数字图像处理期末总结

2023-03-05

总结对于个人的成长而言,是我们反思自身、了解自身、明确目标的重要方式,通过编写的总结报告,我们可以在工作回顾中,寻找出自身的工作难点,掌握自身的工作优势,更加明确自身的发展方向。今天小编给大家找来了《数字图像处理期末总结》,欢迎阅读,希望大家能够喜欢。

第一篇:数字图像处理期末总结

数字图像处理大纲总结

第一章:数字图像处理基础概念

1、数字图像处理的内容:

(1)图像获取、表示和表现(图像的数字化和图像变换) (2)图像增强 (3)图像复原 (4)图像重建 (5)图像压缩编码 (6)图像分割 (7)图像分析 (8)模式识别 (9)图像理解

2、数字图像处理的层次关系(P 3):

狭义图像处理-------图像分析-----------图像理解。

抽象程度

-

数据量

-

语义

低层

1 ★编码效率 = 熵 / 平均码长

4、霍夫曼(Huffman)编码的特点和步骤(P 118):

思想:在信源数据中出现概率越大的符号(灰度值),编码以后相应的码长越短

步骤:

(1)把输入符号按出现的概率从大到小排列起来,接着把概率最小的两个符号的概率求和; (2)把它(概率之和)同其余符号概率由大到小排序,然后把两个最小概率求和; (3)重复(2),直到最后只剩下两个概率为止

(4)在上述工作完毕之后,从最后两个概率开始逐步向前进行编码。对于概率大的消息赋予0,小的赋予1。 特点:

(1)编码是唯一可译码。短的码不会成为更长码的启始部分;

(2)编码的平均码长接近于熵;编码效率略高于费诺仙侬Fano-Shannon编码。

5、算术编码的特点:

(1)码字本身定义一个介于0和1之间的实数区间,该区间中的任何一个实数就代表要编码的消息序列。 (2)信源符号与码字之间不存在一一对应的关系。一个码字不是赋给某个信源符号,而是赋给整个消息序列。 (3)当消息中的符号数目增加时,用于描述消息的间隔变得更小,而表示间隔所需要的信息单元(如编码位数)变得更多了。

第七章

图像分割

1、图像分析的步骤:

(1)把图像分割成不同的区域或把不同的对象分开 (2)找出分开的各区域的特征

(3)识别图像中要找的对象或对图像进行分类

(4)对不同区域进行描述或寻找出不同区域的相互联系,进而找出相似结构或将相关区域连成一个有意义的结构

2、图像分割的基本策略

(1)分割算法基于灰度值的两个基本特性:不连续性和相似性

(2)检测图像像素灰度级的不连续性,找到点、线(宽度为1)、边(不定宽度)。先找边,后确定区域。

(3)检测图像像素的灰度值的相似性,通过选择阈值,找到灰度值相似的区域,区域的外轮廓就是对象的边

3、图像分割的方法

(1)基于边缘的分割方法:先提取区域边界,再确定边界限定的区域。 (2)区域分割:确定每个像素的归属区域,从而形成一个区域图。 (3)区域生长:将属性接近的连通像素聚集成区域

(4)分裂-合并分割:综合利用前两种方法,既存在图像的划分,又有图像的合并。

4、边缘检测算子:

基本思想:计算局部微分算子

一阶微分:用梯度算子来计算

特点:(1)对于阶跃状变化,会出现极大值(两侧都是正值,中间的最大)

(2)对于屋顶状变化,会过零点(两侧符号相反)不变部分为零。 用途:用于检测图像中边的存在 二阶微分:通过拉普拉斯来计算

特点:(1)对于阶跃状变化,会过零点(两侧符号相反)

(2)对于屋顶状变化,会出现负极大值(两侧都是正值,中间的最大)不变部分为零。 用途:用于检测图像中边的存在

5、几种常用的边缘检测算子:

梯度算子:仅计算相邻像素的灰度差,对噪声比较敏感,无法抑止噪声的影响。 Roberts算子:与梯度算子类似,效果略好于梯度算子 Prewitt算子:在检测边缘的同时,能抑制噪声的影响 Sobel算子:(1)对4邻域采用带权方法计算差分

(2)能进一步抑止噪声,但检测的边缘较宽

Kirsch算子(方向算子): 在计算边缘强度的同时可以得到边缘的方向,各方向间的夹角为45º

用法:取其中最大的值作为边缘强度,而将与之对应的方向作为边缘方向(共8个模板) ★Laplacian算子:

优点:(1)各向同性、线性和位移不变;

(2)对细线和孤立点检测效果较好。

缺点:(1)对噪音的敏感,对噪声有双倍加强作用;

(2)不能检测出边的方向; (3)常产生双像素的边缘。

注意:由于梯度算子和Laplace算子都对噪声敏感,因此一般在用它们检测边缘前要先对图像进行平滑。

Marr算子:马尔算子是以拉普拉斯算子为基础,首先用一个二维高斯函数对图像卷积以减低图像噪声的影响(平滑);再用二阶导数差分算子(拉普拉斯算子)计算 优点:是快速,能得到一个闭合的轮廓。 缺点:由于使用二阶导数,对噪声敏感。

曲面拟合法:求平均后再求差分,因而对噪声有抑制作用

5、单方向锐化处理:

定义:单方向的一阶锐化是指对某个特定方向上的边缘信息进行增强。因为图像为水平、垂直两个方向组成,所以,单方向锐化实际上是包括水平方向与垂直方向上的锐化。

特点:处理结果对于人工设计制造的具有矩形特征物体(例如:楼房、汉字等)的边缘的提取很有效。但是,对于不规则形状(如:人物)的边缘提取,则存在信息的缺损。 后处理:这种锐化算法需要进行后处理,以解决像素值为负的问题

方法1:整体加一个正整数,以保证所有的像素值均为正。

这样做的结果是:可以获得类似浮雕的效果。

方法2:将所有的像素值取绝对值。

这样做的结果是,可以获得对边缘的有方向提取。

方法3:为了检测边缘点,选取适当的阈值T,对梯度图像进行二值化

这样形成了一幅边缘二值图像g(x,y)

6、交叉方向锐化处理:

特点:这类锐化方法对边缘的方向没有选择,又称为无方向的锐化算法。 交叉Priwitt锐化算法:与Sobel相比,有一定的抗干扰性。图像效果比较干净 交叉Soble算法:锐化的边缘信息较强

7、Canny边缘检测算子:

定义:Canny边缘检测——最优的阶梯型边缘检测算法

原理:图像边缘检测必须满足两个条件:一能有效地抑制噪声;二必须尽量精确确定边缘的位置。根据对信噪比与定位乘积进行测度,得到最优化逼近算子。这就是Canny边缘检测算子。

★最优边缘检测算子应有的指标:

(1)低误判率

(2)高定位精度

(3)抑制虚假边缘

8、边缘跟踪:

出发点:由于噪音的原因,边界的特征很少能够被完整地描述,在亮度不一致的地方会中断。因此典型的边检测算法后面总要跟随着连接过程和其它边界检测过程,用来归整边像素,成为有意义的边

概念:将检测的边缘点连接成线就是边缘跟踪(线是图像的一种中层符号描述) 由边缘形成线特征的两个过程:

(1)可构成线特征的边缘提取 (2)将边缘连接成线

连接边缘的方法:

(1)光栅跟踪:一种采用电视光栅行扫描顺序,结合门限检测,对遇到的像素进行分析,从而确定是否为边缘的跟踪方法 (2)全向跟踪:跟踪方向可以是任意方向,并且有足够大的跟踪距离的跟踪方法

特点:全向跟踪改进了光栅扫描跟踪法,跟踪时把初始点的八邻点全部考虑进行跟踪

9、阈值分割法:

基本思想:确定一个合适的阈值T,将大于等于阈值的像素作为物体或背景,生成一个二值图像,在四邻域中有背景的像素,既是边界像素。 特点:(1)适用于物体与背景有较强对比的情况,重要的是背景或物体的灰度比较单一

(2)这种方法总可以得到封闭且连通区域的边界。 通过交互方式得到阈值: 实施方法:(1)通过光标获得样点值f(x0,y0)

(2)选取容忍度R (3)if (|f(x,y)–f(x0,y0)|  R)

set 255 通过直方图得到阈值:

基本思想:边界上的点的灰度值出现次数较少

取值的方法:取直方图谷底,为最小值的灰度值为阈值T 缺点:会受到噪音的干扰,最小值不是预期的阈值,而偏离期望的值;

改进:取两个峰值之间某个固定位置,如中间位置上。由于峰值代表的是区域内外的典型值,一般情况下,比选谷底更可靠,可排除噪音的干扰

else

set 0

10、复杂图像区域分割的主要步骤:

(1)自动直方图平滑 (2)确定区域分类数 (3)自动搜索阈值

11、特征空间聚类的步骤:

(1)任意选K个初始聚类中心值

(2)使用最小距离判别,将新读入的像素分到k类中的某一类 (3)重新计算中心值,中心值等于这类中元素的平均值 (4)当新旧差异不大时停止

12、质心区域增长法

(1)选择一个为划分类型的像素作为起点 (2)起点周围未被划分的点与起点所在区域的灰度平均值差异小于阈值合并为一区域,并标记

(3)从新合并来的像素开始,反复进行第(2)步

(4)反复进行(2)(3),直到不能合并

(5)对图像中所有未被划分的像素反复(1)—(4)步

第八章 二值图像处理与形状分析

1、如何判断像素是否可删除:

二值图像上改变一个像素的值后,整个图像的连接性不改变,则这个像素可删除

2、腐蚀算法的思想和步骤:

思想:设计一个结构元素,结构元素的原点定位在待处理的目标像素上,通过判断是否覆盖,来确定是否该点被腐蚀掉。 步骤:(1)扫描原图,找到第一个像素值为1的目标点;

(2)将预先设定好形状以及原点位置的结构元素的原点移到该点;

(3)判断该结构元素所覆盖的像素值是否全部为1:

如果是,则腐蚀后图像中的相同位置上的像素值为1;

如果不是,则腐蚀后图像中的相同位置上的像素值为0;

(4)重复(2)和(3),直到所有原图中像素处理完成。

作用:腐蚀处理可以将粘连在一起的不同目标物分离,并可以将小的颗粒噪声去除。

3、膨胀算法的思想和步骤:

思想:设计一个结构元素,结构元素的原点定位在背景像素上,判断是否覆盖有目标点,来确定是否该点被膨胀为目标点。 步骤:(1)扫描原图,找到第一个像素值为0的背景点;

(2)将预先设定好形状以及原点位置的结构元素的原点移到该点;

(3)判断该结构元素所覆盖的像素值是否存在为1的目标点:

如果是,则膨胀后图像中的相同位置上的像素值为1; 如果不是,则膨胀后图像中的相同位置上的像素值为0; (4)重复(2)和(3),直到所有原图中像素处理完成。

作用:膨胀处理可以将断裂开的目标物进行合并,便于对其整体的提取。

4、图形线性化:

思想:图像压缩或是图像分析的过程中需要用图形部分像素来代表整个图形,因此提出图形线化的思想 方法:图像线化通常使用骨架法和图形细化两种方法 骨架法:(1)骨架是从距离变换图得来,是距离变换图中灰度值最大的像元集合,

(2)即使是无空洞的连通图像它的骨架不一定连通。

(3)骨架可看作是图像压缩表示之一,对骨架图经过加粗运算(加粗量=骨架像元灰度值-1)可近似恢复成原图像。

细化:(1)细化是从二值图像中提取线宽为1像素的中心线的操作。

(2)细化与骨架化不同,只要原图像连通(不管有无空洞),细化的结果总是连通的。

5、边界跟踪法:

理论基础:先根据某些严格的“探测准则”找出目标物体轮廓上的像素,再根据这些像素的某些特征用一定的“跟踪准则”找出目标物体上的其他像素。

跟踪准则:边缘跟踪从图像左上角开始逐像点扫描,当遇到边缘点时则开始顺序跟踪,直至跟踪的后续点回到起始点(对于闭合线)或其后续点再没有新的后续点(对于非闭合线)为止

实现步骤 (1)获得原图像的首地址,及图像的高和宽。

(2)开辟一块内存缓冲区,初始化为255。

(3)将图像进行二值化处理。

(4)跟踪边界点,找到1个边界点,就将内存缓冲区中该点相应位置置0。 (5)按照跟踪准则,重复执行(4),直到回到初始点。

(6)将内存缓冲区的内容复制到原图像中

第二篇:数字图像处理简答题总结

Weber定律:主观上,刚好能鉴别出的最小亮度值是背景亮度的2%,

同时对比效应:人眼对目标亮度的主观感受不是由目标亮度决定,而是由目标与背景的亮度差异决定。

KLT:理论上的最佳变换。

优点:完全去相关,能量最聚集。

缺点:无固定变换矩阵,无有效快速算法。

直方图均衡本质:减少图像的灰度等级以换取对比度的扩大。

空间域线性平滑——低通掩膜法(系数为正):

优点:算法简单,交互性好,噪声适应性强。

缺点:会造成轮廓的模糊。

空间域非线性平滑———中值滤波(统计排序滤波器)

优点:在平滑的同时适当保护轮廓。

缺点:对噪声有选择性,对随机噪声不理想,对高斯噪声效果不好,对椒盐噪声效果好,但不适于点,线,尖顶细节较多的图像。

锐化比较:

梯度算子:对小细节不敏感,抗干扰强。

SOBEL算子:由于引入了平均因素,对图像中的随机噪声有一定的平滑作用。由于它是相隔两行或两列之差分,边缘两侧元素得到了增强,故边缘显得粗而亮。

拉普拉斯运算:各向同性,所以对点的检测有较强的响应。

优点:对细线和孤立点的检测较好,可以突出细节

缺点:抗干扰能力差。

无约束恢复:去卷积。方法:逆滤波。

特点:噪声越大,误差越大,只适合信噪比很高的情况下。存在病态解。

有约束恢复:去卷积,抑制噪声,克服状态解。

映射器是去相关的过程,决定压缩的效果。

恢复质量取决于量化器,失真来自于量化误差。

预测编码:利用图像中相信像素的相关性,对预测差值编码

特点:缺点:误差传递,抗干扰能力弱。

优点:算法简单,易于硬件实现。

最佳预测是预测差值在均方意义上的最小值。

变换编码:利用图像内所有像素的相关性,对变换系数进行编码

特点:优点:抗干扰能力强。

缺点:计算复杂,不易于硬件实现。

变换的比较:

KLT:完全去相关,最佳变换。

DFT:压缩时接近KLT,但存在大量复杂计算,计算成本高,且有吉布斯效应。

WHT:计算简单,压缩速度快,但去相关较弱,压缩效果差。

DCT:去相关接近KLT,只有实数运算,吉布斯现象较弱,为准最佳变换。

第三篇:数字图像处理之图像复原技术总结

图像采集、传送和转换过程中,会加入一些噪声,表现为图像模糊、失真和有噪声等。

图像复原技术是根据图像退化的先验知识建立一个退化模型,以此模型为基础,采用各种逆退化处理方法进行恢复,得到质量改善的图像

图像噪声模型

CCD摄像机获取图像时,光照强度和传感器的温度是产生噪声的主要原因。

噪声:不期望接收到的信号(相对于期望接收到的信号而言) 图像噪声按照噪声和信号之间的关系可以分为加性噪声和乘性噪声。

加性噪声一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在。 一般应该考虑为高斯噪声吧

1.高斯噪声(正态噪声)----源于电子电路噪声和由低照明度或高温带来的传感器噪声,CCD噪声

高斯噪声可以通过空域滤波的平滑或者图像复原技术来消除 P(z) = 1/(sqrt(2*pi*σ))*exp(-(z-μ)^2/(2*σ^2))

2.椒盐噪声--(双极)脉冲噪声(成像中的短暂停留,例如错误的开关操作) P(z)=Pa,z=a Pb,z=b 0,other

椒盐噪声是指图像中出现的噪声只有两种灰度值,分别是a和b,这两种灰度值出现的概率分别是Pa和Pb 均值是 m = a*Pa+b*Pb

方差是 σ^2 = (a-m)^2*Pa +(b-m)^2*Pb

通常情况下,脉冲噪声总是数字化为允许的最大值或最小值。 负脉冲为黑点,正脉冲为白点。因此该噪声称为椒盐噪声,去除噪声的较好方法是中值滤波

3.均匀分布噪声(模拟随机数产生器) 均匀分布噪声的概率密度函数为: P(z) = 1/(b-a),a<=z<=b*Pb 0,other

均匀分布噪声的期望和方差分别为: m = (a+b)/2

σ^2 = (b-a)^2/12

4.指数分布噪声(激光成像) 指数分布噪声的概率密度函数为: P(z) = a*exp(-a*z),z>=0, 0,z<0

指数分布噪声的期望和方差分别为: m= 1/a,σ^2 = 1/a^2

5,伽马分布噪声(激光成像) 伽马分布噪声的概率密度函数为:

P(z) = (a^b*z^(b-1))/(b-1)!*exp(-a*z) 伽马分布噪声的期望和方差分别为: m = b/a,σ^2 = b/a^2 6.瑞利噪声

空域中的滤波复原

均值滤波复原 算术均值滤波器 几何均值滤波器 逆谐波均值滤波器

可以用于消除椒噪声或者盐噪声 顺序统计滤波复原

中值滤波、最大值滤波和最小值滤波

中值滤波可以很好的保留图像的边缘,非常适合去除椒盐噪声,效果优于均值滤波 二维中值滤波 J = medianfilt2(I)

最大值滤波器也能够去除椒盐噪声,但会从黑色物体的边缘去除一些黑色像素

最小值滤波器会从白色物体的边缘去除一些白色像素 二维排序滤波 J = ordfilt2(I,order,domain) 最大值滤波 J = ordfilt2(I,9,ones(3)) 最小值滤波 J = ordfilt2(I,1,ones(3)) 自适应滤波复原

wiener2() 自适应维纳滤波

图像复原算法

逆滤波复原

在频域上使用退化后观察得到的图像频域值来除去退化函数,得到近似于原图像的估计图像,然后通过傅里叶逆变换得到原图像的估计值

维纳滤波复原(对运动模糊图像进行复原) deconvwnr()进行图像的维纳滤波复原

约束最小二乘法复原 deconvreg()

Lucy-Richardson复原

deconvlucy()采用加速收敛的Lucy-Richardson算法对图像进行复原

盲解卷积复原

在实际应用中,经常在不知道PSF的情况下对图像进行复原。 其优点在于对退化图像没有先验知识的情况下,仍然能够进行复原 deconvblind();

第四篇:数字信号处理课程总结(推荐)

数字信号处理课程总结

信息09-1班 陈启祥 金三山 赵大鹏 刘恒

进入大三,各种专业课程的学习陆续展开,我们也在本学期进行了数字信号处理这门课程的学习。

作为信心工程专业的核心课程之一,数字信号处理的重要性是显而易见的。在近九周的学习过程中,我们学习了离散时间信号与系统的时域及频域分析、离散傅里叶变换、快速傅里叶变换、IIR及FIR数字滤波器的设计及结构等相关知识,并且在实验课上通过MATLAB进行了相关的探究与实践。总体来说,通过这一系列的学习与实践,我们对数字信号处理的有关知识和基础理论已经有了初步的认知与了解,这对于我们今后进一步的学习深造或参加实际工作都是重要的基础。

具体到这门课程的学习,应当说是有一定的难度的。课本所介绍的相关知识理论性很强,并且与差分方程、离散傅里叶级数、傅里叶变换、Z变换等数学工具联系十分紧密,所以要真正理解课本上的相关理论,除了认真聆听老师的讲解,还必须要花费大量时间仔细研读课本,并认真、独立地完成课后习题。总之,理论性强、不好理解是许多同学对数字信号处理这门课程的学习感受。

另外,必须要说MATLAB实验课程的开设是十分必要的。首先,MATLAB直观、简洁的操作界面对于我们真正理解课堂上学来的理论知识帮助很大;其次,运用MATLAB进行实践探究,也使我们真正意识到,在信息化的今天,研究数字信号离不开计算机及相关专业软件的帮助,计算机及软件技术的发展,是今日推动信息技术发展的核心动力;最后,作为信息工程专业的学生,在许多学习与实践领域需要运用MATLAB这样一个强大工具,MATLAB实验课程的开设,锻炼了我们的实践能力,也为我们今后在其他领域运用MATLAB打下了基础。

课程的结束、考试的结束不代表学习的结束,数字信号处理作为我们专业的基础之一,是不应当被我们抛之脑后的。

最后感谢老师这几周来的教诲与指导,谢谢老师!

2012年5月7日

第五篇:数字电子技术教师教学期末总结

本学期担任数字电路的教学任务,为学生学习单片机技术奠定良好的基础, 锻炼学生的逻辑思维能力,培养学生学会自学,加强课堂管理,培养学生的学习 能力。

内容构成: 1.数制与编码 2.逻辑门电路 3.组合逻辑电路 4.触发器

重点难点。

重点:逻辑门电路以及逻辑运算的规律组合逻辑电路的分析和设计方法。触发器的功能和基本应用

难点:组合逻辑电路的分析和设计 触发器的功能以及应用

特点:本学科的理论学习还是比较简单,主要是在第一章数字电路基础中做好课 前引导,让学生理解数字电路的特点,以便以后学习更为快速。教学工作措施:

1. 加强学生的上课听课秩序,严厉管理课堂秩序。

2. 对于概念性知识点,多举例,多比方,让学生能直观地理解并加强记忆。

3. 在逻辑运算中,更应该与数学运算相结合,并予以区别。

4. 组合逻辑电路的分析设计举例应切近生活,利用日常生活中的例子。分析编 码译码器时, 可以以编辑和翻译为例子。

5. 触发器的讲解。应该做到综合型强,总结性好。以免给学生学习带来学习的盲目感。

本学期任17级《数字电子技术》课程的教育教学任务,在此之前,学生已 经学习了《电工基础》和《模拟电路》,对于电子专业的总体发展不是很陌生, 但对于《数字电路》的发展还是比较感兴趣,基于以上原因,根据理论知识的深浅度,教学设计的指导思想是:根据学生的原有知识水平,引导学生通过学生探 究小组课前调查活动,充分利用现代信息技术手段,把模拟信号、数字信号这种 抽象的事物在课堂上可视化,降低学生接受难度。在教学过程中,借助电路图作为工具,并通过实际举例和分析设计简单的逻辑电路,给学生自主建构的台阶, 这样在完成知识构建的同时,扩展学生的知识视野,了解现代数字技术。5个班级的总体情况还是比较良好。在这里对本期教育教学进行简单的总结;

1、教学情况

(1)按时完成教学大纲规定的内容。

(2)采用实物与理论、元件性能与实际应用相结合的手段讲授理论内容。

(3)采用启发式,讨论式的教学方法去理解抽象的概念。

(4)除定时辅导答疑外,课前早到随时答疑。

(5)及时批改作业,发现问题及时解决。

(6)征求学生意见,改进教学方法

2、学生学习情况 (1)电子班学生学风好,学习兴趣浓,积极性高,思想活跃,喜欢提问。

(2)个别同学不用功,没有及时将所学内容消化,考试前现突击,这是无法学好这门课的。 (3)从考试成绩来看,4个班的成绩都很均匀,属正态分布。

3、结论及分析:教学中严格执行教学大纲,方法较得当,教学环节全面,细致,学时应针对专业稍加调整;学生有良好的学风,应继续发扬,另外应多给老师的教学提出建议,以及时改进。

4、今后的努力方向

1.在工作中更加严格地要求自己,而不是停滞不前,自以为是。

2. 谦虚谨慎,戒骄戒躁,在工作中,虚心学习同事的先进教学经验,言语谨慎,举止得体,处处以一个人民教师标准要求自己。

3. 在其它方面,要更加积极主动地完成上级交给的各项任务,有缺点就改,有不足就纠正,争取把工作做得尽善尽美。

总之,一学年来,本人尽职恪守,在工作岗位中尽量克服缺点,完善自我,努力向前。当然自己尚未发现的缺点,还望广大教师、领导给予批评指正。

上一篇:提拔干部单位鉴定材料下一篇:淘宝网店开店流程步骤