无线传感器网络的概述

2023-03-17

第一篇:无线传感器网络的概述

物联网简介及基于ZigBee的无线传感器网络

摘 要

物联网,是继计算机、互联网与移动通信网之后的又一次信息产业浪潮,是一个全新的技术领域,给IT和通信带来了广阔的新市场。积极发展物联网技术,尽快扩展其应用领域,尽快使其投入到生产、生活中去,将具有重要意义。

ZigBee无线通信技术是一种新兴的短距离无线通信技术,具有低功耗、低速率、低时延等特性,具有强大的组网能力与超大的网络容量,可以广泛应用在消费电子品、家居与楼宇自动化、工业控制、医疗设备等领域。由于其独有的特性,ZigBee无线技术也是无线传感器网络的首选技术,具有广阔的发展前景。ZigBee协议标准采用开放系统接口(051)分层结构,其中物理层和媒体接入层由IEEE802.15.4工作小组制定,而网络层,安全层和应用框架层由ZigBee联盟制定。

本文首先从概念、技术架构、关键技术和应用领域介绍了物联网的相关知识,然后着重介绍了基于ZigBee的无线传感器网络,其中包括无线传感网简介、ZigBee技术概述和基于ZigBee的无线组网技术。

关键词:物联网;ZigBee;无线传感器网络

物联网简介

物联网概念

“物联网概念”是在“互联网概念”的基础上,将其用户端延伸和扩展到任何物品与物品之间,进行信息交换和通信的一种网络概念。其定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络概念。

最简洁明了的定义:物联网(Internet of Things)是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。它具有普通对象设备化、自治终端互联化和普适服务智能化3个重要特征。

技术架构

从技术架构上来看,物联网一般可分为三层:感知层、网络层和应用层。 感知层是物联网的皮肤和五官-用于识别物体,采集信息。感知层包括二维码标签和识读器、RFID标签和读写器、摄像头、GPS、传感器、M2M终端、传感器网关等,主要功能是识别物体、采集信息,与人体结构中皮肤和五官的作用类似。 感知层解决的是人类世界和物理世界的数据获取问题。它首先通过传感器、数码相机等设备,采集外部物理世界的数据,然后通过RFID、条码、工业现场总线、蓝牙、红外等短距离传输技术传递数据。感知层所需要的关键技术包括检测技术、短距离无线通信技术等。

网络层是物联网的神经中枢和大脑-用于传递信息和处理信息。网络层包括通信网与互联网的融合网络、网络管理中心、信息中心和智能处理中心等。网络层将感知层获取的信息进行传递和处理,类似于人体结构中的神经中枢和大脑。 网络层解决的是传输和预处理感知层所获得数据的问题。这些数据可以通过移动通信网、互联网、企业内部网、各类专网、小型局域网等进行传输。特别是在三网融合后,有线电视网也能承担物联网网络层的功能,有利于物联网的加快推进。网络层所需要的关键技术包括长距离有线和无线通信技术、网络技术等。 应用层是物联网的"社会分工"-结合行业需求,实现广泛智能化。应用层是物联网与行业专业技术的深度融合,结合行业需求实现行业智能化,这类似于人的社会分工。

应用层解决的是信息处理和人机交互的问题。网络层传输而来的数据在这一层进入各类信息系统进行处理,并通过各种设备与人进行交互。这一层也可按形态直观地划分为两个子层。一个是应用程序层,进行数据处理,它涵盖了国民经济和社会的每一领域,包括电力、医疗、银行、交通、环保、物流、工业、农业、城市管理、家居生活等,其功能可包括支付、监控、安保、定位、盘点、预测等,可用于政府、企业、社会组织、家庭、个人等。这正是物联网作为深度信息化的重要体现。另一个是终端设备层,提供人机接口。物联网虽然是"物物相连的网",但最终是要以人为本的,还是需要人的操作与控制,不过这里的人机界面已远远超出现时人与计算机交互的概念,而是泛指与应用程序相连的各种设备与人的交互。图1为物联网网络构架。

图1 物联网网络构架

关键技术

一、感知层

    传感器技术:感知物资信息 RFID技术:智能识别

微机电系统(MEMS):采集信息 GPS/GIS技术:全球定位/地理信息系统

二、网络层

   无线传感器网络(WSN)技术

Wi-Fi(Wireless Fidelity,无线保真技术)

通信网、互联网、3G网络、IPV6(让世界的第一粒都拥有一个IP地址)

 GPRS网络(基于GSM系统的无线分组交换技术,提供端到端的、广域的无线IP连接 )

三、应用层

      企业资源计划(ERP:Enterprise Resource Planning) 专家系统(Expert System)

云计算(Cloud Computing) 系统集成(System Integrate) 行业应用(Industry Application) 资源打包(Resource Package)

广电网络、NGB(下一代广播电视网 )

应用领域

1.城市市政管理应用 2.农业园林 3.医疗保健 4.智能楼宇 5.交通运输

图2为物联网网络架构及物联网应用领域。

图2 物联网网络架构及物联网应用领域

基于ZigBee的无线传感器网络

物联网组网采用分层的通信系统架构,包括感知延伸系统、传输系统、业务运营管理系统和各种应用,在不同的层次上支持不同的通信协议。

无线传传感器网络简介

电系统(MEMS)、片上系统(SOC)、无线通信和低功耗嵌入式技术的飞速发展,孕育出无线传感器网络(Wireless Sensor Networks, WSN),并以其低功耗、低成本、分布式和自组织的特点带来了信息感知的一场变革。无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳自组织网络。

无线传感器网络是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,其目的是协作地感知、采集、处理和传输网络覆盖地理区域内感知对象的监测信息,并报告给用户。它的英文是Wireless Sensor Network, 简称WSN。 大量的传感器节点将探测数据,通过汇聚节点经其它网络发送给了用户。在这个定义中,传感器网络实现了数据采集、处理和传输的三种功能,而这正对应着现代信息技术的三大基础技术,即传感器技术、计算机技术和通信技术。

无线传感器网络(wireless sensor networks,WSN)是当前在国际上备受关注的、涉及多学科高度交叉、知识高度集成的前沿热点研究领域。它综合了传感器、嵌入式计算、现代网络及无线通信和分布式信息处理等技术,能够通过各类集成化的微型传感器协同完成对各种环境或监测对象的信息的实时监测、感知和采集,这些信息通过无线方式被发送,并以自组多跳的网络方式传送到用户终端,从而实现物理世界、计算世界以及人类社会这三元世界的连通。

所谓无线传感器网络由大量部署在目标区域内的,具备感知、无线通信与计算能力的微小传感器节点所构成的分布式网络系统。传感器网络节点的组成和功能包括如下四个基本单元:传感单元(由传感器和模数转换功能模块组成)、处理单元(由嵌入式系统构成,包括CPU、存储器、嵌入式操作系统以及节点应用程序等组成)、通信单元(由无线通信模块组成)、以及供电单元(电池、太阳能或其他方式)。传感器网络可以根据当时的情况通过自组织方式构成动态的网络拓扑结构。传感器网络节点间一般采用多跳的无线通信方式进行通信。传感器网络可以在独立的环境下运行,也可以通过网关连接到互联网,使用户可以远程访问。

无线网络技术按照传输范围来划分,可以分为无线广域网(WWAN),无线城域网(WMAN),无线局域网(WLAN)和无线个人域网(WPAN)。其中的无线个人域网就是所谓的短距离无线网络,各种短距离无线传输技术层出不穷:蓝牙(Bluetooth)、ZigBee、Wi-Fi、无线USB,无载波通信技术(UWB)等, 其中蓝牙(Bluetooth)、UWB和ZigBee是最受产业界关注的三种标准。Bluetooth虽然成本低,成熟度高,具有多种规范,但是其传输距离有限,仅为10米,只能组成最多8个节点的星状网,电池也仅能维持数周。 UWB虽然可以实现高达几百Mbps的传输速率,但是其覆盖距离仅为10米,这决定了它主要被用作消费产品中的视频和高速数据解决方案,目前UWB没有网状网络能力。Wi-Fi虽然传输速度可以达到11Mbps,传输距离达到100米,但是其价格相对教昂贵,且功耗大,组网能力差。ZigBee技术专注于低成本,低功耗和低速率的无线通信市场,因此非常适合应用于物联网无线传感器网络中来。

ZigBee技术概述

ZigBee技术是一种短距离、低复杂度、低功耗、低数据速率、低成本的双向无线通信技术或无线网络技术,是一组基于IEEE 802.15.4无线标准研制开发的有关组网、安全和应用软件方面的通信技术。ZigBee协议规范使用了IEEE 802.15.4定义的物理层(PHY)和媒体介质访问层(MAC),并在此基础上定义了网络层(NWK)和应用层(APL)架构。

基于ZigBee技术的无线传感器网络应用在ZigBee联盟和IEEE 802.15.4组织的推动下,结合其他无线技术可以实现无所不在的网络。它不仅在工业、农业、军事、环境、医疗等传统领域具有极高的应用价值,而且在未来其应用更将扩展到涉及人类日常生活和社会生产活动的所有领域。 IEEE 802.15.4标准 1.物理层(PHY)规范

物理层定义了物理无线信道和与 MAC 层之间的接口,提供物理层数据服务和物理层管理服务。物理层数据服务是从无线物理信道上收发数据,物理层管理服务维护一个由物理层相关数据组成的数据库。 物理层功能相对简单,主要是在硬件驱动程序的基础上,实现数据传输和物理信道的管理。数据传输包括数据的发送和接收;管理服务包括信道能量监测(energy detect,ED),链接质量指示(Link quality indication,LQI)和空闲信道评估(clear channel assessment,CCA)等。 2.媒体介质访问层(MAC)规范

MAC 层提供两种服务:MAC层数据服务和 MAC 层管理服务。前者保证 MAC 协议数据单元在物理层数据服务中的正确收发,而后者从事 MAC层的管理活动,并维护一个信息数据库。

MAC 层的主要功能包括如下7个方面:

1.网络协调者产生并发送信标帧(beacon);

2.设备与信标同步;

3.支持RAN 网络的关联(association)和取消关联(disassociation)操作 4.为设备的安全性提供支持;

5.信道接入方式采用免冲突载波检测多路访问(CSMA-CA)机制;

6.处理和维护保护时隙(GTS)机制;

7.在两个对等的 MAC 实体之间提供一个可靠的通信链路。 ZigBee技术简介

ZigBee 协议标准采用分层结构,每一层为上层提供一系列特殊的服务:数据实体提供数据传输服务;管理实体则提供所有其他的服务。所有的服务实体都通过服务接人点 SAP 为上层提供接口,每个 SAP 都支持一定数量的服务原语来实现所需的功能。ZigBee 标准的分层架构是在OSI 七层模型的基础上根据市场和应用的实际需要定义的。其中 IEEE 802.15.4—2003 标准定义了底层协议:物理层(physical layer,PHY)和媒体访问控制层(medium access control sub—layer,MAC)。ZigBee 联盟在此基础上定义了网络层(network layer,NWK),应用层(application layer,APL)架构。在应用层内提供了应用支持子层(application support sub—layer,APS)和 ZigBee 设备对象(ZigBee device object,ZDO)。应用框架中则加入了用户自定义的应用对象。ZigBee 协议的体系结构如图3所示。

图3 ZigBee 协议体系结构

ZigBee 的网络层采用基于 Ad Hoc 的路由协议,除了具有通用的网络层功能外,还应该与底层的 IEEE 802.15.4标准一样功耗小,同时要实现网络的自组织和自维护,以最大限度方便消费者使用,降低网络的维护成本。应用支持子层把不同的应用映射到 ZigBee网络上,主要包括安全属性设置、业务发现、设备发现和多个业务数据流的汇聚等功能。 1.网络层(NWK)规范

网络层负责拓扑结构的建立和维护网络连接,主要功能包括设备连接和断开网络时所采用的机制,以及在帧信息传输过程中所采用的安全性机制。此外,还包括设备的路由发现和路由维护和转交。并且,网络层完成对一跳(one—hop)邻居设备的发现和相关结点信息的存储。一个ZigBee协调器创建一个新网络,为新加入的设备分配短地址等。并且,网络层还提供一些必要的函数,确保ZigBee的 MAC 层正常工作,并且为应用层提供合适的服务接口。 2.应用层(APL)规范

在ZigBee协议中应用层是由应用支持子层、ZigBee 设备配置层和用户应用程序来组成的。应用层提供高级协议栈管理功能,用户应用程序由各制造商自己来规定,它使用应用层来管理协议栈。 3.应用支持子层(APS) APS 子层通过 ZigBee 设备对象(ZD0)和制造商定义的应用对象所用到的一系列服务来为网络层和应用层提供接口。APS 子层所提供的服务由数据服务实体(APSDE)和管理服务实体(APSME)来实现。 APSDE通过数据服务实体访问点(APSDE—SAP)来提供数据传输服务。APSME 通过管理服务实体访问点(APSME—SAP)来提供管理服务,它还负责对 APS 信息数据库(AIB)的维护工作。

基于ZigBee的无线组网技术

ZigBee网络体系

ZigBee网络中存在两种功能类型的设备,三种节点类型,三种拓扑结构及两种工作模式。

● 功能类型

ZigBee网络含全功能设备FFD(Full Function Device)和精简功能设备RFD(Reduced Function Device)两种功能类型的设备。全功能器件拥有完整的协议功能,在网络中可以作为协调器(Coordinator)、路由器(Router)和普通节点(Device)而存在。而精简功能器件旨在实现最简单的协议功能而设计,只能作为普通节点存在于网络中。全功能器件可以与精简功能器件或其他的全功能器件通信,而精简功能器件只能与全功能器件通信,精简功能器件之间不能直接通信。ZigBee网络要求至少有一个全功能设备作为网络协调器。

● 节点类型

ZigBee网络包含三种类型的节点,即协调器ZC(ZigBee Coordinator)、路由器ZR(ZigBee Router)和终端设备ZE(ZigBee EndDevice),其中协调器和路由器均为全功能设备(FFD),而终端设备选用精简功能设备(RFD)。

协调器:一个ZigBee网络PAN(Personal Area Network)有且仅有一个协调器,该设备负责启动网络,配置网络成员地址,维护网络,维护节点的绑定关系表等,需要最多的存储空间和计算能力。

路由器:主要实现扩展网络及路由消息的功能。扩展网络,即作为网络中的潜在父节点,允许更多的设备接入网络。路由节点只有在树状网络和网状网络中存在。

终端设备:不具备成为父节点或路由器的能力,一般作为网络的边缘设备,负责与实际的监控对象相连,这种设备只与自己的父节点主动通讯,具体的信息路由则全部交由其父节点及网络中具有路由功能的协调器和路由器完成。

● 拓扑结构

ZigBee网络支持星状网(Star Network),树状网(Cluster tree Network)和网状网(Mesh Network)三种网络拓扑结构如图2-1所示,依次是星状网络,树状网络和网状网络,在图4中的C表示PAN协调器,F表示全功能设备,R表示精简功能设备。

图4 星状网、树状网和网状网三种拓扑结构

星形网(Star)是由一个ZigBee协调器和一个或多个ZigBee终端节点组成的。ZigBee协调器必须是FFD,它位于网络的中心,负责发起建立和维护整个网络,其它的节点(终端节点)一般为RFD,也可以为FFD,它们分布在ZigBee协调器的覆盖范围内,直接与ZigBee协调器进行通信。星形网的控制和同步都比较简单,通常用于节点数量较少的场合。星型网络拓扑的最大优点是结构简单,无需其他路由信息,一切数据包均通过ZigBee协调器。其缺点是限制了无线网络的覆盖范围,很难实现高密度地扩展,最多支持两跳网络,适用于小型网络。目前为止,星形拓扑是最常见的网络配置结构,被大量应用在远程监测和控制终端设备的通信。

网络协调器要为网络选择一个唯一的标识符,所有该星型网络中的设备都是用这个标识符来规定自己的属主关系。不同星型网络之间的设备通过设置专门的网关完成相互通信。选择一个标识符后,网络协调器就允许其他设备加入自己的网络,并为这些设备转发数据分组。星型网络中的两个设备如果需要互相通信,都是先把各自的数据包发送给网络协调器,然后由网络协调器转发给对方。

树状网络(Cluster tree Network)由一个协调器和一个或多个星状结构连接而成,枝干末端的叶子节点一般为RFD,设备除了能与自己的父节点或子节点进行点对点直接通讯外,其他只能通过树状路由完成数据和控制信息的传输。ZigBee 协调器比网络中的其它路由器具有更强人的处理能力和存储空间。树状网络的一个显著优点就是它的网络覆盖范围较大,但随着覆盖范围的增加,信息的传输时延也会增大。

在建立树状网络时,ZigBee协调器建立网络后,先选择网络标识符,将自己的短地址设置为0,然后向它邻近的设备发送信标,接受其他设备的连接,形成树的第一级,此时ZigBee协调器与这些设备之间形成父子关系。与ZigBee协调器建立连接的设备都分配了一个16位的网络短地址。如果以终端设备的身份与网络连接,则ZigBee协调器分配一个唯一的16位网络地址;如果以路由器的身份与网络连接,则协调器会为它分配一个地址块(包含有若干16位短地址)。路由器根据它接收到的协调器信标的信息,配置并发送它自己的信标,允许其他的设备与自己建立连接,成为其子设备。由此可见,路由器转发消息时通过计算与目标设备的关系,从而决定向自己的父节点转发还是某个子节点转发。

网状网络(Mesh Network)一般是由若干个FFD连接在一起组成骨干网,它们之间是完全的对等通信,每个节点都可以与它的无线通信范围内的其它节点通信,即允许网络中所有具有路由功能的节点直接互连。但它们中也有一个会被推荐为ZigBee协调器。网状网络是树状网络基础上实现的,与树状网络不同的是,它是由路由器中的路由表配合来实现数据的网状路由的。Mesh网是一种高可靠性网络,具有“自恢复”能力,它可为传输的数据包提供多条路径,一旦一条路径出现故障,则存在另一条或多条路径可供选择,但正是由于两个节点之间存在多条路径,它也是一种“高冗余”的网络。该拓扑的优点是减少了消息延时、增强了可靠性,缺点是需要更多的存储空间开销。

● 工作模式

ZigBee网络的工作模式可以分为信标模式和非信标模式两种。信标模式可以实现网络中所有设备的同步工作和同步休眠,以达到最大限度地节省功耗,而非信标模式只允许ZE进行周期性休眠,ZC和所有ZR设备长期处于工作状态。

在信标模式下,ZC负责以一定的间隔时间(一般在15ms-4mins之间)向网络广播信标帧,两个信标帧发送间隔之间有16个相同的时槽,这些时槽分为网络休眠区和网络活动区两个部分,消息只能在网络活动区的各个时槽内发送。

非信标模式下,ZigBee标准采用父节点为ZE子节点缓存数据,ZE主动向其父节点提取数据的机制,实现ZE的周期性(周期可设置)休眠。网络中所有的父节点需要为自己的ZE子节点缓存数据帧,所有ZE子节点的大多数时间都处于休眠状态,周期性的醒来与父节点握手以确认自己仍处于网络中,并向父节点提取数据,其从休眠模式转入数据传输模式一般只需要15ms。

简单的概括为:两种设备,三种节点类型,三种拓扑结构及两种工作模式。 1.全功能设备FFD ,精简功能设备RFD 2.协调器 ,路由器 ,终端设备

3.星状网 ,树状网,网状网

4.信标模式 ,非信标模式 (信标模式可以实现网络中所有设备的同步工作和同步休眠,以达到最大限度地节省功耗;而非信标模式只允许ZE进行周期性休眠,ZC和所有ZR设备长期处于工作状态) 。

图5为基于ZigBee的无线传感器网络在物联网中的应用。

图5 基于ZigBee的无线传感器网络在物联网中的应用

第二篇:基于无线传感网络的道路照明系统

杨兵

(徐州建筑职业技术学院,江苏 徐州 221116)

摘 要 :为了实现道路科学照明、绿色照明的关键问题是能够测量和控制到每一盏路灯,无线传感网络是解决这一问题最好的技术之一。选择Freescale公司MC13213芯片,设计了一种嵌入式无线通信模块,使整条道路的每一盏路灯自主联网,接受控制中心的指令,反馈路灯的各种状态,根据环境光强度和时段自动调节照明亮度,在保证道路照明质量和视觉舒适的情况下,节约电能。

关键词 :无线传感网络 ;道路照明;MC13213;ZigBee技术

中图分类号:TPXXX 文献标识码:A 文章编号:1234-567X(2010)一89—00XX—05

Road Lighting System Based on W ireless Sensor Networks

Yang Bing (Xuzhou Institute of Architectural Technology, Xuzhou, Jiangsu 221116) Abstract:The ability to measure and control each street—lamp is the key issue to realize road scientific lighting and green lighting.W ireless sensor network is one of the best technologies to solve this problem.MC13213 chip is used to design an embedded wireless communication module in this paper.Each street lamp on the whole road could independent network,receive instruction from control center,send various states feedback of street lamps and automatically adjust lighting levels according to the ambient light intensity.This technology could ensure the quality of road lighting.visual comfort and save energy 20%~30% .

Key words:wireless sensor network;road lighting;MC13213;ZigBee technology

0 引言

随着城市经济和规模的发展,各种类型的道路越来越长,机动车数量迅速增加,夜间交通流量也越来越大 ,道路照明质量直接影响交通安全和城市发展[1-2]。如何提高道路照明质量、降低能耗、实现绿色照明已成为城市照明的关键问题。道路照明的首要任务是在节约公共能源的基础上,提供安全和舒适的照明亮度,达到减少交通事故、提升交通运输效率的目的。由于基础设施的条件有限,目前普遍缺少路灯级的通信链路,路灯控制方式一般只能对整条道路统一控制,无法控制到每一盏灯[3]。本文基于无线传感网络,设计了一种嵌入式无线通信模块,实现了每盏路灯的无线自主组网,使每一盏路灯都能遥测和遥控,并达到路灯的亮度(或照度)在 30%~100%无级可调,可根据环境光强度和时段,在保证道路照明质量、辨认可靠且视觉舒适的情况下 ,节约电能 20%~30%。

1 系统结构

基于无线传感网络道路照明系统的结构如图 1所示,通过在每盏路灯嵌入一个无线通信模块,使它们自组网络,接受控制中心的命令并将路灯的状态反馈给控制中心;HG-2控制箱采用ZigBee技术与所管辖道路的所有路灯通信,采用GPRS与控制中心通信,根据控制中心的指令或时间和照亮度对每盏路灯发出控制命令[路灯开启、关闭、照明度(功率大小)等],自动调节整条道路的功率平衡;控制中心由服务器、大屏显示、Center View中央控制系统软件平台等组成,Center View中央控制系统软件平台采用3D设计,通过缩放变换以俯视的角度观察和控制整个城市、一个街道、一条道路甚至一盏路灯的照明情况;移动计算工具(笔记本电脑、PDA、手机)和路灯维护车也能通过控制中心进行远程遥测和遥控。

2 无线通信模块

无线通信模块的MCU为Freesclae公司MC13213,MC13213采用SiP技术在9mm×9ram的LGA封装内集成了MC9S08GT主控MCU和MC1320x射频收发器。MC13213拥有4kB的RAM、60kB的FLASH,具有1个串行外设接口SPI(Serial Peripheral Interface)、2个异步串行通信接口SCI(Serial Communications Interface)、1个键盘中断模KBI(Keyboard Interrupt)、2个定时器/脉宽调制模块TPM(Timer/PWM)、1个8通道10位的模数转换器ADC(Analog/Digital Converter)以及多达32个的GPIO口等,如图2所示。

无线通信模块采用ZigBee技术、IEEE 802.15.4协议,通信覆盖半径可达150m,能与在其覆盖范围内的任何路灯节点自组网络及进行通信。除了实现路灯的物物相联以外,还可调节电子镇流器的功率输出(30%~100%),实现节能和绿色照明,检测供电线路的电流、电压、功率因数以及每一盏灯的工作状态,当发生故障(如灯具损坏、灯杆撞击、人为破坏)时实时向监控中心和相关部门报警等。无线通信模块还进行了防雨、防潮、防雷电、防电磁干扰设计,并充分考虑了安装方便、维护简单和可恢复性(接入两根线就实现了路灯级的无线控制,拆除两根线又恢复到原来的状态),可以嵌入在路灯的不同位置(灯杆底部 、灯杆内、灯罩内)。

3 控制中心软件设计

控制中心的软件设计平台为Windows 2003,开发工具是微软Visual Studio6.0,数据库使用SQL Server 2005,与地理信息系统相结合,在获取了街道、建筑物以及路灯的位置、形状等特征信息后,设计以路灯为主体的3维虚拟城市,在控制中心大屏幕上动态显示道路的照明效果,并可以通过平移、放大、缩小等几何变换,观察整个城市、街道甚至每一盏路灯的照明情况。该软件主要有5个功能模块:系统设置、智能控制、电量核算、故障处理和紧急预案。系统设置中的区域设置有市、区、街道和电控箱4种;路灯设置有路灯的位置、型号、生产单位、施工单位、维护责任人、安装日期、清洗维护日期等;亮灯方式设置有全开、全关、单号路灯开、单号路灯关、双号路灯开、双号路灯关、1/3路灯开、1/3路灯关、1/4路灯开、1/4路灯关、智能控制等11种控制方式;时段设置可根据不同的城市不同的季节设置不同时段的亮灯方式。智能控制有两方面内容:①针对安装了电 子型路灯的路段 ,根据季节变化和天气状况,通过实时采样环境光强度,对路灯的照明亮度进行智能调节 ;② 在夜间,特别是深夜当检测到汽车和行人的流量十分稀少时,在不影响辨认可靠的情况下,适当降低道路的照明亮度,节约电耗。电量核算能对市、区、街道、电控箱甚至每盏路灯进行用电量的统计和核算。故障处理是对灯具损坏 、断电、断相、过流、过压、三相不平衡以及人为破坏等情况,在第一时间向监控中心报警后迅速生成故障报告;故障处理的另一个功能是按路段和时段(年、季度、月)统计亮灯率、故障率、每次故障处理的效率

(平均修理时间)。紧急预案是对一些突发事件制定紧急预案,在特殊情况下,尽可能提供合适的道路照明,保证人民生命财产的安全。图3是控制中心软件的运行界面之一。

4 实际应用

无线传感网络的道路照明系统自2009年5月以来在某国家级工业园区进行了安装和测试,安装环境为同一条道路两边的各100盏路灯,道路左边的100盏路灯采用无线传感智能控制,共增加成本8250.00元人民币,道路右边的100盏路灯采用常规的控制方式(半夜后单双号间隔开灯),测试结果如附表所示。

从附表中可以看出,采用无线传感网络的智能控制,100盏路灯在9l天中节约电能4506度,在产品投人的半年内就可以收回全部投资。使电耗降低的因素有以下几个方面:① 开启关闭时间的调整,道路右边的路灯控制方式是根据季节设定开闭时问(定时控制)并且是全功率开全功率闭(深夜半功率);道路左边的路灯控制方式是环境光强度和季节自动控制开闭时间,开启时,由于路面上尚有较强的环境光,路灯以补光的方式工作,逐渐增加照明强度,路灯关闭控制类似。② 由于深夜时居民用电负荷减少,低压电网电压升高,常规控制方式

下的路灯(道路右边)异常明亮、眩目,往往造成过度照明,不仅大大增加耗电,同时也导致灯具、电器实际使用寿命迅速下降,大量增加维护量和维护费用;深夜控制模式(道路左边),采用降功率照明,不但降低耗电,还能改善道路照明质量和视觉舒适度,延长灯具、电器的实际使用寿命。③ 道路照明的智能控制,对学校、居民密集的小区、道路转弯处、事故多发地带等特殊路段,适当提高照明亮度,其余路段则适当降低照明亮度。

5 结 论

先进的道路照明不但可以提升城市的形象、提高交通运输效率、减少交通事故,还能节约大量的公共电能消耗。但对于大多数城市来说,由于缺少必需的基础设施(路灯级的通信链路),无法实现先进控制方法。无线传感网络(物联网)的出现和应用,有效地解决了以上问题。本文基于无线传感网络,选择Freescale公司的MC13213芯片,设计了一种嵌入式无线通信模块,使整条道路的每一盏路灯自主联网,实现了路灯的遥测、遥控 ,对节约公共资源,建设数字化和节约型城市有较高的实际应用价值。

参 考 文 献

[1]杨春宇,胡英奎,陈仲林.用中间视觉理论研究道路照明节能[J].照明工程学报,2008,19(4):44—47. [2]张惠玲,王晓雯.城市道路照明设置与节能探讨[J].重庆交通大学学报(自然科学版),2007,26(10):lO6—109 [3]卢秀和,王 琪 ,陈 军,等.城市照明智能调光方法的研究[J].电力电子技术,2007,41(10):34—36.

第三篇: 无线传感器网络概况

摘 要 无线传感器网络是一种全新的信息获取和处理技术。因其巨大的应用前景而受到科学界越来越广泛的重视。本文介绍了无线传感器的定义及其特点,并着重分析了无线传感器网络研究的一些关键问题,最后探讨了无线传感器网络的应用前景以及发展方向。

关键字 无线传感器网络;体系结构;关键技术;应用

一、无线传感器网络的定义

无线传感器网络就是部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳自组织网络的网络系统,其目的是协作感知、采集和处理网络覆盖区域中感知对象的信息,并发送给观察者。

二、无线传感器网络的特点

目前常见的无线网络包括移动通信网、无线局域网、蓝牙网络、Adhoc网络等,无线传感器网络在通信方式、动态组网以及多跳通信等方面有许多相似之处,但同时也存在很大的差别。无线传感器网络具有许多其鲜明的特点:(1)电源能量有限(2)通信能量有限(3)计算能力有限(4)网络规模大,分布广(5)自组织、动态性网络(6)以数据为中心的网络(7)应用相关的网络。

三、无线传感器网络的主要研究领域

无线传感器网络目前研究的难点涉及通信、组网、管理、分布式信息处理等多个方面。无线传感器网络有相当广泛的应用前景,但是也面临很多的关键技术需要解决。下面列出部分关键技术:

(1)网络拓扑管理:无线传感器网络是自组织的,如果有一个很好的网络拓扑控制管理机制,对于提高路由协议和MAC协议效率是很有帮助的,还能有利于延长网络寿命。目前这个方面主要的研究方向是在满足网络覆盖度和连通度的情况下,通过选择路由路径,生成一个能高效的转发数据的网络拓扑结构。 (2)网络协议:因为传感器节点的计算能力、存储能力、通信能力、携带的能量有限,每个节点都只能获得局部网络拓扑信息,在节点上运行的网络协议也要尽可能的简单。目前研究的重点主要集中在网络层和MAC层上。网络层的路由协议主要控制信息的传输路径。好的路由协议不但能考虑到每个节点的能耗,还要能够关心整个网络的能耗均衡,使得网络的寿命尽可能的保持的长一些。 (3)网络安全:无线传感器网络除了考虑上面提出的两个方面的问题外,还要考虑到数据的安全性,这主要从两个方面考虑:一个方面是从维护路由安全的角度出发,寻找尽可能安全的路由以保证网络的安全。另一方面是把重点放在安全协议方面,在此领域也出现了大量研究成果。典型的安全问题可以总结为:信息被非法用户截获;一个节点遭破坏;识别伪节点;如何向已有传感器网络添加合法的节点等四个方面。

(4)定位技术:位置信息是传感器节点采集数据中不可或缺的一部分,没有位置信息的监测消息可能毫无意义。节点定位是确定传感器的每个节点的相对位置或绝对位置。节点定位在军事侦察、环境检测、紧急救援等应用中尤其重要。节点定位分为集中定位方式和分布定位方式。定位机制也必须要满足自组织性,鲁棒性,能量高效和分布式计算等要求。定位技术也主要有两种方式:基于距离的定位和距离无关的定位。

(5)时间同步技术:传感器网络中的通信协议和应用,要求节点间的时钟必须保持同步。J.Elson和D.Estrin曾提出了一种简单实用的同步策略。这种同步机制应用在确定来自不同节点的监测事件的先后关系时有足够的精度,设计高精度的时钟同步机制是传感网络设计和应用中的一个技术难点。普遍认为,考虑精简NTP(network timeprotocol)协议的实现复杂度,将其移植到传感器网络中来应该是一个有价值的研究课题。

(6)数据融合:传感器网络为了有效的节省能量,可以在传感器节点收集数据的过程中,利用本地计算和存储能力将数据进行融合,取出冗余信息,从而达到节省能量的目的。

四、无线传感器网络的应用

无线传感器网络的应用前景非常广阔,随着无线传感器网络的深入研究和广泛应用,无线传感器网络将逐渐深入到人类生活的各个领域。

1.军事应用:传感器网络具有可快速部署,可自组织,隐蔽性强和高容错等特点,因此非常适合在军事上应用。利用生物和化学传感器,可以准确地探测到生化武器的成分,及时提供情报信息,有助于正确防范和实施有效的反击。 2.环境科学:随着人们对于环境的日益关注,环境科学所涉及的范围越来越广泛。通过传统方式采集原始数据是一件困难的工作。传感器网络为野外随机性的研究数据获取提供了方便,此外,传感器网络也可以应用在精细农业中,以监测农作物中的害虫、土壤的酸碱度和施肥状况等。传感器网络还有一个重要应用就是生态多样性的描述,能够进行动物栖息的生态监控。

3.智能家居:无线传感器网络还能够应用在家居系统中。智能家居网络系统是将家庭中各种与信息有关的通讯设备、家用电器和家庭保安装置通过家庭总线技术连接到一个家庭智能化系统上进行集中的或者异地的监视、控制和家庭事务性管理,并保持家庭设施与住宅环境的和谐与协调的系统。

4.医疗健康:传感器网络为未来的远程医疗提供了更加方便、快捷的技术实现手段。

5.空间探索:探索外部星球一直是人类梦寐以求的理想,借助于航天器布撒的传感器网络节点实现对星球表面长时间的监测,应该是一种经济可行的方案。 6.其他商业应用:自组织、微型化和对外部世界的感知能力是传感器网络的三大特点,这些特点决定了传感器网络在商业领域应该也会有不少的机会。

由于具有覆盖区域广阔、监测高精度、可远程监控、可快速部署、可自组织和高容错性等特点,尽管目前无线传感器网络仍处于初步应用阶段,网络安全研究等方面还面临着许多不确定的因素和有待解决的问题,但已经展示出了非凡的应用价值。相信在不久的将来,会对人们的生产生活起到不可估量的作用。 参考文献

[1]滑楠.无线传感器网络相关理论与应用研究.电子学报,2007 [2]肖俊芳. 无线传感器网络的若干关键技术研究. 上海交通大学工学博士学位论文,2009 [3]马建庆.无线传感器网络安全的关键技术研究.上海:复旦大学计算机信息与技术系,2007 [4]李建中,高宏.无线传感器网络的研究进展.计算机研究与发展,2008 [5]颜振亚,郑宝玉.无线传感器网络.计算机工程与应用,2005 [6]康启涛,陶滔.无线传感器网络综述.应用安全,2008.2

第四篇:无线传感器网络综述(网安).

2008.2 80 网络安全技术与应用 无线传感器网络综述 唐启涛

陶滔

南华大学计算机科学与技术学院

湖南

421001 摘要:本文介绍了无线传感器网络的概念、特点、通信结构及其安全需求,并对其应用过程中可能遇到的攻击方式和相 应的抵御方法做了简单介绍。指出了无线传感器网络今后的研究方向及最新研究动态。

关键词:无线传感器网络;网络协议栈;传感器节点;多跳路由 0

引言

近年来随着传感器、计算机、无线通信及微机电等技术 的发展和相互融合,产生了无线传感器网络(WSN, wireless sensor networks。 无线传感器网络技术与当今主流无线网络 技术使用同一个标准——802.15.14, 它是一种新型的信息获 取和处理技术。无线传感网络综合了嵌入式计算技术、传感 器技术、 分布式信息处理技术以及通信技术,能够协作地实时 监测、感知和采集网络分布区域内的不同监测对象的信息。 它的应用极其广泛, 当前主要应用于国防军事、 智能建筑、 国 家安全、环境监测、医疗卫生、家庭等方面。

无线传感器网络系统(WSNS, wireless sensor networks system通常由传感器节点、聚节点和管理节点组成。 它的结 构图如图1。 传感器节点负责将所监测的数据沿着其他传感器 节点逐跳地进行传输, 经过多跳路由, 然后到达汇聚节点, 最 后通过卫星或者互联网到达管理节点, 然后, 用户1通过管理 节点对传感器网络进行管理, 发布监测任务及收集监测数据。 通过无线传感器网络可以实现数据采集、数据融合、任务的 协同控制等。

1无线传感网络系统结构图 1

无线传感器网络特点

目前常见的无线网络包括移动通信网、 Ad Hoc 网络、 无 线局域网、蓝牙网络等,与这些网络相比,无线传感器网络 具有以下特征: (1硬件资源有限

由于受到价格、硬件体积、功耗等的限制,WSN 节点的 信号处理能力、计算能力有限,在程序空间和内存空间上与 普通的计算机相比较,其功能更弱。

(2电源容量有限

由于受到硬件条件的限制,网络节点通常由电池供电, 电池能量有限。同时,无线传感网络节点通常被放置在恶劣 环境或者无人区域,使用过程中,不能及时给电池充电或更 换电池。

(3无中心

无线传感器网络中没有严格的中心节点,所有节点地位 平等,是一个对等式网络。每一个节点仅知道自己邻近节点 的位置及相应标识,无线传感器网络利用相邻节点之间的相 互协作来进行信号处理和通信,它具有很强的协作性。

(4自组织

网络的布设和展开不需要依赖于任何预设的网络设备, 节点通过分层协议和分布式算法协调各自的监控行为,节点 开机后就可以快速、自动地组成一个独立的无线网络。

(5多跳路由

在无线传感器网络中,节点只能同它的邻居直接通信。 如果想与其射频覆盖范围之外的节点进行数据通信,则需要 通过中间网络节点进行路由。无线传感器网络中的多跳路由 是由普通网络节点来完成的,没有专门的路由设备。

(6动态拓扑

无线传感器网络是一个动态的网络,节点能够随处移 动;一个节点可能会因为电池能量用完或其他故障原因,退 出网络运行;一个节点也可能由于某种需要而被添加到当前 网络中。这些都会使网络的拓扑结构发生变化,因此无线传

感器网络具有动态拓扑组织功能。 (7节点数量多,分布密集

为了对一个区域执行监测,往往需要很多的传感器节点 被放置到该区域。传感器节点分布非常密集,通常利用节点 之间高度连接性来保证系统的抗毁性和容错性。

2无线传感器网络协议栈

无线传感器网络协议栈由以下五部分组成:物理层、数 据链路层、网络层、传输层、应用层,与互联网协议栈的五 层协议相对应,其结构如图

2。

作者简介:唐启涛(1982- ,男,南华大学计算机科学与技术学院 2006级硕士研究生,研究方向:计算机网

络与信安全。陶滔(1969-

,男,网络教研室主任、副教授,硕士生导师,研究方向:计算机网络安全。 2008.2

81

网络安全技术与应用 图

2无线传感器网络协议栈 2.

1物理层

物理层主要负责感知数据的收集,并对收集的数据进行 采样、信号的发送和接收、信号的调制解调等任务。在物理 层中的主要安全问题是建立有效的数据加密机制。由于对称 加密算法的局限性,它不能在 WSN 中很好的发挥作用,因而 如何使用高效的公钥算法是 W S N 有待解决的问题。

2.

2 数据链路层

数据链路层主要负责媒体接入控制和建立网络节点之间 可靠通信链路,为邻居节点提供可靠的通信通道,主要由介 质访问控制层组成。介质访问控制层使用载波监听方式来与 邻节点协调使用信道,一旦发生信道冲突,节点使用相应的 算法来确定重新传输数据的时机。无线传感器网络的介质访 问控制协议通常采用基于预先规划的机制来保护节点的能量。

2.

3网络层

网络层的主要任务是发现和维护路由。正常情况下,无 线传感器网络中的大量传感器节点分布在一个区域里,消息 可能需要经过多个节点才能到达目的地,且由于传感器网络 的动态性,使得每个节点都需要具有路由的功能。节点一般 采用多跳路由连接信源和信宿。

2.

4传输层

由于无线传感器网络节点的硬件限制,节点无法维持端到 端连接的大量信息传输,而且节点发送应答消息也会消耗大量 能量,因而,目前还没有成熟的关于传感器节点上的传输层 协议的研究。汇聚节点只是传感器网络与外部网络的接口。

2.

5应用层

应用层主要负责为无线传感器网络提供安全支持,即实 现密钥管理和安全组播。无线传感器网络的应用十分广泛, 其中一些重要的应用领域有:军事方面,无线传感器网络可 以布置在敌方的阵地上,用来收集敌方一些重要目标信息, 并跟踪敌方的军事动向:环境检测方面,无线传感器网络能 够用来检测空气的质量,并跟踪污染源;民用方面,无线传 感器网络也可用来构建智能家居和个人健康等系统。

3安全性需求

基于无线传感器网络的特殊性,形成了与其他网络系统不 同的网络安全特性, 并能直接应用到实际的无线传感网络中。 归纳为以下几个方面: 3.

1鲁棒性

传感器网络一般被放置在恶劣环境、无人区域或敌方阵 地中,环境条件、现实威胁和当前任务具有不确定性,它需 要设计具有抵抗节点故障的机制。一种常用方法是部署大量 节点。网络协议应该具有识别发生故障的相邻节点的能力, 并根据更新的拓扑进行相应的调节。

3.

2扩展性

WSN 节点会随着环境条件的变化或恶意攻击或任务的变 化而发生变化,从而影响传感器网络的结构。同时,节点的 加入或失效也会导致网络的拓扑结构不断变化,路由组网协 议和 W S N S 必须适应 W S N 拓扑结构变化的特点。

3.

3机密性

传感器网络在数据传输过程中,应该保证不泄露任何敏 感信息。应用中,通过密钥管理协议建立的秘密密钥和其他 的机密信息,必须保证只对授权用户公开。同时,也应将因 密钥泄露造成的影响尽可能控制在一个较小范围,不影响整 个网络的安全。解决数据机密性的常用方法是使用会话密钥 来加密待传递的消息。

3.

4数据认证

由于敌方能够很容易侵入信息, 接收方从安全角度考虑, 有必要确定数据的正确来源。数据认证可以分为两种,即两 部分单一通信和广播通信。

3.

5数据完整性

在网络通信中,数据的完整性用来确保数据在传输过程 中不被敌方所修改,可以检查接收数据是否被篡改。根据不 同的数据种类,数据完整性可分为三类:选域完整性、无连 接完整性和连接完整性业务。

3.6

数据更新

表示数据是最新的,是没有被敌手侵入过的旧信息。 网络 中有弱更新和强更新两种类型的更新。弱更新用于提供局部 信息排序,它不支持延时消息;强更新要求提供完整的次序, 并且允许延时估计。

3.7

可用性

它要求 WSN 能够按预先设定的工作方式向合法的系统用 户提供信息访问服务,然而,攻击者可以通过信号干扰、伪 造或者复制等方式使传感器网络处于部分或全部瘫痪状态, 从而破坏系统的可用性。

3.8

访问控制

W S N 不能通过设置防火墙进行访问过滤;由于硬件受 限, 也不能采用非对称加密体制的数字签名和公钥证书机制。 WSN 必须建立一套符合自身特点的、综合考虑性能、效率和 安全性的访问控制机制。

4攻击方式及采取的相应措施

无线传感网络可能遭遇多种攻击。攻击者可以直接从物

2008.2 82 网络安全技术与应用 理上将其破坏。另一方面,攻击者可以通过操纵数据或路由 协议报文,在更大范围内对无线传感网络进行破坏。具体的 攻击类别如下: 4.

1欺骗、 篡改或重发路由信息

攻击者通过向 WSN 中注入大量欺骗路由报文,或者截取 并篡改路由报文,把自己伪装成发送路由请求的基站节点, 使全网范围内的报文传输被吸引到某一区域内,致使各传感 器节点之间能效失衡。对于这种攻击方式的攻击,通常采用 数据加密技术抵御。

4.

2选择转发攻击

攻击者在俘获传感器节点后,丢弃需要转发的报文。为 了避免识破攻击点,通常情况下,攻击者只选择丢弃一部分 应转发的报文,从而迷惑邻居传感节点。通常采用多路径路 由选择方法抵御选择性转发攻击。

4.

3DoS拒绝服务攻击

攻击者通过以不同的身份连续向某一邻居节点发送路由 或数据请求报文,使该邻居节点不停的分配资源以维持一个 新的连接。对于这种攻击方式,可以采用验证广播和泛洪予 以抵御。

4.

4污水池攻击

攻击点在基站和攻击点之间形成单跳路由或是比其他节 点更快到达基站的路由,以此吸引附近的传感器以其为父节 点向基站转发数据。污水池攻击“调度”了网络数据报文的 传输流向,破坏了网络负载平衡。可以采用基于地理位置的 路由选择协议抵御污水池攻击。

4.

5告知收到欺骗攻击

当攻击点侦听到某个邻居节点处于将失效状态时,冒充 该邻居节点向源节点反馈一个信息报文, 告知数据已被接受。 使发往该邻居节点的数据报文相当于进了“黑洞” 。可以调控 全球知识以抵御告知收到欺骗。

4.6

女巫攻击

攻击点伪装成具有多个身份标识的节点。当通过该节点 的一条路由破坏时,网络会选择另一条完全不同的路由,由 于该节点的多重身份,该路由可能又通过了该攻击点。它降 低了多经选路的效果。针对这种攻击方式,可以采用鉴别技 术抵御。

5今后的研究方向

目前,有关传感器网络的研究还处于初步阶段,由于无 线传感网络的体系结构和模型没有形成最后的标准,无线传 感器网络安全研究方面还面临着许多不确定的因素,对于 W S N 而言,仍然存在着如下有待进一步研究的问题。

5.

1安全的异常检测和节点废除

在传感器网络中,由于被盗用节点对网络非常有害,因 而希望能即时检测和废除被盗用节点。 Chan 提出使用分布式

投票系统来解决这个问题。 5.2

安全路由

安全的路由协议应允许在有不利活动的情况下,继续保 持网络的正常通信。传感器网络中的许多类型的攻击方式的 抵御可以通过提高路由的安全设计来实现。如何设计一种高 效、安全的路由有待进一步的研究。

5.

3 有效的加密原语

Perrig 提出了 SPINS 协议族, 通过该协议, 使用有效的 块加密,对于不同块进行不同的加密操作。Karlof

设计了 TinySec,在效率与安全性之间折中。 在密钥建立和数字签名 时,如何使用有效的非对称加密机制,是一个值得进一步研 究的方向。

5.

4入侵检测问题

在数据认证和源认证之前,有必要设计相应的方案来确 认通信方是不是恶意节点。目前有些无线传感网络都是假设 网络节点具有全网惟一标识,这其实是不符合现实的。

5.

5传感器安全方案和技术方案的有机结合

根据 W S N 的特点,其安全解决方案不能设计得过于复 杂,并尽可能的避免使用公钥算法。如何在不明显增加网络 开销的情况下,使性能和效率达到最佳,并设计出相应的协 议和算法有待于进一步的研究。

5.6

管理和维护节点的密钥数据库

在传感器网络中,每个节点需要维护和保持一个密钥数据 库。 在网络节点存储能力有限的情况下, 如何保证密钥建立、 撤 消和更新等阶段动态地维护和管理数据库需要进一步的研究。

6总结

无线传感器网络在军事和民用领域都有着广泛的潜在用 途,是当前技术研究的热点。本文从无线传感器网络的特点、 无线传感网络的协议栈、安全需求、可能受到的安全攻击及 相应的防御方法及今后有待进一步研究的问题等方面对目前 国内外开展的研究进行了较为系统的总结,有助于了解当前无 线传感器网络研究进展及现状。

参考文献

[1]Prtra JC,PalR N.A functional link artificial neural network foradaptive c hannel e qualization[J].Signal P rocessing.1995. [2]PasqualeArpaia,Pasquale Daponte,DomcaicoGrmi ald,i et a.l ANN-Based Error Reduction for Expermi entally Modeled Sensors [J].IEEE Trans.on Instrumentation andMeasurement.2002. [3]徐丽娜.神经网络控制[M].哈尔滨:哈尔滨

工业大学出版社 .1999. [4]遗传算法结合FANN实现加速度传感器动态特性补偿[J].计 量学报.2005. [5]郎为民,杨宗凯,吴世忠,谭运猛.无线传感器网络安全研究.计 算机科学.2005.

第五篇:无线传感器网络实验报告

桂林电子科技大学

实验报告

2015 5- - 2016 6 学年第 一 学期

开 课 单 位

海洋信息工程学院

适用年级、专业

课 程 名 称

无线传感器网络

主 讲 教 师

王晓莹

课 程 序 号

1510344

课 程 代 码

BS1620009X0

实 验 名 称

ns2 实验环境配置及应用

实 验 学 时

6 学时

一、

实验目的

1) 掌握虚拟机的安装方法。

2) 熟悉 Ubuntu 系统的基本操作方法。

3) 掌握 ns2 环境配置。

4) 掌握 tcl 语言的基本语句及编程规则。

5) 了解使用 ns2 进行网络仿真的过程。

二、

实验环境

1) 系统:Windows 10 专业版 64 位 2) 内存:8G 3) 软件:VMware Workstation 12 Pro 三、

实验内容

( (一 一) ) 安装虚拟机(简述安装步骤)

a) 在 VMware 官网(https://www.vmware.com/cn)下载程序 VMware Workstation 12 Pro b) 双击打开下载好的程序自动解压,解压完成后进入安装向导。

c) 程序安装完成后,对程序进行注册,VMware Workstation 12 Pro key/注册码:5A02H-AU243-TZJ49-GTC7K-3C61N d) 虚拟机程序安装成功。

( (二 二) ) 安装 u Ubuntu 系统(简述安装步骤)

a) 网上下载 ubuntu-14.04.3-desktop-amd64.iso 文件(Ubuntu 14 64 位系统镜像)

b) 打开 VMware Workstation 12 Pro 程序,创建一个新的虚拟机 c) 进入新建虚拟机向导,选择自定义配置安装进行下一步。

d) 安装客户机操作系统,择安装程序光盘映像文件,放入已下载好的 Ubuntu 14 64 位系统镜像文件,进行简易安装。

e) 选择安装路径和配置完成向导,进入 Ubuntu 系统安装界面,等待安装完成。

( (三 三) ) 安装 2 ns2 软件及相关 环境配置(简述安装步骤及环境配置过程)

a) 先更新一下系统。在终端输入:

sudo apt-get update

#更新源列表 sudo apt-get upgrade

#更新已安装的包 sudo apt-get dist-upgrade

#更新软件,升级系统

b) 安装几个需要使用的软件包 sudo apt-get install build-essential

sudo apt-get install tcl8.5 tcl8.5-dev tk8.5 tk8.5-dev

#for tcl and tk sudo apt-get install libxmu-dev libxmu-headers

#for nam

c) 下载 ns-allinone-2.35.tar.gz。http://www.isi.edu/nsnam/ns/ns-build.html#allinone 复制到根目录,解压到当前位置 tar xvfz ns-allinone-2.35.tar.gz

在根目录下打开 ns-allinone-2.35 文件夹,在里面找到 ns-2.35 打开找 linkstate文 件 夹 , 打 开 里 面 的 ls.h 文 件 , 将 第 137 行 的 void eraseAll() { erase(baseMap::begin(), baseMap::end()); } 改成 void eraseAll() { this->erase(baseMap::begin(), baseMap::end()); }

运行 cd ./ns-allinone-2.35 运行./install #进行安装

d) 设置环 境变量:

终端中输入 cd ,返回根目录,然后

sudo gedit .bashrc 在文件末尾加入:

export PATH="$PATH:/home/kevin/ns-allinone-2.35/bin:/home/kevin/ns-allinone-2.35/tcl8.5.10/unix:/home/kevin/ns-allinone-2.35/tk8.5.10/unix" export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/home/kevin/ns-allinone-2.35ns-allinone-2.35/otcl-1.14:/home/kevin/ns-allinone-2.35/lib" export TCL_LIBRARY="$TCL_LIBRARY:/home/kevin/ns-allinone-2.35/tcl8.5.10/library" 保存退出

e) 验证 完成后在新终端窗口 输入 ns 出现%

测试:

ns ./ns-allinone-2.35/ns-2.35/tcl/ex/simple.tcl

输入 exit 退出 ns2

( (四 四) ) l tcl 语言基本使用(举例说明)

a) 创建 test01.tcl 文件,编辑 test01.tcl 文件,在终端输入 touch test01.tcl #创建文件 gedit test01.tcl #编辑文件 b) 在 test01.tcl 中输入“九九乘法表”TCL 语言

c) 运行 test01.tcl,结果如图:

( (五 五) ) 网络仿真(可以选示例,也可以自己参考资料设计仿真)

( (六 六) ) 遇到的问题及解决方法

1.Ns2 验证:安装完成后在新终端窗口 输入 ns 不出现 %

使用 sudo apt-get install ns2 安装后新窗口输入 ns 出现 %

2.TCL 语言测试:找不到 tk.tcl

ns ./ns-allinone-2.35/ns-2.35/tcl/ex/simple.tcl 提示找不到 tk.tcl,因为没安装 nam,输入命令 sudo apt-get install nam 安装成功,再验证就可以了。

四、

实验总结

通过本次实验,熟悉掌握了虚拟机 VMware Workstation Pro 的安装与系统创建安装使用,熟悉掌握 Ubuntu 系统的基本命令操作,掌握 ns2 环境配置,掌握 tcl 语言的基本语句及编程规则,了解但还尚未能掌握使用 ns2进行网络仿真的操作。相信之后通过理论与实践更深的了解熟悉网络仿真的知识与操作。

上一篇:维稳应急预案演练记录下一篇:微信个性签名霸气简短