智能制造是未来战略性新兴产业的“关键词”

绿色制造和战略性新兴产业密不可分。首先, 战略性新兴产业离不开绿色制造技术, 战略性新兴产业必须绿色化。在当前环境和能源约束趋紧的大趋势下, 只有具备了资源和能源消耗低的特征, 才有可能成为战略性新兴产业, 才具有生命力。反过来, 绿色制造技术从一定程度上催生和拉动了战略性新兴产业的发展。智能制造是发展战略性新兴产业的重要支撑。战略性新兴产业要发展, 具备国际竞争力, 智能制造技术是支撑其发展和提升其竞争力的核心。

目前, 一些工业发达国家都把争夺经济制高点作为本国的战略重点, 把科技创新投资作为重要的战略投资, 把发展以高科技为主要特征的战略性新兴产业作为带动经济社会发展的战略突破口。战略性新兴产业将成为推动世界经济发展的主导力量。

发展战略性新兴产业是我国转变发展方式、调整产业结构, 抢占新一轮发展制高点的根本途径, 也是立足当前、渡过难关, 着眼长远、上水平的重大战略选择。发展战略性新兴产业, 必须选择正确的方向, 要选择具有市场前景、资源消耗低、带动系数大、就业机会多、综合效益好的产业。发展战略性新兴产业必须掌握核心关键技术, 而绿色、智能制造与战略性新兴产业密不可分, 智能制造又是发展战略性新兴产业的重要支撑!为此, 走向绿色制造和智能制造, 是中国制造业发展的必由之路!

篇4:企业智能制造发展规划

关键词:机电一体化技术;智能制造;发展与应用

中图分类号:TH39 文献标识码:A 文章编号:1006-8937(2014)8-0042-01

1 机电一体化技术的发展概况

机械技术与电子技术的结合是机电一体化技术成型的最初形式,20世纪60年代开始逐步发展。机电一体化技术的发展初期主要是通过电子技术在机械工业中的应用以提高机械生产效率。技术含量较为薄弱,生产规模较小。随着计算机技术和微处理技术的发展,机电一体化技术在实际生产中的应用越来越广泛,与信息技术和电子技术等高新技术进行有机结合,采用人工智能控制技术,逐步向智能化发展。

机电一体化技术融合了电子、机械、计算机、信息、控制、光学等多项技术,其未来发展也与相关技术的发展水平息息相关。机电一体化技术的未来发展趋势趋于智能化、网络化、模块化。利用人工智能的独立决策能力和模拟功能,可以自主完成复杂的操作,实现对机械设备的智能控制,使生产过程更加人性化。网络信息技术的飞速发展,异地甚至跨国生产普遍存在,远程监视技术和远程控制技术投入应用,机电一体化技术势必上升到更高的发展空间。打破自有生产模式,模块化集成机电生产,统一机电产品的接口标准,行程统一的行业生产规范,实现共赢。

2 企业智能制造技术的发展

随着社会经济的不断发展,机械制造技术也在不断变革和进步。为了满足人们对于机械产品日益增长的高要求,必须积极引进和开发新技术。智能制造技术是指机械设备自主驱动和控制机械设备原件,自动化控制机械生产系统。是机械制造领域的必然发展趋势。智能制造的基本特征包括:具有获取、表达、处理和存储知识的能力,具有自学习、自组织、自优化和自维护的功能,能够感知与融合多信息。传统的机械系统在实际生产应用中只会不断退步和老化,而智能制造技术系统则是越用越好,在应用中不断进步。借助计算机技术快速编程、三维立体动态展示、比例缩放、多方向视图等,进行产品的设计和相关操作,满足对设计图形精密度的高要求。缩短生产周期,实现制作过程人机互动,提高产品质量和生产效率。

智能制造技术极大地解放了劳动力,有利于缓解劳动力困局,降低了劳动强度,提高生产效率。一些重污染和高危险的工作岗位由智能制造技术接替,及时发现并处理生产中出现的险情,减少了安全事故的发生率。有利于安全生产,节能减排。智能制造技术精细化控制产品的生产过程,实现劳动力无法实现的生产工序,减少了人为失误和误差,有效管理和控制生产细节,提高产品的质量和生产效率。

3 机电一体化技术在企业智能制造中的发展与应用

智能制造技术迅速发展,广泛应用于各个工业企业的生产实践当中。机电一体化技术与智能制造有机结合,有效促进工业化生产的发展,为机电一体化技术提供了更为广阔的发展空间。

机电一体化技术在企业智能制造中的发展与应用涉及到一系列的核心技术。传感技术。传感器必须具备高度灵敏性和精确性,保证抗干扰能力。建立无线传感器网络,传感器负责收集数据,并通过无线网络向外传输,方便控制与维护。目前主要采用非接触性检测技术和光纤电缆传感器。接口技术。统一标准化接口,简化设计难度,开发速度高成本低的串行接口。

机械制造业是国民经济的先行行业,在数控领域最早进行机电一体化和智能制造技术的结合与应用。数控领域需要高性能的智能控制,还要有模拟、延伸、扩展的信息处理功能。运用智能控制技术,处理模糊信息和无法建模的环节,优化对生产过程的控制与管理。数控机床采取多总主线和多CPU的结构体系,引进在线诊断和模糊控制智能技术,提供加工过程的二维三维仿真动态和面向生产车间的编程技术,应用大容量存储器,丰富数控能力,实现多通道和多过程控制。

自动生产线与自动机械的应用,是机电一体化技术在企业智能制造中应用的普遍具体体现。广泛应用人机界面控制装置、可编程序控制装置、光电控制系统等现代传感技术与电子技术。例如各种饮料自动生产线、印刷包装生产线、高速香烟生产线等等。与此相关的柔性制造系统技术(FMS)是指计算机化的制造系统技术,将数控机床、计算机、工业机器人、自动化仓库和料盘等生产要素连成完整的生产网络,可以随机实时满足相关部门在其生产能力范围内的生产要求,适用于产品种类多、设计更改频繁的小批量产品生产。

工业智能机器人是机电一体化技术在企业智能制造中应用的极高水平体现。综合了计算机、机构学、微电子学、人工智能、传感技术、通讯技术、仿生学等多学科的最新成果。工业智能机器人可以自动识别、获取和处理信息材料,自主完成复杂操作。在工程、建筑、军事、娱乐等各个行业都发挥着重要作用。

机电一体化逐渐微型化发展。通过半导体的蚀刻技术制造出的亚微米级元件已经完全实现了机械和电子的融合,没有了控制器和机械部分的区分,智能制造过程的CPU、传感器和执行体融为一体,作为一种自律元件存在。体积小,耗能低,应用灵活,在实际应用中具有很大优势。

机电一体化技术的应用极大地改变了过去效率低下的生产方式和作业模式,是现代经济发展的必然结果,是将多项高新技术综合运用的结合体。加强机电一体化技术在企业智能制造中的发展与应用,促进技术融合,实现整体优化,推进传统工业产业的深化改革,提高产品的生产质量和生产效率,创造更高价值的经济效益和社会效益。

参考文献:

[1] 章浩,张西良,周士冲.机电一体化技术的发展与应用[J].农机化研,2006,(7).

[2] 汪洋,杨金勇.浅谈机械制造的智能化技术与机电一体化技术的结合发展及趋势[J].黑龙江科技信息,2010,(12).

篇5:企业智能制造发展规划

【机电在线讯】近十年来,我国智能制造装备产业发展快速。一是初步形成一定的经济规模,据不完全统计,2009年智能制造装备产业销售产值已达到3000亿元以上;二是一批重点产品取得成果,高速精密加工中心、重型数控镗铣床、3.6万吨黑色金属垂直挤压机等相继研制成功并投入应用,其中高端立卧车铣复合加工中心采用国产总线式高档数控系统,打破了国外在这一领域长期的垄断;百万千瓦超超临界火电机组、年产45万吨合成氨、轨道交通等多项重大工程项目也采用了国产数字控制系统DCS;大型轴流式压缩机组、离心式压缩机组、施工机械等陆续实现了远程监控和维护诊断,实现了智能化和网络化;三是涌现出一批智能制造装备的骨干企业,如沈阳机床、大连机床、大连光洋、中国四联、浙江中控、和利时、沈阳新松机器人、三一重工、中联重科、瓦轴集团、沈鼓集团和陕鼓动力等。

“智能制造装备通常是具有感知、分析、推理、决策和控制功能的制造装备的统称,它是先进制造技术、信息技术和智能技术在装备产品上的集成和融合,体现了制造业的智能化、数字化和网络化的发展要求。智能制造装备的水平已成为当今衡量一个国家工业化水平的重要标志。”国际模协秘书长罗百辉表示,未来十年,我国智能制造装备产业,应牢牢抓住发展的战略机遇期,本着“创新优先、重点突破、技术融合、夯实基础、多元投入”的原则,面向传统产业改造提升和战略性新兴产业发展的需求,针对制造过程中的感知、分析、决策、控制和执行等环节,融合集成先进制造、信息和智能等技术,实现制造业的自动化、智能化、精益化和绿色化。重点发展:

1、精密和智能仪器仪表与试验设备

重点发展高精度、高稳定性、智能化压力、流量、物位、成份仪表与高可靠执行器,智能电网先进量测仪器仪表AMI,材料分析精密测试仪器与力学性能测试设备,新型无损检测及环境、安全检测仪器,国防特种测试仪器等各类试验设备。

2、智能控制系统

重点发展综合性分散型控制系统DCS,具有与现场总线设备实现动态数据交换功能的现场总线控制系统FCS,逻辑控制、运动控制、模拟控制等功能有机集成的可编程控制系统PLC,先进高效发动机及其智能控制系统,新能源、新材料、节能环保等新兴产业所需要的专用控制系统。

3、关键基础零部件、元器件及通用部件

重点发展高可靠性力敏、磁敏等传感器,新型复合、光纤、MEMS、生物传感器,仪表专用芯片,色谱、光谱、质谱检测器件;高参数、高精密和高可靠性轴承、液压/气动/密封元件、齿轮传动装置及大型、精密、复杂、长寿命模具;电力电子器件及变频调速装置。

4、高档数控机床与基础制造装备

加快实施《高档数控机床与基础制造装备》科技重大专项,加强专项研究成果的示范应用和产业化进程。重点发展高速、精密、复合数控金切机床;重型数控金切机床;数控特种加工机床;大型数控成形冲压设备;重型锻压设备;清洁高效铸造设备;新型焊接设备;大型清洁热处理与表面处理设备;非金属成型设备;新材料制备装备;高档数控系统;数控机床功能部件;数字化工具系统及量仪。

5、智能专用装备

重点发展机器人产业;矿山用智能自卸电铲、智能化全断面掘进机、快速集成柔性施工装备为代表的智能化大型施工机械;数字化、智能化、高速多功能印刷机械;大型先进高效智能化农业机械。

6、自动化成套生产线

篇6:企业智能制造发展规划

生产规划和生产工程

西门子致力于成为面向整个产品开发与生产过程的整合型供应商 – 覆盖从产品设计和生产规划直至生产工程、生产实施以及后续服务的整个过程。这便是智能制造与数字化企业平台。对于制造业的未来,我们展示了我们如何通过众多的产品、解决方案、服务和全面的纵向市场专业知识为客户提供支持,助其提高生产率和效率。我们为所有客户统一部署智能制造与数字化企业平台技术。我们凭借广泛的产品组合,深厚的纵向市场专业知识 – 在这一次再次得到证明,并且再度覆盖全球 – 以及对客户的极大重视,确保带来最佳的工业产品和解决方案,满足不同客户的需求。我们拥有广泛的自动化技术、工业控制及驱动技术、工业信息技术与软件以及行业服务,为世界各地的客户提供覆盖整个价值链的全面支持 – 包括从产品设计到生产规划,从过程工程一直延伸至生产实施和后续服务。

利用虚拟机工具进行生产规划

上一篇:渣土管理规定下一篇:胡杨赞教案设计