关于列车运行控制系统的分类

2024-05-14

关于列车运行控制系统的分类(共6篇)

篇1:关于列车运行控制系统的分类

关于列车运行控制系统的分类

列车运行控制(简称列控)系统是将先进的控制技术、通信技术、计算机技术与铁路信号技术溶为一体的行车指挥、控制、管理自动化系统。它是现代铁路保障行车安全、提高运输效率的核心,也是标志一个国家轨道交通技术装备现代化水准的重要组成部分。值得注意的是,各国铁路由于历史、传统术语、指示和原文意义不同等原因,对列车运行自动控制系统的名称划分也不尽相同,列车超速防护系统(ATP)与列车运行自动控制系统(ATC)并没有严格的划分,在城市轨道交通的信号系统ATC系统中包括列车自动防护ATP、列车自动监督ATS和列车自动驾驶ATO。

在列控系统研究方面发达国家已有较长发展历史,比较成功的列控系统有:日本新干线ATC系统,法国TGV铁路和韩国高速铁路的TVM300及TVM430系统,德国及西班牙铁路采用的LZB系统,及瑞典铁路的EBICA900系统等。这些列车控制系统都结合本国的特点、具有本身差别的技术前提和顺应规模,因此,列控系统可以分成许多类型。

如按照地车信息传道输送方式分类:一种为持续式列控系统,其车载设备可持续接收到地面列控设备的车-地通信信息,是列控技术应用及发展的主流。如:德国LZB系统、法国TVM系统、日本数码ATC系统。采用持续式列车速度控制的日本新干线列车追踪距离为5min(分 min),法国TGV北部线区间能力甚或达到3min(分 min)。

另一种为点式列控系统,其接收地面信息不持续,但对列车运行与司机把持的监视其实不间断,因此也有较好的安全防护效能。如:瑞典EBICAB系统。

还有一种为点连着式列车运行控制系统,其轨道电路完成列车占用检测及完整性查抄,持续向列车传送控制信息。点点连着式信息设备传道输送定位信息、进路参数、路线参数、限速和停车信息。如:我国CTCS2级。

如按控制模式分为阶梯控制方式和曲线速率控制方式两类。其中阶梯速度控制方式,又分有出口速率查抄方式如:法国TVM300系统;有进口速率查抄方式如日本新干线传统ATC系统。

而按照速度-距离模式曲线控制模式,如:德国LZB系统,日本新干线数码ATC系统

如按照闭塞方式分:有固定闭塞、移动闭塞。如按照功效、人机分工和列车运行控制系统化程度分: 一有列车运行控制(Automatic Train Stop略称ATS)系统;ATS是一种只在停车信号(红灯)前实施列车速度控制的装备,是

在非速差式信号系统下的产品,归属列车速度控制的低级阶段。国外多种ATS系统补充了简略的速率监视功效,这种系统设备简单,历史悠长,在我国及世界各国铁路直到现在广泛采用。

二有列车超速防护(Automatic Train Protection略称ATP)系统;列车自动防护系统(ATP)可对列车运行速度进行实时监督,当列车运行速度超过最大允许速度时,自动控制列车实施常用全制动或紧急制动,使列车停在显示禁止信号的信号机或停车标前方。ATP系统的车载设备以仪表或数字指示方式(车内信号方式)向司机给出列车最大允许速度、目标距离和目标速度等信息,司机只要按允许速度操纵机车,就能可靠保证列车安全运行,不冒进信号。通俗地说,一般ATP系统不包含列车的自动加速和自动减速,只是起到超速防护的目的,在国内也将ATP系统叫成列车超速防护系统。ATP是根据速差式信号系统的建立而产生的,列车正常运行由司机控制,只在司机疏忽或失去控制能力且列车浮现超速时设备才发生效力,并以最大经常使用制动或紧急制动方式,强迫列车减速或停车。当列车速度已降至或到达限速要求,由司机鉴定和操作制动缓解。系统要求符合故障-安全原则。这是一种以人(司机)控为主的列车运行安全系统,在欧洲高速铁路上遍及采用。三有列车运行控制(Automatic Train Control略称ATC)系统;铁路列车运行自动控制系统(ATC)可根据行车指挥命令、线路参数、列车参数等实时监督列车运行速度,通过控制列车多级常用制动,自动降低列车运行速度,保证行车安全。列车运行自动控制系统是比列车超速防护系统高一级的列车自动控制系统,它可替代司机的部分操作。通俗地说,铁路的ATC系统可以包含列车的自动减速,该系统在日本应用较为广泛,这种控制模式可以有效降低司机的劳动强度,并且能够提高运输效率,不会因为司机的水平不一样而造成效率的降低,目前我国 200km/h的动车组引进的ATP设备可以理解为日本方式的ATC系统,即在传统的ATP系统上加上一个设备优先控制列车制动的操作模式。ATC又称列车运行控制系统减速系统。当列车运行超过限定速度时,列车运行控制实施正常制动,使列车降至低于限定速度的一定值后,制动阀缓解,列车接续运行。这是一种设备优先的列车运行安全控制系统,司机一部分操作由设备代替,但列车运行的正常调速仍由司机操作,系统一样要求故障-安全原则。这种方式很适合于动车组,日本新干线高速铁路采取这种方式。

四有列车运行(Automatic Train Operation略称ATO)系统。ATO(又称列控驾驶系统)。按系统预先输入的程序,按照列车运行图的要求,由设备代替司机举行列车运行的加速、减速或定点停车的速度调整。一般环境下,司机除对列车开始工作操作外,只对设备的动作举行监视,它归属一种非安全系统,一般叠加在ATC或ATP上,列车运行的安全防护由后者承担。该系统已在城市地铁中较广泛采用,在庞大的铁路干线上,由于运输环境、运输组织比较复杂、恶劣,一般只是注重ATP系统的发展和应用,关于ATS和ATO在铁路运输中应用难度较大,目前很少采用。

总之,虽然日本、法国及德国列控系统的名称不同,但有一个共同点,即自动监控列车运行速度,通过车内信号直接指示列车应遵守运行速度(即允许速度)。在人机关系方面,系统能可靠的防止由于司机失去警惕或错误操作可能酿成的冒进信号或列车追尾等恶性事故。为便于理解,将铁路的列车超速防护ATP系统称为列车运行控制系统。

篇2:关于列车运行控制系统的分类

2008年在世界高速铁路大会上,与会代表就高速铁路定义进行讨论,最后提出高速铁路有三个标准:一.新建有专用铁路;二.开行250公里以上的动车组列车;三.必须用先进的列车运行控制系统。

先进的列车运行控制系统与信号,是高速列车安全、高密度运行的基本保证。是集微机控制与数据传输于一体的综合控制与管理系统,是当代铁路适应高速运营、控制与管理而采用的最新综合性高技术。这种运行控制系统与普速的铁路是完全不同的,它是一个计算机(电脑)化的控制系统,这就是高速铁路的最核心技术。

所有列车运行控制系统说通俗点就是机器控制与人控制如何结合。传统普速铁路是以人控为主,机器做辅助的;而高速铁路是反过来,优先以机器控制为主,人是辅助的。高速铁路必须采用先进的列车运行控制系统,我们才能认定说这条线路是高速铁路。

传统普速铁路将列车在区间运行过程中实现自动化的设备统称为区间设备,包括各种闭塞设备及机车信号与自动停车装置,其一般以地面设备为主。

在高速铁路上,由于行车速度较高,如仍用地面的区间设备来调整列车运行,将产生很大困难。首先是地面信号的显示距离和显示数量不能给司机作出一个准确的速度限制,甚至模糊、不确定性极强。另外,固定的闭塞分区将影响区间的行车效率。为此,在高速铁路的列车运行过程中,必须在实现自动化的前提下,采用新的信号区间设备。首先是取消了分散安装在地面上,线路两侧的区间中的传统信号设备,列车运行控制功能全集中于列车上。其次是列车位置由车上设备进行自身检测,而地面设备是根据由车上传送的位置信息实现间隔控制。再次是列车运行安全速度是根据地面设备传递的信息,由车上设备进行自动控制。还有是地面、列车之间的信息传递可采用查询应达器(Transponder),多信息无绝缘轨道电路与无线传输信道来实现。

先进列车控制系统是铁路在技术上的一次突破,它将使铁路和整个国民经济取得巨大的经济效益。从80年代初开始,世界各国研究的先进列车控制系统,现仍处于研究、试验与完善之中。

如美国的先进列车控制系统英文写法为AdvancedTrainControlSystems缩写成叫ATCS,美国的另外一种先进列车控制系统叫ARES。由此推理,欧洲列车控制系统叫ETCS,法国的实时追踪自动化系统叫ASTREE,日本的计算机和无线列车控制系统叫CARAT等等。全是英文名称的缩写而言。

近年来,许多国家为先进列车控制系统研制了多种基础技术设备,如列车自动防护系统、卫星定位系统、车载智能控制系统、列车调度决策支持系统、分散式微机联锁安全系统、列车微机自动监测与诊断系统等。世界上许多国家如美国、加拿大、日本和西欧各国都将在20世纪末到21世纪初,已经开始分层次的实施、逐步推广应用这些新技术。

美国的ARES系统采用全球定位卫星接收器和车载计算机,通过无线通信与地面控制中心连接起来,实现对列车的智能控制。中心计算机根据线路状态信息和机车计算机报告的本身位置和其他列车状态信息等,随时计算出该采取的相对应措施,使列车有秩序地行驶,并能控制列车实现最佳的制动效果。全球定位卫星系统定位精确,误差不超过1米,ARES并利用全球定位卫星来绘制实时地图,使司机能在驾驶室的监视器上清楚地了解列车前方的具体情况,从而解决了夜间和雨雾天气时的观察困难。而ATCS列车控制系统与ARES系统最大区别,在于采用设在地面上的查询应答器,不用全球定位卫星。

当然,ARES和ATCS的功能不限于列车自动驾驶,它们的潜力还很大。计算机还可以在30秒以内,计算出一条铁路线的最佳运行实时计划,以便随时调整列车运行,达到安全效率和节能的最佳综合指标。

除美国研制的ATCS与ARES系统外,其他各国发展高速铁路的国家也都十分重视行车安全与控制系统的开发研究。作为世界高速铁路发展较快的日本、法国和德国,在地面信号设备中,区间设备都采用了符合本国国情的可靠性高、信息量大、抗干扰能力强的微电子化或微机化的不同形式的自动闭塞制式。车站联锁正向微机集中控制方向发展。为了实现高速铁路道岔转换的安全,转辙装置也向大功率多牵引点方向发展,同时开发研究了道岔装置的安全监测系统。在车上,世界各国的高速铁路都积极安装了列车超速防护和列车自动控制系统。

日本在东海道新干线采用了ATC系统,法国TGV高速线采用了TVW300和TVM430系统,德国在ICE高速线上采用了LZB系统。这些系统的共同点是新系统完全改变了传统的信号控制方式,可以连续、实时监督高速列车的运行速度,自动控制列车的制动系统,实现列车超速防护。另外,通过集中运行控制,系统还可以实现列车群体的速度自动调整,使列车均保持在最优运行状态,在确保列车安全的条件下,最大限度的提高运输效率,系统进一步还可以发展为以设备控制全面代替人工操作,实现列车控制全盘自动化。这些系统的不同点主要体现在控制方式、制动模式及信息传输的结构方面。

德国的LZB连续式列车运行控制系统,其运营速度可达270km/h。它是目前世界上唯一采用以轨道电缆为连续式信息传输媒体的列车控制系统,可实现地面与移动列车之间的双向信息传输,同时还可利用轨道电缆交叉环实现列车定位功能,控制方式是以人工控制为主。LZB系统首先将连续式速度模式曲线应用于高速列车的制动控制,打破了过去分段速度控制的传统模式,可以进一步缩短列车运行的时隔时分,因此能更好地发挥硬件设备在提高线路运输效率方面的潜在能力。

法国的TVM430型是在TVM300系统的基础上进行数字化改造后的列车控制系统,在TGV北方线上采用,列车运行速度可达320km/h。TVM430系统的地面信息传输设备采用UM71型无绝缘数字式轨道电路,由地面向移动列车之间实现地对车信息的单向传输。信号编码总长度为27个信息位,其中有效信息为21位。列车的定位功能也是由轨道电路完成的。

我国采用的“中国列车运行控制系统”(CTCS)。CTCS-1级,人工控制为优先,超速防护,用于传统普速铁路。CTCS-2级,机器控制为优先,基于轨道电路+应答器的地对车单向信息传递,用于250km/h客运专线,5分钟追踪。CTCS-3级:机器控制更为优先,基于无限数据传输平台(GSM-R)车地双向列控信息传递。用于350km/h客运专线,3分钟追踪。CTCS4级采取目标距离控制模式,列车按移动闭塞或虚拟闭塞方式运行还未实施商业应用。

根据我国的具体情况,高速铁路要兼容既有铁路的信号制式,特别是要满足多种信息传输方式,实现传输系统故障时的降级需要,就必须采用车载设备智能化的方式。

篇3:关于列车运行控制系统的分类

目前, 我国列车模拟驾驶系统主要存在的问题有[1,2]:

( 1) 缺少有效的运行控制策略, 无法在满足教学培训的同时也满足工程分析的要求。

( 2) 无法实现同一区间多列列车的前后追踪运行。

( 3) 大多数列车模拟驾驶系统只能实现单列车的独立运行, 无法实现联锁系统和列控中心 ( 或无线闭塞中心) 对列车运行的控制。

本文着重探讨了列车牵引力学条件下的列车运行问题, 建立了多质点列车动力学仿真模型; 并采用改进的混合控制策略, 完成列车的节能运行控制。 模型具有分析列车不同线路条件和不同编组条件下的运行性能和运行效率的功能, 主要用于教学培训和演示; 同时, 由于采用准确的列车动力学模型, 系统可用于优化列车编组, 提高线路运行效率和优化列车速度控制的可行性分析研究中。

1系统框架

列车模拟驾驶系统总体结构, 如图1所示, 由操作仿真模块、动力学仿真模块、视景仿真模块、音响仿真模块、运动仿真模块、仿真结果输出模块、操作评价模块和数据管理模块构成。其中操作仿真模块是学员与列车模拟驾驶系统交互的主要通道; 动力学仿真模块是系统的核心, 采用多质点动力学模型, 完成对仿真列车速度的控制; 视景仿真模块、音响仿真模块和运动仿真模块使系统的表现形式更加接近现实, 采用的VR虚拟现实技术, 提高系统的真实感。

2列车多质点模型的建立

2. 1多质点模型的理论基础

牵引计算模型多种多样, 大体上分为单质点模型和多质点模型。单质点模型是将列车简化为一个刚性质点, 进行受力分析, 很大程度地简化了受力计算; 但由于是将列车视为单个的刚性质点, 忽略了列车长度, 也不考虑列车车辆间相互作用力。当列车跨越变坡点或变曲率点时, 列车受力是瞬时变化的, 这种简化较大地偏离了列车实体属性, 不能反映出列车间的纵向力的变化。当列车经过变坡点或变曲率点时, 模型计算的受力分析与实际差距较大, 为了修正单质点模型的不足, 多质点模型应运而生[3,4]。

多质点模型是将机车和每节车辆分别简化为一个质点, 构成一个质点链, 能够反映出列车长度和编组对受力和牵引运行的影响。多质点模型在列车运行过程中可以单独计算车辆间的纵向力, 并在列车经过变坡点和变曲率点时, 使其受力变化呈现渐变过程; 但传统的多质点模型以长度为量度, 将整个列车的质量平均化, 无法满足不同车辆混合编组条件下的牵引计算。

2. 2改进的多质点模型

本文中多质点动力学模型与线路信息相结合, 在线路上设置标记点记录线路信息, 将列车简化为一个个相连接的质点, 每个质点在经过标记点时可接收标记点记录的线路信息, 再将接收到的线路信息传给牵引计算模块, 控制列车的运行速度。

如图2, 在一段模拟线路AD上有A、B、C、D四个标记点分别记录AB、BC、CD及以后路段的线路信息, 列车运行过程中, 在经过B和C两个变坡标记点处分别读取BC和CD段线路信息 ( 坡度、曲度、 隧道等) , 即当车辆K1经过B点时, 接收BC段的线路信息, 并将接收的信息传输给牵引计算模块, 随后K2、K3, …, Kn将重复K1的操作。当K1经过C点时, K1记录的原线路信息被刷新, 从而准确地反应每一辆车在不同线路运行过程中所产生的不同的附加阻力, 从而使计算更加精确。

每辆车在通过标记点 ( 记录下一段线路数据的点) 时都会接收到下一段线路所包含的坡度、曲率等数据, 其数据流程如图3所示, 通过这种方法真正地将每一车辆看成一个刚性质点, 从而组成质点链, 实现多质点模型的建立, 更加精确地反应列车每辆车运行中的受力状态, 则第n辆机车或车辆附加阻力W'n为[5,6]

式 ( 1) 中, Pn为第n辆机车或车辆的质量 ( t) ; in为第n辆机车或车辆所在坡道的坡度值 ( ‰) , 上坡为正, 下坡为负; Rn为第n辆机车或车辆所在曲线的半径; Ls为第n辆机车或车辆所在隧道的长度。

第n辆机车或车辆所受合力Fn为

式 ( 2) 中, an是第n辆车的运行加速度; γ 是转动惯量; Fnq是其前车钩拉力; Fnh是其后车钩拉力; Wn是所受的基本阻力; Bn是制动力。

速度v和位移S的计算:

式中, Δt为计算步长, Δt取值越小, 计算越精确。 但考虑到计算量取 Δt = 0. 001 s。

2. 3运行控制策略

在列车模拟驾驶系统中, 控制列车运行采用什么样的控制策略至关重要, 传统的列车运行控制策略主要有节能控制策略、节时控制策略和混合控制策略。节能控制策略其控制原理如图4 ( a) 所示, 主要依靠惰行, 减少制动中的能量损耗从而达到节能的效果, 但其运行速度较慢, 严重影响区间的通过效率; 节时控制策略如图4 ( b) 所示, 主要依靠牵引电机的不断运转, 使列车速度保持在最大允许速度运行, 但能量的损耗较大, 其优点在于提高线路的通过率, 缩短运行时间[7]。传统的混合控制策略如图4 ( c) 所示, 是对牵引、惰行、制动的组合, 虽然在一定程度上兼顾了节能和节时, 但对于列车的长距离不间断运行时, 其节能效果有限。以上三种运行控制策略都不能很好地兼顾列车运行的经济性[8]。

为了使模拟驾驶系统有更好的通用性, 更好的兼顾节能和节时性能, 提高列车运行的经济性, 本系统中加入了改进的混合控制策略, 其控制原理如图4 ( d) 所示, 主要是将传统的控制策略的速度保持过程改为加速和惰行的过程, 在维持一个较高速度水平的同时, 达到节能的效果。

改进的混合控制策略是既考虑列车运行速度, 保证列车持续地高速运行, 尽可能地发挥列车牵引和制动的能力, 以缩短运行时间, 又兼顾其经济性, 即在加速阶段以最大牵引力加速, 在中间阶段采用加速和惰行交替转换的运行模式, 以减少能耗。

混合控制策略其核心是确定牵引、惰行和制动的起点和终点。启动后, 如图5所示, 速度vi以步长 Δt迭代增加, 但当接近线路限速vxs时, 由于不一定能够完全拟合, 即速度可能直接跨过vi= vxs, 跳跃惰行过程, 从牵引运行直接进入制动, 这并不符合节能的要求。所以, 设置vg上限转换速度, 使其与线路限速vxs构成速度接近区 ε, 当速度vi进入这一区域时, 由牵引转换为惰行, 而避免了频繁地启动制动。速度接近区 ε 大小应该满足式 ( 5) 。

在迭代过程中, 为了防止vi≤ vg, 而再次以 Δ 为步长迭代后速度vi +1≥ vxs, 取 ε = amaxΔt ( amax为最大牵引力下的加速度) 。

如图6所示, 列车启动后, 以最大牵引力加速运行。当vg≤ vi< vxs时, 结束牵引, 由牵引工况转换为惰行工况开始减速运行; 但如果列车在长大下坡道运行时, 其加速度ai有可能大于0, 则此时列车并非减速, 而是加速运行, 所以在惰行工况下迭代时应判断其加速度ai。当vi≤ vd时, 结束惰行, 由惰行工况转换为牵引工况; 如果vi≥ vxs时, 列车开始采用常用制动模式制动。

3模拟仿真验证

3. 1混合控制策略的节能性能验证

在此, 对传统的混合控制策略的节能性能和改进的混合控制策略的节能性能进行比较。由于两种控制策略只有在中间过程中其运行控制不同, 所以只对中间过程的运行做一对比。

采用一条6 km长的平直线路作为验证线路, 通过选用相同的运行线路和运行距离来确保计算能耗的可对比性, 采用HX3DB型电力机车模型, 牵引重量设置为2 000 t, 验证其节能效果。设置模拟列车初始速度为70 km/h, 最高运行速度为80 km/h, 即在传统的混合控制策略中, 当模拟列车速度从启动70 km / h的速度, 加速到80 km / h并以此速度保持运行; 而在改进的混合控制策略中, 模拟列车速度从70 km / h加速到80 km / h时由牵引转换为惰行, 当速度减速到70 km/h时再次重复其加速—惰行过程。

通过对图7 ( a) 和图7 ( b) 对比, 可看出改进的混合控制策略其节能效果明显优于传统的混合控制策略。结合表1看到, 传统的混合控制策略总能耗为144. 36 k W·h, 改进的混合控制策略的总能耗为91. 3 k W·h, 比前者节能53. 06 k W · h, 减少能耗36. 75% , 节能效果明显, 而其耗时仅比前者多0. 21 min。由此可看出, 改进的控制策略优于传统的控制策略, 具有更好的经济适用性。

3. 2改进的混合控制策略运行仿真

系统采用一条模拟线路进行运行仿真试验, 线路数据如表2所示, 线路长度14 500 m, 线路中包括了上、下坡以及曲线, 由于其模拟的是非高速列车运行, 所以隧道阻力可以忽略, 在此线路中没有设置隧道。采用HX3DB型电力机车牵引, 编组为滚动轴承重货车25辆, 牵引重量设置为2 000 t, 进行模拟牵引运行, 列车运行速度控制曲线如图7所示, V-S曲线反映列车不同工况下的运行情况, 开始列车加速运行, 在接近此区段的限速后, 其运行工况由牵引工况转换为惰行工况, 当速度小于或等于此线路限速下的转换速度时`, 再由惰行转换为牵引状态运行, 而在14 500 m处开始采用常用制动模式制动, 直到列车停车。在仿真过程中, 列车运行速度控制曲线平滑, 无速度跳变。模拟列车运行三维仿真试验, 如图9所示, 在仿真过程中, 三维仿真实体列车运行速平稳, 没有明显的纵向晃动, 符合其培训和工程分析的要求。

4结论

本文以多质点动力学模型为基础, 构建了列车仿真模型, 实现了列车模拟驾驶动力系统的构架, 采用改进的混合控制策略, 控制模拟列车的运行, 并通过其在一段模拟线路上的运行进行仿真验证, 证明了以改进的多质点模型为基础构建的基于改进的混合控制策略的列车模拟驾驶系统, 能够较大程度地减少能耗, 节约成本, 具有更好的经济适用性, 并能够更好地完成对列车速度的控制, 基本实现列车速度控制的实体再现, 使模拟驾驶系统更加贴近实际, 具有较强的实用价值。

参考文献

[1] 毛保华, 何天键, 袁振洲, 等.通用列车运行模拟软件系统研究.铁道学报, 2000;22 (1) :1—6

[2] 刘云.列车运行仿真系统的软件设计.北方交通大学学报, 1995;3:20—24

[3] 朱晓敏, 徐振华.基于单质点模型的城市轨道交通列车动力学仿真.铁道学报, 2011;33 (6) :14—19

[4] 马大炜, 康熊, 王成国, 等.关于列车牵引计算的研究.中国铁路, 2001;9:15—20

[5] 颜保凡, 郭垂江, 廖勇.列车运行时分力学模型的建立仿真.铁道运输与经济, 2010;32 (11) :90—94

[6] TB/T 1407—1998, 列车牵引计算规程

[7] 孙中央.列车牵引计算规程实用教程.北京:中国铁道出版社, 1999

篇4:关于列车运行控制系统的分类

【关键词】高职 列车运行自动控制 教学改革

【中图分类号】 G 【文献标识码】A

【文章编号】0450-9889(2014)01C-0037-02

列车运行自动控制是高职铁路院校铁道信号专业开设的一门专业课,是一门发展迅速、技术含量高,具有网络化、综合化、数字化、智能化的现代系统的技术课程。通过该课程的学习,学生将对列车自动控制技术有较深的认识,能对列控车载与地面设备进行常规任务的维护,具备相应的素质与技能,以及完成相应职业岗位工作任务所需的方法能力和社会能力。列车运行自动控制课程对于铁道通信信号专业学生了解列车控制车载设备与地面设备原理与维护十分重要。本文试结合教学与应用的实际,从培养目标、教学内容、教学方法和教学手段等方面对高职列车运行自动控制课程教学进行思考,以提高教学效果,优化教学质量。具体说来,高职列车运行自动课程教学应从以下方面展开:

一、明确培养目标与教学目的

列车运行自动控制课程主要讲授机车信号、LKJ监控记录装置车载设备与地面设备、车站电码化、CTCS-2级与CTCS-3级列控系统设备等内容。本课程的任务是使学生掌握现代化信号系统的基本知识和基本技能,提高广大信号工作人员的技术水平,以充分发挥现代化信号系统的作用。

要达到良好的教与学的双赢效果,对于铁路专职任课教师来说,首先要明确该专业与课程的培养目标及该课程的教学目的,同时,还要尊重课程的教学大纲要求,结合铁路通信信号的专业特点,选择适用于本专业特点的教材,有所取舍,合理分配,从而制订对应的教学计划。

二、结合铁路现场需要,优化教学内容

列车运行自动控制课程的特点是内容虽多但针对性强,都是对确保行车安全、提高运营效率的车载设备与地面设备进行学习。由于学生还没有针对性地对这些设备进行过认识和学习过,因此,完成教学任务的关键是如何结合铁路专业现场需要来优化教学内容。

铁路信号技术是随着百年铁路的发展以及继电器、半导体、电子信息技术的变化而不断演进的,列车运行自动控制系统是计算机技术、现代通信技术和自动控制技术等信息技术(简称3C技术)与信号技术的一个高水平集成与融合的产物,正在向信息化、网络化、智能化方向迈进。

对应于铁路现场的实际情况,大部分铁路职业院校铁道通信信号专业一直依照惯例对该课程进行介绍,内容没有太多更新,即使对新技术有所涉及也并不深入,学生并没有具体掌握相关知识。而专业教师大多也只是从网络上的研究报告、学术论文获取关于铁路信号新技术,没有机会真正全面、系统、透彻地掌握铁道信号新技术。还应看到,近年来我国高速铁路发展非常迅速,并持续处于建设高潮当中,随着一条条高速铁路、客运专线的建成开通,铁路企业对相关技术人员的要求也将有所提高,铁路职业院校进行高铁技术人才培养刻不容缓。因此,专业教师自身要不断优化教学内容,对教学内容提前设计好,让学生能够全面而又详细地了解该课程的主要内容,增强学生的专业知识。

三、改进教学方法与教学手段

由于列车运行自动控制课程的内容基本上都是介绍设备的功能与组成,对于信号专业的理工科来说,比较枯燥且提不起兴趣,因此教学方法与教学手段的运用对教学效果影响将产生很大影响。

(一)借助多媒体教学,提高教学效果

多媒体具有图、文、声并茂且有视频播放的特点,对教学过程来说是特别宝贵的特性与功能。借助多媒体教学不但能够拓宽学生的专业面,增加教学信息量,而且可以提高学生的学习兴趣。对于列车运行自动控制课程,采用传统教学方法和教学手段已达不到教学要求。通过多媒体技术可以播放幻灯片、视频、FLASH动画等,使课堂教学提升活力,在很大程度上引起学生的注意,提高学习兴趣。也就是说,学生在这样的交互式学习环境中有了主动参与的可能,而不是一切都由教师安排好,学生只能被动接受。

对于多媒体交互式教学,教师应设计一些过程和内容,让学生进行讨论,合作解决,以提高多媒体教学的效率。比如,在讲解列车追踪运行时,可以制作相应用动画来体现列车安全追踪运行情况。也可制作列车追踪动画嵌入到多媒体课件中,更加形象地说明列车追踪原理,还可以增加暂停按扭,边演示边讲解,这样学生易于理解接受。同时,根据所学知识进行分组讨论。

此外,在讲解CTCS-3列控系统时,由于CTCS3级列控设备组成多、学生在较短的时间里要获得大量信息,仅靠教师在课堂讲解比较抽象,而学生又没有见过实物,这样学生理解起来就比较困难。教师在制作课件时,可以插入“CTCS-3级列控”视频,通过视频讲解,使学生非常直观地了解整个CTCS-3级列控系统设备组成、工作原理,同时也提高了学习效率。

教学中使用多媒体技术,有利于提高教师的专业水平,有利于教师整合教学资源。多媒体教学技术能弥补传统教学中的不足,传统的教学费又时费力,而且不能使学生在轻松的状态下学习知识,提高不了教学效益。如果充分借助多媒体教学手段,将大大改善教学效果。

(二)利用实物、列控沙盘及现场教学

列车运行自动控制是专业性、理论性很强的课程,必须在了解铁路列控设备基本构成的基础上,才能够深入地理解其工作原理与工作过程。在讲解机车信号的结构及工作原理时,可利用现有的机车信号设备实物,既便于教师教学,又提高了学生的兴趣。同时,在讲解铁路列控地面设备与车载设备配合工作时可借助自主研发的列控沙盘系统,使学生具备感性认识,提升课堂教学效果。在学习完机车信号与LKJ监控装置设备后可进行现场教学,带学生到机务段车载设备工区参观学习,既实现理论与实际相结合,又达到抽象与具体的转化,使学生积极性得到很大提高,从而提高了教学质量。

(三)合理利用案例教学

案例教学法又称实例教学法,就是在教学过程中,任课教师根据教学目标和教学内容的需要,采用真实案例组织学生进行学习。通过案例教学法,把真实又典型的问题展示在学生面前,让他们自主去思考、分析、讨论。例如,在讲到列车监控记录装置LKJ内容时,学生可以分成小组,分别扮演相应的角色,完成一个出勤到退勤的完整任务。再如,在学习到CTCS-3级列控系统“过分相”功能时,可引入各种与列车运行有关的新闻,提出问题让大家思考,然后由学生讨论并进行说明,最后由教师点评,这样不仅可以引起学生注意,还可以增加课堂的有趣性,效果显著。对于激发学生的学习兴趣,培养创造能力及分析、解决问题的能力大有帮助。

总之,应以转变教育思想、更新教育观念为先导,以优化知识结构、重视能力培养为出发点,顺应铁路发展、满足企业需求,加快推进铁道信号专业人才培养进程,培养学生掌握列车控制技术岗位应具备的专业技能,提高技术水平,拓宽发展方向。在教学实践过程中,抓住学生与课程的特点,合理安排教学内容,采用灵活的教学方法,在教学内容、教学方法和教学手段等方面进行了一定的探索和研究,获得了一些经验与体会,在教学效果、学生学习兴趣和学习主动性上取得了一定的成绩。

【参考文献】

[1]佟立本.铁道概论[M].北京:中国铁道出版社,2006

[2]贺清.铁道信号专业《铁道概论》课程的教学探讨[J].甘肃科技,2009(4)

[3]张向民.《铁道工程概论》课程的教学探讨[J].长沙铁道学院学报:社会科学版,2006(6)

[4]陈红霞,钱艺. 新形势下铁路信号专业教学改革的探索[J]. 黑龙江生态工程职业学院学报,2012(3)

[5]张建辉,许莹莹. 铁路特色专业课程教学改革初探——以“铁道概论”课程为例[J].长春理工大学学报,2011(2)

【基金项目】广西壮族自治区教育厅科学技术研究项目(2013YB357)

【作者简介】黄 斌(1983-),男,柳州铁道职业技术学院讲师,硕士,研究方向:铁道通信信号与城市轨道交通信号等。

篇5:关于列车运行控制系统的分类

列控作用:(1)保障行车安全。识别、消除或减弱危及安全的因素。发现时,向列车发出停车或降速命令(2)保证运输效率。列控系统确定列车最小安全制动距离,最大限度提高线路通过能力。

列控原理:地面设备根据前方行车条件,包括轨道占用情况、进路状态、线路状况以及调度命令,生成行车许可,通过车地通信技术传给车载设备,结合列车数据,车载设备自动计算生成超速防护曲线,并实时与列车运行速度进行比较,超速(允许速度)后及时进行控制,防止列车超速脱轨或与前行列车追尾。

列控功能:1.给司机显示允许列车运行的信号、目标距离、目标速度、允许速度等。2.防止列车超过规定的限制速度运行,包括信号显示规定的限制速度、线路限速、车辆限速、临时限速等。3.自动实施速度控制,一旦列车速度超过允许速度,应实施制动控制,使列车减速甚至停车。4.防止与同一轨道运行的列车相撞或追尾。

分级特点:1.CTCS-0干线铁路装备的既有铁路信号设备;地面设备:国产轨道电路构建三显示/四显示自动闭塞,轨道电路实现;车载设备:通用机车信号,列车运行监控记录装置LKJ;固定闭塞 2.CTCS-1由主体机车信号+安全型运行监控装置组成,面向160km/h及以下的区段,在既有设备基础上强化改造,增加点式设备,实现列车运行安全监控功能。3.CTCS-2提速干线、高速铁路;应答器、ZPW-2000A轨道电路共同完成车地通信;配置车站列控中心TCC,根据地面信号系统计算列车移动授权凭证;车载ATP+LKJ2000,凭车载信号行车;可下线在CTCS1/0线路;准移动闭塞,地面可不设区间通过信号机 4.CTCS-3主要面向高速铁路;车载配置ATP,凭车载信号行车;RBC基于地面信号系统计算列车移动授权;无线通信(GSM-R)传输车地信息;轨道电路检查列车占用,应答器为列车定标;地面可不设区间通过信号机;可下线在CTCS2线路;准移动闭塞;等同于ETCS-2 5.CTCS-4面向高速铁路;CTCS车载设备ATP,凭车载信号行车;车载设备发送列车参数,无线闭塞中心RBC跟踪;列车位置并计算列车移动授权;取消区间轨道电路和通过信号机(移动闭塞);无线通信(例如:GSM-R、LTE-R等);列车完整性检查由地面RBC和列车完整性验证系统完成; 等同于ETCS-3 加速牵引:C=F-W匀速惰行:C=-W减速制动:C=-(B+W)F牵引力,B制动力,W阻力

牵引力分析:轮轨间的纵向水平作用力超过最大静摩擦力时,轮轨接触点将发生相对滑动,机车动轮在强大力矩的作用下快速转动,轮轨间的纵向水平作用力变成了滑动摩擦力,其数值比最大静摩擦力小很多,而列车运行速度很低,这种状态称为“空转”。

空转的危害:局部与车轮接触的钢轨将受到严重摩擦,造成严重耗损钢轨,甚至导致车轮陷入钢轨磨损产生的深坑内。该状态下牵引力反而大幅降低,钢轨和车轮都将遭受剧烈磨损。

打滑(制动力):当制动力大于黏着力时,轮轨将发生滑行,即车轮将被“抱死”。此时制动力变为轮轨间的滑动摩擦系数,闸瓦间的摩擦力由动摩擦力变为静摩擦力。由于滑动摩擦系数远小于滚动摩擦系数,因此轮对一旦滑行,制动力将迅速下降。基本阻力:列车在理想线路条件下,沿平直轨道运行时遇到的阻力,列车运行中任何情况下都存在的阻力。是列车内部或外界之间的相互摩擦和冲击产生的,包括:机械阻力和气动阻力。列车基本阻力的公式 w0=W0/M

式中:M—列车总重;W0—列车运行基本阻力;Q—中间车辆数;v—列车运行速(km/h);△v—逆风风速(km/h);a、b、c—与机械阻力相关的系数;d—每辆车车与空气阻力相关的阻力系数;e—头车和尾车空气阻力相关的阻力系数之和。附加阻力是指列车在非理想线路条件上运行时受到的额外阻力。坡道附加阻力:,其中BC/AB=sinθ

曲线附加阻力:Wr=600g/R(N/t)R——曲线半径(m)Wr=10.5αg/Lr(N/kN)Lr——曲线长度(m),α——曲线转角

隧道空气附加阻力:有限制坡道时 ws=0.0001LsVs²(N/kN)无限制坡道时 ws=0.13Ls Ls—隧道长度(km),Vs—列车在隧道内的运行速度 制动方式:1.摩擦制动(1)闸瓦制动(踏面制动)(2)盘形制动:制动盘固定于车轴上时称为轴盘式盘型制动,制动盘连接在车轮上,称为轮盘式盘形制动。2.动力制动分为:电阻制动、再生制动、圆盘涡流制动和线性涡流制动。制动力计算:全列车的制动力等于全列车的闸瓦压力与轮瓦摩擦系数的乘积之和。

制动力也要受到轮轨间黏着条件的限制:

式中Q—轴荷重,μ—轮轴间的制动粘着系数 A.滑动现象在空车中更容易发生;

B.当轨面状况不好时,黏着系数下降,易出现滑行。C.紧急制动时,闸瓦压力K大,容易出现滑行。

D.当速度降低时,黏着系数略大,而摩擦系数随速度下降急剧增加,因此在低速尤其是快停车时,更容易滑行。

制动距离的计算:

式中 S—制动距离(m);v—制动末速度(km/h);v0—制动初速度(km/h)式中 Sk—空走距离;Se—实制动距离

式中 tk—空走时间(s);v0—制动初速(km/h)

行车闭塞:按照一定的规定和信号设备组织行车(使用信号或凭证),对追踪列车进行间隔控制(空间间隔制),避免列车追尾或相撞。

空间闭塞(间隔)法:将线路划分为若干个区段,在每个区段内同时只准许一列列车运行的行车方法。人工闭塞:采用电气路签或路牌作为列车占用该区间的凭证,由接车站值班员检查区间是否空闲。依靠人工完成。半自动闭塞:人工办理闭塞手续,列车凭信号显示发车后,车站信号机自动关闭。特点:站间或所间只准许行一列车;人工办理闭塞手续;人工确认列车完整到达;人工恢复闭塞。

自动站间闭塞:在有区间占用检查条件下,自动办理闭塞手续,列车凭信号显示发车后,车站信号机自动关闭。

特点:有区间占用检查设备;站间或所间闭塞只准走行一列车;办理发车进路时自动办理闭塞手续;自动确认列车到达和自动恢复闭塞。自动(区间)闭塞:将站间划分为若干个闭塞分区,设置闭塞分区占用检查设备,每个闭塞分区的起点装设通过信号机,根据列车运行及轨道占用检查,自动控制信号机的显示,司机凭信号显示行车。办理发车进路时自动办理闭塞手续,通过信号自动变换。可以实现站间的列车追踪运行,提高了运输效率。用于双线铁路。虚拟闭塞:是固定闭塞的一种特殊形式,以虚拟方式(设置通信模块和定位信标)将区间划分为若干个虚拟闭塞分区,并设置虚拟信号机进行防护。固定闭塞:两列运行列车之间的空间间隔是若干个长度固定的闭塞分区,一般设地面通过信号机,保证列车按照空间间隔制运行。基本原则:不能授权列车进入已被另一列车占用的分区;两追踪列车之间的间隔距离必须始终大于后车的制动距离,保证两辆列车不会追尾。

三显示自动闭塞:绿灯(通行):表示前方两个闭塞分区空闲,列车可以按规定速度运行;黄灯(警惕):表示前方只有一个闭塞分区空闲,列车可以越过黄灯后再开始制动;红灯(停车):表示列车在红灯前停车。

进路式信号:信号没有速度含义,仅表示前方闭塞分区是否空闲以及空闲状态 四显示自动闭塞:绿灯(通行):表示160/160,入口速度为160km/h,出口速度(即目标速度)为160km/h;绿黄(警惕):表示160/115;黄灯(限速):表示115/0;红灯(停车):表示0km/h,即前方占用,不得冒进。比较:三显示用一个闭塞分区满足列车全制动距离的需要,四显示用两个较短的闭塞分区满足列车全制动距离的需要,适应了提速的需求,缩短了列车追踪间隔,提高了运输能力。

准移动闭塞:基于固定闭塞的目标—距离控制方式,保留固定闭塞分区,以前方列车占用闭塞分区入口确定目标点,通过地车信息传输系统向列车传送目标速度、目标距离等信息。这种闭塞方式称为准移动闭塞。

移动闭塞:追踪列车的目标点是前行列车的尾部加一个安全距离,实时与前车保持安全制动距离,闭塞分区随列车移动而“移动”

最限制速度: 综合考虑列车在区域各类限制速度得出的最低值(即最不利限制部分或最严格限制速度),简称最限制速度。

速度防护曲线模式:速度-距离模式曲线是根据目标速度、目标距离、线路参数、列车参数、制动性能等确定的反映列车允许速度与目标距离间的关系曲线。根据制动曲线的形状,速度-距离模式曲线可分为分段曲线控制和目标-距离控制。根据所需信号含义和速度控制方式,分为:阶梯速度控制方式和速度-距离模式曲线控制方式

从列车安全间隔距离的构成与计算,比较速度防护方式在运输效率的差别。(1)阶梯速度控制(防护)方式和分段曲线控制(防护)方式的安全间隔距离构成基本相同, 计算式为:S=(S1+S2+S3+S4)n,其中:S1—车载设备接收地面列控信号响应过程中列车走行距离;S2—列车制动设备响应过程中列车走行距离;S3—列车制动距离(性能最差列车的最大安全制动距离:含空走和有效走行);S4—安全防护距离(过走防护距离);n—列车从最高速度停车制动所需阶梯(分区数)。(2)基于固定闭塞(准移动闭塞)的目标距离控制(防护)方式的列车防护目标距离(小于安全追踪间隔距离)为:L=L0+Lz+L3,其中:L0—列控设备反映时间内走行距离;Lz—每列车的实际最大安全制动距离(列车性能好数值小,性能差数值大);L3—列车过走防护距离。(3)基于移动闭塞的目标距离控制(防护)方式的安全追踪间隔距离(等于列车防护目标距离)为:S= Sl+ S2+S3+S4,其中:Sl—车载设备接收地面列控信号反映时间距离;S2—列车制动响应时间距离;S3—每列车的实际最大安全制动距离;S4—过走防护距离。

比较分析:阶梯速度控制(防护)和分段曲线控制(防护)方式是按照制动性能最差列车安全制动距离要求,以一定的速度等级将轨道划分成若干固定区段,所以对制动性能好的列车其能力将不能得到充分发挥,而目标距离控制(速度—距离模式曲线控制)则由于车载设备按本车实际性能实时计算控制模式曲线,可以列车实际性能自行控制其追踪间隔,使各个列车的性能得以充分发挥。因此,目标距离模式的运输效率高于阶梯速度方式和分段曲线控制方式。

行车许可(移动授权MA),允许列车在基础设施限制内运行到轨道上指定的位置。

行车许可终点(EOA)是行车防护界限点,目标点与它的距离为安全距离。EOA包括:被占用闭塞分区的入口(固定闭塞或准移动闭塞)、前行列车安全后端(移动闭塞)、为进路设置的道岔警冲标等。

行车许可证原理:固定闭塞:地面设备通过检测前车的占用,以前车所在的闭塞分区的起点向后车方向顺序控制信号的开放,生成行车许可。移动闭塞:两车追踪的情况中,列车实时计算自身的位置,并通知地面设备,地面设备结合前行列车位置及线路状况等信息为后行列车确定行车许可。

在固定闭塞(含准移动)的方式下,根据车地信息传输方式的不同,可将列控系统分为:点式、点-连式和连续式(基于通信的)列车运行控制系统。

基于轮轴的测速原理:利用车轮的周长作为“尺子”测量列车的走行距离,据测量得到的列车走行距离测算出列车运行速度,基本公式:D—车轮直径,φ—车轮转速

速度监控曲线:列车运行全过程的各点位置的限制速度构成的速度-距离曲线。分为顶棚速度监控区(运行时不需要考虑前方目标点,只需控制列车速度不超过该区域规定的固定限制速度)目标速度监控区(限制速度下降到较低的限制速度值或限制速度为0km/h的目标点的区域)以及安全距离区。

CTCS-3级系统:基于GSM-R无线通信实现车-地信息双向传输,无线闭塞中心(RBC)生成行车许可,轨道电路实现列车占用检查,应答器实现列车定位,并具备CTCS-2级功能的列车运行控制系统。

包括:地面设备:无线闭塞中心RBC、GSM-R通信接口设备、轨道电路、应答器、列控中心。车载设备:车载安全计算机(VC),GSM-R无线通信单元(RTU)、轨道电路信息接收单元(TCR)、应答器信息接收模块、记录单元、人机界面、列车接口单元。无线闭塞中心RBC:接受车载设备发送的位置和列车数据等信息;根据轨道电路、联锁进路等信息生成行车许可;将行车许可、线路参数、临时限速传输给车载设备。

GSM-R通信接口设备:用于实现车载设备与地面设备之间连续、双向、大容量信息传输。

轨道电路实现列车占用检查;发送闭塞分区空闲信息,满足后备系统的需要。临时限速服务器:集中管理临时限速命令,分别向RBC、TCC传递临时限速信息。列控中心(TCC):实现轨道电路编码,并向RBC传递列车占用信息;通过轨旁电子单元以及有源应答器向C2级列控车载设备传送限速信息和进路信息。应答器向车载设备传输定位和等级转换信息;向车载设备传送线路参数和临时限速等信息,满足后备系统的需要。

轨旁电子单元(LEU)根据地面设备提供的信息生成应答器所要传输报文的电子设备。

车载安全计算机根据与地面设备交换的信息监控列车安全运行。轨道电路信息接收单元接受轨道电路的信息 应答器传输模块及应答器天线:应答器传输模块通过与应答器天线连接,接收地面应答器的信息。

无线传输模块通过与GSM-R车载电台连接,实现车-地双向信息传输。人机界面实现司机与车载设备之间的信息交互

列车接口单元提供安全计算机与列车相关设备之间的接口

测速测距单元接受测速传感器等设备的信号,测量列车运行速度和运行距离。司法记录器记录与列车运行安全有关的数据,在需要时下载进行数据分析。C3主要工作模式:完全监控模式、目视行车模式、引导模式、调车模式、隔离模式、待机模式、休眠模式(部分监控模式、机车信号模式仅C2)

CTCS-2级是基于轨道电路和应答器传输列车行车许可信息并采用目标距离连续速度 控制模式监控列车安全运行的列控系统 CTCS-2级列控车载设备:由车载计算机、STM、BTM、人机接口、运行记录单元、应答器信息接收天线、速度传感器、列车接口单元、轨道电路信息接收天线等

列控地面设备列控中心、ZPW-2000系列无绝缘轨道电路、应答器。

C2行车许可包括目标距离:距行车许可终点的距离;目标速度:通过行车许可终点时的速度;线路数据:坡度、静态限速、线路条件(过分相信息、等级转换点等);临时限速信息。

C2轨道电路:完成列车占用检测、向车载设备发送列车前方空闲闭塞分区数量信息以及进站道岔侧向位置进路信息。

C2列控中心:综合轨道电路、应答器信 息和动车组参数,自动生成连续速度控制模式曲线,实时监控列车安全运行。

C2应答器提供临时限速和进路信息,线路允许速度和闭塞分区长度等。

C2与C3的地面设备构成与功能方面的差异与相同点:设备构成方面:CTCS-2级列控系统地面设备主要由车站列控中心、轨道电路和应答器构成。CTCS-3级列控系统地面设备是在CTCS-2级列控系统基础上,主要增加了无线闭塞中心(RBC)、临时限速服务器和GSM-R通信接口设备。功能方面:CTCS-3级列控系统的行车许可由地面设备RBC生成,行车命令由GSM_R通信接口设备传输,轨道电路只实现列车占用检查功能,应答器提供列车定位和等级转换信息的功能。与CTCS-3级列控系统相比,CTCS-2列控系统的地面设备轨道电路,除了实现列车占用检查功能外,还需承担向车载设备发送行车许可信息的功能;地面设备应答器,除了提供列车定位和等级转换信息功能外,还需承担传输进路状态、临时限速和线路参数等信息的功能。

Zpw2000A无绝缘轨道电路的组成:室内包括发送器、接收器、衰耗器、站防雷、电缆模拟网络;室外包括屏蔽数字信号电缆、匹配变压器、调谐单元、空心线圈、补偿电容。功能:设备状态检查、列车占用检查、地-车信息传输。

轨道电路工作状态:调整状态-空闲;分路状态-占用;断轨状态-占用(一种是列车在钢轨上行驶的冲击力使钢轨折断,另一种是工务施工或自然灾害等使钢轨折断。防护设备显示轨道电路“占用”信息,禁止列车驶入本轨道电路。)。

列车分路电阻:列车分路轨道电路所形成的短路电阻分路灵敏度:当轨道电路被列车或其它导体分路,恰好使轨道电路接收设备能反映轨道占用状态的列车分路电阻或该导体的电阻值极限分路灵敏度:轨道电路各点的分路灵敏度不同,对某一段具体轨道电路来说,该段轨道电路的极限分路灵敏度是取各点分路灵敏度的最小值。标准分路灵敏度规定的最小分路电阻,我国规定0.06欧。极性交叉:在绝缘的两侧要求轨面电压具有不同的极性或载频。

L5(21.3)准许规速行运行,前方7及以上闭塞分区空闲 L(11.4)准许规速行运行,前方三个空闲 LU(13.6)准许规速行运行,2空闲

UU(18)限速运行,表示列车接近的地面信号机开放经道岔侧向位置进路

UUS(19.1)限速运行,表示列车接近的地面信号机开放经18号及以上道岔侧向位置进路,且次一架信号机开放经道岔直向或18号及以上道岔侧向位置进路 HB(24.6)表示列车接近的进站或接车进路信号机开放引导信号或通过信号机

显示容许信号

HU(26.8)要求及时采取停车措施 H(29)要求列车采取紧急停车措施

U2(14,7)要求列车减速到规定的速度等级越过接近的地面信号机,并预告次一架地面信号机显示两个黄色灯光

U2S(20.2)要求列车减速到规定的速度等级越过接近的地面信号机并预告次一架地面信号机显示一个黄色闪光和一个黄色灯光 LU2(15.8)注意运行,预告次一架显两黄

U(16.9)减速到规定速度等级越过接近的地面信号机,次一架显红

列控中心主要功能:1.根据列车进路和轨道区段状态等信息,实现站内和区间轨道电路的载频、低频信息编码和发送功能,控制轨道电路发码方向 2.根据临时限速设置和列车进路开通情况,实现应答器报文的实时组帧、编码、校验和向LEU发送的功能 3.实现TCC站间安全信息的实时传输4.区间运行方向和闭塞的控制5.区间信号机点灯控制6.无配线车站进出站信号机的驱动采集7.通过继电器与异物侵限系统接口,实现异物侵限灾害防护 8.向CTC设备传输区间闭塞分区状态、编码、方向和设备状态9.具有自诊断与维护功能

应答器:基于电磁耦合原理实现的车地高速数据传输的点式设备,用于在特定地点从地面向列车传送报文信息。

应答器的组成:地面应答器(应答器),轨旁电子单元(LEU),车载天线,应答器传输模块(BTM)

应答器功能:有源应答器:提供临时限速和进路信息;无源应答器:提供闭塞分区长度、线路限速和换算坡度等。应答器基本原理:应答器安装在轨道中间轨枕上,不要求外加电源、处于休眠状态。列车经过时地面应答器被车载天线发送的功率载波能量瞬时激活将接收到的电磁能量转换成电能,并利用这些电能调出存储信息经调制后循环向车载设备发送报文信号,车载天线接收应答器所发射的报文信号,经译码处理发送给列控车载设备安全计算机。

RBC设备采用硬件安全比较冗余结构,包括:无线闭塞单元(RBU)、协议适配器(VIA)、RBC维护终端、司法记录器(JRU)、操作控制 终端和等设备组成。

RBC功能 1.数据配置(根据列控数据表、信号平面图、RBC设备信息,建立内部拓扑图)2.地面动态状态映射(联锁:进路信息,TSRS:临时限速信息等)3.列车管理(连接、注册、断开连接、注销)4.MA生成5.RBC切换(双电台、单电台)

RBC生成行车许可的过程(1)形成许可(MA)定位:RBC通过列车位置报告从列车获得当前的列车位置,并且在内部拓扑图上形成列车精确定位;(2)形成许可数据:RBC接收车站联锁和TSRS(临时限速服务器)的进路和临时限速信息,并将其映射到内部拓扑数据库;(3)确定许可范围:RBC根据进路状态将列车前方尽可能多的进路分配给列车,计算进路长度,填充行车许可;(4)形成许可信息:RBC根据进路上的线路与设备特征,填充链接信息、坡度曲线、静态速度曲线、等级转换、RBC切换、临时限速等信息,共同构成行车许可消息,发给车载设备。

映射技术:1.进路映射技术:根据来自联锁的进路编号和进路状态,找到RBC内部保存的对应进路,并更新其状态。2.临时限速映射技术:根据来自临时限速服务器的 临时限速命令,按照公里标、线路号、限速值等信息将临时限速设置到内部拓扑图上的对应区域。

临时限速是指线路固定速度以外的、具有时效性 的限制速度

RBC管理临时限速:RBC根据临时限速服务器的临时限速命令,按照公里标、线路号、限速值等信息将临时限速设置到内部拓扑图上的对应区域;RBC为列车生成行车许可中包含临时限速度区段时,向车载设备发送MA同时,发送临时限速信息,包括:至限速区段的距离、限速区段长度、限速值等

等级转换:正常的等级转换在等级边界(转换区域)自动进行。等级转换区域内的转换命令由RBC/应答器提供

RBC切换:列车到达接近下一RBC边界时,车载设备向RBC1报告位置;RBC1从RBC2获得进路信息,生成延伸到RBC2管辖范围的行车许可;列车经过切换应答器时,GSM-R车载移动电台与RBC2建立通信;RBC切换自动完成,列车受到RBC2的控制,车载设备终止与RBC1的通信;车载设备从RBC2接收到新的行车许可。(双电台时:列车受到RBC1控制,根据RBC1提供的行车许可运行;RBC1命令另一个GSM-R车载电台呼叫RBC2,与RBC2建立通信,RBC1从RBC2获得进路信息,生成延伸到RBC2管辖范围的行车许可;列车头部通过切换应答器后,列车受到RBC2的控制;列车尾部通过切换应答器后,终止与RBC1的通信,完成RBC切换。列车根据RBC2提供的行车许可运行。)注:为使列车不减速越过切换边界,RBC1提供行车许可将在RBC2管辖区域延长:一个40s正常行驶距离 + 完整制动距离的长度。

篇6:关于列车运行控制系统的分类

北交《城市轨道交通列车运行控制》在线作业一

一、单选题(共 9 道试题,共 36 分。)

1.站台安全门按其规模和功能可以分为半高式安全门、全高式安全门().滑动门.固定门.端门.屏蔽门 正确答案:

2.在城市轨道交通自动列车运行控制系统中,超速检测与防护功能是由其哪个子系统实现的?().TP.TO.TS.以上三种均不是 正确答案:

3.关于故障-安全技术,下列说法错误的是().TP子系统是安全系统,其系统设计以及所有的软硬件均必须符合“故障-安全”原则.TO为故障-安全系统,其控制列车自动运行

.TS系统为非故障-安全系统,它的全部或任何一个部分的故障或不正确操作,不会影响列车运行安全

.轨道电路中的继电器必须符合故障-安全原则 正确答案:

4.城市轨道交通的自动化程度比较高,一般采用()的运用方式,列车的运行速度不取决于地面信号机的显示,地面信号系统只起辅助作用。

.地面信号显示与车载信号系统相结合,以地面信号系统为主.地面信号显示与车载信号系统相结合,以车载信号系统为主.车载信号系统.地面信号系统 正确答案:

5.城市轨道交通采用()行车制。.两侧均可.左侧.右侧

.具体情况具体分析 正确答案:

6.下列表示禁止越过该信号机调车的是().红色

谋学网

.蓝色.双黄色.红色+黄色 正确答案:

7.阶梯式分级速度控制可以分为超前式和滞后式,超前式采用()优先的方法,滞后式采用()优先的方法。().人控优先,设备优先.设备优先,人控优先.人控优先,人控优先.设备优先,设备优先 正确答案:

8.关于故障-安全技术,下列说法错误的是().TP子系统是安全系统,其系统设计以及所有的软硬件均必须符合“故障-安全”原则.TO为故障-安全系统,其控制列车自动运行

.TS系统为非故障-安全系统,它的全部或任何一个部分的故障或不正确操作,不会影响列车运行安全

.轨道电路中的继电器必须符合故障-安全原则 正确答案:

9.下列不属于TO功能的是().将列车速度自动调整在允许速度带内,尽可能减少牵引、惰行和制动之间的转换.实现列车自动通过车站和自动折返.保证列车的停位精度.超速检测与防护 正确答案:

北交《城市轨道交通列车运行控制》在线作业一

二、多选题(共 8 道试题,共 32 分。)

1.城市轨道交通设备故障主要包括信号系统故障、线路故障、道岔故障以及()等各种故障。.临时停电.通信中断 正确答案:

2.站台安全门的控制方式有()故障。.信号系统故障.线路故障

.道岔故障以及临时停电.通信中断

谋学网

正确答案:

3.列车速度控制方式的角度,列车运行自动控制系统可分为().分级速度控制

.速度-目标距离模式曲线控制 正确答案:

4.轨道交通列车运行控制系统综合利用3技术代替了传统的轨道电路技术,3技术是()未来城市轨道交通运行控制系统的发展趋势是实现T.omputr.ommunition.ontrol 正确答案:

5.TS系统在自动调整过程中,TS主要通过()来调整列车。.停站时间.站间运行时间 正确答案:

6.城市轨道交通闭塞分为三种类型().固定闭塞.准移动闭塞.移动闭塞 正确答案:

7.站台级控制是由()在站台PSL(站台级操作盘)上对安全门进行的控制方式。.列车驾驶员.车站站务员 正确答案:

8.列车自动控制系统有().列车自动列车自动驾驶系统(TO).列车自动防护系统(TP).列车自动监控系统(TS)正确答案:

北交《城市轨道交通列车运行控制》在线作业一

三、判断题(共 8 道试题,共 32 分。)

1.城市轨道交通系统中,月白色信号灯表示的含义是:准许列车越过该信号机调车。().错误.正确 正确答案:

谋学网

2.轨道电路是以钢轨为导体,两端加上机械绝缘(或者电气绝缘),接上送电和受电设备构成的电路。().错误.正确 正确答案:

3.TP系统主要由三部分构成:用以实现控制列车运行的车载装置、用以产生控制信息的地面装置和地面与车载两方互通信息的车与地的中间传输通道。().错误.正确 正确答案:

4.警冲标设在两会合线路间距离为4m的中间,超限绝缘是指当不得已时,钢轨绝缘只能装设于警冲标内方小于3.5m处,又叫侵限绝缘。().错误.正确 正确答案:

5.移动闭塞目标点是前行列车的尾部,与前行列车的走行和速度有关。().错误.正确 正确答案:

6.TS系统负责监督和控制TP系统,联锁系统和轨道空闲检测装置为TP提供基层的安全信息,列车是TP的控制对象。().错误.正确 正确答案:

7.城市轨道交通中蓝色信号灯的颜色表示的含义是:不准列车越过该信号机调车。().错误.正确 正确答案:

8.TP系统主要由三部分构成:用以实现控制列车运行的车载装置、用以产生控制信息的地面装置和地面与车载两方互通信息的车与地的中间传输通道。().错误.正确 正确答案:

北交《城市轨道交通列车运行控制》在线作业一

一、单选题(共 9 道试题,共 36 分。)

谋学网

上一篇:古人的厕所革命下一篇:给妈妈惊喜盆栽色拉500字作文