极值点偏移解决策略

2024-04-14

极值点偏移解决策略(共3篇)

篇1:极值点偏移解决策略

极值点偏移问题的处理策略及探究

所谓极值点偏移问题,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。若函数在处取得极值,且函数与直线交于,两点,则的中点为,而往往.如下图所示.极值点没有偏移

此类问题在近几年高考及各种模考,作为热点以压轴题的形式给出,很多学生对待此类问题经常是束手无策。而且此类问题变化多样,有些题型是不含参数的,而更多的题型又是含有参数的。不含参数的如何解决?含参数的又该如何解决,参数如何来处理?是否有更方便的方法来解决?其实,处理的手段有很多,方法也就有很多,我们先来看看此类问题的基本特征,再从几个典型问题来逐一探索!

【问题特征】

【处理策略】

一、不含参数的问题.例1.(2010天津理)已知函数,如果,且,证明:

【解析】法一:,易得在上单调递增,在上单调递减,时,,时,函

数在处取得极大值,且,如图所示.由,不妨设,则必有,构造函数,则,所以在上单调递增,也即对恒成立.由,则,所以,即,又因为,且在上单调递减,所以,即证

法二:欲证,即证,由法一知,故,又因为在上单调递减,故只需证,又因为,故也即证,构造函数,则等价于证明对恒成立.由,则在上单调递增,所以,即已证明对恒成立,故原不等式亦成立.法三:由,得,化简得…,不妨设,由法一知,.令,则,代入式,得,反解出,则,故要证:,即证:,又因为,等价于证明:…‚,构造函数,则,故在上单调递增,从而也在上单调递增,即证‚式成立,也即原不等式成立.法四:由法三中式,两边同时取以为底的对数,得,也即,从而,令,则欲证:,等价于证明:…ƒ,构造,则,又令,则,由于对恒成立,故,在上单调递增,所以,从而,故在上单调递增,由洛比塔法则知:,即证,即证ƒ式成立,也即原不等式成立.【点评】以上四种方法均是为了实现将双变元的不等式转化为单变元不等式,方法一、二利用构造新的函数来达到消元的目的,方法三、四则是利用构造新的变元,将两个旧的变元都换成新变元来表示,从而达到消元的目的.二、含参数的问题.例2.已知函数有两个不同的零点,求证:.【解析】思路1:函数的两个零点,等价于方程的两个实根,从而这一问题与例1完全等价,例1的四种方法全都可以用;

思路2:也可以利用参数这个媒介去构造出新的函数.解答如下:

因为函数有两个零点,所以,由得:,要证明,只要证明,由得:,即,即证:,不妨设,记,则,因此只要证明:,再次换元令,即证

构造新函数,求导,得在递增,所以,因此原不等式获证.【点评】含参数的极值点偏移问题,在原有的两个变元的基础上,又多了一个参数,故思路很自然的就会想到:想尽一切办法消去参数,从而转化成不含参数的问题去解决;或者以参数为媒介,构造出一个变元的新的函数。

例3.已知函数,为常数,若函数有两个零点,试证明:

【解析】法一:消参转化成无参数问题:,是方程的两根,也是方

程的两根,则是,设,则,从而,此问题等价转化成为例1,下略.法二:利用参数作为媒介,换元后构造新函数:

不妨设,∵,∴,∴,欲证明,即证.∵,∴即证,∴原命题等价于证明,即证:,令,构造,此问题等价转化成为例2中思路二的解答,下略.法三:直接换元构造新函数:

设,则,反解出:,故,转化成法二,下同,略.例4.设函数,其图像与轴交于两点,且.证明:.【解析】由,易知:的取值范围为,在上单调递减,在上单调递增.法一:利用通法构造新函数,略;

法二:将旧变元转换成新变元:

∵两式相减得:,记,则,设,则,所以在上单调递减,故,而,所以,又∵是上的递增函数,且,∴.容易想到,但却是错解的过程:

欲证:,即要证:,亦要证,也即证:,很自然会想到:对两式相乘得:,即证:.考虑用基本不等式,也即只要证:.由于.当取将得到,从而.而二元一次不等式对任意不恒成立,故此法错误.【迷惑】此题为什么两式相减能奏效,而变式相乘却失败?两式相减的思想基础是什么?其他题是否也可以效仿这两式相减的思路?

【解决】此题及很多类似的问题,都有着深刻的高等数学背景.拉格朗日中值定理:若函数满足如下条件:

(1)

函数在闭区间上连续;

(2)

函数在开区间内可导,则在内至少存在一点,使得.当时,即得到罗尔中值定理.上述问题即对应于罗尔中值定理,设函数图像与轴交于两点,因此,∴,……

由于,显然与,与已知

不是充要关系,转化的过程中范围发生了改变.例5.(11年,辽宁理)

已知函数

(I)讨论的单调性;

(II)设,证明:当时,;

(III)若函数的图像与轴交于两点,线段中点的横坐标为,证明:.【解析】(I)易得:当时,在上单调递增;当时,在上单调递增,在上单调递减.(II)法一:构造函数,利用函数单调性证明,方法上同,略;

法二:构造以为主元的函数,设函数,则,由,解得,当时,而,所以,故当时,.(III)由(I)知,只有当时,且的最大值,函数才会有两个零点,不妨设,则,故,由(II)得:,又由在上单调递减,所以,于是,由(I)知,.【问题的进一步探究】

对数平均不等式的介绍与证明

两个正数和的对数平均定义:

对数平均与算术平均、几何平均的大小关系:

(此式记为对数平均不等式)

取等条件:当且仅当时,等号成立.只证:当时,.不失一般性,可设.证明如下:

(I)先证:……

不等式

构造函数,则.因为时,所以函数在上单调递减,故,从而不等式成立;

(II)再证:……‚

不等式‚

构造函数,则.因为时,所以函数在上单调递增,故,从而不等式‚成立;

综合(I)(II)知,对,都有对数平均不等式成立,当且仅当时,等号成立.前面例题用对数平均不等式解决

例1.(2010天津理)已知函数,如果,且,证明:

【解析】法五:由前述方法四,可得,利用对数平均不等式得:,即证:,秒证.说明:由于例2,例3最终可等价转化成例1的形式,故此处对数平均不等式的方法省略.例4.设函数,其图像与轴交于两点,且.证明:.【解析】法三:由前述方法可得:,等式两边取以为底的对数,得,化简得:,由对数平均不等式知:,即,故要证

∴,而

∴显然成立,故原问题得证.例5.(11年,辽宁理)

已知函数

(I)讨论的单调性;

(II)设,证明:当时,;

(III)若函数的图像与轴交于两点,线段中点的横坐标为,证明:.【解析】(I)(II)略,(III)由

故要证

.根据对数平均不等,此不等式显然成立,故原不等式得证.【挑战今年高考压轴题】

(2016年新课标I卷理数压轴21题)已知函数有两个零点.证明:.【解析】由,得,可知在上单调递减,在上单调递增.要使函数有两个零点,则必须.法一:构造部分对称函数

不妨设,由单调性知,所以,又∵在单调递减,故要证:,等价于证明:,又∵,且

∴,构造函数,由单调性可证,此处略.法二:参变分离再构造差量函数

由已知得:,不难发现,故可整理得:

设,则

那么,当时,单调递减;当时,单调递增.

设,构造代数式:

设,则,故单调递增,有.

因此,对于任意的,.

由可知、不可能在的同一个单调区间上,不妨设,则必有

令,则有

而,在上单调递增,因此:

整理得:.

法三:参变分离再构造对称函数

由法二,得,构造,利用单调性可证,此处略.法四:构造加强函数

【分析说明】由于原函数的不对称,故希望构造一个关于直线对称的函数,使得当时,当时,结合图像,易证原不等式成立.【解答】由,故希望构造一个函数,使得,从而在上单调递增,在上单调递增,从而构造出(为任意常数),又因为我们希望,而,故取,从而达到目的.故,设的两个零点为,结合图像可知:,所以,即原不等式得证.法五:利用“对数平均”不等式,由对数平均不等式得:,从而

等价于:

由,故,证毕.说明:谈谈其它方法的思路与困惑。

篇2:极值点偏移解决策略

一、教材分析

1.教材的内容

选修

1-1

第三章,本节属于专题复习课.2.教材所处的地位和作用

微积分的创立是数学发展史中的里程碑,它的发展应用开创了向近代数学过渡的新时期,它为研究变量与函数提供了重要的方法和手段。导数的概念是微积分的核心概念之一,它有及其丰富的实际背景和广泛的应用。在选修模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,理解导数的含义,体会导数思想及其内涵;应用导数探索函数的单调,极值等性质在实际中的应用,感受导数在解决数学问题和实际问题中的作用,体会微积分的产生对人类文化发展的价值。

3.学情分析

①通过《数学必修》中函数,几何与代数,数学建模等内容的学习以及在《数学选修

1-1》中第二,三章内容的学习,学生已经具备了函数的基本知识和运算能力,这为本节我们讨论极值点偏移问题提供了很好的前提与基础。

②学生具体研究学习了数学必修中函数单调性的寻找,证明和应用及不等式的相关结论,具备了一定的探究能力。基于此,学生会产生思考,如何运用函数和不等式来解决高考试题中极值点偏移的问题,能否给出一般性的解决方法和步骤,如果能够得到这类问题较为简单的解题通法,这个常常出现在高考数学压轴题

题位置上的难点将不会再对我们造成太难的阻碍,甚至会成为部分同学新的得分点。

③教学对象是高三年级理科生,由于学生年龄和能力及题目本身思维要求高,过程繁,计算难度大等原因,学生的思维尽管活跃,敏捷,但却缺乏冷静深刻的数学思维和解难题的能力,因此所做的探索过于片面,结论不够严谨.4.教学的重点和难点

重点:函数构造法,对数平均不等式和极值点偏移的判定定理

难点:函数构造法的结题步骤,构造函数的选取,对数平均不等式的放缩和极值点偏移的判定定理的使用

二、教学目标分析

1.知识与技能

1.能运用函数和不等式解决导数应用中极值点偏移的问题

2.掌握函数和不等式解决这类题的一般步骤

3.极值点偏移的判定定理的使用

2、过程与方法

1.通过利用几何画板展现极值点偏移的过程,让学生直观认识感受极值点偏移的本

质原因,激发学生探究解决问题的激情,和培养学生认真观察事物变化过程,总结变化规律的习惯。同时在此处先不给出极值点偏移的判定定理,而是先用函数构造法和对数平均不等式这两种之前已经介绍过的方法来求解例一。重在感受极值偏移的现象,和复习归纳已经学习的知识方法。

2.结合例一的解题过程,重点回顾讨论解题的方法和步骤,展示这两种方法的易错点和难点的突破口,树立学生解难题的信心规范学生的解题过程。然后把时间向前推移六年到例

2(2010

天津)让学生自主模仿例一的解法尝试来解例二,通过例一的复习学生较容易使用其中的一种或两种方法得到题目的答案让学生体会到学以致用的成就感,同时也通过两题的比对了解到高考题目的变迁历史体会该知识点在高考中的地位清楚今后的复习和学习方向。

3.展示学生例二的解题过程并加以点评后提出更高的要求——有没有更好的方法,结合一开始的三张图片让学生再次重新审视极值点偏移的原因回归到数学本质上来,不用很精准只需要说出自己的直观感受即可,通过这一过程让学生锻炼自己的数学直观想象和数学运算分析等核心素养,同时也为后面介绍极值点偏移的判定定理做好铺垫,比较分析函数构造法和对数平均不等式的特点和优缺点,认识到具体问题具体分析,方法的选择要灵活有针对性,不能盲目模仿和生搬硬套,通过一题多解,和同法异题的求解加深解题方法的理解和应用能力的提高,由具体问题的多角度的思维得出不同方法的求解过程培养学生的探索精神和数学归纳的能力,数学抽象能力。

3、情感态度与价值观

通过经历对例一和例二高考真题的探索和解决,激发学生对数学的好奇心和求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受数学思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美.引导学生树立科学的世界观,提高学生的数学素养和综合素质。

三、教学方法与手段分析

1.教学方法

结合本节课的教学内容和学生的认知水平,在教法上,我采用“探究发现”模式的教学方法,整个教学过程以学生为主体,学生自主学习为中心的思想,同时运用多媒体课件教学等技术手段,同一题目不同方法的比对,相同方法不同题目的求解让学生由浅入深,循序渐进的参与这堂课的每个过程,自然而然的完成本节课的教学目标。

2.学法

观察分析→自主探究→

合作交流

→初步运用

→归纳小结

3.教学手段

利用计算机和实物投影等辅助教学,充分调动学生参与课堂教学的主动性与积极性.四、教学过程分析

教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体.教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务.如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学.Ⅰ.创设情境,提出问题

x

=

m

=

x1

+

x2

极值点无偏移

x

m

=

x1

+

x2

极值点左偏

0

x0

2

0

m

=

x1

+

x2

目的:①本例通过给出三张典型的凹函数图像,让学生从图像特征上去直观感受函数图像极值点发生偏移的原因,有助于调动学生学习积极性,同时上来通过图像让学生直观感受而非繁琐的计算来思考解决问题,有助于开拓学生视野回归数学问题本质,降低了学生对于该问题的为难情绪。

②通过学生观察后教师自然而然的给出极值点偏移的定义,并顺带给出极值点偏移的数学解释逐步让学生由感性认知上升到理论认知,当然老师在此可以对学生提出进一步要求,可不可以给出一般性的判定定理?这里我们只先提出问题,做下伏笔,但并不马上去求解,避免由于问题过难而挫伤学生的积极性,同时也为本节课最后的问题做好了铺垫。

Ⅱ.探究问题

例一(2016

全国卷一)已知函数

f

(x)=

(x

2)ex

+

a(x

-1)2

有两个零点。

(I)求

a的取值范围;(略)

(II)设

x1,x2

f

(x)的两个零点,证明:

x1

+

x2

目的:①发挥学生的主观能动性,先自己探求结果,检查学生前一阶段的复习成果和对于问题一的思考和联系;

②让学生对于零点偏移求解过程更加熟练,思路更加清晰;并为下一步对数平均不等式和极值点偏移的判定定理做好铺垫;

解法一:对称构造函数法由(1)知a

³

0

x1

x2

②构造函数

F

(x)

=

f

(x)

f

(2

x),(x

1)

Þ

F

(x)

=

f

(x)

f

(2

x)

=

(x

-1)(ex

+

2a)

+

(1-

x)(e2-x

+

2a)

=

(x

-1)(ex

e2-x)

x

1时

x

0

Þ

x

x

Þ

e2-

x

ex

0

F

(x)

0

Þ

F

(x)在(-

¥,1)上

­

③代入

x1

F

(x1)<

F

(1)=

0

Þ

f

(x2)

=

f

(x1)

f

(2

x1)

又Q

y

=

f

(x)在(1,+

¥)上

­

x2

Î

(1,+

¥),2

x1

Î

(1,+

¥)

x2

x1

x1

+

x2

提问

1:学生解法一由哪些主要步骤,哪些步骤是你觉得难得地方,我们是如何解决这些困难的?

结合学生的回答对称化构造函数处理极值点偏移问题的基本步骤归纳如下:

①求导获得

f

(x)的单调性,数形结合判断零点

x1,x2

和极值点

x0的范围

②构造辅助函数

F

(x)

=

f

(x)

f

(2x0

x),判断函数

F

(x)的符号,确定函数

F

(x)的单调

③结合F

(x0)

=

0

限定

x的范围判定

F

(x)的符号得到不等式

④将

x1

(或x2)

代入上述不等式,利用

f

(x1)

=

f

(x2)

替换

f

(x1)

⑤结合①求得

f

(x)的单调性转化为

x1,x2的不等式,证明结束。提问

2;可不可以把流程继续简化?

其中主要的三步流程简化为“求导→构造→代入”。构造是难点,求导是关键,常用构

造要记清。

提问

3:还有其他解法吗?提醒学生从不等式构造上思考

学生有困难,则先回顾基本不等式内容,让学生从熟悉的,简单的问题入手

调和平均数£

几何平均数£

算术平均数£

£

平方平均数

A(a,b)

=

a

+

b,L(a,b)

=

a

b

ln

a

ln

b

,G(a,b)

=

ab,(a,b

0)

Þ

A

£

L

£

G

解法二:对数平均不等式(ALG)

f

(x)

=

f

(x)

=

0

Û

(x

2)ex1

+

a(x

-1)2

=

(x

2)ex2

+

a(x

-1)2

=

0

ìïa(x

-1)2

=

(2

x)ex1

Þ

í

ïîa(x

-1)2

=

(2

x)ex2,两式相减得a(x

+

x

-

2)(x

-

x)

=

(2

x)ex1

(2

x)ex2

ìx1

+

x2

³

0

(反证)假设

x

+

x

³

Þ

ïx

x

0

Þ

(2

x)ex

(2

x)ex

£

0

í

î

ïa

³

0

Þ

(2

x)ex1

£

(2

x)ex2

(左右两边同时取对数)

Þ

ln(2

x1)

+

x1

£

ln(2

x2)

+

x2

Þ

ln(2

x1)

ln(2

x2)

£

x2

x1

Þ

(x2

x1

Þ

(2

x1)

(2

x2)

³

(*)

ln

x1)-

ln(2

x2)

ln(2

x1)-

ln(2

x2)

由对数平均不等式(ALG)得

(2

x1)

(2

x2)

<

(2

x1)

+

(2

x2)

=

x1

+

x2

£

ln(2

x1)-

ln(2

x2)

显然与(*)相矛盾,假设不成立,原命题成立。

解题流程:实际问题→(数学抽象)数学模型→数学解→(解释与检验)实际问题引导学生体会数学思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美.

提问

4:这类问题最早出现在那一年高考题中,当时的高中生如何解决这类问题,我们是否能在当年的高考题中取得满分?激发学生的动力积极性,检查学生的掌握情况。给出本节的例二

例二(2010

天津卷)已知函数

f

(x)=

xe-x

(x

Î

R)

(I)求函数

f

(x)的单调区间和极值;

(II)已知函数

y

=

g

(x)的图像与函数

y

=

时,f

(x)

g(x);

f

(x)的图像关于直线

x

=

对称,证明:当

x

(III)如果

x1

¹

x2,且

f

(x1)

=

f

(x2),证明

x1

+

x2

2。

解法一:对称构造函数法(1)(2)略

①由(1)知

x1

x2

②构造函数

F

(x)

=

f

(x)

f

(2

x),(x

1)

Þ

F

(x)

=

f

(x)

f

(2

x)

=

e-x

(1-

x)

+

e-(2-x)

[1-

(2

x)]

=

e-x

(1-

x)

+

e-(2-x)

(x

-1)

=

(x

-1)(e-2+x

e-x)

其中

x

0

Þ

F

(x)

0

þ

x

Þ

ex-2

e-1

e-

x

ý

Þ

F

(x)在(-

¥,1)上

­

③代入

x1

F

(x1)<

F

(1)=

0

Þ

f

(x2)

=

f

(x1)

f

(2

x1)

又Q

y

=

f

(x)在(1,+

¥)上

¯

x2

Î

(1,+

¥),2

x1

Î

(1,+

¥)

x2

x1

x1

+

x2

解法二:对数平均不等式(ALG)

f

(x)

=

f

(x)

Þ

x

e-x1

=

x

e-x2

(左右两边同时取对数)

Þ

ln

x1

x1

=

ln

x2

x2

Þ

x1

x2

=

ln

x1

ln

x2

Þ

x1

x2

ln

x1

ln

x2

=

(*)

由对数平均不等式(ALG)得

Þ

x1

+

x2

x1

x2

ln

x1

ln

x2

=

x1

+

x2

提问

5:显然这个问题对于现在的我们不是什么难题了,但作为新时代的我们能不能用给简洁的方法给出这两题的一般性解法,通法的探讨显然是我们要思考的问题。那么学生对于这个新的挑战自然就会萌生极大地兴趣,这时再回顾我们一开始观察三张直观图时提出的问题,解法三的出现也就是必需的了。即本节课的最后一个知识点——极值点偏移的判定定理。

III.按图索骥,回归本质

极值点偏移判定定理:在给定区间

D

上函数

y

=

f

(x)

可导

f

(x1)

=

f

(x2),(x1

x2),若

x0

(x,x)

上的唯一极小值点,f

'''

(x)

0,则极小值点右偏Û

x1

+

x2

x;

0

f

'''

(x)

0,则极小值点左偏Û

x1

+

x2

x。

0

对于该定理作为高中生我们只需要了解,不需要完整严格的证明,(后附有泰勒展开的完整证明过程,可以开拓一部分自学高等数学的学生的视野)

那么我们怎么来理解该判定定理呢?我们又如何运用它来解决高中相关的数学问题呢?对此我们分两部分来讨论。

第一部分:我们主要结合导数的几何意义与

n

阶导数的运算来了解该定理的由来。首先

通过让学生再次观察一开始我们已展示的图一,二,三不,学生不难发现

y

=

f

(x)的图

像偏移的原因,即

y

=

f

(x)的图像在u(x0,¶)

内增减速度的不同而发生的。接着再进一步

引导学生思考发生的不同我们如何去用数学的语言来描述刻画它,提醒学生从导数的几

何意义来思考,以图

为例和学生一起做探讨:

y

=

f

(x)的图像的斜率一直在增加,但

增加的速度在变慢,(数学直观想象),如何用数学语言来表述这一变化?(数学抽象)

f

(x)

0,f

(x)

增加Þ

f

''

(x)

0(速度变慢)Þ

f

''

(x)的绝对值变小

Þ

y

=

f

'''

(x)

0。

完成图二的探讨后可让学生模仿独立的完成图

3的探索:

f

(x)

0,f

(x)

增加Þ

f

''

(x)

0

(速度变快)

Þ

f

''

(x)的绝对值变大

Þ

y

=

f

'''

(x)

0。

以上结论可简单记忆口诀(“小大小”,“小小大”),同时若

x0

是极大值点的话,结论相反,口诀为(“大大大”,“大小小”)

IV.给出定理,尝试新解

第二部分:运用新的判定定理重新去接例一和例二例一新解

极值点偏移判定定理

解法三:

f

(x)=

(x

2)ex

+

a(x

-1)2

Þ

f

(x)

=

(x

-1)(ex

+

2a)

Þ

f

''

(x)

=

(x

-1)ex

+

ex

+

2a

Þ

f

'''

(x)

=

ex

(x

+1)

分两段区间讨论

①若

x

Î

(-¥,1],f

(2)

=

a

0

结合图像可知

x1

£

x2

a,则

x1

+

x2

②若

x

Î

(-1,+

¥),f

'''

(x)

0,x

=

是极小值,符合“小大小”

Þ

x

+

x2

综上的x1

+

x2

例二新解

解法三:

f

(x)

=

xe-x

Þ



f

(x)

=

e-x

xe-x

Þ



f

''

(x)

=

e-x

(x

2)

Þ

f

'''

(x)

=

e-x

(3

x)

分两段区间讨论

①若

x

Î[3,+

¥),可知

x1

+

x2

max{x1,x2}

³

2,则

x1

+

x2

②若

x

Î

(-

¥,3),f

'''

(x)

0,x

=

是极大值,符合“大大大”

Þ

x



+

x2

综上知

x1

+

x2

至此我们回头再看例一和例二的三个解法,不知不觉中对于一开始极值点偏移的问题有

了更新的认知。

VI.课堂练习

巩固双基

练习

1(2011

辽宁卷)已知函数

f

(x)

=

ln

x

ax2

+

(2

a)x。

(I)讨论函数

f

(x)的单调性;

(II)设a

0,证明:当0

x

时,f

(1

+

x)

f

(1

x);

a

a

a

(III)若函数

y

=

f

(x0)

0。

f

(x)的图像与

x

轴交于

A,B

两点,线段

AB

中点的横坐标为

x0,证明

练习

2(2014

天津卷)设

f

(x)

=

x

aex

(a

Î

R),x

Î

R

已知函数

y

=

x1

x2

(1)求

a的取值范围

(2)证明

x2

随着

a的减小而增大

x1

(3)证明

x1

+

x2

随着

a的减小而增大

f

(x)

有两个零点

x1,x2,练习

已知函数

f

(x)

=

a

ln

x,a

Î

R.若函数

f

(x)

有两个零点

x,x。

x

求证:

x1

+

x2

练习

已知函数

f

(x)

=

ex

ax

有两个不同的零点

x,x,其极值点为

x

0

(I)求

a的取值范围

(II)求证:

x1

+

x2

2x0

(III)求证:

x1

+

x2

(IV)求证:

x1

x2

目的:①通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识的再次深化.②练习分层,有利于不同层次的学生培养。

VII.课堂小结

学生点评,老师引导:

①由图像直观到方法求解,由繁琐到简洁,由为结题而解题到回归数学本质,一再的追问和尝试思考有利于学生的知识迁移和能力提高;

②用三种方法解题的运用:函数构造法,对数平均不等式和极值点偏移的判定定理。对三种解法的对比的再认识.特别是方法的选择上要能尽可能适合题目适合自己;

③在理解方法的基础上,及时进行正反两方面的“短、平、快”填空和判断是非练习.通过总结、辨析和反思,强化解法的灵活性,促进学生主动建构,有助于学生形成知识模块,优化知识体系.体现知识目标。

五、教学评价

结果因过程而精彩,现象因方法而生动.无论是情境创设,还是探究设计,都必须以学生为主体、教师为主导、训练为主线,设法从庞杂的知识中引导学生去寻找关系,挖掘书本背后的数学思想,建构基于学生发展的知识体系,教学生学会思考,让教学真正成为发展学生能力的课堂活动。因此,本课例在具体问题的数学模型的建立和数学工具的选择上舍得花大量时间,便是为了培养学生学会探究与创新,它就像一缕温暖的阳光,不一定能唤醒万物,却能催开人世间最绚丽的花朵。

篇3:极值点偏移解决策略

1极值点偏移的定义

对于函数y=f(x)在区间(a,b)内只有一个极值点x0,方程f(x)=0的解为x1,x2,且a

(1)若x1+x22>x0,则称函数y=f(x)在区间(a,b)上极值点x0左偏,简称x0左偏;(2)若x1+x22

4转化策略与步骤

极值点偏移问题中,函数中多有形如ex和lnx的式子,并且极值点偏移问题实质是双变量的问题,而双变量的问题许多都可以回归对数平均.常利用对数平均不等式放缩解决,其转化的步骤有:

第一步:根据f(x1)=f(x2)建立等式;

第二步:如果等式含有参数,则消参;有指数的则两边取对数,转化为对数式;

第三步:通过恒等变换转化为对数平均问题,利用对数平均不等式放缩求解.

作者简介杨瑞强(1979—),男,湖北黄冈人,中学一级教师,黄石市优秀班主任,黄石市优秀数学教师,主要从事数学教育与中学教学研究.近几年,在数学专业杂志上发表文章80余篇.

上一篇:开发利用海水资源 教学设计下一篇:这让我更坚强作文

本站热搜