防雷接地技术措施

2022-06-28

第一篇:防雷接地技术措施

低压配电线路接地故障的保护技术措施

摘 要叙述利用线路的过电流保护兼作接地故障保护的条件;采用带有单相接地保护的断路器或设备零序电流保护的要求;采用漏电电流保护器RCD 的具体做法及需要注意的问题。

关键词接地故障保护 过电流保护 漏电电流保护电器 TN系统 TT系统 IT系统低压配电线路中的单相短路,回路中相线、中性线连接不良,这种情况容易发现,例如灯会不亮或者熄灭。而占短路80%的接地故障,相线与PE线、电气设备的外露导电部分或大地间的短路却难于觉察。例如PE线PEN线连接松动灯照样亮,如PEN线迸发火花,则容易酿成火灾。配电线路应设置接地故障保护,在发生故障时,保护元件必须能及时自动切断电源,防止人身电击伤亡、电气火灾和线路损坏。

TN系统发生接地故障时,用电设备金属外壳接触电位低,故障电流大,一般过电流保护电器可快速切断故障线路,TN系统的低压配电线路采用过电流保护兼作接地故障保护需满足:Za×Ia<220V的动作特性以及切断故障电流的时间上的要求。

式中Za——接地故障回路阻抗(Ω)

Ia——保护电器在规定时间内自动切断故障回路的电流(A)Ia值应取低压断路器相应过电流脱扣器额定电流的1.3倍。

其切断故障电流的时间应符合:(1)配电干线和只供电给固定式用电设备的末级配电线路不应大于5s2 供电给手握式和移动式用电设备的末级配电线路不应大于0.4s。动作时间可从低压断路器的动作特性读取。

当过电流保护电器不能满足上式要求时,可采用带有单相接地保护的断路器或设零序电流保护措施。断路器的单相接地保护功能的实现原理有剩余电流型和零序电流型两种。剩余电流型是利用四个电流互感器分别检测三相电流和中性线(N线)的电流。无论三相电流平衡与否,则此矢量和为零(严格讲为线路与设备的正常泄露电流);Ia+Ib+Ic+In=0 当发生某一相接地故障时,故障电流会通过保护线PE及与地相关连的金属构件,即;Ia+Ib+Ic+In≠0此时电流为接地故障电流加正常泄露电流。接地电流达到脱扣器整定电流时,即可报警或驱动短路器动作,实现单相接地保护。 零序电流型是在三相上各安装一个电流互感器,检测三相的电流矢量和,即零序电流Io Ia+Ib+Ic+In=Io。当发生某一相接地故障时,此时电流为接地故障电流加正常泄露电流,与脱扣器整定值比较,即可区分出接地电流,实现单相接地保护。带有单相接地保护的断路器到底是剩余电流型,还是零序电流型,以产品样本为准。

单相接地保护的断路器主要是针对配电线路的干线、主干线和近变压器端的单相对地短路保护,在线路的末端,通常都装漏电电流保护电器(RCD),其动作时间为0.1s。采用RCD时,因为TN-C接地系统中保护线PE和中性线N合用一根线PEN,PEN在正常工作时流过三相不平衡电流,当单相接地时产生的接地故障电流Id也从PEN线上流过,RCD根本无法检测出是不平衡电流还是接地故障电流。所以TN-C系统应按TN-C-S或局部TT接地处理。

TT系统中性点接地与PE线接地分开,中性线N与PE线无连接,供电线路一般较长,相-地回路阻抗较大。发生接地故障时,故障电路内包含外露导电部分接地极和电源接地极的接地电阻(R+RA),阻抗大,故障电流小,过流保护元件不易启动。在这种系统中装设RCD作单相接地保护是有效的措施之一。

对于TT系统,装有RCD的支路与不装RCD的支路不应使用公共接地极。必须有独立的接地板与PE线专供有RCD的分支回路用。

IT系统是变压器中性点不接地或经大阻抗接地,用电设备外壳直接接地。发生单相接地故障时,接地电流为电容电流。电流通道为:电源-相线-大地-网络电容-电源。故障

电流为另两相对地电容电流的相量和,故障电流小,不需要中断供电,一般不装设漏电保护。但应由绝缘监察器发出信号,以便及时排除故障。IT系统中的漏电保护器主要用于切除两处异相同时接地故障。应根据具体情况按需要装设。

IT系统两处异相同时接地故障,IT系统内外露导电部分分别装设接地极,这时故障电流流经两个接地极电阻,故障回路的切断应符合TT系统接地故障保护的要求。如图5所示。

IT系统两处异相同时接地故障,IT系统内外露导电部分公用一个接地极,这时故障电流将流经PE线形成的金属短路,故障回路的切断应符合TN系统接地故障保护的要求。如图6所示。

为了用电安全,采用了接地故障保护后,仍需要可靠的接地采用等电位连接。等电位联结的作用是降低故障情况下,电气设备间、电气设备与其他设备间的接触电压,使人体在接触时,身体所承受的电压降至最低。在以人为本的今天,电气安全可是重之又重的大事,马虎不得。

第二篇:雷达装备防雷接地性能测试方法及接地性能改进措施

徐绵起 王 斌 徐瀚智

(94981部队 南昌市330200)

和平时期,对雷达装备及其使用保障人员来说,最大的安全威胁来自于雷电的袭击。雷达站大多部署在高山、海岛等地区,易遭受雷击伤害。在雷达防雷措施中,装备的良好接地是最重要、最经济有效的手段之一。

本文详细分析防雷接地措施和要求,介绍几种接地电阻的测量方法和步骤,提出雷达装备防雷接地性能改进措施。

一、防雷接地措施分析及接地电阻要求

雷电对雷达装备的威胁分为直击雷威胁和感应雷威胁。直击雷主要通过雷达天线对雷达装备造成伤害,感应雷主要通过电源线和信号线对雷达装备造成伤害。防直击雷也称为外部防雷,防感应雷也称为内部防雷。防直击雷和防感应雷两道防线,互相配合,各尽其职,缺一不可。所以说防雷工程是一项系统工程。

(一)外部防雷

外部防雷的目的是将绝大部分雷电流直接引入地下泄散,所以对地泄放电阻越小越好。

1、雷达站外部防雷

雷达天线架设在阵地上,易遭受直击雷伤害,通常采用避雷针将雷电流引入地下,从而保护雷达天线不受雷击伤害。

2、避雷针防雷接地技术措施

避雷针防雷技术措施可分接闪器(避雷针是接闪器之一种)、引下线、接地体。

接闪器——根据建筑物的地理位臵、现有结构、重要程度等情况,决定是否采用避雷针、避雷带、避雷网联合接闪方式。

引下线——断面积足够大,连接牢固。

接地体——防直击雷接地宜和防雷电感应、电气设备、信息系统等接地共用同一接地装臵,并宜与埋地金属管道相连接;天线阵地避雷针,可以采用独立接地。

3、避雷针防雷接地电阻要求

避雷针防雷设施接地电阻要求小于10Ω。

(二)内部防雷

内部防雷的目的是快速泄放沿着电源或信号线路侵入的雷电波或各种危险

1 过电压。

内部防雷系统主要针对库房内易受过电压破坏的雷达电子设备加装过压保护装臵,在设备受到过电压侵袭时,防雷保护装臵能快速动作泄放能量,从而保护设备免受损坏。内部防雷又可分为电源线路防雷和信号线路防雷。

1、电源线路防雷

电源防雷系统主要是为了防止雷电波通过电源线路而对雷达电子设备造成危害。为避免高电压经过避雷器对地泄放后的残压过大,或因更大的雷电流在击毁避雷器后继续毁坏后续设备,以及防止线缆遭受二次感应,应采取分级保护、逐级泄流原则。

2、信号线路防雷

由于雷电波在信号线路上能感应出较高的瞬时冲击能量,而目前大部分雷达电子设备由于电子元器件的高度集成化而致耐过压、耐过流水平下降,设备在雷电波冲击下遭受过电压而损坏的现象越来越多,因此必须加装必要的防雷保护装臵。

3、线路防雷接地电阻要求

无论是电源线防雷装臵还是信号线防雷装臵,都必须有良好的接地,接地电阻要求小于1Ω。

4、雷达工作车、收发车等防雷接地电阻要求

无论是针对防雷、抗电磁干扰还是其它电磁兼容性要求,雷达工作车、收发车等雷达装备车辆都必须有良好的接地,接地电阻要求小于4Ω。

二、防雷接地电阻测量方法

影响接地电阻的因素很多:接地桩的大小(长度、粗细)、形状、数量、埋设深度、周围地理环境(如平地、沟渠、坡地是不同的)、土壤湿度、质地等等。为了保证设备的良好接地,利用仪表对接地电阻进行测量是必不可少的,常用的测量仪器是手摇式地阻表和钳形地阻表。特殊情况下,也可用普通万用表测接地电阻。

(一)手摇式地阻表测量接地电阻

手摇式地阻表是一种较为传统的测量仪表,它的基本原理是采用三点式电压落差法。其测量手段是在被测地线接地桩一侧地上打入两根辅助测试桩,要求这两根测试桩位于被测地桩的同一侧,三者基本在一条直线上,距被测地桩较近的一根辅助测试桩距离被测地桩20米左右,距被测地桩较远的一根辅助测试桩距离被测地桩40米左右。测试时,按要求的转速转动摇把,测试仪通过内部磁电机产生电能,在被测地桩和较远的辅助测试桩之间“灌入”电流,此时在被测地 2 桩和辅助地桩之间可获得一电压,仪表通过测量该电流和电压值,即可计算出被测接地桩的地阻。

(二)钳形地阻表测量接地电阻

钳形地阻表是一种新颖的测量工具,它方便、快捷,外形酷似钳形电流表,测试时不需辅助测试桩,只需往被测地线上一夹,几秒钟即可获得测量结果,极大地方便了地阻测量工作。钳形地阻表还有一个很大的优点是可以对在用设备的地阻进行在线测量,而不需切断设备电源或断开地线。

测量时,钳形地阻表利用电磁感应原理通过其前端环形卡口(内有电磁线圈)所构成的环向被测线缆送入一恒定电压E,该电压被施加在回路中,地阻表可同时通过其前端卡口测出回路中的电流I,根据E和I,即可计算出回路中的总电阻,即:被测地阻Rx=E/I。

事实上,钳形地阻表通过其前端卡环这一特殊的电磁变换器送入线缆的是1.7kHz的交流恒定电压,在电流检测电路中,经过滤波、放大、A/D转换,只有1.7kHz的电压所产生的电流被检测出来。正因这样,钳形地阻表才排除了商用交流电和设备本身产生的高频噪声所带来的地线上的微小电流,以获得准确的测量结果,也正因为如此,钳形地阻表才具有了在线测量这一优势。实际上,该表测出的是整个回路的阻抗,而不是电阻,不过在通常情况下他们相差极小。钳形地阻表可即刻将结果显示在LCD显示屏上,当卡口没有卡好时,它可在LCD上显示“open jaw”或类似符号。

由于钳形地阻表的特殊结构,使它可以很方便地作为电流表使用,很多这类仪表同时具有钳形电流表的功能。另一方面,虽然钳形地阻表测试时使用一定频率的信号以排除干扰,但在被测线缆上有很大电流存在的情况下,测量也会受到干扰,导致结果不准确。所以,按照要求,在使用时应先测线缆上的电流,只有在电流不是非常大时才可进一步测量地阻。有些仪表在测量地阻时自动进行噪声干扰检测,当干扰太大以致测量不能进行时会给出提示。

(三)用普通万用表测试接地电阻

用普通万用表测试接地电阻具体测量方法如下:

找两根8mm粗、1m长的圆钢,将其一端磨尖作为辅助测试棒,分别插入待测接地体A两侧5m远(B、C两处)的地下,深度应在0.6m以上,并使三者保持一条直线。在这里, B、C用做辅助测试棒 。

然后用万用表(R×1挡)测量A与B、A与C、B与C之间的电阻值,分别记作RAB、RAC、RBC,再经计算就可求出接地体A的接地电阻值。

由于接地电阻指的是接地体与土壤间的接触电阻。设A、B、C三者的接地电阻分别为RA、RB、RC。再设A与B之间土壤的电阻为RX,因为AC、AB距离相等, 3 可以认为A与C之间的土壤电阻也为RX;又因为LBC=2LAB,所以B与C间的土壤电阻近似为2RX,于是:

RAB=RA+RB+RX (1)

RAC=RA+RC+RX (2) RBC=RB+RC+2RX (3)

综合以上三式,可得:

RA=(RAB+RAC—RBC)/2 (4)

(4)式即为接地电阻的计算公式。

例如,今测得某接地体的数据:RAB=8.4Ω,RAC=9.3Ω,RBC=10.5Ω。于是:

RA=(8.4+9.3—10.5)/2=3.6Ω

即被测接地体A的接地电阻值为3.6Ω。

需要注意的是,测量前需要将A、B、C三个接地体用砂纸打磨发亮,并尽量减少表笔与接地体之间的接触电阻,以减少测试误差。

三、防雷接地电阻测试方法评价

以上三种测试方法各有优缺点,什么情况下采用以及测试结果的可信性分析如下:

(一)手摇式地阻表可获得较高的精度,是常用的地阻测量工具

在许多情况下,需要埋设接地体、引出接地级,以便将仪器设备可靠接地。为确保接地电阻符合要求,通常需要专用的接地电阻测试仪进行测量。

手摇式地阻表在使用时,应将接地桩与设备断开,以避免设备自身接地体影响测量的准确性,手摇式地阻表可获得较高的精度,而不管是单点接地和多点接地系统。

(二)万用表和接地电阻测试仪所测数据相近

实际工作中,专用的接地电阻测试仪价格高,有的雷达站没有配备,可用万用表测量接地电阻。作者用万用表在不同土质的土壤对接地电阻进行了实验,并将万用表所测数据和专用接地电阻测试仪所测数据进行了比较,两者十分接近。

(三)钳形地阻表使用最方便,但不能测量开路接地桩

在单点接地系统中应慎用钳形地阻表,对于已埋设好而尚未与设备连接的开路接地桩,其地阻根本不能用该仪表进行测量。地线上较大的回路电流对测量会造成干扰,导致测量结果不准确,甚至使测试不能进行,很多仪表在这种情况下会显示出“Noise”或类似符号。

对于钳形地阻表,其最理想的应用是用在分布式多点接地系统中,此时应

4 对接地系统的所用接地桩依次进行测量,并记录下测量结果,然后进行对比,对测量结果明显大于其它各点的接地桩,要着重检查,必要时将该地桩与设备断开后用手摇式地阻表进行复测,以暴露出不良的接地桩。

四、防雷接地性能评价及整改措施

评价防雷接地性能的好坏,主要看各类防雷设备和车辆是否接地以及接地电阻是否符合要求。当接地性能达不到要求时,应该进行整改。下面主要探讨降低接地电阻的方法。

在确定降低接地电阻的具体措施时,应根据阵地原有状态、气候条件、地形地貌特点和土壤电阻率的高低等条件进行全面、综合分析,通过技术经济比较来确定,因地制宜地选择合理的方法。

降低接地电阻可采取以下几种方法:

(一)更换土壤

采用电阻率较低的土壤(如:粘土、黑土及砂质粘土等)替换原有电阻率较高的土壤,臵换范围在接地体周围0.5m以内和接地体的1/3深处。这种方法人力和工时耗费都较大。

(二)改良土壤

在接地体周围土壤中加入化学物,如食盐、木炭、炉灰、氮肥渣、电石渣、石灰等,提高接地体周围土壤的导电性。加入食盐,对于不同的土壤其效果也不同,如粘土用食盐处理后,土壤电阻率可减小1/3~1/2,砂土的电阻率可减小3/5~3/4,砂的电阻率可减小7/9~7/8;对于多岩土壤,用1%食盐溶液浸渍后,其导电率可增加70%。这种方法虽然工程造价较低且效果明显,但土壤经人工处理后,会降低接地的热稳定性、加速接地体的腐蚀、减少接地体的使用年限。因此,一般是在应急时才采用。

(三)深埋接地极

当地下深处土壤的电阻率较低时,可采取深埋接地极来降低接地电阻值。这种方法对含砂土壤最有效果。据有关资料记载,设3m深处的土壤电阻系数为100%,则4m深处为75%,5m深处为60%,6m深处为60%,6.5m深处为50%,9m深处为20%,这种方法可以不考虑土壤冻结和干枯所增加的电阻系数,但施工困难,土方量大,造价高,在岩石地带困难更大。

(四)利用接地电阻降阻剂

在接地极周围敷设了降阻剂后,可以起到增大接地极外形尺寸,降低其与周围大地介质之间的接触电阻的作用,因而能在一定程度上降低接地极的接地电阻。降阻剂用于小面积的集中接地、小型接地网时,其降阻效果较为显著。

降阻剂是由几种物质配制而成的化学降阻剂,是具有导电性能良好的强电

5 解质和水分。这些强电解质和水分被网状胶体所包围,网状胶体的空格又被部分水解的胶体所填充,使它不致于随地下水和雨水而流失,因而能长期保持良好的导电作用。这是目前采用的一种较新和积极推广普及的方法。

(五)采取伸长水平接地体 或布置地网

一般说来,水平接地体的有效长度不应大于 接地体的有效长度。布臵地网则工程量极大,一般在阵地建设时便设计施工完成。

(六)采取深井接地

有条件时还可采用深井接地。用钻机钻孔(也可利用勘探钻孔),把钢管接地极打入井孔内,并向钢管内和井内灌注泥浆。

(七)采取污水引入

为了降低接地体周围土壤的电阻率,可将污水引到埋设接地体处。接地体采用钢管,在钢管上每隔20cm钻一个直径5mm的小孔,使水渗入土壤中。

(八)多支外引式接地装置

如接地装臵附近有导电良好的河流湖泊,可采用此法。但在设计、安装时,必须考虑到连接接地极干线自身电阻所带来的影响,因此,外引式接地极长度不宜超过100m。

(九)利用水井、水池等水工建筑物

充分利用水工建筑物(水井、水池等)以及其它与水接触的混凝土内的金属体作为自然接地体,可在水下钢筋混凝土结构物内梆扎成的许多钢筋网中,选择一些纵横交叉点加以焊接,与接地网连接起来。

五、结束语

本文介绍了雷达站防雷接地措施和要求,较为详细地分析了几种接地电阻的测量方法和性能评价,提出了雷达装备防雷接地性能改进措施。对于指导雷达站装备防雷工作具有现实意义,对于上级机关对基层雷达站进行防雷工作检查考评也有较好的参考意义。

作者简介:

徐绵起,94981部队装备处高工,65年11月生,硕士,空军高层次人才。研究方向:雷达装备原理与维修。

王 斌,94981部队装备处处长,74年5月生。研究方向:雷达装备原理与维修。 徐瀚智,94981部队装备处雷修所雷达师,大学专科。研究方向:雷达装备原理与维修。

联系方式:

通信地址:江西省南昌县94981部队高工办

邮政编码:330200 联系人:徐绵起

电话号码:07915977644,5977695,13317919958,18970900518

第三篇:防雷、避雷安全措施

河南西峡文体中心· 活动中心

防雷、避雷安全措施方案

河南西峡文体中心·活动中心

防雷、避雷安全措施方案

一、工程概况

本工程位于西峡县龙乡路以南,世纪大道以北,二道河绿化带以西,灌河大道以东,地上六层,建筑物檐口高度为30.3米,建筑面积为14822.97平方米.室内外高差为0.300米,本工程结构设计使用年限50年,结构安全等级为二级,抗震设防类别为非抗震。

二、编制依据,

《建筑施工安全检查标准》(JGJ59-2011)

《施工现场临时用电安全技术规范》(JGJ46-2012)

三、组织机构及职责

组 长:郭伟宏(项目经理)对施工现场的安全工作负总责。

副组长:李国定(项目副经理)对施工现场的安全工作进行管理。

专职安全员杨万林负责监督检查各项安全方案的实施、安全法规的执行情况,落实整改情况,并进行现场安全教育。参与各类安全方案的编制。

工: 符铁柱负责每天对各个接地极进行检查,发现问题进行修理,并做好电工巡视记录。

材料员:杨春生负责防雷、避雷器材的采购和验收。

四、防雷安全措施

避雷针选用:¢25的镀锌圆钢管制作,长度为1.5米。

引下线选用:16MM2的铜芯导线。

接地极:选用建筑物自身接地装置。

河南骏丰建筑工程有限公司

1 河南西峡文体中心· 活动中心

防雷、避雷安全措施方案

1、外脚手架避雷防雷

按照滚雪球法单支避雷针(接闪器)的保护范围方法确定。 施工采用落地式悬挑式双排脚手架,建筑物的四角及中部设置直径25MM,壁厚为3MM,长度为1.5米的镀锌钢管避雷针,并将脚手架最上层纵横向钢管进行紧密连接,用16MM2的铜导线与建筑物自身的接地极相连。接地电阻不得大于10欧姆。

2、塔吊及物料提升机防避雷

顶端设置避雷针直径为25MM,壁厚为3MM的镀锌钢管,利用架体本身作为引下线,下部设地脚螺栓用16MM2的铜导线与垂直接地上的螺栓连接,垂直接地极采用50×50的角钢,打入土层内2。5米。避雷系统的接地电阻值应小于4欧姆。

3、施工人员防雷避雷:

雷雨天禁止高层室外作业,在建筑物内施工,不要在窗口处逗留,雷雨天不要在塔吊、物料提升机周边停留。

四、避雷装置注意事项:

1、接地线采用直径为16MM2铜芯导线,在脚手架下部连接时应采用两螺栓卡箍,并加设弹簧垫圈,以防松动,保证接触面不小于10CM2。连接进将接触表面的油漆及氧化层消除,使其露金属光泽,并涂以中性凡士林。

2、接地线与接地板的连接采用双面焊接,焊缝长度应大于接地线直径的6倍。

3、接地装置完成后,要用电阻表测定电阻是否符合要求,接地

河南骏丰建筑工程有限公司

2 河南西峡文体中心· 活动中心

防雷、避雷安全措施方案

板的位置设置在建筑物外3米处,并在上做明显标志。同时避免和减少跨步电压的危害和防止接地线遭机械损伤,并且应注意与其它金属或电缆之间保持一定距离(一般不小于3米),以免发生击穿危害。

4、引下线避开建筑物的出入口和行人容易接触到的地点,以防止发生电击事故,接地装置的接地线最好在人们不常到的建筑物外侧。

5、避雷设置后,项目部组织自检收并进行测试,接地电阻值符合要求,施工过程中,应责任落实到人,定期检查测试,不符合要求,及时整改。

6、在施工期间好有强对流天气时,高处作业人员必须立即离开,到安全地带。

7、施工现场各种机械设备和防雷引下线可利用该设备的金属结构件,但应保证电器连接。

河南骏丰建筑工程有限公司 3

第四篇:监控机房防雷措施

一、概述

随着经济建的高速发展,安全监控系统在煤矿安全生产中的迅速普及应用,由于这些系统和设备耐过电压能力低,雷电高电压以及雷电电磁脉冲侵入所产生的电磁效应、热效应都会对系统和设备造成干扰和永久性损坏,其后果可能会使整个监控系统运行失灵,并造成难以估计的经济损失。

为了对煤矿安全监控系统采取有效的防雷保护措施,保障监控系统正常可靠的运行,首先应明确监控系统遭受雷击损害的主要原因以及雷电可能的侵入途径,尤其是雷击损坏较为严重的室外监控设备,在分析其损坏原因的基础上,正确选择和使用监控系统设备的防雷保护装置,以及研究和探讨信号、电源线路的布放、屏蔽及接地方式等,对提高监控系统的抗雷电能力,优化系统的防雷水平起到很好的作用。

二、监视系统的组成及雷害分析

1、监控系统一般由以下三部分组成:

前端部分:主要由摄像枪、镜头、云台、防护罩、支架等组成。

传输部分:使用同轴电缆、电源线、多芯控制线组成,采取架空、地埋或沿墙等敷设方式传输视频、音频或控制信号。

终端部分:主要由画面分割器、监视器、控制设备,录像设备等组成。

2、监控系统雷害成因

直击雷:;雷电直接击在露天的摄像机上造成设备损坏;雷电直接击在架空线缆在上造成线缆熔断。

雷电波侵入:监控系统的电源线、信号传输或进入监控室的金属管线到雷击或被雷电感应时,雷电波沿这些金属导线侵入设备,造成电位差使设备损坏。

雷电感应:当雷击避雷针时,在引下线周围会产生很强的瞬变电磁场。处在电磁场中的监控设备和传输线路会感应出较大的电动势。这现象叫电磁感应。当有带电的雷云出现时,在雷云下面的建筑物和传输线路上都会感应出与雷云相反的电荷。这种感应电荷在低压架空线路上可达100kv,信号线路上可40-60kv。这种现象叫静电感应。电磁感应和静电感应称为感应雷,又叫二次雷。它对设备的损害没有直击雷来的猛然,但它要比直击雷发生的机率大得多。

三、监控系统防雷设计方案

(一)设计依据

1、IEC61024《建筑物防雷》

2、IEC61312《雷电电磁脉冲的防护》

3、JGJ/T16-92《民用建筑电气设计规范》

4、GB50343-2004《建筑物电子信息系统防雷技术规范》

5、GB50057-94《建筑物防雷设计规范》

6、GB50174-93《电子计算机机房设计规范》

7、GB50200-94《有线电视系统工程技术规范》

8、GB50198-94《民用闭路监视电视系统工程技术规范》

9、GB/T50311-2000《建筑与建筑群综合布线系统工程设计规范》

10、XQ3-2000《气象信息系统雷击电磁脉冲防护规范》

(二)防雷设计方案

1、前端设备的防雷

前端设备有室外和室内安装两种情况,安装在室内的设备一般不会遭受直击雷击,但需考虑防止雷电过电压对设备的侵害,而室外的设备则同时需考虑防止直击雷击。

前端设备如摄像头应置于接闪器(避雷针或其它接闪导体)有效保护范围之内。当摄像机独立架设时,避雷针最好距摄像机3-4米的距离。如有困难避雷针也可以架设在摄像机的支撑杆上,引下线可直接利用金属杆本身或选用Φ12的镀锌圆钢。为防止电磁感应,沿杆引上摄像机的电源线和信号线应穿金属管屏蔽。

为防止雷电波沿线路侵入前端设备,应在设备前的每条线路上加装合适的避雷器,如电源线(220V或DC12V)、视频线、信号线和云台控制线。

摄像机的电源一般使用AC220V或DC12V。摄像机由直流变压器供电的,单相电源避雷器应串联或并联在直流变压器前端,如直流电源传输距离大于15米,则摄像机端还应串接低压直流避雷器。

信号线传输距离长,耐压水平低,极易感应雷电流而损坏设备,为了将雷电流从信号传输线传导入地,信号过电压保护器须快速响应,在设计信号传输线的保护时必须考虑信号的传输速率、信号电平,启动电压以及雷电通量等参数。

室外的前端设备应有良好的接地,接地电阻小于4Ω,高土壤电阻率地区可放宽至 <10Ω。

2、传输线路的防雷

监控系统主要是传输信号线和电源线。室外摄像机的电源可从终端设备处引入,也可从监视点附近的电源引入。

控制信号传输线和报警信号传输线一般选用芯屏蔽软线,架设(或敷设)在前端与终端之间。

传输部分的线路在城市郊区、乡村敷设时,可采用直埋敷设方式。当条件不充许时,可采用通信管道或架空方式,此时传输线缆与其它线路其沟的最小间距和与其它线路共杆架设的最小垂直间距,可参照GB50198-94《民用闭路监视电视系统工程技术规范》进行敷设。如:传输线缆与220V交流电线线路共沟(隧道)的最小间距为0.5 m,与通讯电缆的最小间距为0.1 m;传输线缆与1?10KV电力线共杆架设的最小垂直间距这2.5 m,1KV以下电力线最小垂直间距为1.5 m,与广播线最小垂直间距为1.0 m ,与通信线最小垂直间距为0.6 m。

传输部分的线路在建筑物内部敷设时,与其它线缆的最小间距则应参照GB50343-2004《建筑物电子信息系统防雷技术规范》来做。

从防雷角看,直埋敷设方式防雷效果最佳,架空线最容易遭受雷击,并且破坏性大,波及范围广,为避免首尾端设备损坏,架空线传输时应在每一电杆上做接地处理,架空线缆的吊线和架空线缆线路中的金属管道均应接地。中间放大器输入端的信号源和电源均应分别接入合适的避雷器。

传输线埋地敷设并不能阻止雷击设备的发生,大量的事实显示,雷击造成埋地线缆故障,大约占总故障的30%左右,即使雷击比较远的地方,也仍然会有部分雷电流流入电缆。所以采用带屏蔽层的线缆或线缆穿钢管埋地敷设,保持钢管的电气连通。对防护电磁干扰和电磁感应非常有效,这主要是由于金属管的屏蔽作用和雷电流的集肤效应。如电缆全程穿金属管有困难时,可在电缆进入终端和前端设备前穿金属管埋地引入,但埋地长度不得小于15米,在入户端将电缆金属外皮、钢管同防雷接地装置相连。

3、终端设备的防雷

在监控系统中,监控室的防雷最为重要,应从直击雷防护、雷电波侵入、等电位连接和电涌保护多方面进行。

监控室所在建筑物应有防直击雷的避雷针、避雷带或避雷网。其防直击雷措施应符合GB50057-94中有关直击雷保护的规定。

进入监控室的各种金属管线应接到防感应雷的接地装置上。架空电缆线直接引入时,在入户处应加装避雷器,并将线缆金属外护层及自承钢索接到接地装置上。

监控室内应设置一等电位连接母线(或金属板),该等电位连接母线应与建筑物防雷接地、PE线、设备保护地、防静电地等连接到一起防止危险的电位差。各种电涌保护器(避雷器)的接地线应以最直和最短的距离与等电位连接母排进行电气连接。

良好的接地是防雷中至关重要的一环。接地电阻值越小过电压值越低。监控中心采用专用接地装置时,其接地电阻不得大于4Ω。采用综合接地网时,其接地电阻不得大于1Ω。

4、SPD的选择 (1)电源系统

由于有70%雷击高电位是从电源线侵入的,为保证设备安全,一般电源上应设置三级避雷保护。

A、考虑到监控机房空间所限,建议在监控室配电箱安装B+C组合式电源防雷模块.可以解决第

一、二级安装距离的限制,具有第

一、二级合并安装,无需退耦器;通流容量大(80KA);输出残压低(≤2KV);并联安装,无需考虑设备功率;配置汇流排,适用各种电源制式;模块式、标准导轨安装等优点。

C、在监控室UPS电源或监控设备前安装单相串联避雷器,串联安装,功率≤4KW,带LC滤波,超低残压输出,作为电源线路第三级保护。 (2)信号系统

在视频传输线、信号控制线,入侵报警信号线进入前端设备之前或进入中心控制台前应加装相应的避雷保护器。

A、在摄像头到控制中心的监控摄像头到控制中心的视频传输电缆两端应安装视频信号SPD,以保护摄像头。

B、对室外云台,每条控制线路两端应安装云台控制线路避雷器。

四、防雷方案预算(略)

五、监控系统防雷方案示意图

六、机房电源系统简易选型方法

七、运行维护

(1)避雷器安装之后,应检查所有接线是否正确安装,然后运行测试,看系统和设备是否正常工作,有无异常情况,如有,应及时检查,直至整个系统均正常运作。

(2)每年雷雨季节前应对接地系统进行检查和维护。主要检查连接处是否紧固、接触是否良好、接地引下线有无锈蚀、接地体附近地面有无异常,必要时应挖开地面抽查地下蔽部分锈蚀情况,如果发现问题应及时处理。

(3)接地网的接地电阻宜每年进行一次测量。

(4)每年雷雨季节前应对运行中的避雷器进行一次检测,雷雨季节中要加强外观巡视,如检测发现异常应及时处理。

八、竣工验收

(1)防雷工程施工单位须按设计要求精心施工,工程建设管理部门应有专人负责监督。对于隐蔽工程应实行随工验收,重要部位应进行拍照和专用设备项记录。

(2)设计资料和施工记录应由相应的防雷主管部门妥善存档备查。

九、售后服务及质量保证

(1)由本公司销售的产品和施工的工程均由保险公司承担产品质量和工程责任保险。

(2)工程中所使用的防雷器件,从工程验收合格之日起一年内免费保修,超过保修期两年内维修只收取工本费,终身负责维修。

(3)根据用户需求,免费提供防雷知识或防雷技术讲座; (4)保修期内,若防雷系统出现故障,公司技术人员在接到通知后的24小时内赶到现场。

第五篇:防雷隐患整改措施

篇一:娄底市中小学校防雷安全隐患整改措施 娄底市中小学校防雷的安全隐患及整改措施

【摘 要】 通过分析娄底市历年来的雷暴资料表明:娄底市年平均雷暴日数达73d,属于典型的雷暴多发区,而学校是人员密集的场所,中小学校的防雷安全工作就尤为重要。本文主要对全市中小学校防雷安全隐患排查工作中查出的安全隐患作分析,并结合此次整改实践,提出了一些见解,以期与同行交流。

【关键词】 学校 防雷 安全隐患 整改 措施

学校是人口密集的场所,中小学校的雷击灾害预防,确保师生人身安全问题一直是气象防灾减灾工作的重点和难点[1]。2007年5月23日重庆开县“学校雷击事故”就是深刻的教训,该雷击事件造成学生7人死亡、19人重伤、20人轻伤,震惊全国。国务院领导同志对此高度重视,分别做出了重要指示或批示[2],中国气象局以及各省市气象部门也采取了多种措施进一步落实加强防雷减灾服务工作。近年来,娄底市气象局也专门针对全市的中小学校防雷安全隐患作了全面的排查,并对部分学校进行整改,笔者根据多年的防雷工作经验结合此次实践,提出了一些见解,以期与同行交流。 1 娄底市雷暴气候统计特征

雷电灾害是“联合国国际减灾十年”公布的最严重的十种自然灾害之一,雷电灾害造成的损失仅次于干旱和洪涝灾害[3]。统计娄底市54年(1959-2012年)来气象资料表明:娄底市全年均可能出现雷暴,主要集中在4-9月份,年平均雷暴日数达73d,年雷暴日数最多高达112d(1975年),属于典型的雷暴多发区。根据娄底市近年来雷击事件统计资料显示:雷击总数呈上升趋势,仅2000~2007年因雷电造成的直接经济损失达200多万元,人员伤亡2人。 2 娄底市中小学校防雷的安全隐患

近年来,随着湖南省气象局防雷工作力度的不断加强,娄底市气象局在上级部门和娄底市委市政府的双重领导下,联合娄底市教育局、安监局开展了娄底市中小学校防雷安全隐患排查工作。通过排查了解到娄底市中小学校的防雷工作存在以下安全隐患:

(1)防雷意识淡薄,没有认识到防雷工作的重要性。在排查的过程中,我们听到最多的一句话是:“这楼这么低,没必要安装防雷装置吧!”,更有学校领导存在严重的麻痹思想和侥幸心理,认为“没有安装防雷装置,十几年来照样没受过雷击。

(2)防雷装置未安装,或不健全。在排查过程中,全市共发现有208所学校765幢建筑物没有安装防雷设施,或没有经过气象部门的检测验收就投入使用。此情况大都是2000年以前所建的。而有部分学校楼房虽有避雷带,但因年久失修,安装的避雷带已经是型同虚设,出现了避雷带、引下线生锈断开,避雷带支柱脱落等现象。给学校师生的生命和财产安全带来了严重的安全隐患。

(3)部分学校未安装防感应雷的防护装置。在排查过程中,发现很多学校的管理者都有一个误解,以为简单地安装一根避雷针就可以高枕无忧了。其实随着现代化程度的提高,学校的电子设备也呈增多的趋势,机算机、电视、交换机等电器属弱电设备,抗击雷电感应的能力较弱,当雷电击中屋顶的避雷带,雷电流流经建筑物结构柱内的主筋(引下线),泄放入地时,在引下线周围会产生很强的交变电磁场,强烈的电磁辐射雷电电磁脉冲,通过空间耦合或金属导体侵入计算机,轻者造成计算机误动作或计算机局部损坏甚至整机报废,重者直接威胁人的生命安全[4]。安装避雷针的建筑虽然可避免直击雷,但对感应雷却无能为力。 3 防雷整改措施和落实情况

鉴于娄底市中小学校的防雷状况,按照防雷技术标准规范汇编的规定,因地制宜我们采取以下措施:

(1)加强了防雷知识及其法律法规的宣传,在娄底市政府、企业、学校组织开展了多场“防雷知识”讲座,使防雷知识及法律法规宣传,真正做到“进政府”、“进企业”、“进学校”。使教育行政部门、学校充分认识到防雷减灾工作的重要性,消除了麻痹思想和侥幸心理,增强了广大师生的雷电灾害预防能力,将雷电灾害造成的损失降低到最小。

(2)根据现场摸底排查情况,编写了《娄底市中小学校防雷安全隐患整改方案》,做了防雷整改工程的初步预算。娄底市委市府在财政并不富裕的情况下,下定决心,由娄底市财政支付相关费用,分三年按轻、重、缓、急,合理安排防御雷电设施整改的建设顺序,逐步完成学校防雷安全隐患的整改。到2012年底为止,娄底市中小学校防雷安全隐患整改工作已全面完成。

(3)按照《建筑物防雷设计规范》gb50057-2010的防雷技术标准,做好综合防雷。在建筑物上装设避雷网(带)或避雷针或由这两种混合组成的接闪器等措施,来预防直击雷;低压线路宜采用埋地电缆或敷设在加空金属线槽内的电缆引入,电源处、信号线和电话线应加装相应的避雷器,引下线和防雷电感应、电气设备、信息系统等接地共用同一接地装置等措施,来预防感应雷。

(4)气象部门要坚持依法行政、依法管理,加强学校新建、改建、扩建建设项目的防雷安全工作。教育行政部门和学校要严格按照《防雷减灾管理办法》【2011】20号和《建筑物防雷设计规范》gb50057-2010等国家有关法律法规和技术标准,严格执行雷电灾害风险评估制度、防雷工程施工监审制度、防雷工程竣工验收等制度。从源头上杜绝学校建设项目防雷安全隐患。 4 结语

防雷工程不仅要防直击雷,还要预防雷电感应和电波入侵。因此要做好学校雷电灾害的防御工作,首先是从思想观念上消除人们的麻痹思想和侥幸心理,让人们懂得雷电防护知识;其次依法做好防雷工程建设,让我们生活在保护伞下面;再就是加强管理,各部门应各司其职、加强协调、密切配合,采取有力措施,共同做好防雷安全工作。 参考文献: [1]黄彩东,黄正宏,周小武.河池市中小学校防雷现状及对策建议[j].安徽农学通报,2011,17(24):127-128. [2]吴永斌,李勇进,胡易生等.浅谈中小学校的防雷安全检测[j].第六届国际防雷论坛论文摘编,314-316. [3]黄小红.农村防雷探讨[j].现代农业科技,2010(20);397. [4]段毅强.融水县中小学校防雷现状及防御对策[j].现代农业科技,2010(2):297-298.篇二:娄底市中小学校防雷的安全隐患及整改措施 娄底市中小学校防雷的安全隐患及整改措施

【摘 要】 通过分析娄底市历年来的雷暴资料表明:娄底市年平均雷暴日数达73d,属于典型的雷暴多发区,而学校是人员密集的场所,中小学校的防雷安全工作就尤为重要。本文主要对全市中小学校防雷安全隐患排查工作中查出的安全隐患作分析,并结合此次整改实践,提出了一些见解,以期与同行交流。

【关键词】 学校 防雷 安全隐患 整改 措施

学校是人口密集的场所,中小学校的雷击灾害预防,确保师生人身安全问题一直是气象防灾减灾工作的重点和难点[1]。2007年5月23日重庆开县“学校雷击事故”就是深刻的教训,该雷击事件造成学生7人死亡、19人重伤、20人轻伤,震惊全国。国务院领导同志对此高度重视,分别做出了重要指示或批示[2],中国气象局以及各省市气象部门也采取了多种措施进一步落实加强防雷减灾服务工作。近年来,娄底市气象局也专门针对全市的中小学校防雷安全隐患作了全面的排查,并对部分学校进行整改,笔者根据多年的防雷工作经验结合此次实践,提出了一些见解,以期与同行交流。 1 娄底市雷暴气候统计特征 雷电灾害是“联合国国际减灾十年”公布的最严重的十种自然灾害之一,雷电灾害造成的损失仅次于干旱和洪涝灾害[3]。统计娄底市54年(1959-2012年)来气象资料表明:娄底市全年均可能出现雷暴,主要集中在4-9月份,年平均雷暴日数达73d,年雷暴日数最多高达112d(1975年),属于典型的雷暴多发区。根据娄底市近年来雷击事件统计资料显示:雷击总数呈上升趋势,仅2000~2007年因雷电造成的直接经济损失达200多万元,人员伤亡2人。

2 娄底市中小学校防雷的安全隐患

近年来,随着湖南省气象局防雷工作力度的不断加强,娄底市气象局在上级部门和娄底市委市政府的双重领导下,联合娄底市教育局、安监局开展了娄底市中小学校防雷安全隐患排查工作。通过排查了解到娄底市中小学校的防雷工作存在以下安全隐患:

(1)防雷意识淡薄,没有认识到防雷工作的重要性。在排查的过程中,我们听到最多的一句话是:“这楼这么低,没必要安装防雷装置吧!”,更有学校领导存在严重的麻痹思想和侥幸心理,认为“没有安装防雷装置,十几年来照样没受过雷击。

(2)防雷装置未安装,或不健全。在排查过程中,全市共发现有208所学校765幢建筑物没有安装防雷设施,或没有经过气象部门的检测验收就投入使用。此情况大都是2000年以前所建的。而有部分学校楼房虽有避雷带,但因年久失修,安装的避雷带已经是型同虚设,出现了避雷带、引下线生锈断开,避雷带支柱脱落等现象。给学校师生的生命和财产安全带来了严重的安全隐患。

(3)部分学校未安装防感应雷的防护装置。在排查过程中,发现很多学校的管理者都有一个误解,以为简单地安装一根避雷针就可以高枕无忧了。其实随着现代化程度的提高,学校的电子设备也呈增多的趋势,机算机、电视、交换机等电器属弱电设备,抗击雷电感应的能力较弱,当雷电击中屋顶的避雷带,雷电流流经建筑物结构柱内的主筋(引下线),泄放入地时,在引下线周围会产生很强的交变电磁场,强烈的电磁辐射雷电电磁脉冲,通过空间耦合或金属导体侵入计算机,轻者造成计算机误动作或计算机局部损坏甚至整机报废,重者直接威胁人的生命安全[4]。安装避雷针的建筑虽然可避免直击雷,但对感应雷却无能为力。 3 防雷整改措施和落实情况

鉴于娄底市中小学校的防雷状况,按照防雷技术标准规范汇编的规定,因地制宜我们采取以下措施:

(1)加强了防雷知识及其法律法规的宣传,在娄底市政府、企业、学校组织开展了多场“防雷知识”讲座,使防雷知识及法律法规宣传,真正做到“进政府”、“进企业”、“进学校”。使教育行政部门、学校充分认识到防雷减灾工作的重要性,消除了麻痹思想和侥幸心理,增强了广大师生的雷电灾害预防能力,将雷电灾害造成的损失降低到最小。

(2)根据现场摸底排查情况,编写了《娄底市中小学校防雷安全隐患整改方案》,做了防雷整改工程的初步预算。娄底市委市府在财政并不富裕的情况下,下定决心,由娄底市财政支付相关费用,分三年按轻、重、缓、急,合理安排防御雷电设施整改的建设顺序,逐步完成学校防雷安全隐患的整改。到2012年底为止,娄底市中小学校防雷安全隐患整改工作已全面完成。

(3)按照《建筑物防雷设计规范》gb50057-2010的防雷技术标准,做好综合防雷。在建筑物上装设避雷网(带)或避雷针或由这两种混合组成的接闪器等措施,来预防直击雷;低压线路宜采用埋地电缆或敷设在加空金属线槽内的电缆引入,电源处、信号线和电话线应加装相应的避雷器,引下线和防雷电感应、电气设备、信息系统等接地共用同一接地装置等措施,来预防感应雷。

(4)气象部门要坚持依法行政、依法管理,加强学校新建、改建、扩建建设项目的防雷安全工作。教育行政部门和学校要严格按照《防雷减灾管理办法》 【2011】20号和《建筑物防雷设计规范》gb50057-2010等国家有关法律法规和技术标准,严格执行雷电灾害风险评估制度、防雷工程施工监审制度、防雷工程竣工验收等制度。从源头上杜绝学校建设项目防雷安全隐患。 4 结语

防雷工程不仅要防直击雷,还要预防雷电感应和电波入侵。因此要做好学校雷电灾害的防御工作,p[3]黄小红.农村防雷探讨[j].现代农业科技,2010(20);397. [4]段毅强.融水县中小学校防雷现状及防御对策[j].现代农业科技,2010(2):297-298.篇三:防雷安全隐患排查与整改自查

防雷安全隐患排查与整改自查(检查)表

年 月 日

上一篇:分类定级情况汇报下一篇:涪陵农业特色产业