测量gps应用范文

2022-06-06

第一篇:测量gps应用范文

GPS测量与应用报告

GPS知识理解

GPS 是英文Global Positioning System(全球定位系统)的简称,而其中文简称为“球位系”。GPS是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统 。其主要目的是为陆、海、空三大领域提供实时、 全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。

8项主要功能

1.跟踪定位

2.轨迹回放

3.报警(报告)

4.里程统计

5.短信通知功能

6.车辆远程控制

7.油耗检测

8.车辆调

1.空间部分

GPS的空间部分是由24颗卫星组成(21颗工作卫星;3颗备用卫星),它位于距地表20200km的上空,均匀分布在6 个轨道面上(每个轨道面4 颗) ,轨道倾角为55°。卫星的分布使得在全球任何地方、任何时间都可观测到4 颗以上的卫星,并能在卫星中预存导航信息,GPS的卫星因为大气摩擦等问题;随着时间的推移,导航精度会逐渐降低。

2. 地面控制系统

地面控制系统由监测站(Monitor Station)、主控制站(Master Monitor Station)、地面天线(Ground Antenna)所组成,主控制站位于美国科罗拉多州春田市(Colorado Spring)。地面控制站负责收集由卫星传回之讯息,并计算卫星星历、相对距离,大气校正等数据。

3.用户设备部分

用户设备部分即GPS 信号接收机。其主要功能是能够捕获到按一定卫星截止角所选择的待测卫星,并跟踪这些卫星的运行。当接收机捕获到跟踪的卫星信号后,就可测量出接收天线至卫星的伪距离和距离的变化率,解调出卫星轨道参数等数据。根据这些数据,接收机中的微处理计算机就可按定位解算方法进行定位计算,计算出用户所在地理位置的经纬度、高度、速度、时间等信息。接收机硬件和机内软件以及GPS 数据的后处理软件包构成完整的GPS 用户设备。GPS 接收机的结构分为天线单元和接收单元两部分。接收机一般采用机内和机外两种直流电源。设置机内电源的目的在于更换外电源时不中断连续观测。在用机外电源时机内电池自动充电。关机后机内电池为RAM存储器供电,以防止数据丢失。目前各种类型的接受机体积越来越小,重量越来越轻,便于野外观测使用。其次则为使用者接收器,现有单频与双频两种,但由于价格因素,一般使用者所购买的多为单频接收器。

GPS术语

1.GPS Generalized Processor Sharing 通用处理器共享

2.GPS Global Positioning System 全球定位卫星/系统

3.[GPSS]General Purpose Systems Simulator通用系统模拟器

4.[DGPS]Differential GPS差分GPS,差分全球定位系统

5.GPS General Phonetic Symbols 捷易读注音符

GPS原理

GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时

钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过纪录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第

1、

2、3数据块,其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可知。

可见GPS导航系统卫星部分的作用就是不断地发射导航电文。然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收机之间的时间差作为未知数,然后用4个方程将这4个未知数解出来。所以如果想知道接收机所处的位置,至少要能接收到4个卫星的信号。

GPS接收机可接收到可用于授时的准确至纳秒级的时间信息;用于预报未来几个月内卫星所处概略位置的预报星历;用于计算定位时所需卫星坐标的广播星历,精度为几米至几十米(各个卫星不同,随时变化);以及GPS系统信息,如卫星状况等。

GPS接收机对码的量测就可得到卫星到接收机的距离,由于含有接收机卫星钟的误差及大气传播误差,故称为伪距。对0A码测得的伪距称为UA码伪距,精度约为20米左右,对P码测得的伪距称为P码伪距,精度约为2米左右。

GPS接收机对收到的卫星信号,进行解码或采用其它技术,将调制在载波上的信息去掉后,就可以恢复载波。严格而言,载波相位应被称为载波拍频相位,它是收到的受多普勒频 移影响的卫星信号载波相位与接收机本机振荡产生信号相位之差。一般在接收机钟确定的历元时刻量测,保持对卫星信号的跟踪,就可记录下相位的变化值,但开始观测时的接收机和卫星振荡器的相位初值是不知道的,起始历元的相位整数也是不知道的,即整周模糊度,只能在数据处理中作为参数解算。相位观测值的精度高至毫米,但前提是解出整周模糊度,因此只有在相对定位、并有一段连续观测值时才能使用相位观测值,而要达到优于米级的定位 精度也只能采用相位观测值。

按定位方式,GPS定位分为单点定位和相对定位(差分定位)。单点定位就是根据一台接收机的观测数据来确定接收机位置的方式,它只能采用伪距观测量,可用于车船等的概略导航定位。相对定位(差分定位)是根据两台以上接收机的观测数据来确定观测点之间的相对位置的方法,它既可采用伪距观测量也可采用相位观测量,大地测量或工程测量均应采用相位观测值进行相对定位。

在GPS观测量中包含了卫星和接收机的钟差、大气传播延迟、多路径效应等误差,在定位计算时还要受到卫星广播星历误差的影响,在进行相对定位时大部分公共误差被抵消或削弱,因此定位精度将大大提高,双频接收机可以根据两个频率的观测量抵消大气中电离层误差的主要部分,在精度要求高,接收机间距离较远时(大气有明显差别),应选用双频接收机。GPS定位原理参考资料:

GPS定位的基本原理是根据高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方交会的方法,确定待测点的位置。如图所示,假设t时刻在地面待测点上安置GPS接收

机,可以测定GPS信号到达接收机的时间△t,再加上接收机所接收到的卫星星历等其它数据可以确定以下四个方程式)

全球定位系统的主要特点:

(1)全球、 全天候工作。

①定位精度高。单机定位精度优于10m,采用差分定位,精度可达厘米级和毫米级。②功能多,应用广。

GPS系统的特点:高精度、全天候、高效率、多功能、操作简便、应用广泛等。

1、定位精度高

应用实践已经证明,GPS相对定位精度在50KM以内可达10-6,100-500KM可达10-7m,1000KM可达10-9m。在300-1500M工程精密定位中,1小时以上观测的解其平面其平面位置误差小于1mm,与ME-5000电磁波测距仪测定得边长比较,其边长较差最大为0.5mm,校差中误差为0.3mm。

2、观测时间短

随着GPS系统的不断完善,软件的不断更新,目前,20KM以内相对静态定位,仅需15-20分钟;快速静态相对定位测量时,当每个流动站与基准站相距在15KM以内时,流动站观测时间只需1-2分钟,然后可随时定位,每站观测只需几秒钟。

GPS种类

GPS卫星接收机种类很多,根据型号分为测地型、全站型、定时型、手持型、集成型;根据用途分为车载式、船载式、机载式、星载式、弹载式。

按接收机的用途分类

1. 导航型接收机

此类型接收机主要用于运动载体的导航,它可以实时给出载体的位置和速度。这类接收机一般采用C/A码伪距测量,单点实时定位精度较低,一般为±10m,有SA影响时为±100m。 这类接收机价格便宜,应用广泛。根据应用领域的不同,此类接收机还可以进一步分为:车载型——用于车辆导航定位;

航海型——用于船舶导航定位;

航空型——用于飞机导航定位。由于飞机运行速度快,因此,在航空上用的接收机要求能适应高速运动。

星载型——用于卫星的导航定位。由于卫星的速度高达7km/s以上,因此对接收机的要求更高。

2. 测地型接收机

测地型接收机主要用于精密大地测量和精密工程测量。这类仪器主要采用载波相位观测值进行相对定位,定位精度高。仪器结构复杂,价格较贵。

3. 授时型接收机

这类接收机主要利用GPS卫星提供的高精度时间标准进行授时,常用于天文台及无线电通讯中时间同步。

按接收机的载波频率分类

单频接收机

单频接收机只能接收L1载波信号,测定载波相位观测值进行定位。由于不能有效消除电离层延迟影响,单频接收机只适用于短基线(<15km)的精密定位。

双频接收机

双频接收机可以同时接收L1,L2载波信号。利用双频对电离层延迟的不一样,可以消除电离层对电磁波信号的延迟的影响,因此双频接收机可用于长达几千公里的精密定位。按接收机通道数分类

GPS接收机能同时接收多颗GPS卫星的信号,为了分离接收到的不同卫星的信号,以实现对卫星信号的跟踪、处理和量测,具有这样功能的器件称为天线信号通道。根据接收机所具有的通道种类可分为:

多通道接收机

序贯通道接收机

多路多用通道接收机

按接收机工作原理分类

码相关型接收机

码相关型接收机是利用码相关技术得到伪距观测值。

平方型接收机

平方型接收机是利用载波信号的平方技术去掉调制信号,来恢复完整的载波信号,通过相位计测定接收机内产生的载波信号与接收到的载波信号之间的相位差,测定伪距观测值。混合型接收机

这种仪器是综合上述两种接收机的优点,既可以得到码相位伪距,也可以得到载波相位观测值。

干涉型接收机

这种接收机是将GPS卫星作为射电源,采用干涉测量方法,测定两个测站间距离。经过20余年的实践证明,GPS系统是一个高精度、全天候和全球性的无线电导航、定位和定时的多功能系统。 GPS技术已经发展成为多领域、多模式、多用途、多机型的国际性高新技术产业。

参考文献:

池云祥 GPS原理与应用 山东山东省地图出版社1999

徐邵铨GPS测量原理与应用武汉 武汉测绘科技大学出版社1998

共广运 GPS测地研究与应用文集 北京北京测绘出版社 1992.12

张守信 GPS微星测量定位理论与应用 长沙 国防科技出版社 1996

第二篇:GPS在工程测量中的应用

摘 要:简述了全球定位系统(GPS)的基本结构和测量原理,总结了GPS用于工程测量所具有的特点,介绍了GPS在工程测量中的应用实例。

关键词:GPS;工程测量;应用实例全球定位系统(Global Positioning System,简称GPS)是美国从20世纪70年代开始研制的用于军事部门的新一代卫星导航与定位系统,历时20年,耗资200多亿美元,分三阶段研制,陆续投入使用,并于1994年全面建成。GPS是以卫星为基础的无线电卫星导航定位系统,它具有全能性、全球性、全天候、连续性和实时性的精密三维导航与定位功能,而且具有良好的抗干扰性和保密性。因此,GPS技术率先在大地测量、工程测量、航空摄影测量、海洋测量、城市测量等测绘领域得到了应用[1],并在军事、交通、通信、资源、管理等领域展开了研究并得到广泛应用。本文介绍GPS在山区工程测量中的应用,并提出几点体会。1 GPS简介1.1 GPS构成GPS主要由空间卫星星座、地面监控站及用户设备三部分构成。(1)GPS空间卫星星座由21颗工作卫星和3颗在轨备用卫星组成。24颗卫星均匀分布在6个轨道平面内,轨道平面的倾角为55°,卫星的平均高度为20 200 km,运行周期为11 h 58 min。卫星用L波段的两个无线电载波向广大用户连续不断地发送导航定位信号,导航定位信号中含有卫星的位置信息,使卫星成为一个动态的已知点。在地球的任何地点、任何时刻,在高度角15°以上,平均可同时观测到6颗卫星,最多可达到9颗。(2)GPS地面监控站主要由分布在全球的一个主控站、三个注入站和五个监测站组成。主控站根据各监 测站对GPS卫星的观测数据,计算各卫星的轨道参数、钟差参数等,并将这些数据编制成导航电文,传送到注入站,再由注入站将主控站发来的导航电文注入到相应卫星的存储器中。(3)GPS用户设备由GPS接收机、数据处理软件及其终端设备(如计算机)等组成。GPS接收机可捕获到按一定卫星高度截止角所选择的待测卫星的信号,跟踪卫星的运行,并对信号进行交换、放大和处理,再通过计算机和相应软件,经基线解算、网平差,求出GPS接收机中心(测站点)的三维坐标。

1.2 GPS定位原理GPS定位是根据测量中的距离交会定点原理实现的[2]。如图1所示,在待 测点Q设置GPS接收机,在某一时刻tk同时接收到3颗(或3颗以上)卫星S

1、S

2、S3所发出的信号。通过数据处理和计算,可求得该时刻接收机天线中心(测站点)至卫星的距离ρ

1、ρ

2、ρ3。根据卫星星历可查到该时刻3颗卫星的三维坐标(Xj,Yj,Zj),j=1,2,3,从而由下式解算出Q点的三维坐标(X,Y,Z):1.3 GPS测量的特点相对于常规测量来说,GPS测量主要有以下特点:①测量精度高。GPS观测的精度明显高于一般常规测量,在小于50 km的基线上,其相对定位精度可达1×10-6,在大于1 000 km的基线上可达1×10-8。②测站间无需通视。GPS测量不需要测站间相互通视,可根据实际需要确定点位,使得选点工作更加灵活方便。③观测时间短。随着GPS测量技术的不断完善,软件的不断更新,在进行GPS测量时,静态相对定位每站仅需20 min左右,动态相对定位仅需几秒钟。④仪器操作简便。目前GPS接收机自动化程度越来越高,操作智能化,观测人员只需对中、整平、量取天线高及开机后设定参数,接收机即可进行自动观测和记录。⑤全天候作业。GPS卫星数目多,且分布均匀,可保证在任何时间、任何地点连续进行观测,一般不受天气状况的影响。⑥提供三维坐标。GPS测量可同时精确测定测站点的三维坐标,其高程精度已可满足四等水准测量的要求。2 应用实例2.1 工程概

况本文涉及的工程由某集团公司投资建造,是一个集休闲、娱乐、旅游、渡假等功能于一体的综合项目。工程位于城郊,占地66.7 hm2多,属两山夹一沟地形,山地面积约占三分之二。最高处约90 m。山上树木茂盛,地形复杂,通视困难,行走不便。为了该工程的设计和施工,需建立首级控制网。考虑到工程复杂,工期较紧,测区通视困难,地形起伏大等因素,决定采用GPS测量。2.2 GPS测量的技术设计(1)设计依据 GPS测量的技术设计主要依据1999年建设部发布的行业标准《城市测量规范》、1997年建设部发布的行业标准《全球定位系统城市测量技术规程》[3]及工程测量合同有关要求制定的。(2)设计精度 根据工程需要和测区情况,选择城市或工程二级GPS网作为测区首级控制网。要求平均边长小于1 km,最弱边相对中误差小于1/10 000,GPS接收机标称精度的固定误差a≤15 mm,比例误差系 数b≤20×10-6。(3)设计基准和网形 如图2所示,控制网共12个点,其中联测已知平面控制点2个(I12,I13),高程控制点5个(I12,I13,105,109,110,其高程由四等水准测得)。采用3台GPS接收机观测,网形布设成边连式。(4)观测计划 根据GPS卫星的可见预报图和几何图形强度(空间位置因子PDOP),选择最佳观测时段(卫星多于4颗,且分布均匀,PDOP值小于6),并编排作业调度表。

2.3 GPS测量的外业实施(1)选点 GPS测量测站点之间不要求一定通视,图形结构也比较灵活,因此,点位选择比较方便。但考虑GPS测量的特殊性,并顾及后续测量,选点时应着重考虑:①每点最好与某一点通视,以便后续测量工作的使用;②点周围高度角15°以上不要有障碍物,以免信号被遮挡或吸收;③点位要远离大功率无线电发射源、高压电线等,以免电磁场对信号的干扰;④点位应选在视野开阔、交通方便、有利扩展、易于保存的地方,以便观测和日后使用;⑤选点结束后,按要求埋设标石,并填写点之记。(2)观测 根据GPS作业调度表的安排进行观测,采取静态相对定位,卫星高度角15°,时段长度45min,采样间隔10 s。在3个点上同时安置3台接收机天线(对中、整平、定向),量取天线高,测量气象数据,开机观察,当各项指标达到要求时,按接收机的提示输入相关数据,则接收机自动记录,观测者填写测量手簿。2.4 GPS测量的数据处理GPS网数据处理分为基线解算和网平差两个阶段,采用随机软件完成。经基线解算、质量检核、外业重测和网平差后,得到GPS控制点的三维坐标(见表1),其各项精度指标符合技术设计要求。3 结束语通过GPS在测量中的应用,得到如下体会。(1)GPS控制网选点灵活,布网方便,基本不受通视、网形的限制,特别是在地形复杂、通视困难的测区,更显其优越性。但由于测区条件较差,边长较短(平均边长不到300 m),基线相对精度较低,个别边长相对精度大于1/10 000。因此,当精度要求较高时,应避免短边,无法避免时,要谨慎观测。(2)GPS接收机观测基本实现了自动化、智能化,且观测时间在不断减少,大大降低了作业强度,观测质量主要受观测时卫星的空间分布和卫星信号的质量影响。但由于各别点的选定受地形条件限制,造成树木遮挡,影响对卫星的观测及信号的质量,经重测后通过。因此,应严格按有关要求选点,择最佳时段观测,并注意手机、步话机等设备的使用。

(3)GPS测量的数据传输和处理采用随机软件完成,只要保证接收卫星信号的质量和已知数据的数量、精度,即可方便地求出符合精度要求的控制点三维坐标。但由于联测已知高程点较少(仅联测5个),致使的控制点高程精度较低。因此,要保证控制点高程的精度,必须联测足够的已知高程点。

第三篇:GPS在高速公路测量中的应用

GPS测量的特点

相对于经典测量学来说,GPS测量主要有以下特点:

--测站之间无需通视。测站间相互通视一直是测量学的难题。GPS这一特点,使得选点更加灵活方便。但测站上空必须开阔,以使接收GPS卫星信号不受干扰。

--定位精度高。一般双频GPS接收机基线解精度为5mm+1ppm,而红外仪标称精度为5mm+5ppm,GPS测量精度与红外仪相当,但随着距离的增长,GPS测量优越性愈加突出。大量实验证明,在小于50公里的基线上,其相对定位精度可达12×10-6,而在100~500公里的基线上可达10-6~10-7。

--观测时间短。在小于20公里的短基线上,快速相对定位一般只需5分钟观测时间即可。

--提供三维坐标。GPS测量在精确测定观测站平面位置的同时,可以精确测定观测站的大地高程。

--操作简便。GPS测量的自动化程度很高。在观测中测量员的主要任务是安装并开关仪器、量取仪器高和监视仪器的工作状态,而其它观测工作如卫星的捕获,跟踪观测等均由仪器自动完成。

--全天候作业。GPS观测可在任何地点,任何时间连续地进行,一般不受天气状况的影响。

GPS测量在公路测量中的应用

公路路线一般处在一条带状走廊内。其平面控制测量往往采用导线形式,这包括附合导线、闭合导线、结点导线等导线网形式。对于重要构造物如大桥、特大桥、长大隧道等,也有布设成三角网、线形锁等形式。

--常规测量方法的缺陷:

1、规范对附合导线长、闭合导线长及结点导线间长度等有严格规定,一般对于高等级公路均要求达到一级导线要求。这样,导线附合或闭合长度最长不得超过10公里,结点导线结点间距不能超过附合导线长度的0.7倍。这种要求一般在实际作业中难以达到,往往出现超规范作业。

2、搜集到的用于路线测量控制的起算点间一般很难保证为同一测量系统,往往国测、军测、城市控制点混杂一起,这就存在系统间的兼容性问题,如果用不兼容的起算点,势必影响测量质量。

3、国家大地点破坏严重,影响测量作业。由于国家基础控制点,大多为五六十年代完成,经过30多年,有些点由于经济建设的需要被破坏,有些点则由于人们缺乏知识遭人为破坏。在这些地区进行路线测量作业,往往在50公里以上均找不到导线的联测点。这样路线控制测量的质量得不到保证。

4、地面通视困难往往影响常规测量的实施。一般路线的控制点要求布设在距路线的300米范围内。由于通视的原因,这一条件难以满足,甚至在大范围密林、密灌及青纱帐地区,根本无法实施常规控制测量。

对于长大隧道,特大桥用常规测量有下列局限:

1、长大隧道、特大桥等构造物一般要求测量等级在四等以上。用常规测量方法,往往采用增加测回数,延长观测时间等费时、费工的方法来设法提高精度。

2、长大隧道、特大桥多为地形复杂困难地带,进行常规控制测量,为通视和网形,往往砍伐工作量相当大,这样测设费用很大,作业艰苦。

3、长大隧道及特大桥的控制网高精度及与路线网的低精度衔接,虽说用平差方法可以得到克服,但由于地形条件困难,其联结的测量工作量很大,且不太方便。实际工作中,构造物的控制测量与路线的控制测量经常出现脱节现象。

利用GPS测量能克服上述列举的缺陷,并提高作业的效率,减轻劳动强度,保证了高等级公路测设质量。

--GPS测量用于加密国家控制点:

京珠国道主干线粤境高速公路汤塘至广州北二环段路线长约60公里,所处地形为重丘区,路线设计为6车道。

该段有11个各种系统的平面控制点,经过实地寻找,找出了7个,有4个被破坏,破坏中有2个国家Ⅱ等点。在已找出的的7个控制点中,国家测绘局系统Ⅰ等点1个,Ⅲ等点1个;城市测量系统点2个;总参军控点3个。这些平面控制点分属不同测量系统,且等级不同。

为提高京珠国道粤境高速公路汤塘至广州北二环段测设质量,决定在国家测绘系统基础进行控制点的加密。加密的控制点布设方案是:沿公路路线每10km布设一对点,该对点相距约1km,且应通视良好。这样,该段共设了6对GPS加密点,加密点的精度要达到四等控制网的要求。GPS四等网由18个点组成,其网形略图如图1。(图1 汤塘至广州北二环GPS四等国家大地点加密)

该四等网采用4台Trimble SE400单频接收机作业。该机的标称精度为10mm+2PPm。四等网的观测时间为90min。数据采样间隔为15s。

基线预处理采用厂家提供的TrimvecPlus软件,平差计算采用武汉测绘科技大学编制的GPSADJ Ver2.0软件包。

通过平差处理,该四等网最弱点位中误差为4.11cm,平均点位中误差3.18cm,最弱边相对中误差1/27669,平均边长相对中误差1/453578。

整个四等网作业仅花4d时间。其效率较常规测量手段至少提高3倍。

在此基础上,我院同湖北省测绘局、湖南省第二测绘院合作,在京珠国道主干线湖南耒阳广州花都段进行了近600km的GPS加密国家控制点的测量。该地区路线跨越南岭山脉,沿线山高深、植被茂盛、地形地貌复杂、通视条件极差。国家

一、二等三角点破坏严重,测设内可供利用的三角点稀少,在路线走廊范围内仅找到7个保存完好的国家三角点。

经过平差处理,网中最弱点点位中误差为4.13cm,最弱边相对中误差为1/12.5万。控制网的各项指标达到甚至超过国家四等网的技术要求。

近600km的GPS控制网,仅用两个外业组,10个作业员,7台GPS接收机,约20d的作业时间。若采用常规测量方法在相同人手的情况下,至少需要三个月的时间才能完成。

GPS测量用于隧道控制测量

在京珠国道主干线粤境高速公路翁城县境内有座靠椅山双洞直线型平行隧道,初测的左、右洞起讫桩号分别为ZK144+710~ZK147+730,YK144+730~YK147+740。其洞长分别为3020m和3010m。根据《公路隧道勘测规程》中对隧道类别划分标准,属公路特长隧道,洞外测量在贯 通面上对贯通误差影响值限值为±55mm。

靠椅山隧道地处亚热带地区,雨量充沛、荆剌丛生,沟深林密,野外作业条件十分艰苦,采用常规方法不仅费时费力,而且选点困难,砍伐工作量大。结合靠椅山地形特征,采用GPS测量,布设了如图2所示的GPS控制网。

靠椅山隧道控制网由14个点组成,网中最短边长为100.842m,最大边长为3597.4m,平均边长为1104.848m。

采用Wild 200 GPS接收机进行静态观测,观测时间为20~50min,采样率为10s,共观测了29条基线向量。

经过平差处理,网中最弱边相对精度为1/60106,最高相对精度达1/137万;最弱点位中误差为±0.83cm。在贯通面上贯通误差左、右线分别为±0.707cm和±0.693cm。

通过实施GPS测量可看出:GPS测量灵活、方便,能大大节省人力、物力、减少野外砍伐工作量,减少一些不必要的过渡点;具有极高的精度,它完全能达到《公路勘察规程》对隧道测量的要求;较红外仪导线测量,可提高效率4~5倍。

GPS用于特大桥控制测量

鄂黄长江公路大桥是连结长江两岸黄冈市和鄂州市的公路特大桥。为便于大桥设计和施工,采用GPS对首选方案Ⅲ、Ⅳ桥位进行Ⅲ等平面控制测量。布网设计方案为双大地四边形(如图3)。垂直于江面的长边约为1200m,平行于江面的短边约为500m。双大地四边形与两个国家Ⅱ等以上大地点联测。

经过平差处理,控制网精度为:最弱点位中误差1.93cm,最弱边长相对中误差1/113000,满足了Ⅲ等平面控制测量的精度要求。

GPS测量用于导线控制测量京深高速公路河北境高邑至邢台段地处华北平原,地势平坦,最大相对高差约20m,平均海拔约50m,境内村庄较多。植被多为小麦及田间行树。

公路及机耕道密集。

采用三台Wild 200 GPS接收机进行导线测量,作业方式采用点连接方式,三台接收机同时作业。作业完后,向前滚动(如图4)。

?Ⅰ、Ⅱ、Ⅲ分别表示观测的同步环。

在GPS观测之前,已作高精度红外导线测量(EDM)和水准测量。

通过实际测量可以看出:

l GPS观测时间为7.5min,与常规红外仪测量相比,时间缩短了约20min,效率为4倍;与全站仪测量相比,时间缩短约8min,效率为2倍。

l GPS导线测量可靠性好,平面精度和高程精度均能满足高速公路测设的要求。

GPS测量用于摄影测量外业控制点测量

摄影测量一般沿飞行航摄的航线,每隔一定间隔就要在野外实地测量一定数量的平面和高程控制点(如图5)。野外平高控制点的间隔n按地形类别及所测地形图的比例尺而定。如1∶2000地形图,摄影比例尺为1∶10000,间隔n一般为4~6个摄影基线。

常规的野外平高控制点的测量方法是先沿航摄方向布设导线,然后在此基础上采用支导线方法测定航测象控点。这种方法主要是导线方式测量。

由于航摄面积较广,对23cm×23cm象幅,1∶10000摄影比例尺,覆盖范围为2.3km宽,双航线覆盖范围更宽,在这广阔范围内进行导线测量,往往由于实地条件的限制,其作业是相当艰苦的,且工作量大,作业周期长。

在京珠国道主干线粤境高速公路汤塘至广州北二环段这60km路线的航测外业中,利用4台TrimbleSE4000接收机,将一台或两台GPS接收机固定于已知点上,其余GPS接收机游动于像控点进行像控点三维坐标测量。全线航测像控点测量仅用5d作业时间。

经过平差处理,像控点平面点位精度达到了优于0.10m的精度,最弱边相对中误差为1/43734。

由此可见,GPS测量作航测控制,不仅具有高精度,而且具有极大的灵活性。它改变了逐步控制的测量模式,其效率较常规方法提高5倍以上。

GPS测量用于密林、密灌地区路线控制测量

随着经济的发展,高等级公路开始向山区、重丘区岭区拓展。这些地区人烟稀少,植被茂盛。成片的密林、密灌地区,水平方向通视困难,有时实施常规测量方法几乎不可能。

在海南中线新建公路海口至屯昌段测设中,自石山至永发镇约20km,植被覆盖厚,多为有剌密灌、杂草地,人迹罕见,有多个火山口。这种地区红外仪导线测量几乎没有可能。为提高高等级公路测设质量,采用GPS沿路线每隔2km作一对GPS点,这一对GPS点应保证足够的水平通视距离。

利用这2km一对的GPS通视点,就可在此基础上前后各支出不超过1km进行放线测设工作,既保证了测设工作的质量,又大大减少了作业的劳动强度,加快了测设周期。

在海南中线的20km密林密灌测设中,作了11对GPS通视点。采用TrimbleSE4000单频接收机在每个测站上观测30min,数据采样率为15s,作业方法是两台接收机处于固定点上,其余接收机游动于密林密灌区的埋设的通视点上。

经过平差处理,这22个GPS点的最弱点位精度为4.95cm,平均点位精度为2.85cm,平均边长相对中误差为1/486993。

GPS应用展望

从GPS测量中,可以看出GPS具有很大的发展前景:

首先,GPS作业有着极高的精度。它的作业不受距离限制,非常适合于国家大地点破坏严重地区、地形条件困难地区、局部重点工程地区等。

其次,GPS测量可以大大提高工作及成果质量。它不受人为因素的影响。整个作业过程全由微电子技术、计算机技术控制,自动记录、自动数据预处理、自动平差计算。

第三,GPSRTK技术将彻底改变公路测量模式。RTK能实时地得出所在位置的空间三维坐标。这种技术非常适合路线、桥、隧勘察。它可以直接进行实地实时放样、中桩测量、点位测量等。

第四,GPS测量可以极大地降低劳动作业强度,减少野外砍伐工作量,提高作业效率。一般GPS测量作业效率为常规测量方法的3倍以上。

第五,GPS高精度高程测量同高精度的平面测量一样,是GPS测量应用的重要领域。特别是在当前高等级公路逐渐向山岭重丘区发展的形势下,往往由于这些地区地形条件的限制,实施常规的几何水准测量有困难,GPS高程测量无疑是一种有效的手段。

第四篇:GPS在公路工程控制测量中的应用

GPS在公路工程控制测量中的应用 摘要:GPS(Global Positioning System)全球定位系统是美国研制并在1994年投入使用的卫星导航与定位系统。其应用技术已遍及国民经济的各个领域。在测量领域,GPS系统已广泛用于大地测量、工程测量、航空摄影测量以及地形测量等各个方面。本文将以开封市的省公路路网项目为例,概略叙述GPS系统在公路工程控制测量中的应用。

关键词:GPS定位系统 公路工程 控制测量 应用

一、概述

GPS全球定位系统(Global Positioning System)在公路工程测量中的应用,在最近的两年得到了迅速推广,这主要依赖于GPS系统可以向全球任何用户全天候地连续提供高精度的三维坐标、三维速度和时间信息等技术参数。我们先了解一下GPS系统的组成,工作原理以及在测量领域的应用特点。

1.1GPS系统的组成

GPS全球定位系统由空间卫星群和地面监控系统两大部分组成,除此之外,测量用户当然还应有卫星接收设备。

1.1.1 空间卫星群 GPS的空间卫星群由24颗高约20万公里的GPS卫星群组成,并均匀分布在6个轨道面上,各平面之间交角为60o,轨道和地球赤道的倾角为55o,卫星的轨道运行周期为11小时58分,这样可以保证在任何时间和任何地点地平线以上可以接收4到11颗GPS卫星发送出的信号。

1.1.2 GPS的地面控制系统 GPS的地面控制系统包括一个主控站、三个注入站和五个监测站,主控站的作用是根据各监控站对 GPS的观测数据计算卫星的星历和卫星钟的改正参数等并将这些数据通过注入站注入到卫星中去;同时还对卫星进行控制,向卫星发布指令,调度备用卫星等。监控站的作用是接收卫星信号,监测卫星工作状态。注入站的作用是将主控站计算的数据注入到卫星中去。GPS地面控制系统主要设立在大西洋、印度洋、太平洋和美国本土。

1.1.3 GPS的用户部分由GPS接收机、数据处理软件及相应的用户设备如计算机、气象仪器等组成,其作用是接收GPS卫星发出的信号,利用信号进行导航定位等。在测量领域,随着现代的科学技术的发展,体积小、重量轻便于携带的GPS定位装置和高精度的技术指标为工程测量带来了极大的方便。例如:我们在控制测量中使用的天宝(Trimble)4800GPS测地型接收机其技术指标为:

双频主机、天线,RTK电台一体化;

独特的电池设计、无需接线,使用4h以上;

5次/秒的快速位置更新,可靠的卫星"超跟踪"技术;

新型于薄式控制器,4M或10M的PCMCIA数据存储卡;

测量精度:静态测量5mm+lppm

RTK测量 10mm十1ppm(平面)

20mm十1ppm(高程)

这些技术指标充分的满足了控制测量的精度要求。

1.2GPS的工作原理

GPS系统是一种采用距离交会法的卫星导航定位系统。在需要的位置P点架设GPS接收机,在某一时刻ti同时接收了3颗(A、B、C)以上的GPS卫星所发出的导航电文,通过一系列数据处理和计算可求得该时刻GPS接收机至GPS卫星的距离SAP、SBP、SCP,同样通过接收卫星星历可获得该时刻这些卫星在空间的位置(三维坐标)。从而用距离交会的方法求得 P点的维坐标(Xp,Yp,Zp),其数学式为:

SAP2=[( Xp-XA)2+(Yp-YA) 2+(Zp+ZA) 2]

SBP2=[( Xp-XB)2+(Yp-YB) 2+(Zp+ZB) 2]

SCP2=[( Xp-XC)2+(Yp-YC) 2+(Zp+ZC) 2]

式中(XA,YA,ZA), (XB,YB,ZB), (XC,YC,ZC)分别为卫星A,B,C 在时刻ti的空间直角坐标。在GPS测量中通常采用两类坐标系统,一类是在空间固定的坐标系统,另一类是与地球体相固联的坐标系统,称地固坐标系统,我们在公路工程控制测量中常用地固坐标系统。(如: WGS-84世界大地坐标系和1980年西安大地坐标系。)在实际使用中需要根据坐标系统间的转换参数进行坐标系统的变换,来求出所使用的坐标系统的坐标。这样更有利于表达地面控制点的位置和处理GPS观测成果,因此在测量中被得到了广泛的应用。

二 GPS测量的技术特点

相对于常规的测量方法来讲,GPS测量有以下特点:

2.1 测站之间无需通视。测站间相互通视一直是测量学的难题。GPS这一特点,使得选点更加灵活方便。但测站上空必须开阔,以使接收GPS卫星信号不受干扰。

2.2 定位精度高。一般双频GPS接收机基线解精度为5mm+1ppm,而红外仪标称精度为5mm+5ppm,GPS测量精度与红外仪相当,但随着距离的增长,GPS测量优越性愈加突出。大量实验证明,在小于50公里的基线上,其相对定位精度可达12×10-6,而在100~500公里的基线上可达10-6~10-7。

2.3 观测时间短。观测时间短采用GPS布设控制网时每个测站上的观测时间一般在30~40min左右,采用快速静态定位方法,观测时间更短。例如使用Timble4800GPS接收机的RTK法可在5s以内求得测点坐标。

2.4 提供三维坐标。GPS测量在精确测定观测站平面位置的同时,可以精确测定观测站的大地高程。

2.5 操作简便。GPS测量的自动化程度很高。目前GPS接收机已趋小型化和操作傻瓜化,观测人员只需将天线对中、整平,量取天线高打开电源即可进行自动观测,利用数据处理软件对数据进行处理即求得测点三维坐标。而其它观测工作如卫星的捕获,跟踪观测等均由仪器自动完成。

2.6 全天候作业。GPS观测可在任何地点,任何时间连续地进行,一般不受天气状况的影响。

三、GPS系统在实际测量工作中的应用,

公路工程的测量主要应用了GPS的两大功能:静态功能和动态功能。静态功能是通过接收到的卫星信息,确定地面某点的三维坐标;动态功能是通过卫星系统,把已知的三维坐标点位,实地放样地面上。开封市的省路网改造项目应用GPS测量是于2001年开始的,2002年在省道豫04线和尉氏--通许段48公里的中线测量和国道310线郑汴高速连接线11.8公里的控制测量中推广使用了静态功能这一技术。据开封市公路工程勘察设计院有关专家介绍,经过多次的复测验证,GPS技术定线测量的精度可以完全满足公路勘察设计和公路建设的精度要求。

3.1 国道310线郑汴高速连接线控制测量

3.1.1建立布网方案

国道310线郑汴高速连接线北连郑汴高速,向南穿越正在开发的开封经济技术园区,地物地貌较为复杂,部分区域和方向有遮挡,该测区内原有BJ54坐标系的E级控制点二个(已知起算点),其中a1 (X=3852759.5680,Y=528870.9190,H=72.0080)位于医药商厦门前, b1 (X=3852808.6230,Y=527915.2590,H=72.0000)位于大学西边的路口处,根据工程需要在市委、水利局、书店、雕塑、检察院附近加密控制点,以便于测设,我们建立控制网。

3.1.2 大地测量法

主要采用大地测量仪器如经

纬仪、全站仪、测距仪等。国道

310线郑汴高速连接线控制网采用

测边网,高程采用测距三角高程,

按照观测技术要求进行施测。外

业观测数据经数据处理并进行平差计算。

3.1.3 GPS静态测量法GPS静态测量法就是根据制定的观测方案,将三台天宝4800GPS接收机安置在待定点(a2,c1,c2,c3)上同时接收卫星信号,直至将所有环路观测完毕。观测数据经平差计算得到54北京坐标系的坐标。

3.1.4大地测量法与GPS测量法结果比较

由于两种测量方法本身的测量误差和坐标转换数学模型误差以及在平差计算中观测量权配置等因素引起两种测量方法的结果存在一定的差值,由于其三维坐标差值均小于±10mm,因此可以满足国道310线郑汴高速连接线加密施工控制网的精度要求。

3.2 GPS的动态测量(RTK)在东京大道新建工程的应用

东京大道新建工程周围地势起伏较大,在北城墙外JD4~JD5区间穿越五十公顷面积的国家森林公园,大范围的密林、密灌地使通视较为困难,而规范对附合导线长、闭合导线长及结点导线间长度等有严格规定,一般对于高等级公路均要求达到一级导线要求。这样,导线附合或闭合长度和结点导线结点间距等指标都有严格规定,这种要求一般在实际作业中难以达到,往往出现超规范作业。开封市公路局勘察设计院于2000年用10人花费20天时间,用全站仪和测距仪通

过导线形式完成了该路段进行了控制测量。2001年在工程开工前对 该路段实施GPS的RTK动态测量,对中线进行恢复和校核。

以已知控制点 JD

4、JD5为基准点,然后在基准点JD4上架设GPS基准台,用GPS1H和GPS2两台天宝( Trimble)4800GPS接收机分别安置在控制点上,测出点HZ

4、ZD

7、ZD

8、ZD

9、ZD

10、ZH

5、的三维坐标,每点测量时间为5s。根据所测坐标计算出相应边长值。

为验证市勘察设计院2000年的对东京大道新建工程在控制测量的精度,我们分别以JD4和JD5为基准站对国家森林公园周围原加密的控制点A、B、C、D、E也进行了RTK测量,进行了坐标比较。

运用GPS测量的基线有14条,边长差值最大为16mm。控制点坐标测量点数7点,除E点发现有人为的破坏痕迹外,三维坐标能够比较的元素有27个,差值小于施工测量规范规定的要求,从以上比较可知,RTK测量可以用于工程的控制测量是非常有效的新技术。原来10人20天的外业任务,使用GPS测量仅用5人6小时时间,可见利用GPS测量能大大提高作业的效率,减轻劳动强度,保证了高等级公路测设质量。

四、小结

通过以上对GPS测量的应用事例的探讨,可以看出GPS在公路工程的控制测量上具有很大的发展前景:

第一 GPS作业有着极高的精度。它的作业不受环境和距离限制,非常适合于地形条件困难地区、局部重点工程地区等。

第二 GPS测量可以大大提高工作及成果质量。它不受人为因素的影响。整个作业过程全由微电子技术、计算机技术控制,自动记录、自动数据预处理、自动平差计算。

第三 GPSRTK技术将彻底改变公路测量模式。RTK能实时地得出所在位置的空间三维坐标。这种技术非常适合路线、桥、隧勘察。它可以直接进行实地实时放样、中桩测量、点位测量等。

第四 GPS测量可以极大地降低劳动作业强度,减少野外砍伐工作量,提高作业效率。一般GPS测量作业效率为常规测量方法的3倍以上。

第五 GPS高精度高程测量同高精度的平面测量一样,是GPS测量应用的重要领域。特别是在当前高等级公路逐渐向山岭重丘区发展的形势下,往往由于这

些地区地形条件的限制,实施常规的几何水准测量有困难,GPS高程测量无疑是一种有效的手段。

第五篇:第三章GPS静态定位在测量中的应用

第三章GPS静态定位在测量中的应用 目前,GPS静态定位在测量中被广泛地用于大地测量、工程测量、地籍测量、物探测量及各种类型的变形监测等,在以上这些应用中,其主要还是用于建立各种级别、不同用途的控制网。

第1节 GPS静态定位在测量中的应用

GPS静态定位在测量中主要用于测定各种用途的控制点。其中,较为常见的方面是利用GPS建立各种类型和等级的控制网,在这些方面,GPS技术已基本上取代了常规的测量方法,成为了主要手段。较之于常规方法,GPS在布设控制网方面具有以下一些特点: 测量精度高

GPS观测的精度要明显高于一般的常规测量手段,GPS基线向量的相对精度一般在105~109之间,这是普通测量方法很难达到的。

选点灵活、不需要造标、费用低

GPS测量,不要求测站间相互通视,不需要建造觇标,作业成本低,大大降低了布网费用。

全天侯作业

在任何时间、任何气候条件下,均可以进行GPS观测,大大方便了测量作业,有利于按时、高效地完成控制网的布设。

观测时间短

采用GPS布设一般等级的控制网时,在每个测站上的观测时间一般在1~2个小时左右,采用快速静态定位的方法,观测时间更短。

观测、处理自动化

采用GPS布设控制网,观测工程和数据处理过程均是高度自动化的。

第2节 布设GPS基线向量网的工作步骤

布设GPS基线向量网主要分测前、测中和测后三个阶段进行。

一、 测前工作

项目的提出

一项GPS测量工程项目,往往是由工程发包方、上级主管部门或其他单位或部门提出,由GPS测量队伍具体实施。对于一项GPS测量工程项目,一般有如下一些要求: 测区位置及其范围

测区的地理位置、范围,控制网的控制面积。

用途和精度等级

控制网将用于何种目的,其精度要求是多少,要求达到何种等级。

点位分布及点的数量

控制网的点位分布、点的数量及密度要求,是否有对点位分布有特殊要求的区域。 提交成果的内容

用户需要提交哪些成果,所提交的坐标成果分别属于哪些坐标系,所提交的高程成果分别属于哪些高程系统,除了提交最终的结果外,是否还需要提交原始数据或中间数据等。

时限要求

对提交成果的时限要求,即何时是提交成果的最后期限。

投资经费。

对工程的经费投入数量。

技术设计

负责GPS测量的单位在获得了测量任务后,需要根据项目要求和相关技术规范进行测量工程的技术设计。关于技术设计的具体内容将在错误!未找到引用源。中作详细介绍。

测绘资料的搜集与整理

在开始进行外业测量之前,现有测绘资料的搜集与整理也是一项极其重要的工作。需要收集整理的资料主要包括测区及周边地区可利用的已知点的相关资料(点之记、坐标等)和测区的地形图等。

仪器的检验

对将用于测量的各种仪器包括GPS接收机及相关设备、气象仪器等进行检验,以确保它们能够正常工作。

踏勘、选点埋石

在完成技术设计和测绘资料的搜集与整理后,需要根据技术设计的要求对测区进行踏勘,并进行选点埋石工作。

二、 测量实施

实地了解测区情况

由于在很多情况下,选点埋石和测量是分别由两个不同的队伍或两批不同的人员完成的,因此,当负责GPS测量作业的队伍到达测区后,需要先对测区的情况作一个详细的了解。主要需要了解的内容包括点位情况(点的位置、上点的难度等)、测区内经济发展状况、民风民俗、交通状况、测量人员生活安排等。这些对于今后测量工作的开展是非常重要的。

卫星状况预报

根据测区的地理位置,以及最新的卫星星历,对卫星状况进行预报,作为选择合适的观测时间段的依据。所需预报的卫星状况有卫星的可见性、可供观测的卫星星座、随时间变化的PDOP值、随时间变化的RDOP值等。对于个别有较多或较大障碍物的测站,需要评估障碍物对GPS观测可能产生的不良影响。

确定作业方案

根据卫星状况、测量作业的进展情况、以及测区的实际情况,确定出具体的作业方案,以作业指令的形式下达给各个作业小组,根据情况,作业指令可逐天下达,也可一次下达多天的指令。作业方案的内容包括作业小组的分组情况,GPS观测的时间段以及测站等。

外业观测

各GPS观测小组在得到作业指挥员所下达的作业指令后,应严格按照作业指令的要求进行外业观测。在进行外业观测时,外业观测人员除了严格按照作业规范、作业指令进行操作外,还要根据一些特殊情况,灵活地采取应对措施。在外业中常见的情况有不能按时开机、仪器故障和电源故障等。

数据传输与转储

在一段外业观测结束后,应及时地将观测数据传输到计算机中,并根据要求进行备份,在数据传输时需要对照外业观测记录手簿,检查所输入的记录是否正确。数据传输与转储应根据条件,及时进行。

基线处理与质量评估

对所获得的外业数据及时地进行处理,解算出基线向量,并对解算结果进行质量评估。作业指挥员需要根据基线解算情况作下一步GPS观测作业的安排。

重复确定作业方案、外业观测、数据传输与转储与基线处理与质量评估四步,直至完成所有GPS观测工作。

三、 测后工作

结果分析(网平差处理与质量评估)

对外业观测所得到的基线向量进行质量检验,并对由合格的基线向量所构建成的GPS基线向量网进行平差解算,得出网中各点的坐标成果。如果需要利用GPS测定网中各点的正高或正常高,还需要进行高程拟合。

技术总结

根据整个GPS网的布设及数据处理情况,进行全面的技术总结。

成果验收

上一篇:fabe销售法范文下一篇:违纪通报批评范文