温室大棚控制系统设计

2023-03-16

第一篇:温室大棚控制系统设计

太阳能温室大棚监测控制系统方案设计

为适应市场的需求,目前温室大棚在国内外都得到了广泛的应用,其中以美国、日本、荷兰等国家发展最为迅速,基本实现了环境智能监控和远程监测。而在国内,大部分温室大棚未采用智能控制技术,且存在环境控制能力低、自动化程度落后、价格昂贵等缺点,这在很大程度上降低了温室农作物的产量与质量,因此,广泛实现温室的智能监控很有必要。此外,维持温室大棚的正常运行需要提供充足的电能,而一般大型的温室大棚位于离居民生活区较远的空旷地区,对电能的利用并非很方便,但是太阳能资源丰富,因此如何实现对太阳能的利用成为一个值得思考与解决的问题。

1 设计思想

要实现对太阳能的利用,可以借助于太阳能电池实现光电转换,近年来太阳能电池的转换效率与使用寿命都有了很大的提高,目前单晶硅的转换效率可达30%左右。因此利用太阳能光伏系统为温室大棚供电成为了可能,为提高太阳能利用率,可采用MPPT和光伏系统自跟踪技术。影响农作物的生长因子主要有:温度、湿度、CO2浓度以及光照。实现对各生长因子的智能控制,能很大程度地提高农作物的产量与质量。

基于太阳能供电的温室环境智能监控系统框图如图1所示。

太阳能温室大棚监测控制系统框图

2 模块化设计

2.1 太阳能供电模块

该模块主要包含MPPT的实现、蓄电池充放电监控、自跟踪系统以及电压转换4个部分。MPPT的实现和自跟踪系统均是为了实现太阳能更高效率的利用,蓄电池充放电监控则是对蓄电池、太阳能光伏组件阵列以及负载的保护,电压转换使得该系统可为各种交流和直流负载供电。太阳能供电模块框图如图2所示。

2.1.1 MPPT的实现

MPPT即最大功率点跟踪,是指控制器能够实时侦测太阳能板的发电电压,并追踪最高电压电流值,使太阳能电池板以最高的效率对蓄电池充电。MPPT控制的原理实质上是一个自动动态寻优的过程,通过功率的比较来改变占空比和脉宽调制信号,进而改变太阳能电池板的工作负载,改变输出功率点的位置,以达到最优。实现MPPT通常需要斩波器来完成DC/DC转换,斩波电路分为BUCK电路和BOOST电路。本文中利用BUCK变换器来实现MPPT,通过调节BUCK变换器的PWM占空比输出,使负载等效阻抗跟随太阳能光伏组件阵列的输出阻抗,从而使光伏阵列在任何条件下均可获得最大功率输出。BUCK电路实际上是一种电流提升电路,主要用于驱动电流接收型负载,直流变换通过电感完成,其电路图如图3所示。

故通过调节占空比即可调整输出负载,从而可使太阳能光伏组件阵列工作在最大功率点。占空比的调节是通过控制Q基极电压来实现,可借助于单片机编程加以控制。

2.1.2 蓄电池充放电监控电路

蓄电池充放电监控电路是为了防止蓄电池组过充、过放等现象,蓄电池组在整个系统中起到储存与提供能量的作用,在硬件上可借助于单片机来实现,其软件程序流程图如图4所示。

2.1.3 自跟踪系统

为了实现对太阳能更大限度的利用,要保证太阳光每时每刻都垂直照射在太阳能电池板上,即太阳能电池板必须跟随这太阳的运动而运动。目前常用的自跟踪方法有匀速控制方法、光强控制方法、时空控制方法。为了方便实现并达到较好的跟踪效果,可以将匀速控制法与光强控制法相结合。并通过对实际光强与设定值的比较,分别采取紧跟踪、疏跟踪以及不跟踪的措施。在硬件上可以通过单片机、太阳光跟踪传感器、光强测定器等实现。

2.1.4 太阳能应用于温室的前景

目前使用太阳能光伏阵列进行供电需要占用一定的土地资源来安放太阳能电池板,然而现在已经生产出了半透明太阳能组件,此外透明太阳能电池组件也在进一步研究中,这使得将太阳能电池安装在温室顶部成为了可能。而且太阳能电池的转换效率在不断提升,因此太阳能光伏系统的广泛使用将成为必然趋势。

2.2 智能监控模块

智能监控模块的主要部分为传感器模块、A/D转换模块、微处理器以及各因子的控制设备。

2.2.1 传感器的选取

测温设备选择SLST系列数字传感器,它是采用美国Dallas半导体公司的DS18B20数字化温度传感器,为不锈钢外壳封装,防水防潮,且具有高灵敏度和极小温度延迟,现场温度以“一线总线”的数字方式传输,大大提高了系统的抗干扰性能。其测温范围为-55~+125℃,温度准确度为±0.5℃,可直接将温度转换为串行数字信号供单片机处理。温室内湿度的测量采用JCJ100MH湿度变送器,其采用高精度湿敏电容进行测量,具有灵敏度高、稳定性好、准确度高和使用寿命长 等特点。其工作环境为-40~80℃,输出电压范围为0~5 V,湿度测量范围为0~100%,均满足温室测量的需求。土壤湿度的测量采用高精度土壤水分传感器,它采用世界先进技术的土壤湿度传感器,精密、可靠、耐用,可直接连接至数据采集器,可长期埋设在地下任意深度,连续测量,其测量范围为0~100%,工作电压为7~15 V,输出0~1.1 V的电压信号,可经适当放大后供A/D转换。光照度的测定可以采用KITOZER系统光照度变送器。该种变送器以对弱光也有较高灵敏度的硅兰光伏探测器为传感器,具有测量范围宽、线性度好、防水性能好、传输距离远等特点,其工作电压为12~30 V,测量范围为0~200 000 LUX,支持二线制4~20 mA电流输出、三线制0~5 V电压输出、液晶显示输出以及RS 232,RS 485网络输出,适合在温室大棚环境下使用。CO2浓度的测定可采用FIGARO公司生产的TGS4160,它是一种固态电化学型CO2传感器,具有体积小,寿命长,选择性和稳定性好等特性。因为它的预热时间较长,故适合在室温下长时间通电连续工作。它的测量范围为0~5 000 ppm,使用寿命2 000天,内部含有热敏电阻起补偿作用。通过各传感器获得电信号,经A/D转换后输入单片机与所需要的设定值相比较,然后控制相应的设备来对各因子进行调节。

2.2.2 各生长因子的控制

农作物生长因子主要是指温度、湿度、CO2浓度以及光照。

温度 升温设备可以采用热水锅炉、燃油锅炉、太阳能加热器等,鉴于室外太阳能资源充足,白天可采用太阳能加热器加热,实现光能向热能的直接转换,在太阳不足时,采取电加热器,由蓄电池组供电。降温设备采用湿帘风机,其中通风设备采取强制通风的方式,即利用风机产生风压强制空气流动降温,湿帘是利用水蒸发吸热的原理来降温,二者的结合作用能力强,效果稳定。

湿度 当实际湿度低于所需要湿度时,可以通过控制安装在大棚顶端的喷嘴来实现,通过喷雾来提高湿度,同时又不至于使得湿度过大。当湿度过高,则可以通过通风来降低,这是利用湿度差来进行室内外的空气交换实现。

CO2浓度 CO2的浓度直接影响着农作物的产量与质量,合适的CO2浓度可能达到40%~200%的增产。大气中的CO2浓度仅为350 ppm,在温室中需要提高CO2浓度,可利用CO2发生器来实现,采用化学反应、燃煤、燃气等方式来产生CO2,当CO2浓度过低时,即可通过控制CO2发生器的开关来提高。当浓度过高时,通过打开通风机即可。

光照 光照的控制设备为遮阳设备和补光设备,当光照过强时,可借助遮阳设备来实现,当光照过弱时,可利用补光灯来实现,而且补光灯开启的数量受外界光照的影响,最终达到较为合适的光照强度。

2.2.3 A/D转换 A/D转换采用TLC1549,将各传感器所采集的模拟电信号转换为数字量输入单片机进行处。

,对各因子加以控制。TLC1549为逐次比较型10位A/D变换器,其片内自动产生转换时间脉冲。转换时间小于21μs。其具有固有的采样保持电路,终端兼容TLC549,TLV549,采用CMOS工艺,有2个数字输入和1个三态输出,可和微处理器直接相连。

2.2.4 软件实现

该系统中所采用的单片机可以选择51/52系列单片机,如AT89C51。通过单片机编程来实现对各种设备开关的控制,其控制流程图如图5所示。

环境智能控制流程图

3 结语

该系统实现了对太阳能资源的有效利用,采用MPPT和自跟踪系统来实现高效率转换,且可以较好地智能控制农作物各生长因子,使得农作物生长在最为合适的环境中,大大提高了农作物的产量与质量。本文中所涉及的只是单间温室的智能控制,然而可以通过通信接口RS 232与上位机进行通信,实现集散控制,这样可以大大提高总体工作效率。

托普物联网简介

托普物联网是浙江托普仪器有限公司旗下的重要项目。浙江托普仪器是国内领先的农业仪器研 发生产商,依据自身在农业领域的研发实力,和自主研发的配套设备,在农业物联网领域崭露头角!

托普物联网以客户需求为源头,结合现代农业科技、通信技术、计算机技术、GIS信息技术,以及物联网技术,竭诚为传统行业提供信息化、智能化的产品与端到端的解决方案。主要有:大田种植智能解决方案、畜牧养殖管理解决方案、食品安全溯源解决方案、食用菌种植智能化管理解决方案、水产养殖管理解决方案、温室大棚智能控制解决方案等。

托普物联网三大系统产品

我们知道物联网主要包括三大层次,即感知层、传输层和应用层。因此托普物联网产品主要以这三个层次延伸,涵盖了感知系统(环境监测传感设备)、传输系统(数据传输处理网络)、应用系统(终端智能控制平台。)

托普物联网模块化智能集成系统

托普物联网依据自身研发优势,开发了多种模块化智能集成系统。

1、传感模块:即环境传感监测系统。它依据各类传感设备可以完成整个园区或完成对异地园区所需数据监测的功能。

2、终端模块:即终端智能控制系统。它可以完成整个园区或远程控制异地园区进行自动灌溉、自动降温、自动开启风机,自动补光及遮阳,自动卷帘,自动开窗关窗,自动液体肥料施肥、自动喷药等各类农业生产所需的自动控制。

3、视频监控模块:即实时视频监控系统。主要是通过监控中心实时得到植物生长信息,在监控中心或异地互联网上既可随时看到作物的实时生长状况。

4、预警模块:即远程植保预警系统。可以通过声光报警、短信报警、语音报警等方式进行预警。

5、溯源模块:即农产品安全溯源系统。该系统对农产品从种植准备阶段、种植和培育阶段、生长阶段、收获阶段等对作物生长环境、喷药施肥情况、病虫害状况等实施实时信息自动记录,有据可查,在储藏、运输、销售阶段采用二维码或者RFID射频技术对各个阶段数据记录,这样就能实现消费者拿到农产品时通过终端设备或网络就能查看到各类信息,才能放心食用。

6、作业模块:即中央控制室。可通过总控室对整个区域情况进行监测,包括各个区域采集点参数、控制作业状态、实时视频图像、施肥喷药状况、报警信息等。

第二篇:蔬菜大棚温度控制系统设计学年论文课案

湖南财政经济学院信息管理系学年论文

本科学年论文(设计)

蔬菜大棚温度控制系统设计

二O一五 年 五

别 信息管理系 专 业 电子信息工程 届 别 学生姓名 指导教师

2012 刘超群

班 级 电子信息工程

职 称

副教授

I

湖南财政经济学院信息管理系学年论文

摘 要

蔬菜大棚温度自动控制系统由主控制器AT89C51单片机、温度传感器DS1820和LED显示器等构成,实现对蔬菜大棚温度的检测与控制,从而有效提高蔬菜的产量。文中提出了具体设计方案,讨论了蔬菜大棚温度检测与控制的基本原理,进行了可行性论证。由于利用了单片机及数字控制系统的优点,系统的各方面性能得到了显著的提高。用户可通过键盘设置需要报警的上下限值。文中从硬件和软件两方面介绍了温度控制系统,对硬件原理图和程序流程图进行了系统的描述。并用Keil作为软件调试界面,PROTEUS作为硬件仿真界面,实现了系统的总体调试,结果表明该系统能实现温度的自动测量和自动控制功能,可将棚内的温度始终控制在适合蔬菜生长的温度范围内。

关键词:温度传感器;单片机;LED显示器

II

湖南财政经济学院信息管理系学年论文

1. 绪论

由于现代农业发展得非常快速,受控农业的研究受到很多的重视,特别是温室工程,已经变成工厂化高效农业的一个重要组成部分。研究温室环境信息进行模拟、分析、预测,研究开发基于作物成长栽培环境的温室环境多因子智能化综合测控系统,研究高效生产的温室环境综合测控模式与配套设施等将是今后主要研究内容。

本文设计的是一种基于单片机的温度测量控制系统,数字温度传感器通过单总线与单片机连接,系统结构简单,抗干扰能力强,很适合用于蔬菜温室大棚温度控制。

2.蔬菜大棚的系统设计

2.1控制系统整体结构

温度传感器的作用是采集大棚内的温度,并进行判断和显示。由于智能温度传感器DS18B20既能对温度进行测量,又能设定所需要控制的温度,并对温度值能够把二进制转换成十进制,所以本设计系统中选用智能温度传感器DS18B20。多个DS 18B20可以并联到3或2根线上,CPU只需一根端口线就能与诸多DS18B20进行通信,而它们只需简单的通信协议就能加以识别,这样就节省了大量的引线和逻辑电路。

本系统中的单片机选用AT89S51做控制器。主要功能是:实现对数字量的采集,并把采集来的数据在LCD液晶显示器上进行显示;可以通过键盘设置参数,可以进行声光报警;可以通过按键来完成手动/自动控制方式的切换;可以通过串行接口把采集到的数据和控制信息传送至上位机,可以接收上位机命令实现参数设置;可以进行输出控制。

2.2系统的工作原理

该温度测控系统的工作原理就是进行计算机编程和单片机编程,使智能温度传感器DS18B20正常工作,去检测大棚内实际的温度,并由数字显示电路显示出当时的温度值。如果采集的温度值高于上限报警温度,系统将发出报警,并同时起动制冷设备,把温度降下来,当温度降到一定的程度,即低于上限复位值时,立即关闭制冷设备,使制冷设备停止工作。当采集的温度值低于下限报警温度值时,系统又发出报警,并同时起动制热设备,使大棚内的温度上升,当温度上升到一定的程度,即高于下限复位值时,立即关闭制热设备,使制热设备停止工作,从而使温室大棚的温度值维持在一定的范围内。本温度系统分为两个部分,主机和温度检测与控制部分。原理框图如下图所示。

湖南财政经济学院信息管理系学年论文

图1原理框图

3.系统各模块的硬件设计

3.1 单片机模块简介

单片机应用电路模块由核心芯片,时钟电路和复位电路组成。该模块的功能是让单片机正常工作。AT89C51单片机通常采用上电自动复位和开关手动复位两种方式。 本设计采用上电复位电路,所谓上电复位,是指单片机只要一上电,便自动地进入复位状态。在通电瞬间,电容C通过电阻R充电,RST端出现正脉冲,用以复位。

3.1.1温度采集模块

温度控制在计算机与自动化测控领域有很多应用,而传统的测量温度控制通常是热电偶进行测量,为了进行准确的温度测量,必须给热电偶提供一个良好的恒流源,由于热电偶输出的信号是模拟信号,所以信号在输给CPU之前应该先进行A/D转换。首先选用DS18B20智能温度传感器,与传统的测温电阻相比,它能直接读出被测温度,同时可以通过简单的编程实现数字输出,它的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰能力更强。它的工作周期可以分为两个部分,及温度检测和数据处理。

3.1.2电路原理图

下图是所用51单片机的电路原理图

2 3.1.3温度传感器电路介绍

下图可知温度传感器与单片机如何连接

图2电路原理图

图3单片机与传感器连接图

3

湖南财政经济学院信息管理系学年论文

湖南财政经济学院信息管理系学年论文

3.2 LED驱动电路

LED显示器是由发光二极管显示字段的显示器件,也可称为数码管。其外形结构如图2-7所示,由图可见它由8个发光二极管(以下简称字段)构成,通过不同的组合来显示出0~

9、A、B、C、D、E、F以及小数点“.”等字符。

图4 LED驱动电路图

3.3A/D转换接口

A/D转换器的种类繁多、特性各异。在设计数据采集系统、测控系统和智能仪器仪表时,应选择性能合适、性能价格比高的A/D转换器芯片。

本设计选择的A/D转换器芯片为ADC0809。ADC0809是8路8位逐次逼近型A/D转换CMOS器件,在过程控制和机床控制等应用中,能对多路模拟信号进行分时采集和A/D转换,输出数字信号通过三态缓冲器,可直接与微处理器的数据总线相连接。

3.3.1 ADC0809芯片

ADC0809是采样分辨率为8位的、以逐次逼近原理进行的A/D转换器件。内有一个8通道多路开关以及微处理机兼容的控制逻辑的CMOS组件。它由比较器、逐次逼近器、D/A转换器及控制和定时5部分组成,输出具有TTL三态锁存缓冲器,可以直接连到单片机数据总线上。

(1)ADC0809的内部逻辑结构

由图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8 路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。

4 3.3.2 ADC0809与单片机的接口方式

图5 ADC0809的内部结构

ADC0809对输入模拟量要求:信号单极性,电压范围是0~5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。

有上面的简述,可以看出,用单片机控制ADC时,可采用查询和中断控制两种方式。

查询方式是在单片机把启动信号送到ADC之后,执行别的程序,同时对0809的EOC引脚的状况经行查询,以检查ADC转换是否已经结束,如查询到变换已经结束,则读入转换完毕的数据。中断控制方式是在启动信号送到ADC之后,单片机执行别的程序。0809转换结束并向单片机发出中断请求信号时,单片机响应此中断请求,进入中断服务程序,读入转换数据。中断控制方式效率高所以特别适合于转换时间较长的ADC。

ADC0809与单片机的连接电路如下图所示。

图6 ADC0809与单片机的连接电路

5

湖南财政经济学院信息管理系学年论文

湖南财政经济学院信息管理系学年论文

3.3.3 A/D转换电路的工作原理

由图可知,ADC0809的A/D转换结果输出端out8-out1与单片机的P0口相连,EOC与P3.3口相连,EOC端是A/D转换完成信号,当转换结束时,EOC发出一个脉冲向单片机提出中断申请,单片机响应中断请求。单片机的WR接ADC0809的START,来操作ADC0809的转换开始,当转换结束后EOC变低电位。

在此次的设计中由于有8路信号输入,所以在通道选择有A、B、C三引脚来选择。其多路开关的作用主要是用于信号切换, 如在某一时刻接通某一路检测信号, 而此刻其他路断开, 从而达到信号转换的目的。

3.4电源电路

在实际的应用中,单片机的电压5V和运放的12V电压都需要从外部的220V交流电源来提供。这就需要把220V的交流电转换成5V和12V的直流电。

在这个设计中,采用了简单的实用的变压器,根据理想变压器原副边匝数比公式,则可通过计算来调节参数达到转换为低电压所谓目的。低压的交流信号在通过整流稳压等操作实现了交流向直流转换的要求了。其电路图如图所示。

图7电源电路

4.软件设计

4.1程序流程图及分析

4.1.1主程序

本系统的工作流程是,操作人员可以从键盘上输入要设定的温度值。当此温度值与当前温度不同时,单片机控制系统采取调节的动作。当设定温度大于测定温度时,则使加热器工作;当设定温度小于测定温度时,则开启降温风扇。此程序流程包括4个部分。第一部分是主程序,它描述的是程序的总体结构;第二部分是定时器T0的描述,它的功能是将实际温度和设定的温度比较,再作出相应

6

湖南财政经济学院信息管理系学年论文

的动作;第三部分是键盘扫描部分;第四部分是显示部分,用于显示温度值。

图8主程序流程图

关键代码如下

void sw_detect() interrupt 0 {

unsigned char temp,i; IE0 = 0; sw = 0; P2 &= 0x8f; for(i = 0;i < 5;i++); P2 |= 0x70; sw = 1; if(sw == 0) {

temp = (P2 & 0x70);

while(P3 & 0x04 == 0)

LED_display();

if(temp)

sw_temp[0] = temp >> 4;

switch(sw_temp[0])

{

case 6:sw_temp[0] = max;break;

case 5:sw_temp[0] = min;break;

7

湖南财政经济学院信息管理系学年论文

case 3:sw_temp[0] = mode;break;

default:sw_temp[0] = sw_temp[0];

}

if(sw_temp[0] != 0)

sw_flag = 1;//有新的按键中断发生,置标志位

} LED_display(); }

4.1.2A/D转换的程序

首先用指令选择0809的一个模拟输入通道,当执行开启A/D转换指令时,单片机的/WR信号有效,从而产生一个启动信号,给0809的START引脚送入脉冲,开始对选通信号进行转换。当转换结束后,0809发出转换结束EOC(高电平)信号,该信号可作为向单片机发出中断请求信号,当执行A/D转换指令时,单片机发出读控制/RD信号,OE端有高电平,且把经过0809转换完毕的数字量读到A累加器中。中断服务程序流程图如图所示。

图9 A/D转换的程序流程图

关键代码如下 void main() { initdac0809(); startadc(); while(1) {

while(EOC==0)/*ADC0809正常转换*/

OE=1;/*转换完毕,打开输出*/

8

湖南财政经济学院信息管理系学年论文

} } ad_data[--i]=P0/*从P0读取结果*/ startadc();/*开始第二次AD转换*/ OE=0;/*禁止输出*/ 5.仿真与分析

运行Proteus的ISIS,进入仿真软件的主界面。通过左侧的工具栏区的P(从库中选择元件)命令,在Pick devices窗口中选择系统所需元器件,还可以选择元件的类别,生产厂家等。本设计所需主要元器件有:AT89C51芯片,ADC0808芯片,一个八位七段数码显示器,可变电阻,电阻,电容,按键,7447芯片,74HC138芯片,发光二极管,74HC164芯片等。选择元器件后连接的电路图如图所示。

U3(CLOCK)106U3CLOCKSTARTEOCOUT1OUT2OUT3OUT4OUT5OUT6OUT7OUT8R15R14R13R12R11R10R9R8C419VCC10k10k10k10k10k10k10k10k39383736353433322122232425P2.426P2.527P2.628oe1011121314151617RXDTXDsweoc118117116115114113112111eoc1111121131141151161171187212019188151417U1XTAL1C31nFX1C51nFR120018XTAL29RST9R210k293031PSENALEEAOEADC0808VREF(+)VREF(-)1216P2.0/A8P2.1/A9P2.2/A10P2.3/A11P2.4/A12P2.5/A13P2.6/A14P2.7/A15P3.0/RXDP3.1/TXDP3.2/INT0P3.3/INT1P3.4/T0P3.5/T1P3.6/WRP3.7/RDVCCP0.0/AD0P0.1/AD1P0.2/AD2P0.3/AD3P0.4/AD4P0.5/AD5P0.6/AD6P0.7/AD7IN0IN1IN2IN3IN4IN5IN6IN7U3(IN0)2627281234525242322U3(IN0)U3(IN4)GNDRV11kADD AADD BADD CALEVCCR20BUZ1BUZZERGNDP3.7R19Q72N39041234H_led5zhi_leng6L_led7jia_re8VCCP1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7AT89C51R5R3R4Y0AY1U4BY2CY3Y474LS138Y5E1Y6E2Y7E312310k10k10kGND3546217P3.7LTRBIBI/RBODCBAU27447gQGfQFeQEdQDcQCbQBaQA1415910111213247404117404740413U7:AU7:B6U7:CU7:D74041514131211109712P2.4P2.5+-modeVCC13211353645P2.69127404151016814H_led74LS11TXD89L_ledsw1211121321RXDU7:E7404U7:FU5:AU674HC164RC1/->&R6330R7330SRG81D13121110654H_ledL_ledD1D2D3D4D5D6D7abcdefg111213141516GND3D10D9D8LED-REDLED-REDLED-REDLED-REDLED-REDLED-REDLED-REDLED-RED 图10 仿真图1 5.1PROTEUS仿真结果

单击仿真运行结束按钮,仿真结束。

仿真电路中有三个按键,一个MODE键,一个加一键,一个减一键。无论是设置温度范围,还是查看哪一路的温度,都要先按下MODE键。按一下MODE键,进入设置高报警温度点模式,在按下MODE键,进入设置低报警温度点模式,按第三下时,进入通道选择模式。

假如设定最低温度为5,最高温度为30,通过调节可调电阻的阻值,当ADC0808芯片的引脚的电压在[0.25V,1.5V]范围内,电路工作在正常范围内,只有数码管工作,蜂鸣器不响,74HC164控制的发光二极管不亮,报警点的二极管也不亮,其仿真电路如图10所示;当超出这个电压范围,监控电路就会启动,串口控制的二极管,蜂鸣器都会工作,其仿真电路如图11所示;当设置的最高温度时,高报警点的二极管会发光,即可以按加一或减一键来设置,其仿真电路

9

湖南财政经济学院信息管理系学年论文

如图12所示;当要设置最低温度时,低报警点的二极管会亮,其仿真电路如图13所示。

U3(CLOCK)106U3CLOCKSTARTEOCOUT1OUT2OUT3OUT4OUT5OUT6OUT7OUT8R15R14R13R12R11R10R9R8C419VCC10k10k10k10k10k10k10k10k39383736353433322122232425P2.426P2.527P2.6oe281011121314151617RXDTXDsweoc118117116115114113112111eoc1111121131141151161171187212019188151417U1XTAL1C31nFX1C51nFR120018XTAL29RST9R210k293031PSENALEEAOEADC0808VREF(+)VREF(-)1216P2.0/A8P2.1/A9P2.2/A10P2.3/A11P2.4/A12P2.5/A13P2.6/A14P2.7/A15P3.0/RXDP3.1/TXDP3.2/INT0P3.3/INT1P3.4/T0P3.5/T1P3.6/WRP3.7/RDVCCP0.0/AD0P0.1/AD1P0.2/AD2P0.3/AD3P0.4/AD4P0.5/AD5P0.6/AD6P0.7/AD7IN0IN1IN2IN3IN4IN5IN6IN7U3(IN0)2627281234525242322U3(IN0)V=4.52962U3(IN4)V=1.50003GNDRV11kADD AADD BADD CALEVCCR20BUZ1BUZZERGNDP3.7R19Q72N39041234H_led5zhi_leng6L_led7jia_re8VCCP1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7AT89C51R5R3R4Y0AY1U4BY2CY3Y474LS138Y5E1Y6E2Y7E312310k10k10kGND3546217P3.7LTRBBRBODCBAU27447gQGQFeQEdQDcQCbQBaQA1415910111213247404117404740413U7:AU7:B6U7:CU7:D74041514131211109712P2.4P2.5+-modeVCC13211353645P2.69127404151016814H_led74LS11TXD89L_ledsw1211121321RXDU7:E7404U7:FU5:AU674HC164RC1/->&R6330R7330SRG81D13121110654H_ledL_ledD1D2D3D4D5D6D7abcdeg111213141516GND3D10D9D8LED-REDLED-REDLED-REDLED-REDLED-REDLED-REDLED-REDLED-RED (a)图10正常工作状态仿真图

(b)图11 越限报警仿真电路图

10

湖南财政经济学院信息管理系学年论文

(c) 图12 设置高报警点

U3(CLOCK)106U3CLOCKSTARTEOCOUT1OUT2OUT3OUT4OUT5OUT6OUT7OUT8R15R14R13R12R11R10R9R8C419VCC10k10k10k10k10k10k10k10k39383736353433322122232425P2.426P2.527P2.628oe1011121314151617RXDTXDsweoc118117116115114113112111eoc1111121131141151161171187212019188151417U1XTAL1C31nFX1C51nFR120018XTAL29RST9R210k293031PSENALEEAOEADC0808VREF(+)VREF(-)1216P2.0/A8P2.1/A9P2.2/A10P2.3/A11P2.4/A12P2.5/A13P2.6/A14P2.7/A15P3.0/RXDP3.1/TXDP3.2/INT0P3.3/INT1P3.4/T0P3.5/T1P3.6/WRP3.7/RDVCCP0.0/AD0P0.1/AD1P0.2/AD2P0.3/AD3P0.4/AD4P0.5/AD5P0.6/AD6P0.7/AD7IN0IN1IN2IN3IN4IN5IN6IN7U3(IN0)2627281234525242322U3(IN0)V=5.54698U3(IN4)V=1.50003GNDRV11kADD AADD BADD CALEVCCR20BUZ1BUZZERGNDP3.7R19Q72N39041234H_led5zhi_leng6L_led7jia_re8VCCP1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7AT89C51R5R3R4Y0AY1U4BY2CY3Y474LS138Y5E1Y6E2Y7E312310k10k10kGND3546217P3.7LTRBIBI/RBODCBAU27447gQGfQFeQEdQDcQCbQBaQA1415910111213247404117404740413U7:AU7:B6U7:CU7:D74041514131211109712P2.4P2.5+-modeVCC13211353645P2.69127404151016814H_led74LS11TXD89L_ledsw1211121321RXDU7:E7404U7:FU5:AU674HC164RC1/->&R6330R7330SRG81D13121110654H_ledL_ledD1D2D3D4D5D6D7abcdefg111213141516GND3D10D9D8LED-REDLED-REDLED-REDLED-REDLED-REDLED-REDLED-REDLED-RED (d) 图13 设置低报警点

6.结 论

早在选题之前,我就利用平时的时间看DS18B20芯片资料,当初认为DS18B20延时要很精确,所以我必须写出精确的延时程序。但是C语言延时是不好精确地,为了写出那种很精确的延时程序,在网上找了很多资料,也学会了利用反汇编来计算延时,还有可以利用keil这个软件进行一些调试,也可测出延时时间。延时解决后,以为一切都会很顺利,但往往看起来容易的事情总有想不到的问题。因为没有经验,很多细节上处理的不是很好。所以自己只有不断地去学习别人怎么处理,然后结合自身来处理细节上的问题。利用了几天的时间,终

11

湖南财政经济学院信息管理系学年论文

于是在PROTEUS上仿真成功了。但我的设计还是存在一些问题,比如反映时间不是很快,这些问题是值得去注意的。再者,在Proteus上仿真通过,而没有做出实物,那也永远只是理论水平。通过这次课程设计,让我对于单片机的项目有了一个认知。我更近一步看清了前方的路。很多东西是接下来必须去做的。总之,要学的还很多,只有不断地学习,才能轻松的处理事情。有句话说的很对“只有很努力,才能看起来毫不费力”。

本论文本着最大限度的节省人力物力为基础,方便快捷为目的,加上高效低成本为原则对元件进行了选择,特别是采用了先进的器件进行温度测量体现了速度快、精度高、测点多、布线少等诸多优点,可以实现温度的巡回测量和显示,大大的提高了蔬菜的成活率以及大幅度减轻管理者的负担,使蔬菜种植能获得一种可观的经济收益。写这篇论文锻炼了我的分析问题解决问题的能力,虽然本论文已经完成,但其中也难免出现不足和漏洞,希望老师指正。

12

湖南财政经济学院信息管理系学年论文

参考文献

[1] 徐伟忠.计算机技术在农业领域的应用.丽水:丽水市科技出版社.2014.10 [2]胡乾斌.单片微型计算机原理与应用.武汉:华中科技大学出版社.2006.04 [3]杨振江.A/D D/A转换器接口技术与实用线路.西安:西安电子科技大学出版社.2009.03 [4]黄惠媛,李润国.单片机原理与接口(自动化控制专业).北京:海军出版社.2006.09 [5]杨金岩.8051单片机数据传输接口扩展技术与应用实例.北京:人民邮电出版社.2005.02 [6]胡学海.单片机原理及应用系统设计.北京:电子工业出版社.2005.06 [7]沙占友,王彦朋,孟志永.单片机外围电路设计.北京:电子工业出版社.2013.12 [8]王新贤,蒋富瑞.实用计算机控制技术手册.济南:山东科学技术出版社.2004.04 [9]周继明,江世明.传感技术与应用.长沙:中南大学出版社. 2005.08 [10]李莉.单片机典型模块设计实例导航.北京:人民邮电出版社.2011.11

13

第三篇:现代温室大棚监测控制系统技术特点与典型应用

概述

随着国民经济的迅速发展,现代农业得到了长足的进步,温室工程已成为高效农业的一个重要组成部分。计算机自动控制的智能温室自问世以来,已成为现代农业发展的重要手段和措施。温室大棚监测控制系统的功能在于以先进的技术和现代化设施,人为控制作物生长的环境条件,使作物生长不受自然气候的影响,做到常年工厂化,进行高效率,高产值和高效益的生产。托普物联网研制的温室大棚监测控制系统是用通用组态软件结合自动化设备在现代农业上的一个典型应用,该系统很好地完成了温室大棚环境监控的各项需求,为此类需求呈现了一个成熟的方案。

一、温室大棚监测控制系统简介

1、系统定义

智能温室监测系统就是根据无线网络获取的植物实时的生长环境信息,如通过各个类型的传感器可监测土壤水分、土壤温度、空气温度、空气湿度、光照强度、植物养分含量等参数。

该系统利用物联网技术,可实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内环境最适宜作物生长,为作物高产、优质、高效、生态、安全创造条件。同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理,充分发挥物联网技术在设施农业生产中的作用。本系统适用于各种类型的日光温室、连栋温室、智能温室。

2、系统组成

该系统包括:传感终端、通信终端、无线传感网、控制终端、监控中心和应用软件平台。 (1)传感终端

温室大棚环境信息感知单元由无线采集终端和各种环境信息传感器组成。环境信息传感器监测空气温湿度、土壤水分温度、光照强度、二氧化碳浓度等多点环境参数,通过无线采集终端以GPRS方式将采集数据传输至监控中心,以指导生产。

(2)通信终端及传感网络建设

温室大棚无线传感通信网络主要由如下两部分组成:温室大棚内部感知节点间的自组织网络建设;温室大棚间及温室大棚与农场监控中心的通信网络建设。前者主要实现传感器数据的采集及传感器与执行控制器间的数据交互。温室大棚环境信息通过内部自组织网络在中继节点汇聚后,将通过温室大棚间及温室大棚与农场监控中心的通信网络实现监控中心对各温室大棚环境信息的监控。

(3)控制终端 温室大棚环境智能控制单元由测控模块、电磁阀、配电控制柜及安装附件组成,通过GPRS模块与管理监控中心连接。根据温室大棚内空气温湿度、土壤温度水分、光照强度及二氧化碳浓度等参数,对环境调节设备进行控制,包括内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备。

(4)视频监控系统

作为数据信息的有效补充,基于网络技术和视频信号传输技术,对温室大棚内部作物生长状况进行全天候视频监控。该系统由网络型视频服务器、高分辨率摄像头组成,网络型视频服务器主要用以提供视频信号的转换和传输,并实现远程的网络视频服务。在已有Internet上,只要能够上网就可以根据用户权限进行远程的图像访问、实现多点、在线、便捷的监测方式。

(5)监控中心

监控中心由服务器、多业务综合光端机、大屏幕显示系统、UPS及配套网络设备组成,是整个系统的核心。建设管理监控中心的目的是对整个示范园区进行信息化管理并进行成果展示。

(6)应用软件平台

通过应用软件平台可将土壤信息感知设备、空气环境监测感知设备、外部气象感知设备、视频信息感知设备等各种感知设备的基础数据进行统一存储、处理和挖掘,通过中央控制软件的智能决策,形成有效指令,通过声光电报警指导管理人员或者直接控制执行机构的方式调节设施内的小气候环境,为作物生长提供优良的生长环境。

二、功能叙述

温室环境包括非常广泛的内容,但通常所说的温室环境主要指空气与土壤的温湿度、光照、CO2浓度等。计算机通过各种传感器接收各类环境因素信息,通过逻辑运算和判断控制相应温室设备运作以调节温室环境。输出和打印设备可帮助种植者作全面细致的数据分析,保存历史数据。本系统主要具备以下几部分功能: 综合环境控制

采用计算机实现环境参数比较分析,四季连续工况调控系统。,比例调节环境温度、湿度与通风。CO2 发生装置按需比例调节环境CO2浓度,夏季室外屋顶喷淋,在保证室内光照强度的前提下,组合调节环境温度与通风,达到强制降低环境温度的效果。通过计算机对温室各电动执行器进行整体调节,自动调控到作物生长所需求的温、湿、光、水、气等条件,另外通过臭氧消毒净化器对温室进行消毒。 肥水灌溉控制

采用计算机肥水灌溉运筹系统。根据作物区的需要,对水培区的营养液成分,PH和EC值进行 综合调控。对基培和土培区主要是根据作物生产需要,设定基质、土壤的水势值,自动调节滴灌、喷灌系统的灌溉时间和次数。 紧急状态处理

采用计算机实测环境参数、状态极限值反馈报警保护系统。根据作物的各项参数设定温室环境的极限值和作物生长环境参数极限值报警保护系统,提高了整个系统安全性。 信息处理

采用计算机集散控制信息管理系统。信息处理由中心控制计算机完成。主机通过局部数字通讯网络与现场控制机相连,实现远动双向控制及全系统集中数据处理。其功能包括运行实时参数执行器模拟状态显示,历史数据存储、检索,数据平均值报表、曲线显示与打印。

三、温室的环境参数指标

针对本系统所涉及的两栋温室,根据栽培的作物和所处的环境,具体参数如下: 1. 葡萄温室

a、在冬季休眠期约90多天需保持温室内温度为5℃。休眠期以后白天需控制温室内温度为25-30℃,夜间需控制在15-18℃。

b、湿度需保持在50-75%不能超过95%。 c、光照强度应保持在45000-55000勒克斯

d、二氧化碳浓度在上午日出后到10点左右保持在1000PPM左右。 e、PH值保持在7-7.5。

f、EC值离子总浓度保持在1‰-2‰,随时进行调整。 2. 黄瓜、番茄温室:

a、在苗期需保持温室内温度在13-15℃,定植后白天上午应保持在25-28℃,下午应保持在20-25℃,夜间应保持在15-18℃。

b、湿度黄瓜在白天保持在70-75%,夜间保持在85-90%;番茄白天保持在65-75%,夜间保持在75-85%。 c、光照强度番茄应保持在50000勒克斯左右,保证12个小时光照;黄瓜应保持在40000勒克斯左右,保证8-10小时光照。

d、二氧化碳浓度在上午日出后到10点左右保持在1000PPM左右。 e、PH值保持在6.5-7.5。

f、EC值离子总浓度保持在1‰-2‰,随时进行调整。

黄瓜和番茄在冬季早春即11月中旬至下年2月上旬期间比较关键。

以上参数在监控软件中进行编写,环境参数超出设定范围时进行相应调节同时产生报警提醒值 班人员注意。

托盘物联网简介

托普物联网是浙江托普仪器有限公司旗下的重要项目。浙江托普仪器是国内领先的农业仪器研发生产商,依据自身在农业领域的研发实力,和自主研发的配套设备,在农业物联网领域崭露头角!

托普物联网以客户需求为源头,结合现代农业科技、通信技术、计算机技术、GIS信息技术,以及物联网技术,竭诚为传统行业提供信息化、智能化的产品与端到端的解决方案。主要有:大田种植智能解决方案、畜牧养殖管理解决方案、食品安全溯源解决方案、食用菌种植智能化管理解决方案、水产养殖管理解决方案、温室大棚智能控制解决方案等。

托普物联网三大系统产品

我们知道物联网主要包括三大层次,即感知层、传输层和应用层。因此托普物联网产品主要以这三个层次延伸,涵盖了感知系统(环境监测传感设备)、传输系统(数据传输处理网络)、应用系统(终端智能控制平台。)

托普物联网模块化智能集成系统

托普物联网依据自身研发优势,开发了多种模块化智能集成系统。

1、传感模块:即环境传感监测系统。它依据各类传感设备可以完成整个园区或完成对异地园区所需数据监测的功能。

2、终端模块:即终端智能控制系统。它可以完成整个园区或远程控制异地园区进行自动灌溉、自动降温、自动开启风机,自动补光及遮阳,自动卷帘,自动开窗关窗,自动液体肥料施肥、自动喷药等各类农业生产所需的自动控制。

3、视频监控模块:即实时视频监控系统。主要是通过监控中心实时得到植物生长信息,在监控中心或异地互联网上既可随时看到作物的实时生长状况。

4、预警模块:即远程植保预警系统。可以通过声光报警、短信报警、语音报警等方式进行预警。

5、溯源模块:即农产品安全溯源系统。该系统对农产品从种植准备阶段、种植和培育阶段、生长阶段、收获阶段等对作物生长环境、喷药施肥情况、病虫害状况等实施实时信息自动记录,有据可查,在储藏、运输、销售阶段采用二维码或者RFID射频技术对各个阶段数据记录,这样就能实现消费者拿到农产品时通过终端设备或网络就能查看到各类信息,才能放心食用。

6、作业模块:即中央控制室。可通过总控室对整个区域情况进行监测,包括各个区域采集点参数、控制作业状态、实时视频图像、施肥喷药状况、报警信息等。

第四篇:智能农业温室大棚管理系统项目计划书

智能农业温室大棚管理系统项目分析与设计

目 录

第一章 绪论

1.1项目背景

智能温室大棚是农业物联网的一个重要应用领域,是以全面感知、可靠传输和智能处理等物联网技术为支撑和手段,以温室大棚的自动化生产、最优化控制、智能化管理为主要目标的农业物联网的具体应用领域,也是目前应用需求最为迫切的领域之一。温室大棚以日光温室为主,温室结构简易,环境控制能力低。我国温室大棚的技术装备尽管有了较大发展,但是温室大棚种植普遍存在管理粗放、技术设施落实不到位、智能化水平低,导致单位生产效率低、投入产出比不高、农业产品质量安全水平起伏较大的现状,在温室环境、栽培管理技术、生物技术、人工智能技术、网络信息技术等方面和发达国家存在着较大差距。我国建设在南方的大型智能温室以生产花卉为主,北方的则以栽培蔬菜为主,少部分智能温室用于栽培苗木。

四川省成都市温江区响应国家号召,政府投资,在温江区实施高科技农业示范区,示范区位于成都市温江区,当地气候为亚热带季风气候,四季分明,七月份平均气温35℃,平均降雨量400mm,一月份平均气温9℃,平均降雨量300mm。全区占地面积为:24m*32m=768平方米,已经装有混凝土拱架塑料大棚,作为有机蔬菜以及园艺种植区域,产品规格为栋宽12米,间距4米,天沟(雨水槽底部局柱底高度)5米,顶高(屋脊到柱底高度)5.9米,屋面角度25度,外遮阳高度6.4米;排列方式为屋脊走向为:南北12m*4跨=48米,侧墙长(南北):4米*8榀=32米。现计划在该整片温室大棚种植区域安装基于物联网技术的全方位随时监控管理的智能温室大棚系统,作为农业示范区域,以便以后在整个成都片区实行推广。1.

2现存问题

首先是成本较高。一般来讲,一套智能化的控制系统成本主要包括硬件成本、运行成本和维护成本。硬件成本包括各仪器仪表、通信线缆等。整个系统也不能自由组合或者裁剪应用于不同的对象,使得难以得到推广和普及。同时,由于系统复杂、布线繁多、故障率高而且使得故障后的维修成本极大。另外,系统庞大造成的运行成本也不是一笔小费用。

其次是布线复杂。温室中有大量分散的传感器和执行机构,这些设备可能随着作物的改变而进行调整,同时错综复杂的线缆也需要重新铺设,工作量较大。为了科学、合理地实现大面积温室环境参数的自动检测与控制,电子检测装置和执行机构的设置不仅数量大而且分布广,连接着各个装置与机构的线缆,也因此纵横交错。当温室内生产的果蔬作物更替时,相应的电子检测装置和执行机构的位置常常需要调整,连接着各个装置与机构的线缆有时也需要重新布置。这不仅增大了温室的额外投资成本和安装与维护的难度,有时也影响了作物的良好生长。

第三,故障解决难。当数据无法正常接收时,检查人员不知道是线路问题还是节点故障。另外,目前的控制系统多采用基于现场总线的分布式模式,当总线出现故障时,虽然各控制节点尚能正常工作,但是上位机却无法正常管理整个网络,专家控制策略无法实施。

1.2项目意义

(1)实现广范围的测量,需求传感器节点多当前温室生产的首要特点就是监控区域很大,普通单个连栋温室都有几千平方米,而一个园区温室群的面积可能会在几百亩以上,因此需要大量的传感器节点构建传感器网络,在每个温室中采集诸如空气温度、空气湿度、光照强度、土壤湿度、营养液EC值、pH值以及室外天气参数等信息,除此以外,目前对作物生理参数的检测也逐渐受到人们的重视,因此将会有更多的传感器节点被用于温室生产。另外,用于驱动温室中执行机构的控制节点的数量也不能忽略。由此可见,温室对其监测与控制系统的首要需求就是网络容量大。

(2)检测点位置灵活变动

温室中大量分散的传感器,但随着作物的生长而需要不断调整位置;或者当温室内生产的作物更替时,相应的电子检测装置和执行机构的位置也常常需要调整;另外,温室的利用结构也会经常根据用户需要而不断改变,这就要求系统中各个节点能根据需要随意变换位置而不影响系统工作。

(3)节点数目可随意增减

作物生长阶段不同,环境因子对作物的影响可能也不同,生长初期可能对温度比较敏感,而后期可能对光照比较敏感,这就要求系统可以随意改变节点的类型和数量。除此以外,随着作物的生长,用户可能还需要对植物的生理参数进行监测而需要不断增加传感器节点。在某些科研温室中,也经常需要改变传感器节点的类型和数量,以达到精确监测与控制。上述这些情况都需要所用的监控系统的节点能随意增减。

(4)系统可靠性

系统故障而造成的经济损失不可估量。如果系统出现问题而未能被及时发觉和修复,那么可能对作物造成致命的伤害,尤其在一些恶劣的天气例如高温和寒冷气候条件下,这将直接影响产量和收益。另外,温室内湿度高、光照强、具有一定的酸性,都会导致线缆的腐蚀、老化,从而降低系统的可靠性和抗干扰性,这对于检查系统故障造成困难。例如,当数据无法正常接收时,检查人员不知道是线路问题还是节点故障,这对及时发现和解决故障带来不便。因此,温室测控系统必须要可靠。

2、方案概述

本系统结构及配套设施:主体骨架为热镀锌型组装、覆盖材料、自然通风系统强制通风系统、内遮阳系统、外遮阳系统、环流风机系统、加热系统、补光系统、配电系统、监控系统、智能控制系统。

智能化大棚是一个半封闭系统,依靠覆盖材料形成与外界相对隔离的室内空间,一方面要以通风换气创造植物生长优于室外自然环境的条件;另一方面,室内产生的高温高湿和低二氧化碳浓度,通过通风换气来调控,创造植物生长的最佳环境。

3、系统功能描述

3.1、智能温室大棚物联网感知层

智能温室大棚物联网的应用一般对温室的七个方面进行监测,即通过土壤、气象、光照等传感器,实现对温室的温、水、肥、电、热、气、光进行实时调控与记录,保证温室内的有机蔬菜和花卉生产在良好的环境中。

3.2、智能温室大棚物联网传输层

一般情况下,在温室内部通过无线终端,实现实时远程监控温室环境和作物生长情况。通过手机网络和短信的方式,监测温室传感器网络所采集的信息,以作物生长模拟技术和传感器网络技术为基础,通过常见蔬菜生长模型和嵌入式模型的低成本智能网络终端。通过中继网关和远程服务器双向通信,服务器也可以进一步做出决策分析,对所部署的温室中灌溉等装备进行远程管理控制。

3.3、智能温室大棚物联网智能处理层

通过对获取信息的共享、交换、融合,获得最优和全方位的准确数据信息,实现对智能温室大棚作物的施肥、灌溉、播种、收获等的决策管理和指导。基于作物长势和病虫害等相关图形图像处理技术,实现对大棚作物的长势预测和病虫害监测和预警功能。还可以将监控信息实时地传输到信息处理平台,信息处理平台实时显示各个温室的环境状况,根据系统预设的阈值,控制通风/加热/降温等设备,达到温室内环境可知、可控。

4、系统架构

5、系统网络拓扑

6、各子系统设计

6、1 感知层

(1) 无线传感网络

无线传感器网络(WSN)就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖区域中被感知对象的信息,并发送给观察者。传感器、感知对象和观察者构成了无线传感器网络的三个要素。

Zigbee网络组网

网关 :Zigbee—3G ZigBee节点是可以组建Mesh网络的,设置一个ZigBee节点为网络协调器,其他每个ZigBee节点都可以当做路由节点来使用,也可以设置为终端节点但是就失去了路由功能。

(2)视频监控

摄像机 : WIFI传感网络,对检测到的图像信息使用WIFI进行传输 (3)设备供电

设备供电系统由最新的太阳能供电,AC 220V、DC 12V或者太阳能供电。

6、2

传输层

(1)网关:

3G无线网关:将Zigbe信号转化为3G信号进行传输 (2)路由器

交换机

3G无线路由器、交换机,用于传输局域网和广域网的数据 (3) 供电设备: 采用标准220V电源供电

6、3

网络层

(1)终端服务器:采用电脑作为服务器终端 (2)云服务平台:

采用云服务器,对大量的信息进行处理和保存 (3)监控中心:

采用球机型无线WIFI摄像机对温室大棚的情况进行采集 (4)供电方式:

采用220V标准电压供电

6、4

应用层

(1)电脑终端:

采用台式电脑或者笔记本电脑作为应用层终端 (2)手机终端:

采用智能手机作为终端,对采集的信息进行处理 (3)供电方式: 220V标准供电

7、 工程造价表

第五篇:物联网温室大棚监测系统需求分析报告(xiexiebang推荐)

物联网温室大棚监测系统需求分析报告

一、概述

现如今,我国的经济水平和社会地位都在不断的进步和提高,人们对生活质量的要求也越来越高。因而,很多人希望在一年四季内都能品尝到优质新鲜的蔬菜,这一需求促进了温室大棚的发展和进步。

良好的温室大棚需要有一套科学和先进的管理方法才能更好的运用好温室栽培这一高效技术,更需要有一个能够对温室大棚环境参数进行实时检测的监控系统。这种系统可以检测温室大棚内的温度和湿度,确保大棚内的蔬菜生活在优良舒适的环境内。通过对学校后山大棚的调研,总结了内部作物栽培需要的一系列参数及测定的设计方案。

本课题设计的系统是采用高性价比的单片机和高准确度数字温湿度传感器设计,并朝着智能化、低廉化、模块化、迅速化的单片机数据采集系统逼近。本系统应满足以下要求:

(1)能够准确的采集温室大棚中的温度值、湿度值、光照强度、CO2浓度 (2)根据采集的数据实时的把结果显示出来。

(3)通过之前采集的温湿度参数值,运用合理的方法准确的比较设定值与测出值之间的差别,超出范围时进行报警提示。

二、功能叙述

温室棚依照不同的屋架、采光材料可分为很多种类,如玻璃温室、塑料温室等。温室结构的建造标准是既能密封保温,便于通风降温。同时通过传感器采集:

1、室温;

2、土壤含水量;

3、二氧化碳浓度;

4、光照强度等植物生长状态所需的环境相关参数,结合作物生长环境所需的适宜条件,有效调节有关设备装置,将室内温、湿、光、水、肥、气等诸因素综合协调调节到最佳状态。

温室的环境参数指标举例:

1、葡萄温室:

a、在冬季休眠期约90多天需保持温室内温度为5℃。休眠期以后白天需控制温室内温度为25-30℃,夜间需控制在15-18℃。

b、湿度需保持在50-75%不能超过95%。 c、光照强度应保持在45000-55000勒克斯

d、二氧化碳浓度在上午日出后到10点左右保持在1000PPM左右。 e、PH值保持在7-7.5。

2、黄瓜、番茄温室:

a、在苗期需保持温室内温度在13-15℃,定植后白天上午应保持在25-28℃,下午应保持在20-25℃,夜间应保持在15-18℃。

b、湿度黄瓜在白天保持在70-75%,夜间保持在85-90%;番茄白天保持在65-75%,夜间保持在75-85%。 c、光照强度番茄应保持在50000勒克斯左右,保证12个小时光照;黄瓜应保持在40000勒克斯左右,保证8-10小时光照。

d、二氧化碳浓度在上午日出后到10点左右保持在1000PPM左右。 e、PH值保持在6.5-7.5。

监测参数:

1、室温

通过本次调研我们发现,我校老师所设计和管理的温室大棚内,温度计悬 挂在距离地面1.7米左右的位置,整个大棚通过一支温度计进行温度检测。借鉴老师这一相对成熟的监测方法,设计之后大棚监测设备如下——根据大棚的规模大小,采取两套方案:

1、整个大棚通过一个温度传感器,实时传输温度数据;

2、采取每1/3设置一个温度传感器。

查阅相关资料,确定并制定一套适宜作物生长的温度区间,并根据实际情况(天气、季节等)划分温度梯度。通过在大棚内设置风扇(以每1/3的位置安装一台风扇,并配合大棚外围塑料膜的打开),根据远端监测的温度数据,通过设置参数,自动控制风扇的开闭。

2、土壤含水量

本次调研发现,多数大棚采取滴灌技术(后期根据种植作物种类,将叶湿也作为监测参数之一,采取喷灌技术,并确定水流大小及安装位置)。在每一垄设置滴灌的管子,所有管子接在一个水源。湿度传感器设置在1/3的田垄处,根据这3个传感器的参数,结合适宜作物生长的土壤湿度,通过控制水管孔的大小,统一调节所有水管的水滴流速。

3、二氧化碳浓度

二氧化碳监测方式与温度相同。通过控制大棚内的二氧化碳发生器已经以及通风,调节二氧化碳浓度。

4、光照强度

光照强度主要通过在大棚外设置机械装置,控制大棚外围的黑色塑料膜的开闭,调节棚内光强。通过调研发现,由于大棚内部存在向阳面和背阳面,后期设计调整大棚的结构,以及作物的种植位置、黑色塑料膜的覆盖位置,使光照平均。

三、总结

通过本次调研,主要了解和确定了:

1、与作物生长相关的几个主要监测参数和设备;

2、监测装置在大棚内部的设置位置和数量;

3、反馈控制调节相关参数的装置;

4、种植作物规划。在掌握了上述几点信息,下一阶段的主要工作主要包括:

1、监测设备的购置;

2、设备的初步连接、测试;

3、设备的实地测试;

4、调控装置的设计、购置和制作安装。

上一篇:晚期淋巴瘤应注意什么下一篇:卫生部和科技部联合发