北京地铁车站设计

2022-06-22

第一篇:北京地铁车站设计

北京地铁呼家楼车站防水施工技术研究

摘要:北京地铁呼家楼车站应用了复合式衬砌的方法进行防水施工,该施工技术采用400g/m2土工布缓冲层和2mm厚ECB塑料防水板作为隔水层,操作方便,防水效果好,能够很好地解决车站后期渗漏,加快了施工进度,保证了防水质量,具有推广价值。

关键词:复合式衬砌防水 防水隔离层 土工布缓冲层 ECB 塑料防水板 结构自防水 特殊部位防水

随着国民经济的发展,城市建设的日益繁荣,城市交通的紧张状况也就日益严重,城市地下铁路建设在我国正快速发展,北京、上海、天津、广州、深圳等城市已拥有地铁,沈阳等城市也开始修建城市地铁。我国大城市多在沿海或沿江河地区,地下水位高,因此做好地下工程防水施工,提高防水质量,做到不渗不漏十分重要。

呼家楼站是北京地铁十号线的中间站,是一座结构设计独特、技术难度较大的地铁站,车站位于东三环与朝阳北路交叉路口,呈南北走向,结构为分离岛式车站。另与规划的东西走向的M6线在本站成“十字换乘关系”。车站长120m,共设5个出入口。

车站防水等级为一级,结构不允许出现渗水,内衬表面不得有湿渍。车站风井结构防水等级为二级,顶部不允许滴漏,其他部位不允许漏水,结构表面可有少量湿渍,总湿渍面积不应大于总防水面积的6/1000;任意100m2防水面积上的湿渍不超过4处,单个湿渍的最大面积不大于0.2m2。 1地铁工程防水存在的主要问题 1.1防水材料问题

地下工程常用防水材料有涂料类和卷材两种,由于地铁车站为一级防水,防水质量要求高,涂料类防水材料在结构初支基面不平整、不干净,潮湿或灰尘较大的情况下施工,和基面容易形成两层皮,无法保证防水效果,因此,地铁防水施工通常采用卷材类防水材料。

目前北京地铁施工中普遍采用复合式衬砌防水,由缓冲层与防水板组成,外包在车站二次衬砌结构外侧,形成闭合封闭体,起到隔水作用。 1.2结构自防水问题

由于车站采用C30、P10现浇钢筋混凝土结构,混凝土标号高、抗渗等级高,造成单位体积混凝土的水泥用量多,从而使水化热高,混凝土的收缩量加大,致使混凝土产生裂缝,削弱了混凝土的自防水能力。

另一方面,在车站的高直边墙、拱部混凝土浇注过程中难以振捣,导致混凝土不密实,如拱顶封口只能靠泵送压力压入混凝土填充,密实度难以保证,容易形成渗漏孔隙。

混凝土的配合比、和易性、入模温度及供应的及时性等因素影响混凝土质量,处理不当也会使混凝土不密实,产生缝隙,造成后期渗漏。

1.3变形缝、施工缝、穿墙管等部位防水问题

变形缝、施工缝、穿墙管等部位是地下工程防水的薄弱环节,处理不当极易产生渗漏水,尤其是穿墙管,防水处理不当容易把地下水引进结构内。 2呼家楼车站防水施工方法

呼家楼车站采用复合式衬砌防水,即由初期支护、防水隔离层、二次衬砌构成3道防水防线。其中防水层不仅起防水作用,在整体结构中还起到隔离初期支护喷射混凝土与二次衬砌模筑混凝土,防止二衬混凝土开裂。

由于二次衬砌混凝土在浇注完成硬化过程中,混凝土内部存在收缩应力、温度应力,混凝土在收缩过程中与外侧喷射混凝土产生摩擦,由于喷射混凝土表面粗糙,约束其变形,产生拉应力,容易致使二衬混凝土开裂,因此,在初支护喷射混凝土与二衬混凝土之间设置表面光滑的防水层,可以大大减小拉应力的产生,有效的保护二衬混凝土的防水质量。 2.1防水隔离层 目前北京地铁工程使用的防水材料有LDPE膜、EVA膜、PVC板、ECB板。经已有工程的检验LDPE膜、EVA膜较薄(0.8mm),抗刺穿能力弱,二衬钢筋施工过程中容易破坏;PVC板在热熔焊接时产生有毒气体,危害人体健康,且焊接质量不易保证,现已较少使用。ECB板在抗拉、断裂延伸率、就抗刺穿性能上均优于前者,新建工程已广泛使用。

呼家楼车站外包防水层材料选用400g/m2土工布缓冲层和2mm厚ECB塑料防水板组成,其耐老化,耐细菌腐蚀,易操作且焊接时无毒气,适宜在潮湿基面上施工,施工采用无钉铺设工艺(见图1)。

2.1.1基面要求

①铺设防水板的基面表面应无明流水,否则应进行初支护背后注浆或表面刚性封堵处理,待基层表面无明水时,再施工做下道工序。

②铺设防水板的基面应平整;处理方法可采用喷射混凝土或砂浆抹面的方法,一般宜采用水泥砂浆抹面的处理方法,处理后的基面应满足:D/L≤1/8;D为相邻两凸面间凹进去的最大深度,L为相邻两凹凸间的最小距离。

③基面不得有尖锐的毛刺部位、不得有铁管、钢筋、铁丝等凸出物存在,否则应从根部进行凿除,然后在凿除部位采用1:2.5的水泥砂浆进行覆盖处理。

④变形缝两侧各50cm范围内的基面全部采用1:2.5的水泥砂浆找平,以便于背帖式止水带的安装,从而保证防水分区的效果。

2.1.2土工布缓冲层铺设及塑料垫片固定 400g/m2土工布具有一定的密实度和柔软性,在铺设缓冲层时,基层表面应平整无明水,用L≥32mm射钉将塑料垫片钉在土工布上固定缓冲层,缓冲层应分段铺设长度根据施工现场安排而定。塑料垫片的排列从上而下,拱顶间距为50cm,两侧边墙间距为80cm~100cm,底板间距为150cm~200cm,呈梅花状布置。

①土工布搭接5cm,搭接边用热风焊枪点粘焊接或射钉固定,间隔30cm~50cm。

②缓冲层的铺贴方向无一定要求,但一定要铺贴平整,以便为ECB防水层创造平整的基面,从而获得平整的防水层。

用的塑料圆垫片的布设位置须根据砼基面状况而定。只要可能,就选择基底面的低处来作固定点,以免防水层在此处绷紧吊空或浇筑二衬混凝土时弄破。钉子应被埋在垫圈的凹槽内,而不致与防水卷材接触破坏防水层。

2.1.3ECB卷材铺设

顶、底纵梁背后的ECB防水板卷材宜采用纵向铺设的方法,以减少T形接缝,尽量避免十字接缝。铺设时,一般予留出大于400mm余量,当浇注二次混凝土时,卷材不致被拉破、拉裂。

①当用特制电烙铁或热风枪将ECB焊在塑料园垫片上时,位置要对准,不得用力过大和时间过长,以免破坏防水层;焊接应牢固可靠,避免防水板脱落。

②防水板之间接缝采用双焊缝进行热熔焊接,搭接宽度为10cm。焊接完毕后采用检漏器进行充气检测,充气压力为0.25MPa,保持该压力不少于5min,允许压力下降20%。如压力持续下降,应查出漏气部位并对漏气部位进行全面的手工补焊。

③在卷材间用热熔焊机自动焊接时,要随时注意将接缝处的一侧卷材定位,以免错位后造成防水层被拉过紧,出现防水层鼓胀造成不平整,或形成单焊缝。

在施工过程中,尽量避免手工焊接,在部分接缝无条件用热熔焊机焊接时再采用手工焊接,手工焊道上应在补加一道宽度不小于7cm的加强层。

④所有防水板甩茬预留长度均应超过预留搭接钢筋顶端不小于40cm,以便下一次防水板铺设搭接。 2.1.4施工注意事项

①施工过程中不得穿带钉子的鞋在防水板上走动。

②钢筋绑扎过程中防止钢筋端头刺破防水层,钢筋焊接时应在防水板与钢筋之间用石棉布进行隔离,防止焊接烧伤防水板。

③混凝土浇注时严禁振捣棒接触防水板。

④施工过程必须加强对防水板的检查,发现破损要做好标记,及时进行修补。 2.2衬砌结构自防水

呼家楼车站二次衬砌采用C30、P10防水混凝土施工,迎水面钢筋保护层厚度不小于50mm。在浇注过程中严格施工,鉴于结构拱顶不易浇注密实,每隔4m~5m埋设一道二衬背后注浆管,对二衬背后与防水板之间进行注浆填充。

2.3施工缝、变形缝、穿墙管防水 2.3.1施工缝

根据车站混凝土浇注顺序,施工缝有环向和纵向两种。在施工过程中采取嵌缝胶和预埋注浆管的方法进行防水。

①遇水膨胀嵌缝胶应具有缓胀性能,属不定型产品,挤出后固化成型,成型后的宽度为15mm~20mm,高度为8mm~10mm,采用专用注胶器均匀挤出粘结在施工缝表面,粘贴部位为结构中线两侧各10cm位置。

②粘贴嵌缝胶的施工缝表面需要先凿毛,将疏松、起皮、浮灰等凿除并清理干净,使施工缝表面坚实、基本平整、干燥、无污物。

③嵌缝胶粘贴完毕后,应避免施工过程中遇水,否则提前膨胀后会导致嵌缝胶的止水能力下降。

④注浆管每隔4m~5m间距引出一根注浆导管,利用注浆导管进行注浆,使浆液从注浆管孔隙内均匀渗出,填充两道嵌缝胶范围内的空隙,达到止水的目的。注浆导管的开孔部位应做好临时封堵,避免浇筑混凝土时杂物进入堵塞导管。 ⑤注浆导管应在结构内的钢筋内穿行一段距离后再引出结构表面,引出位置应距施工缝不小于20cm间距。不必将直接穿过背水面嵌缝胶直接引出。以免影响嵌缝胶的防水密封效果。 2.3.2变形缝

呼家楼车站变形缝的处理方法如下:结构变形缝采用30cm~35cm宽中埋式注浆PVC止水带、30cm~35cm宽的背贴式止水带进行防水处理,同时在顶拱、侧墙结构内表面预留凹槽,设置镀锌钢板接水盒。

底板和侧墙变形缝两侧的结构厚度不同时,此时需要将变形缝两侧的结构做等厚度处理,在距变形缝不小于30cm以外的部位再进行变断面的处理,这样不但利于柔性防水层的铺设质量,而且可设置背贴式止水带,确保了变形缝部位的防水效果。

(1)中埋式注浆止水带施工要求。①中埋式注浆止水带可采用合成树脂类PVC止水带,止水带的宽度为30cm~35cm。②注浆止水带采用热熔对接法连接,同时应保证对接部位注浆管的畅通。对接部位的抗拉强度应不小于母材强度的80%,要求对接部位接缝严密、不透水。③注浆止水带的注浆导管引出间距6m~8m,引出位置以便于后期注浆操作为主。注浆导管应进行临时封堵,避免后期施工过程中异物进入堵塞注浆管。④注浆导管宜在结构内穿行一段距离后再引出,即注浆导管引出位置应距变形缝30cm~40cm。

(2)背贴式止水带施工要求。

①背贴式止水带采用宽度为30cm~35cm宽的塑料止水带。

②塑料止水带采用热熔对接焊接接头,接头部位的拉伸强度不小于母材强度的80%。

③为保证背贴式止水带与混凝土咬合密实,在止水带两侧齿条之间设置注浆花管。 3 结束语

(1)通过车站防水施工证明,北京地铁呼家楼车站采用的复合式衬砌防水技术能够满足车站一级防水的要求,400g/m2土工布缓冲层和2mm厚ECB塑料防水板材料性能良好,形成了全封闭防水系统。

(2)通过充气试验,ECB防水板使用热合机焊接焊缝严密牢固,气密性好,工艺先进、成熟。

(3)施工缝采用嵌缝胶结合注浆管加强防水,能够很好地解决施工缝渗漏水问题。

第二篇:北京地铁五号线东四车站暗挖段的防水施工

1 东四车站结构、工程地质和水文地质概况

地铁东四站位于朝阳门内大街与东四南大街交叉口上。车站两端为明挖段,结构形式为三层三跨框架结构;中间为暗挖段,结构形式为单层三拱两柱结构。车站总长度197 m , 其中暗挖段长96180 m ,明挖段总长为100120 m 。车站总宽:暗挖段为22190 m ,明挖段为26120 m 。车站设置东南、东北、西南、西北4 个出入口和南、北2 个风道。

车站两端三层三跨框架结构由侧墙、梁、板、柱等构件组成,采用明挖顺筑法施工。中间单层拱形三跨两柱结构为复合衬砌结构。框架结构的防水,一是施作外包防水层,二是依靠结构混凝土自防水;复合衬砌结构的防水,一是施作初期支护与二次衬砌之间的防水夹层;二是依靠二次衬砌混凝土的自防水。

出入口除西南、西北两个采用暗挖法施工外,东南、东北两个采用明挖法施工。两个风道均采用明挖法施工。防水处理与施工方法有关,参照车站明挖、暗挖段的防水方案进行防水处理。

工程地质自上而下依次为:人工填土层(杂填土和粘质粉土素填土),厚217~414 m ; 粘质粉土、砂质粉厚410~615 m ;粘质粉土,厚210~413 m ;中粗砂层,厚210~312 m ;卵石,厚510~1310 m 。水文地质自上而下依次为:上层滞水,赋存于填土层和粘质粉土、砂质粉土中;潜水,赋存于粉细砂层、中粗砂层、圆砾层、卵石层中; 承压水,赋存于中粗砂层、卵石层孔隙中。受城市工程施工降水的影响,潜水水位呈连续下降的趋势,平均每年水位降低0158 m 。历史最高水位1959 年为41~42 m ,1971 年—1973 年为32~34 m , 建议设防水位为35100 m 。潜水对钢筋混凝土中的钢筋和钢结构具有弱腐蚀性。 2 防水施工综述

东四车站及其出入口通道防水设计标准为一级防水,结构不允许出现渗水,内衬表面不得有湿渍。车站风道防水设计标准为二级防水,不允许漏水,结构表面允许有少量的偶见湿渍。防水施工影响因素多,技术难度大,是地铁工程施工的一大难点,也是一道关键工序。结构防水是根据工程地质和水文地质条件、车站结构特点、施工方法和使用要求等因素进行设计和施工的,遵循“以防为主,防排结合,刚柔相济,多道防线, 因地制宜,综合治理”的原则,外防水固然重要,而提高结构自防水性能也不能忽视,处理好施工缝、变形缝等土,厚114~415 m ; 粉细砂层,厚615~817 m ; 圆砾层, 柜具备启动、停止自动控制及故障泵自动关闭、备用泵自动投入等功能,保证运行的高可靠性。泵站的位置与铁路中心的距离25 m , 以防泵站内仪表受到行车振动的影响,应考虑城市规划要求,会同城市、铁路、公路等有关单位协商确定。 5 结论

(1) 采用封闭式引道隔离地下水,绿化带等引道以外地表水自然排出,泵站设计只考虑抽排引道内地表水,可减小泵站规模,节省电力,节约投资,精减泵站管理工作,为保证引道排水畅通创造有利条件。

(2) 封闭式引道的设计在工程实例中并不多,本次设计做了大量的工作,尤其是在横向接缝构造处理上有新的尝试,期待能为以后的工程提供借鉴。

图1 东四暗挖段车站结构防水系统

薄弱环节十分关键。根据设计要求,车站主体、风道、出入口框架结构底板、顶板、侧墙采用C30 、S10 补偿收缩防水混凝土。暗挖段施工缝均采用遇水膨胀腻子条和预埋注浆管的方法进行加强防水处理。变形缝采用中置式橡胶止水带;车站结构暗挖段柔性防水采用400 gΠm2 土工布和118 mm 厚的ECB 防水板(见图1) 。 3 结构自防水

在地铁工程施工中,由于施工环境较差以及施工顺序的关系,使防水效果难以达到设计的理想状态,因此结构自防水是地铁工程防水成败的关键。

东四车站主体结构采用C30 、S10 、补偿收缩混凝土。它具有良好的抗裂性能,主体结构混凝土不但要起防水作用,还要和钢筋一起成为受力结构。为确保混凝土质量达到结构自防水的目的,必须采取有效措施。 3.1 防水混凝土性能要求与原材料选择结构自防水混凝土必须具备密实度高、收缩率小、强度高、可灌性好等多种性能,混凝土一般均掺加经选择的附加剂来达到自防水目的。工程经验表明,掺加剂的稳定性影响到结构体是否产生裂纹,甚至影响到结构的受力,因此高性能混凝土要严格按设计要求进行配合比设计,为此对原材料选择提出如下技术要求: (1) 水泥 使用品质较稳定的425 # 普通硅酸盐水泥,混凝土含碱量(Na2O) 不超过016 % , 性能指标必须符合《普通硅酸盐水泥》(GB175 —92) 标准。

(2) 石子 采用质地坚硬,附着物少的优质石子, 石子最大粒径≯40 mm , 含泥量≯1 % , 泥块含量≯ 015 % , 吸水率≯115%。

(3) 砂子 采用符合现行《普通混凝土用砂质量标准及检验方法》的河砂(中砂),含泥量≯3 % , 泥块含量≯1%。

(4) 粉煤灰 采用一级品质、稳定性好的磨细粉煤灰代替部分水泥用量,以提高混凝土的和易性,掺量不大于水泥用量的20 %。

(5) 其它掺加剂宜用“TMS”或UEA , 其掺量根据具体要求确定。 3.2 防水混凝土配合比

防水混凝土配合比,应根据工程要求、选材要求、结构条件和施工方法,通过试验确定。其抗渗等级应比设计要求提高012 MPa 。每m3 混凝土的水泥用量 ≮320 kg(包括粉细料在内);砂率取为35~40 , 灰砂比应为1∶215;水灰比≯016 ;普通防水混凝土的坍 2~1∶落度≯50 mm , 当掺外加剂或采用泵送时按相应的规定办理。防水混凝土配料必须按重量配合比准确称量,计算允许偏差为: 水泥、水、外加剂、粉细料为 ±1 % , 砂、石为±2%。

3.3 防水混凝土的拌合与运输

(1) 混凝土拌合 按照招标要求,混凝土供应采用工厂拌合的商品混凝土,当用于灌注车站结构而采用高性能混凝土时,混凝土的拌合必须选材固定,计量准确,拌合时间达到规定要求。搅拌时间≮2 min 。掺加外加剂时,应根据外加剂的技术要求确定搅拌时间。

(2) 混凝土运输 混凝土采用拌合车运送,混凝土在运输过程中,要防止发生离析现象及减少坍落度损失,对混凝土的坍落度损失应控制在1 cm 以内;当由于运送距离远或产生交通堵塞而引起混凝土出厂时间过长的问题时,需要在工厂调整配合比,严禁在商品混凝土中掺加任何其他材料,以确保混凝土的入模质量。 3.4 防水混凝土灌注

(1) 模板 模板要架立牢固,尤其是挡头板,不能出现跑模现象,混凝土挡头板保证做到模缝严密,避免出现水泥浆漏失现象,且达到表面规则平整; 地模、墙模施工质量达到设计和规范要求。

(2) 混凝土浇筑 防水混凝土采用泵送入模时,宜将润湿砂浆取走,确保不改变入模混凝土的原有质量。混凝土应分层浇筑,分层振捣,每层厚度不宜超过300 ~400 mm , 相邻两层浇筑时间间隔不超过2 h , 以确保上、下层混凝土在初凝之前的牢固结合。混凝土泵送入模时,应使其水平均匀入模,并控制其自由倾落的高度。当自由倾落高度超过2 m 时,应使用串筒、溜槽或在灌注面接一段水平导管。当灌注暗挖结构拱部衬砌时应按灌注孔先下后上有序地进行,防止发生混凝土离析。

(3) 混凝土振捣 混凝土振捣一般采用附着式和插入式两种振捣器,附着式振捣器用于暗挖结构防水混凝土灌注,插入式振捣器使用较广。混凝土振捣前应先根据具体的结构物设计振捣点,振捣时间一般为10~30 s , 以混凝土开始出浆和不冒气泡为准,避免漏振、欠振和超振。对新旧混凝土结合面、沉降缝、施工缝止水带位置需要严格按设计的振捣点和时间进行有控制的振捣。

(4) 施工缝设置 混凝土应尽量做到连续浇筑,不留或少留施工缝。如因施工需要留设施工缝,必须征得设计同意,并得到监理的认可。 施工缝的设置,主要考虑一次混凝土灌注工作的强度和有效控制混凝土的收缩裂纹。在结构施工时, 环向施工缝设置不超过24 m 。纵向施工缝根据结构特点而定。

(5) 施工缝部位处理 在施工缝处继续浇筑混凝土前,无论何种情况,对接缝表面都应进行凿毛处理, 清除浮粒,粘贴止水条。对于采用顺筑法施工的结构, 在施工缝处继续浇筑混凝土前,应用水冲洗接缝并保持湿润,首先在接缝处铺一层20~25 mm 厚、与灌注混凝土标号相同的水泥砂浆,然后再进行混凝土灌注;施工缝处的混凝土必须充分振捣密实。 (6) 混凝土保护层 混凝土结构内部设置的各种钢筋或绑扎铁丝,不得接触模板。在迎土面的钢筋保护层厚度≮35 mm 。

(7) 变形缝设置 混凝土结构变形缝的止水条构造形式、位置、尺寸,以及止水条使用的材料、变形缝填料的物理力学性能应符合设计要求。并应加强变形缝处混凝土的振捣。

(8) 混凝土坍落度控制 当混凝土采用泵送时,混凝土配合比的各项技术指标应作适当调整,混凝土坍落度应控制在规范允许范围内。混凝土的供应必须保证泵送混凝土连续工作, 预计泵送间歇时间超过45 min 或当混凝土出现离析现象时,应立即用压力水或其它方法冲洗管内留存的混凝土,严禁使用不合格混凝土浇筑。

(9) 暗挖结构拱顶混凝土灌注的特殊要求 对于采用暗挖法施工的洞室结构的拱顶混凝土灌注,往往会产生拱顶混凝土不密实、不满灌、漏振捣、易收缩的现象,故对此部位的混凝土施工除在混凝土性能上设法减少其收缩率以外,还需对其灌注工艺提出特殊要求。根据工程经验,拱顶混凝土的灌注宜采用加强封堵板泵送挤压混凝土施工工艺,见图2 。

图2 泵送挤压灌注混凝土工艺图

① 选择具有足够强度和刚度的拱顶模板支撑体系,以保证模板支架在施工中不失稳。

② 设计能承受一定挤压力的挡头模板,利用结构纵向钢筋作为拉杆加固挡头板。见图3 。

图3 挡头模板结构示意图

③ 灌注混凝土时先从新旧混凝土接触面处开始均匀分布灌注,最后在单元体中间位置进行泵送灌注,待混凝土自挡头板挤出浆来时,稳压持续几分钟,检查混凝土是否灌满。如稳定压力后不能再灌入时,说明拱顶已灌满。若稳定压力后仍能灌入,则应稳压持续到不能灌入为止。

④ 在拱顶最高位置贴近初期支护面布设伸向二次衬砌混凝土后面的补偿注浆管,一则可以通过注浆管检查混凝土的灌满程度,二则待混凝土达到一定强度后利用注浆管注浆,以补偿混凝土因收缩或未灌满造成的拱顶空隙。

(10) 混凝土拆模及养护 混凝土终凝后应进行养护,养护时间不少于14 d , 以防止在硬化期间产生干裂。养生采用喷洒水养生方法,保持混凝土表面湿润。拆模时混凝土表面温度与周围环境温度差不得超过15 ℃,以防止混凝土表面产生裂缝。对于大体积混凝土,施工中要有温度控制措施,防止水化热过高使混凝土内外温差过大而产生温差裂缝,混凝土内外温差应低于25 ℃ 。

(1) 混凝土的原材料必须符合现行国家标准、施工及验收规范和设计的有关规定。原材料如有变化应及时调整混凝土的配合比,并取得监理的认可; (2) 检查原材料的称量不少于二次; (3) 在混凝土拌制和浇筑地测定其坍落度,每工作班不少于二次,对掺引气剂的混凝土还应测定其含气量; (4) 检查配筋、钢筋保护层、预埋铁件、穿墙管等细部构造是否符合设计要求,合格后填写隐蔽工程验收单,报监理检验认可; (5) 连续浇筑混凝土量< 500 m3 时,留两组抗渗试块,每增加250~500 m3 增留两组。试块应在浇筑地点制作,其中一组应在标准条件下养护,另一组应与现场相同条件下养护,试块养护期不少于28 d 。 4 暗挖段车站防水层施工 4.1 暗挖段防水层施工

柔性防水层施工技术措施的要点在于:材料选择; 焊接工艺;铺设工艺。根据设计要求,选用ECB 防水卷材和土工布缓冲层,具体施工工艺如下: (1) 基面清理 在防水板施工前,进行喷射混凝土基面处理,要求表面平整、干燥、无渗漏水、无突出物; ① 对暗挖喷射混凝土衬砌要求拱部平整度DΠL < 1Π8 , 要求边墙及底板平整度DΠL < 1Π6( D 为相邻两凸面间凹进去的深度,L 为相邻两凸面间的距离) 。

② 基面不得有钢筋及尖锐的管件等凸出物,否则予以割除,并在割除部位用同标号砂浆抹成圆曲面,以防防水层被扎破。

③ 隧道断面变化或转弯处的阴阳角均应做成圆弧,阴角处圆弧半径≮10 cm , 阳角处圆弧半径≮5 cm 。

④ 防水层施工时基面不得有明水,如有明水则用堵漏剂堵水。 (2) 400 gΠm2 土工布施工 土工布长边沿车站长度方向铺设,长度一般为12 m 。铺设方法是,首先在喷射混凝土隧道拱顶标出隧道纵向中心线,把土工布用射钉、塑料垫片固定在混凝土基面上,要求土工布的中心线与隧道中心线重合。土工布长边搭接宽度≮ 150 mm , 短边搭接宽度≮100 mm 。侧墙土工布的铺设位置在施工缝以下250 mm , 以便搭接。 塑料垫片用射钉固定在无纺布上,每隔100~150 cm 呈梅花形布设,对于变化断面和转角部位,钉距适当加密。

(3) ECB 防水膜铺设 ECB 防水膜长边沿车站长度方向铺设,铺设长度与土工布同,先在隧道拱顶部的土工布缓冲层上正确标出隧道纵向中心线,再使防水膜的中心线与隧道中心线相重合,与土工布一样从拱顶开始向两侧下垂铺设,边铺边与圆垫片热熔焊接,铺设时力求与土工布密贴,不必拉得太紧。防水膜在与圆垫片进行热合,一般时间达5 s 即可。防水膜长短边采用专用塑料热合机进行焊接,搭接长度≮10 cm 。防水板焊缝焊接时,热合机行走速度控制在016~112 mΠmin 。无条件用机焊的特殊部位也可用人工焊接,但一定要认真检查焊接是否牢固。 4.2 防水膜铺设、焊接质量检查

外观检查:铺设平顺无隆起,无折皱,无漏缝,无假缝,焊缝连接牢固。 焊缝质量检查:焊缝为双焊缝,中间留出空隙,以便充气检查。检查方法: 用5 号注射针头与压力表相接,用打气筒进行充气检查,将焊缝充气加压至110~ 115 MPa 时,停止充气,保持该压力2 min , 压力损失< 2%为合格,否则说明有漏气之处。用肥皂水涂在焊缝上,产生气泡的地方要重新焊接或补焊(可用热风焊机和电烙铁等补焊),直到不漏气为止。检查数量为每4 条抽试一条。为保证质量,每天每台热合机焊接应取一个试样,注明取样位置,焊接操作者及日期。 4.3 防水层的成品保护

防水层施工完成后,必须严加保护,否则极易损坏,导致防水质量下降以至完全失效,故要求各方面予以重视密切配合。 (1) 特殊部位采取的保护措施

① 仰拱和仰拱与边墙转角高013 m 范围内应做保护层,采用215 mm 厚FSPE 保护板或5 cm 厚豆石混凝土作保护层。 ② 结构断面发生变化处,铺设双层防水卷材。

③ 二次衬砌的钢筋头上加塑料套,防止钢筋碰破 防水膜。

(2) 防水板施作完毕后的保护

① 在未设保护层处(如侧墙部位),焊接钢筋时必须用石棉板遮挡隔离,以免溅出火花烧坏防水膜。

② 在灌注二次衬砌混凝土时,振捣棒不得直接接触防水层,因为振捣棒对防水层的破坏不易发现,也无法修补。 ③ 不得穿带钉子的鞋在防水层上走动。 4.4 特殊结构部位的防水处理

主体结构防水施工由于工法的原因,在各洞室及明、暗挖衔接处防水层不能同时施作,必须进行预留, 作特殊处理(见图4) 。

图4 结构衔接处防水处理

凡是结构衔接处预留搭接防水层均采用内贴2 mm 镀锌铁皮保护,并设双层防水膜以防止破除围护结构时损坏防水层搭接而影响全部防水效果。

5 施工缝、变形缝的防水处理 5.1 施工缝防水处理

(1) 施工缝设置原则 混凝土施工时设计要求尽量少设或不设施工缝,因为它是结构自防水的薄弱环节,因此,必须认真做好施工缝的防水处理。 (2) 施工缝处理及止水带(条) 安装 施工缝通常有立缝和平缝两种,防水处理时,首先将接缝处混凝土基面进行凿毛处理,并冲洗干净,粘贴止水带(条) 部位混凝土基面必须抹平、压实、压光,以保证止水带(条) 与基面粘贴密实、牢固。混凝土浇筑前在断面中间设置止水带(条),材料为氯丁胶。止水带(条) 必须在混凝土浇筑前4 h 内粘贴在混凝土基面上,以防止提前遇水膨胀。其接头采用45°斜口平接( 热焊),不得重叠,要求接缝平整牢固,无裂口和脱胶现象。施工缝处防水方案见图5 。

(3) 施工缝处混凝土振捣 在混凝土浇筑过程中注意对施工缝止水带(条) 处的振捣,保证施工缝的防水质量。边墙两侧纵向施工缝处,在防水膜内侧间隔地设置泄水孔,以引排渗水,通过排水沟汇入泵房集水

图5 施工缝防水图井。

5.2 变形缝防水处理

变形缝是由于不同刚度结构,受不同的力,容许产生一定的不均匀沉降而设置的结构缝隙。它是结构外防水的关键环节。设计要求在车站主体明、暗挖段间设变形缝,车站与风道、出入口、区间衔接处设置变形缝。变形缝采用中埋式橡胶止水带止水,缝隙间充填嵌缝密封膏,在变形缝结构内侧设置预留槽,槽内涂刷密封胶,变形缝防水方案见图6 。 (1) 止水带安装与定位 中埋式止水带安装应准确居中安设,粘贴或焊接定位。用模板固定,先安装一端浇筑混凝土,另一端用箱形木板保护,待混凝土达到一定强度后拆除模板及箱形保护,如图7 。

图6 变形缝防水方案

图7 止水带固定方法示意图 连接采用现场热焊接,焊接质量应满足规

范要求。 (2) 变形缝处的混凝土灌注与振捣

① 对竖直向的止水带两边的混凝土要加强振捣, 保证缝两边混凝土密实,同时将止水带与混凝土表面的气泡排出。要保证止水带与混凝土牢固结合,止水带处的混凝土不应有粗骨料集中或漏振现象。

② 对水平方向的止水带待止水带下充满混凝土并充分振捣密实后,放平止水带并压出少量混凝土浆,然后再浇灌止水带上部混凝土,振捣上部混凝土时要防止止水带变形。

③ 变形缝外侧密封胶施工时,为了避免三向受力, 影响防水质量,在密封胶与嵌缝材料间采用牛皮纸隔离层,密封胶与接缝两侧壁必须粘结牢固,密封严密。无渗漏水现象。嵌缝质量应密实,表面不容许出现开裂、脱离、滑移、下垂以及空鼓、塌陷等缺陷。嵌填密封胶之前,先清除槽内浮渣、尘土、积水,粘结密封胶的混凝土基面必须平整、干燥、干净、无任何污染。

④ 变形缝中使用的橡胶止水带和嵌缝材料必须有出厂质量证明,并经进场检验和复验合格后方可使用。变形缝的构造形式和材料必须符合设计要求。 6 结束语

结构防水是地铁工程中至关重要的一个施工环节,防水施工质量的好坏直接影响地铁的使用效果。目前的暗挖地铁防水施工中仍存在诸多问题,防水效果还不尽如人意。希望通过不断探索,改进现有的防水施工工艺,使地铁在施工安全度、结构稳定性以及防水性能等各方面日趋完善。

第三篇:轨道交通地铁车站设计要点介绍

岩土隧道分院 宛超群

摘 要:结合当前城市轨道交通车站设计的不足以合肥轨道交通2号线玉兰大道站总体设计方案为例,结合站址环境及车站的功能定位,对车站布置方案进行多方面综合分析,并进行经济技术方面的比较,确定最优方案并谈谈自己对轨道交通设计的理解。 关键词:轨道交通;土地利用;车站设计;综合利用

1 轨道交通车站与周边城市环境不融合

轨道交通车站在地区环境的重要地位和作用还未被充分重视,由于缺乏对在车站地区交通接驳、公共空间环境、地下空间利用等方面整体化、人性化、细节化的规划设计,从而导致很多车站与周边环境品质地下。主要表现为换乘不便,缺乏接驳停车设施和集散广场,车站与周边建筑地上地下衔接不紧密,导向指示标志不清晰,出入口、风亭、冷却塔等构筑物缺少整体景观设计等。

导致城市轨道交通与土地利用不协调的因素是较为复杂的,涉及规划、建设、管理等各个层面。就规划设计层面来说,受我国传统规划设计技术体系和规划编制方法的影响,不少规划虽提出了“轨道交通与土地利用协调发展”的理念,但缺乏从宏观到微观系统性的规划互动研究。一方面,在轨道交通网络布局、站位布点、车站出入口设置等规划设计中,时常过于注重工程技术的可行性和工程建设成本的控制,忽视轨道交通与城市功能的密切结合,尤其是与规划的城市功能相结合;目前我们地铁车站设计都是把周边规划作为设计的边界条件,而没有真正做到把轨道交通站点作为规划的一部分。另一方面,在规划城市功能布局、确定建设用地规划指标、进行城市空间环境设计等工作中,对轨道交通与土地利用互动关系也存在认识不足的问题。

2 启示

2.1 合理选择轨道交通站位是实现轨道交通引导发展的前提条件, 车站设置应能够极大的改善交通服务质量和可达性,要与城市需要发展的地区相结合。

2.2 建设以车站为核心的结构紧凑、混合的土地利用模式。在轨道交通车站周围适于步行的范围内布置商业、居住、就业岗位、公共设施和开敞空间,并形成以车站为核心,向外递减的开发强度分布。根据现状条件和区位,不同轨道交通车站地区的功能定位将有所区别。重要的城市轨道交通节点地区一般亦是城市或地区的公共活动中心。

2.3 综合利用轨道交通地下、地上空间。充分挖掘土地资源。在车站地下建设中,结合换乘以及周边建筑衔接等需求,进行地下空间的综合开发利用;利用部分车俩段、停车场上盖进行物业综合开发,节约使用土地。

2.4 体现以人为本的理念,重视车站地区的环境设计和建设,将轨道交通车站融入城市生活。在车站地区提供人性化的轨道交通服务、便捷的换成条件、友好的步行系统、宜人的景观环境,将轨道交通车站地区塑造为充满活力的高品质地区。

1 3 合肥2号线玉兰大道站整体规划设计思路和对策

3.1 站位及站址环境

合肥市轨道交通2号线是东西走向的主干线,全线共设24座车站,平均站间距1.3公里,玉兰大道站是中间站,位于长江西路高架南侧,玉兰大道路口西侧处,沿长江西路东西向布置,路口东南角为盛臣大富豪酒店,西南角为绿地公园和安徽名人馆,西北角为永辉商城,东北角为合肥市第一人民医院西区。地面交通流量较大,市政管线密集,长江西路现状道路宽为60米,为双向六车道; 玉兰大道道路红线50米,交通流量较大。

本站位于长江西路与玉兰大道交叉口处,改地段地下管线纵多,但大多管线埋深较浅,有一埋深2.9米直径400mm的横跨车站主体的污水管,和沿着车站主体纵向上方埋深2.24米直径400mm的雨水管,考虑施工期间永久改迁至车站主体外。拟定车站有效站台中心处覆土3.3米。 3.2 设计思路

玉兰大道设计的思路分为2个层面:

○1车站地区规划范围内的整体城市设计。车站周边规划为教育用地,城市公共绿地和居住用地,东边为商业金融及医疗配套建筑。在此区域,重点研究车站站位与周边土地利用优化地区各类交通系统及其组织以及地区整体空间形态等问题。

○2车站核心区的一体化设计。重点研究车站主体与周边建筑、道路地上、地下空间的衔接,交通组织和接驳换乘,以及人性化公共空间设计。 3.3 设计对策

玉兰大道站设计的最终方案吸纳了土地利用、交通系统、综合利用地下空间等方面的理念和作法,其主要设计对策体现在以下几个方面。 3.1.1 优化调整周边土地利用

基于对玉兰大道站地区发展优势和劣势的分析,将玉兰大道站地区设计定位为:“和谐、宜居、繁荣、便捷的区域公共中心”。靠近车站为公建与居住相混合的用地、文化娱乐用地、居住用地等,以车站为中心5~10min最佳步行区域内的土地利用模式,创造集换成、商业、零售、餐饮、办公为一体的全天候地区公共中心。 3.3.2 创造为人行服务的交通环境

交通系统的设计是影响轨道交通车站能否发挥交通功能的重要因素。车站应十分重视与周边道路、公交接驳、自行车和步行环境的设计,其核心理念是创造为人行而非车行服务的交通环境,提供便捷、安全、高效、舒适的交通换成条件以提高轨道交通的吸引力,从而使其成为更多人选择的出行方式。

为此,将公交驻车功能与接驳功能分离设置,缩短公交与地铁的换成距离;在地铁出入口附近设置公交港湾、自行车停车位;地铁车站方案也进行了优化,增设了过街出入口,并将出入口与车站风亭建筑结合设置。 3.3.3综合利用地下空间

利用地铁开挖的契机,将地下车站与周边用地以及道路的地下空间进行综合性开发是集 2 约高效利用土地资源的一种有效途径。由于玉兰大道复杂的地形及地下管线密集等因素的影响要求车站不宜开挖过大地下面积,因此在满足站内人流通行和人防要求的前提下让通道出入口最大程度的兼顾市政过街功能。 3.4 总图设计方案介绍

玉兰大道西侧做单层设备外挂,这样可以尽量利用城市公共绿地广场地块,可以少占安徽名人馆地块,主体工程量小,节省投资。鉴于玉兰大道较宽,为了更好的吸引各象限客流在

1、2号出入口预留了过街接口条件。由于受长江西路高架对主体围护结构施工的影响和高架对施工期间交通疏解的影响,结合充分利用城市公共绿地,尽量少占安徽名人馆地块的原则,经多方案比选,最终确定将设备用房外挂与主体之外的方案。如下图所示:

玉兰大道站总平面图

3.5 车站内部空间设计原则

3.5.1 车站建筑防灾设计严格按照《建筑设计防火规范》、《高层建筑设计防火规范》、和《地铁设计规范》及国家现行的其他有关规范、规定的要求执行。除考虑车站自身的消防设计,还应注意出入口、风亭、冷却塔等地面构(建)筑物和相邻建筑的防火间距,并应满足《地铁设计规范》第23.2.10-23.2.12条噪声的要求。车站主体及风亭、出入口应远离加油站、加气站或其它危险品场地,其距离应符合现行国家标准《汽车加油加气站设计与施工规范》的要求,否则应采取相应的防灾措施;

3.5.2 车站设计规模应根据按控制期高峰小时预测客流集散量和车站行车管理、设备用房的需要来确定,要与站厅、站台、出入口通道、楼扶梯以及售检票等部位的通过能力相匹配,同时满足事故发生时乘客紧急疏散的需要。应注意车站分向客流、突发客流的影响。超高峰系数根据车站规模及周边用地情况所决定的客流性质不同分别取1.2~1.4;

3.5.3 车站设计应合理组织各种客流,减少相互交叉干扰,保证乘客方便进站、迅速出站,车站的站厅、站台、出入口、通道、楼梯、自动扶梯和售检票机等各部位的通过能力应相互

3 匹配;

3.5.4 车站的规模、人行楼梯及自动扶梯的设计除应满足上、下乘客的需要外,还应满足站台层的事故疏散时间不大于6min;

3.5.5 地铁车站建筑设计应以功能为主,并注重交通性建筑应具备的简洁明快、美观大方、易于识别等特点,建筑设施突出交通功能,体现现代交通建筑的时代气息,同时还应与周围的城市环境相协调;

3.5.6 地下车站在满足使用功能要求的前提下,尽量优化设备、管理用房布置,并进行标准化、模块化、集约化设计以压缩工程规模,节省投资;

3.5.7 地铁车站设计应积极配合城市地下和地上空间的综合开发并与周边地下过街道、地下商场、人行天桥及物业开发相结合。凡与车站合建或连通的物业开发区、过街通道等公共设施的防火措施,应满足地铁车站的要求;发生灾情时,应保证系统的相对独立性和可靠性; 3.5.8 凡与规划路网相交的车站应根据换乘客流量及线路、站址等具体条件选择便捷的换乘方式,当不能同步实施时,应预留接口条件;

3.5.9 车站设计应符合有关规范、规定,满足客流、行车组织与运营管理、设备的要求; 3.5.10 全线需统一考虑无障碍设计。车站应设无障碍电梯和残疾人专用厕所及盲道等无障碍设施。车站至少应有一处出入口设置无障碍电梯;

3.5.11 地下车站设计应按六级人防设防,车站出入口通道及风道应符合相应的人防要求,在站台层端部应预留按人防分区设置区间隔断门的条件;

3.5.12 车站设计应充分考虑与交通枢纽及公交站点的衔接,实现地铁公交一体化; 3.5.13 地铁车站顶板上覆土厚度,应按城市规划部门、市政园林部门和市政管线部门的要求进行具体协调,合理确定;

3.5.14 车站站厅层公共区应预留安检设施的设置空间。 3.5 车站内部空间设计方案介绍 a)站厅层布置

站厅层均由中部公共区及两端的设备及管理用房组成。

公共区划分为非付费区和付费区,两区域之间设有进、出闸机和固定栅栏分隔,非付费区和付费区为完全独立的区域,在分隔带上靠近出闸机附近设有票务处(非付费区内设半自动售票机),以负责解决票务纠纷和办理补票业务。在非付费区内设有足够的乘客集散空间,布置有自动售票机,同时还设有银行等公共服务设施,在付费区内设有2台上行自动扶梯、1台下行自动扶梯,2部2.4m宽步行楼梯,楼扶梯八字布置。站厅层付费区内设有1台残疾人电梯。

车站两端布置有通风空调机房和隧道风机房及设备用房,车站主要的设备管理用房集中布置车站外挂部分,这样可以有效的缩小车站主体建筑规模,降低投资成本,主要设有车站控制室、站长室、综合监控室、公安值班室、公安通信设备室、AFC票务管理室、AFC设备室、会议室、通信设备室、信号设备室、照明配电室、男女更衣室、茶水间、清扫间、垃圾间、民用通信设备室、UPS电源室、气瓶间、通风空调电控室、通风空调机房等房间。在主 4 要管理用房集中区设置一直接出地面的消防专用通道。车站布局紧凑、功能分区合理,出入口布置满足消防疏散要求。

玉兰大道站站厅层平面图

b)站台层

车站采用11m岛式站台,有效站台长为120m。站台层东端布置有照明配电室、电缆井 、清扫间、垃圾间、废水泵房等房间;西端布置有照明配电室、电缆井、再生设备间、牵引混合变电所、屏蔽门控制室、等房间。

玉兰大道站站台层平面图

c)车站剖面设计

地铁车站剖面设计原则是合理确定轨面埋深、车站顶板覆土深度,满足综合管线敷设和公共区人体工程学的空间感受合理确定站厅、站台层净高。玉兰大道受横穿车站主体埋深2.9米的污水管限制,车站有效中心覆土拟定为3.3m,轨面埋深14.95m。站厅层净高4700m,站台层净高4550m.

玉兰大道站1-1剖面图

玉兰大道站2-2剖面图

4 结语

轨道交通车站设计对策为:

4.1 优化车站站位与周边土地利用,使二者相辅相成。

4.2 创造为人行而非车行服务的站区交通环境,提供安全、高效、快捷的交换条件。 4.3 综合利用轨道交通空间,节约利用土地资源。

参考文献: 【1】 《合肥市城市轨道交通线网规划》(2009.6);

【2】 《城市轨道交通工程项目建设标准》(建标104-2008); 【3】 《合肥市轨道交通2 号线工程预可行性研究报告》(2009.2); 【4】 《地铁设计规范》(GB50157-2003);

【5】 《城市轨道交通技术规范》(GB 50490-2009); 【6】 刘建国.《城市轨道交通概论》;

作者简介:宛超群(1988-),男,助理工程师 安徽省交通规划设计研究院,安徽 合肥 230088 联系电话、通讯地址:电话:18655438767 安徽省合肥市高新技术开发区香樟大道180号 安徽省交通规划设计研究院 5 楼 岩土与隧道分院

第四篇:地铁车站调查

北京一个地铁站作为调查对象,分析它的特点及存在的问题。并提出解决方案。

答:问卷北京地铁线状, 问卷样本中有近一半人权对于目前北京市地铁状况的满意度为一般,有近1/3的人群较不满意,认为改善现有的铁路设施的占23%,应该增建一些重点的站点。

不满意原因,车次不够,导致座位不够甚至拥挤,另外认为基础设施差,包括排风设施,疏导通道设计等,服务人员态度不好或者服务人员不够,管理不足,导致人员混乱(包括买小道报纸,讨钱的人等)。

人们选择乘坐地铁原因,多数是因为其速度快,形式畅通,价格因素和地铁站点位置因素列于较低位置,超过一半的人认为相同线路的地铁应该比公交车收费价格贵。

北京地铁一号线国贸站特点:

1、集中性:汇集有相交线路的交换客流,且为城区繁华地段由此造成该站客流集中,普通车站客流量的数倍。

2、多方向和多路径性;由于进出站客流、换乘客流具有不同的出行目的、出行方向,即对应不同的出行路径必然导致存在多股客流的交织,形成多个冲突点。解决措施:建立适合的换乘方式和合理 设施设备布局应有利于减少客流交织,同时还要加强信息引导。

3、主导性;该站的客流构成中,通常换乘客流占主导,而在某一时段的多种换乘方式中,同样存在主导换乘方向。因此,在车站的设计与管理中要突出对主导客流的关注。

4、时间不均衡性;高峰小时客流需求是影响换乘站系统规模、设施设备能力等关键参数选取的重要依据,因此对高峰小时系数的把握十分重要。

5、短时冲击性;轨道交通客流的到达并非连续均衡,而是随列车的到达呈脉冲式的分布规律,也就是在短时间内对换乘设施产生冲击作用,由于短 冲击的存在,使得一批客流到达时,易形成拥堵和客流排队。

地铁口商城是否安全

地铁1号线国贸地铁站出入口,连接有地下商城。这些连接了地下商城的地铁站普遍人流量较大,进出站的乘客较多,因此和其他地铁站相比,显得较为拥挤,疏散时情况也会较为复杂,地铁通往商城,商铺较为集中,从地铁出口到商城有一些小商铺,不少市民在商铺门口驻足、购物,占据了一定的通道,显得较为拥挤。出口都保持了通畅的状态,但周边商铺较为密集,地铁站工作人员介绍说,尚未完全走出地铁站的部分乘客停下来挑选商品会导致后面需要前行的乘客通行,高峰期时影响人流疏散。

解决方案:控制店铺密度,减少人员集中,与商家协商最终达到缓解人员密集现状。

通过这次对国贸地铁站的调查分析,反应出其换乘站存在的问题,望其对今后地铁的发展和运营管理有所帮助。

第五篇:地铁车站施工经验

地铁施工施工工序浅析

一、引言

地铁具有运量大、快捷、安全、准时、舒适等特点,是城市交通的主要发展方向。世界上第一条地铁是1863年在伦敦修建的,迄今已有近一个半世纪。这一个半世纪中,随着土建施工技术、机械制造技术、通信及信号技术等诸多领域的飞速发展,地铁事业亦取得了长足进步。从地铁运营的里程上看,欧洲和北美发达国家占领先地位,但近20年发展中国家的地铁事业也呈蓬勃发展之势。

我国1971年北京建成第一条地铁,目前上海、广州、深圳、南京等多个城市均已部分建成并正在兴建地铁网络,我国地铁事业正进入一个发展高潮。

上海早在1958年就已经开始筹建地铁,经过长期摸索、克服了种种艰难,终于在1995年4月28日地铁一号线建成试运营,历时38年。其后,2000年7月地铁二号线建成、2001年底明珠一期建成,目前在建或即将开工的有一号线北延伸(共和新路高架)、莘闵线、明珠二期、M8线、二号线西延伸、明珠一期北延伸、R4线等等。上海地铁建设进入了前所未有的高速发展阶段。

在上海软土地区,地层基本为饱和含水流塑或软塑粘土层,抗剪强度低,含水量高达40%以上,灵敏度在4~5,压缩性大都属高压缩,并具有较大的流变性,这种软弱流变的地质条件决定了上海地区的基坑工程中环境保护问题更为突出。在上海曾出现一些深基坑周围地层移动引起附近建筑和设施破坏的工程事故,造成了严重的社会影响和经济损失,因此控制深基坑施工过程中的风险贯穿于施工的全过程。

土建施工在车站施工中所占的周期、投资都比较大,而且是车站施工中风险比较集中的阶段,尤其应引起足够重视。

地铁土建施工涉及到诸多工序,以下按工序介绍:

二、 围护结构

围护结构的主要作用是与支撑一起形成支护体系,支挡坑内外的不平衡土压力,保持基坑的稳定。因此,围护结构应具有足够的强度、刚度和稳定性。在上海地铁车站工程中,主要应用的有两类围护结构:地下连续墙和SMW(Soil Mixing Wall)工法。

2.1 地下连续墙

地下连续墙是在基坑四周通过成槽、钢筋混凝土施工等工艺形成的具有较好强度、刚度和抗渗性的地下连续壁。地下连续墙具有刚度大、抗渗性能好、施工过程中无振动、无噪音等特点。地下连续墙作为地铁车站深基坑的挡土围护结构,施工时对周围环境影响小,适宜在城市建筑密集区域作业。一般地下连续墙适用于开挖深度14米以上的深基坑。

根据地下连续墙在施工阶段和使用阶段的作用,地下连续墙可以分为单墙体系和双墙体系。双墙体系中,地下墙在施工阶段作为挡土结构与支撑一起形成支护体系;在使用阶段与内衬墙共同工作形成受力体系,承受结构荷载。单墙体系中,地下墙在施工阶段作为挡土结构与支撑一起形成支护体系;在使用阶段单独作为承重体系的一部分,承受结构荷载。 2.1.1 地下连续墙施工工艺 地下连续墙工艺流程: 导墙施工

成槽 成槽过程中应使用泥浆护壁,泥浆于现场配制。 泥浆置换、清底 吊放锁口管 钢筋笼吊放 混凝土浇捣 锁口管拔出

地下连续墙施工前先要构筑导墙,导墙净宽应比连续墙宽度稍宽约4cm,顶部比地面高4~5cm。一般导墙深度约1.5米,遇障碍物或暗浜等特殊情况时,应先行处理,考虑导墙加深并要求导墙落到原状土上。

地下连续墙分幅成槽和浇捣混凝土,每次成槽宽度约2~6米,平面形状有“—”形、“L”形和“T”形等。槽段有先行幅和后行幅之分,先行幅在槽段两头放置锁口管。地下连续墙接头常用的有:预制接头、刚性接头、柔性防水接头和预留注浆孔接头等。 2.1.2 地墙施工控制要点

1、 导墙轴线和标高的复测

导墙轴线决定着地下连续墙的位置;导墙顶标高将影响到钢筋笼的入槽标高。在单墙结构地铁车站中,进而将影响到钢筋连接器与底板、中楼板和顶板钢筋的连接。因此,导墙的轴线和标高,施工单位必须报验。

2、 成槽泥浆性能指标的控制:

成槽泥浆的比重、粘度、含砂量等项指标,不仅影响槽壁的稳定,同时也影响地下连续墙混凝土的密实性和防水性能。因此,在地墙成槽和混凝土浇筑过程中,必须逐幅槽段进行抽检,将泥浆指标控制在设计要求或规范规定的范围内。

3、 成槽深度、垂直度

成槽深度、垂直度,必须控制在设计或规范允许范围内,一般应控制地墙垂直度高于3/1000,对于单墙结构车站,尤其应严格控制地墙的垂直度;成槽达到设计标高后,应进行清槽,以提高地墙的承载能力,减小沉降量。

4、 钢筋笼

在钢筋品种、规格、数量符合设计要求的前提下,对单墙结构地下连续墙,应重点控制: a. 钢筋连接器与底、中、顶板对应位置的准确性;

b. 钢筋笼入槽时笼顶标高即吊筋长度控制,以确保钢筋连接器位置的准确。

5、 混凝土浇筑 检查商品混凝土的配合比、强度和抗渗等级、坍落度,必须符合设计要求;检查导管埋入混凝土面的深度,避免因埋管过浅造成夹泥断墙事故;计算地墙混凝土的充盈系数,判断地墙施工质量。

2.1.3. 减少地下连续墙施工中对周围环境影响的若干措施

1、减小槽幅宽度

2、加固槽壁土体,一般用搅拌桩或注浆等方法加固。

3、做高导墙抬高泥浆液面或降水加大槽内外液面高差。

4、在保护对象和槽壁间设置隔离桩。

2.2 SMW工法

SMW工法是指将土与水泥浆搅拌后形成搅拌桩墙体,在墙体中插入高强度劲性芯材(一般为型钢)使之与搅拌桩墙体形成的复合挡土墙。

SMW工法作为基坑围护结构于1976年由日本竹中土木株式会社与成幸工业株式会社开发成功并应用。1986年日本材料协会编制了SMW工法的施工规范,使SMW工法的应用出现了一个高潮。据统计,至1993年,这一工法占日本基坑围护结构的50%,目前占到80%,已成为基坑围护的主要工法。

国内应用搅拌桩作围护和地基加固始于80年代,但当时使用的是纯搅拌桩,未加型钢。明珠二期兰村路站是目前国内以SMW工法作为围护结构的最大的基坑工程,该基坑围护结构全长700多米、最深达26米。

SMW工法作为一种新型的围护结构,具有以下特点:对周围环境影响小、高止水性、可在各种地层中使用、大厚度和大深度、施工速度快、造价低、环境污染小。

2.2.1 SMW工法施工工艺

SMW工法施工工艺流程:(搅拌桩施工工艺见搅拌桩节) SWM工法工艺流程图

2.2.2 SMW工法施工控制要点

1、 在搅拌机过程中,注入地层的浆液有一部份会流返回地面,须沿挡向施作一沟槽。沟槽边设固定支架,以便固定插入的H型钢。

2、 在搅拌成桩时,所需容量70~80%的水泥浆宜在下行钻进时灌入,其余的20~30%宜在螺旋钻上行回程时灌入。此时所需水泥浆仅用于充填钻具撤出留下的空隙。螺旋钻上拔的灌浆,对于饱和疏松的土体具有特别的意义,因为这种地层中的柱体易产生空隙。螺旋钻上行时,螺钻最好反向旋转,且不能停止,以防产生真空,有真空就可能导致柱体墙的坍塌(非饱和土体)。

3、 施工应按跳孔顺序进行,为保证围护结构的连续性和接头施工质量,两桩搭接部分应重复套钻。

4、 在搅拌桩的施工过程中,要特别注意水泥浆液的注入量和搅拌沉入及提升量及提升速度。下钻进的速度应比上提时的速度慢一倍左右,以便尽可能保证水泥土的充分搅拌,又可获得较高的贯入速度。在砂土互层或土性变化较大的场地施工时,应根据各种土质的情况选择水泥浆液的配合比,以便得到较均匀的墙体,确保工程质量。 (5) H型钢的回收,通过在插入的H钢表面涂一层减摩材料,从而使H型钢便于拔出回收。针对不同工程,不同水泥浆液配合比,在施工前作H型钢的拉拔试验,以确保H型钢的顺利回收。基坑开挖时围护墙体会产生弯曲变形,弯曲后H型钢的回收会比较困难,因此若考虑型钢回收则开挖过程中应尽量减小围护结构的变形。

(6) 水泥浆液中的掺加剂:国内工程多掺入一定量的木质素,以减小水泥浆液在注浆过程的堵塞现象。也可在水泥浆液中掺加膨润土,利用膨润土的保水性以增加水泥土的变形能力。不致因墙体变形而过早开裂,从而影响墙体的抗渗性。日本公司在施工时,材料的配比基本是1m3土体注入水泥75~200kg,膨润土10~30kg,水灰比w/c为0.3~0.8,根据工程类别及土性选择使用。

2.2.3 SMW工法施工控制要点

1、在搅拌机过程中,注入地层的浆液有一部份会流返回地面,须沿挡向施作一沟槽。沟槽边设固定支架,以便固定插入的H型钢。

2、在搅拌成桩时,所需容量70~80%的水泥浆宜在下行钻进时灌入,其余的20~30%宜在螺旋钻上行回程时灌入。此时所需水泥浆仅用于充填钻具撤出留下的空隙。螺旋钻上拔的灌浆,对于饱和疏松的土体具有特别的意义,因为这种地层中的柱体易产生空隙。螺旋钻上行时,螺钻最好反向旋转,且不能停止,以防产生真空,有真空就可能导致柱体墙的坍塌(非饱和土体)。

3、施工应按跳孔顺序进行,为保证围护结构的连续性和接头施工质量,两桩搭接部分应重复套钻。

4、 在搅拌桩的施工过程中,要特别注意水泥浆液的注入量和搅拌沉入及提升量及提升速度。下钻进的速度应比上提时的速度慢一倍左右,以便尽可能保证水泥土的充分搅拌,又可获得较高的贯入速度。在砂土互层或土性变化较大的场地施工时,应根据各种土质的情况选择水泥浆液的配合比,以便得到较均匀的墙体,确保工程质量。

5、H型钢的回收,通过在插入的H钢表面涂一层减摩材料,从而使H型钢便于拔出回收。针对不同工程,不同水泥浆液配合比,在施工前作H型钢的拉拔试验,以确保H型钢的顺利回收。基坑开挖时围护墙体会产生弯曲变形,弯曲后H型钢的回收会比较困难,因此若考虑型钢回收则开挖过程中应尽量减小围护结构的变形。

6、水泥浆液中的掺加剂:国内工程多掺入一定量的木质素,以减小水泥浆液在注浆过程的堵塞现象。也可在水泥浆液中掺加膨润土,利用膨润土的保水性以增加水泥土的变形能力。不致因墙体变形而过早开裂,从而影响墙体的抗渗性。日本公司在施工时,材料的配比基本是1m3土体注入水泥75~200kg,膨润土10~30kg,水灰比w/c为0.3~0.8,根据工程类别及土性选择使用。

三、地基加固

由于上海地区土质松软、含水量高、流变性强,因此对于较深的基坑,若不采取措施则开挖变形将较大。由于地铁基坑大多处于城市建筑物、管线较密集地区,对变形控制要求非常高,因此在基坑深度大、周围环境复杂时,应考虑对基坑进行加固。 基坑加固方法有很多种,这里主要介绍在地铁工程中应用较多的几种:注浆法、深层搅拌法、旋喷法等。广意上讲此三种工法均属于注浆工法,此处所讲的注浆法是指狭义上的注浆法即通过注浆管进行的单液浆或双液浆施工方法。

3.1注浆加固

注浆法是指将注浆管置于(打入法、钻孔法、振冲法等)所要加固的地层中,通过注浆管注入浆液,使之与土体形成复合体,增加土体强度。

根据注浆进入土体的压力、掺和方式的不同,注浆可分为劈裂注浆和压密注浆。当注浆压力比较大时,浆液将沿作土体的薄弱处注入,沿径向流动,最终形成狼牙棒式的注浆体,这种方法称之为劈裂注浆。当压力较小时,浆液压力不足以劈裂土体,注浆体呈柱状,主要通过挤密作用加强土体,此方法称之为压密注浆。

根据浆液成分和配比的不同,可分为单液浆和双液浆。单液浆主要材料为水泥(可掺加适量的粉煤灰),而双液浆主要为水泥(适量粉煤灰)和水玻璃溶液的混合液。由于水泥浆和水玻璃液混合后会迅速凝固并产生强度,因此双液浆可用于工期紧、早期强度要求比较高的基坑加固。 3.1.1注浆工艺流程:

1、 注浆孔定位

2、浆液配置

3、机架就位

4、注浆管钻进(或打入、振入)

5、浆体注入边提升注浆管

6、机架移位 3.1.2注浆控制要点

1、 控制浆液配比

正式施工之前,根据搅拌罐容积和设计配合比,配制标准水泥浆液,测得标准条件下水泥浆比重和粘度。施工过程中应随机抽检水泥浆比重、粘度,以检查水泥掺量是否符合设计要求。

2、 控制注浆量

应配置浆液流量自动记录装置,如实记录浆液注入量。若无流量计,则在正式施工前,应对搅拌罐的容积进行标定,根据配合比、水灰比要求和加固深度、设计孔距等项数据,通过计算确定每孔水泥浆液注入量,作为施工标准和检查依据。

3、控制施工参数

首先是加固深度部位的控制,复核钻杆长度,使其满足加固深度要求;其次,施工中随机检查施工参数的执行情况,如注浆压力、注浆量、拔管间距等,发现问题,及时整改。

4、加固效果检验

确定检验方法,应满足设计单位提出的检验指标的要求,通常要求加固后土层的PS值达到1.0~1.5Mpa。要求进行静力触探检验,检验点位应随机抽样确定。

3.2搅拌桩加固 搅拌桩是指利用特殊的搅拌头或钻头,钻进地基至一定深度后,喷出固化剂,使其沿着钻孔深度与地基土强行拌和而形成的加固土桩体。固化剂通常采用水泥或石灰,可以是浆体或粉体。 搅拌桩适用于加固淤泥、淤泥质土和含水量较高而地基承载力小于120Kpa的粘土、粉土等软土地基。搅拌桩施工时无振动、无噪声、无泥浆污染、适合于在城市建筑物等密集地区进行地基加固。

根据机械中搅拌头数量可分为:单轴机、两轴机、三轴机和多轴机。每种机械在加固过程中的挤土和涌土性能均不相同,应引起足够重视。 3.2.1搅拌桩加固工艺流程

1、 定位

2、 搅拌下沉

3、 喷浆提升

4、 重复搅拌下沉

5、重复搅拌提升

6、清洗

7、移位

3.3旋喷加固

旋喷加固是通过旋喷管将高压喷射流注入土体内,使之与土体充分混合并重新结构从而提高土体强度的一种加固方法。 3.3.1旋喷加固的特点

1、受土层、土的粒度、土的密度、硬化剂粘性、硬化剂硬化时间的影响较小,可以广泛应用于淤泥、软弱粘土、砂土甚至砂卵石地层等。

2、 加固体强度较高,可达100~2000Kpa。

3、 可以有计划地在预定地范围内注入必要地浆液,形成一定距离地桩,或连成一片地排桩或薄地帷幕,加固深度可以自由调节。

4、 可以形成垂直的墙体亦可以根据需要形成水平或倾斜墙体。

旋喷法可分为单管旋喷、二重管旋喷和三重管旋喷。单管时仅喷射高压浆体;二重管旋喷同时喷射高压浆体和高压空气;三重管旋喷喷射喷射高压浆体、高压空气以及高压水。其中二重管旋喷加固半径可达100cm,三重管旋喷加固半径可达80~200cm。

3.3.2旋喷加固工艺

旋喷加固可分为两个阶段:第一阶段为成孔阶段,即用普通或专用钻机,驱动密封良好的喷射管和喷射头进行成孔,成孔时可采用水冲或振动的方法。

第二阶段为喷射加固阶段,即用高压浆体(以及高压水和空气)以较高的压力从喷嘴中向土中喷射。同时一边喷射一边提升,使浆体与周围土体混合,形成圆柱状的加固体。 旋喷加固控制要点:

(1) 旋喷桩浆液的固化剂可选用

425、525号普通硅酸盐水泥,水泥浆液的水灰比应根据土体加固强度的需要选为1:1~1.5:1。水泥浆液中可添加水玻璃等化学辅助材料和掺合料,以及速凝、早强、悬浮等外加剂,浆液配比应通过试验确定。

(2) 钻机安放应保证足够的平整度和垂直度,钻杆倾斜度不得大于1%,钻孔孔位与设计位置的偏差不得大于50mm;

(3) 水泥浆拌制系统应配有可靠的计量装置;喷浆系统应配备流量表、压力计等检测装置;在喷浆过程中对提升速度应有控制装置和措施。

(4) 施工前应对浆液流量、喷浆压力、喷嘴提升速度等进行标定。

(5) 水泥浆宜在旋喷前一小时内搅拌,旋喷过程中冒浆量应控制在10~25%。相邻两桩施工间隔时间应不小于48小时,间距应不小于2m。

(6) 成桩过程中钻杆的旋转和提升必须连续不中断,拆卸钻杆续喷时,注浆管搭接长度不得小于100mm;

(7) 在高压喷射注浆过程中出现异常情况时,应及时查明原因并采取措施进行补救,排除故障后复喷高度不得小于500mm; (8) 对泥浆的沉淀和排放应进行周密的设计和处理,确保施工过程中场地的清洁和不污染环境;

四、降水

1、深基坑降地下水的作用:

(1) 保持开挖面的干燥,便于开挖施工 (2) 增加基坑稳定性

(3) 改善基坑土体的特性,增加土体强度 (4) 防止坑底的隆起和破坏

降水工艺有很多种,如电渗法、喷射法、真空法等,有轻型井点、深井井点等。在选取时需根据不同的土层特性及基坑深度确定。见下表:

土层名称 渗透系数(m/d) 土的有效粒径(mm) 采用的降水方法 备注 粘土 0.001 0.003 电渗法 一般可用名排水,挖掘较深时可用电渗法 重粉质粘土 0.001~0.05 粉质粘土 0.05~0.1 粉土 0.1~0.5 0.003~0.025 真空法、喷射井点、深井法 上海地区使用较多 粉砂 0.5~1.0 细砂 1~5 0.1~0.25 普通井点法、喷射井点、深井法 中砂 5~20 0.25~0.5 粗砂 20~50 0.5~1 砾石 >50 多层井点或深井法 有时需水下挖掘

当土层的渗透系数较低时应采用真空井点系统,以便在井点周围形成部分真空,增加流向井点管的水力坡度。上海地铁深基坑采用较多的为真空深井法。

采用深井井点时,应根据土层渗透系数的不同开一截滤管或多截滤管。滤管周围应均匀填充填料,以保证水可以透过填料,而土体颗粒不会透过从而堵塞滤孔。填料应根据土体颗粒组成确定。 为防止真空泄漏,应在孔口一定高度内用粘土回填密实。

降水施工的注意事项:

(1) 应根据工程地质和水文地质条件、场地的施工条件、周围环境条件、机具及材料供应条件等,合理地选用轻型井点、喷射井点、深井井点、真空深井井点等井点类型,以及井点构造措施。 (2) 井点降水以不影响邻近建筑物及地下管线的安全为原则,必要时应采取回灌措施。 (3) 基坑降水必须在坑内外根据需要设置数量足够观测孔,并在坑外设置地面沉降观测点; (4) 若遇承压水,应对坑底稳定性进行验算。必要时,应采用降承压水的措施,并应符合下列规定:

正式降承压水前应做抽水试验,确定降水参数;

井点布置应综合考虑基坑周围环境条件、地质条件和现场施工条件,当基坑周围环境容许时,宜在基坑外设置井点;

施工中应将基坑内的降水和抽取承压水分成两个独立的系统,并根据各自的技术要求制定降水组织设计。

承包商应对各工况下坑底抗承压水头的安全系数进行验算,并根据验算结果制定详细的降水和封井计划。

(5) 应对成井口径、井深、井管配置、砂料填筑、洗井试抽、出水量等关键工序做好详细的纪录,每道工序完成后应进行检查和确认;

(6) 应指定专人负责抽水、观测,并详细记录水位、水量变化情况;

五、 开挖及支撑

1、开挖

下图为上海地区软土的流变试验,从图中可以知道: 上海软土流变试验曲线

在土体主压力较小时( )蠕变变形很小,主要是弹性蠕变;不排水土体的流变要比排水土体的流变性显著,当 (此应力约相当于14~15m的深基坑挡墙被动区土体的压应力)不排水的土样蠕变到最后会发生破坏,即呈破坏型;而排水土样蠕变则呈衰减型,蠕变是收敛和稳定的;当土体主应力达到或超过发生不收敛蠕变的极限应力水平时,从开始蠕变到蠕变速率急剧增大而发生破坏只有几天的时间,这说明在应力水平高的情况下,土体会在一定的承载时间内,以不易察觉的蠕变速度发生破坏。

从上述的试验结果的分析中可知,在处于具有流变地层的深基坑中,土的流变特性不仅会影响到基坑的稳定,而且对于基坑的变形控制也至关重要,这在控制基坑变形要求高的基坑工程中尤为突出。同时,在流变特性的分析中,我们可以取得有关控制软土深基坑变形的几点重要启示:

(1) 分层分块开挖能够有效地调动地层的空间效应,以降低应力水平、控制流变位移。 (2) 减少每步开挖到支撑完毕的时间,即无支撑暴露时间,可明显控制挡墙的流变位移,这在无支撑暴露时间小于24小时效果尤其明显。

(3) 解决软土深基坑变形控制问题的出路在于规范施工步序和参数,并将其作为实现设计要求的保证。

地铁深基坑施工工序及其参数可分为两种:

(1) 长条形深基坑开挖(车站基坑标准段) 如下图所示,其特点是基坑宽度较窄,一般为20左右,条形深基坑开挖施工技术要点是按有限长度L分段开挖和浇筑底板。每段开挖中又分层、分小段、限时完成每小段的开挖和支撑工作。每层厚度为hi,每小段宽度b,每小段开挖及支撑的工作在Tr时间内完成。主要施工参数见下图。 车站标准段深基坑的开挖参数

车站深基坑端头井斜撑部分的开挖步序和参数

(2) 基坑角部斜撑部分(端头井部分)的开挖 如下图所示,先自基坑角点沿垂直于斜撑方向向基坑内分步开挖,每步挖土适当限定宽度,每步开挖与支撑工作在限定时间内完成,两个斜撑范围内的三角形土体开挖后,再挖除坑内余留的土体。如每步斜条状开挖长度大于20m时则先挖中间再挖两端。其主要施工参数如下图所示。

从上面的基坑开挖方式中可以看出,基坑开挖分层数、每一层的厚度、每小段的开挖顺序、尺寸和无支撑暴露时间等是和软土流变变形直接相关的重要施工参数。当这些参数和地基土参数、支护结构参数一起被作为基坑设计依据并在施工中得以切实实施,软土基坑变形就能够真正得以合理而准确的预测和控制。 变形控制的主要措施有:

(1) 调整后继开挖步序和参数,这是运用软土基坑工程时空效应规律,控制基坑变形的一个十分重要的方法。当基坑变形或变形速率超过警戒值,应用考虑时空效应的计算方法,可以找出后继开挖中满足环境保护要求的施工参数。

(2) 利用双液分层注浆注浆控制基坑挡墙位移或保护对象的位移,注浆时要结合跟踪监测数据,谨慎合理地选用注浆参数。

(3) 局部增设支撑或调整支撑位置。

深基坑开挖过程的控制要点:

(1) 基坑开挖必须按设计要求分段开挖和浇筑底板。每段开挖中又分层、分小段,并限时完成每小段的开挖和支撑。因此,主要施工参数有:分段、分层、分小段;每小段宽度,每小段开挖的无支撑暴露时间以及每小段开挖厚度。

(2) 车站端头井的开挖,应首先撑好标准段内的2根对撑,再挖斜撑范围内的土方,最后挖除坑内的其余土方。斜撑范围内的土方,应自基坑角点沿垂直于斜撑方向向基坑内分层、分段、限时地开挖并架设支撑。对长度大于20m的斜撑,应先挖中间再挖两端。主要施工参数有:每小段宽度,每小段开挖的无支撑暴露时间以及每层开挖厚度。

(3) 基坑开挖过程中严禁超挖,分层开挖的每一层开挖面标高不得低于该层支撑的底面或设计基坑底标高。

(4) 基坑纵向放坡不得大于安全坡度,并进行必要的人工修坡。应对暴露时间较长或可能受暴雨冲刷的纵坡采用坡面保护措施,严防纵向滑坡。

(5) 开挖过程中应及时封堵地下连续墙接缝或墙体上的渗漏点。 (6) 坑底开挖与底板施工

设计坑底标高以上30cm的土方,应采用人工开挖,局部洼坑应用砾石砂填实至设计标高。 坑底应设集水坑,以及时排除坑底积水。集水坑与基坑挡墙内侧的距离应大于1/4基坑宽度。 在开挖到底后,必须在设计规定时间内浇筑混凝土垫层(包括砼垫层以下的砾石砂垫层或倒滤层)。垫层所用混凝土的强度以及达到强度的时间必须满足设计要求。 必须在设计规定的时间内浇筑钢筋混凝土底板。

2、支撑

在深基坑的施工支护结构中,常用的支撑系统按其材料分可以有钢支撑和钢筋混凝土支撑等种类。其优缺点比较如下表。 钢支撑 钢筋混凝土支撑 优点 ◆便于安装和折除 ◆材料的消耗量小

◆可以及时施加预应力以减少无支撑暴露时间,合理地控制软土基坑变形 ◆有利于缩短工期 ◆整体刚度好 ◆节点构造处理相对简单 ◆结构稳定性好 缺点 ◆整体刚度较弱 ◆稳定性差

◆节点构造处理难度大 ◆制作时间长于钢支撑,不利于减少无支撑暴露时间 ◆拆除工作比较繁重 ◆材料的回收利用率低 ◆工期相对较长

就支撑结构的发展方向而言还是应该推广使用钢支撑,努力实现钢支撑杆件的标准化、工具化,建立钢支撑制作、安装、维修一体化的施工技术力量,提高支撑结构的施工水平。但还需强调指出,支撑系统应因地制宜,在特定条件下,钢筋混凝土支撑仍有其存在和优化的必要。上海地铁深基坑工程中绝大部分使用钢支撑。

支撑结构体系由围檩、支撑杆或支撑桁架、立柱、立柱桩等组成。深大基坑设计和施工中,必须对支撑系统中各节点,特别是多支撑交汇的关键节点的构造细节,做深入分析和谨慎处理,严防“一点失稳、全盘皆垮”的灾害性事故。

围檩 支撑结构的围檩直接与围护壁相连,围护壁上的力通过围檩传递给支撑结构体系。在采用地下连续墙的地铁地铁车站深基坑中,常常不设围檩而直接将支撑撑于地下墙面上,这种支撑布置要和地下墙相配,通常每道在一幅地下墙上设两根对撑。

支撑杆 是支撑结构中的主要受压杆件,由于受自重和施工荷载的作用,支撑杆属于一种压弯杆件。支撑杆相对于受荷面来说有垂直于荷载面和倾斜于荷载面二种,对于斜支撑杆要注意支撑杆和地下墙(或围檩)连接节点的力的平衡。

立柱和立柱桩 支撑杆和支撑桁架需要有立柱来支承,立柱通常采用H型钢或钢格构柱。立柱下要有立柱桩支承,立柱桩可以借用工程桩、也可以单独设计用于支承立柱。立柱和立柱桩可有效地保证支撑的稳定性,但立柱的沉降或回弹会引起支撑次应力,降低支撑稳定性。实测数据表明,基坑开挖到15m的坑底回弹范围通常是坑底以下12m深度内,因此建议立柱桩要穿越这一回弹区域。

支撑安装和制作要点

(1) 在开挖每一层的每小段的过程中,当开挖出一道支撑的位置时,即在支撑两端墙面上测定出该道支撑两端与地下墙(或围檩)的接触点,以保证支撑与墙面垂直且位置准确,对这些接触点要整平表面,画出标志,并量出两个相对应的接触点间的支撑长度,以使地面上预先按量出长度配置支撑,并配备支撑端头配件以便于快速装配。而在地面上要有专人负责检查和及时提供开挖面上所需要的支撑及其配件,支撑在使用前应进行试装配,以保证支撑有适当的长度和足够的安装精度,对不符合技术要求的支撑配件一律弃用。

(2) 支撑就位后应及时准确施加预应力,在施加预应力进程中要将钢支撑接头处连接螺栓拧紧三次以上以保持预应力。所施加的支撑预应力的大小应由设计单位根据设计轴力予以确定。通常取值为:第一道支撑预加轴力应大于设计轴力的50%;第二道及其下各道支撑预加轴力为设计轴力的80%。对于施加预应力的油泵装置要经常校验,以使之运行正常,所量出预应力值准确。每根支撑施加的预应力值要记录备查。

(3) 为防止支撑施加预应力后和地墙(或围檩)不能均匀接触而导致偏心受压,首次施加预应力后立即在空隙处以速凝的细石混凝土填实。

预应力复加

(1) 在第一次加预应力后12小时内观测预应力损失及墙体水平位移,并复加预应力至设计值; (2) 当昼夜温差过大导致支撑预应力损失时,应立即在当天低温时段复加预应力至设计值; (3) 墙体水位移速率超过警戒值时,可适量增加支撑轴力以控制变形,但复加后的支撑轴力和挡墙弯矩必须满足设计安全度要求;

(4) 当采用被动区注浆控制挡墙位移时,应在注浆后1~2h内对在注浆范围的支撑复加预应力至设计值,以减少挡墙外移所造成的预应力损失。

六、 内部结构

车站内部结构施工主要包括以下几部分:

板 顶板、中板、底板;侧墙 双墙体系中侧墙与地墙共同作用,单墙体系中无侧墙;梁柱体系等。

结构施工中控制要点如下:

1、底板施工

(1)底板施工前应将坑底软弱土清除干净,并用砾石、砂、碎石或素混凝土填平。 (2)素混凝土垫层标高、厚度及强度满足设计要求,面层应无蜂窝、麻面和裂缝。 (3)底板与地下连续墙的接触面必须进行凿毛、清洗,并在漏水处进行堵漏处理。

(4)底板钢筋与地下墙体底板相接时,应将钢筋连接器全部凿出弯正,连接时必须用测力扳手控制其旋紧程度。

(5)底板混凝土浇捣必须按顺序连续不断完成,采用高频震动器震捣密实,不得出现漏震或少震现象。

(6)底板混凝土浇捣完成的同时,及时收水、压实、抹光,终凝后及时养护,不少于14天。

2、侧墙施工

(1)侧墙施工前必须将地下墙凿毛处理,并按设计做好防水施工。 (2)对地下连续墙的墙面渗漏应按规范及设计要求进行处理。 (3)侧墙内模及支架应有足够的强度、刚度和侧向稳定性。

(4)应根据设计要求设置施工缝和诱导缝,并保证其稳固、可靠、不变形、不漏浆。 (5)立内模之前,应对防水层、钢筋及预埋件工程进行检查,合格后办理隐蔽工程验收,进行下一道工序施工。

(6)一次立模浇捣高度超过3m时,应采取合理立模补强措施。 (7)混凝土掺加微膨胀剂时要满足14天的养护要求。

(8)侧墙混凝土浇灌时应分层(每层高不超过30cm),浇捣连续不间断完成,分层浇捣时注意不出现漏震或过震。

(9)侧墙混凝土浇捣完成后,注意及时浇水养护,不少于14天。 (10)侧墙外模板的拆除时间不应少于7天。

3、中楼板施工

(1)应根据设计要求设置施工缝和诱导缝,并经验收后方可浇筑混凝土。 (2)中楼板梁、板的模板支架应采用满堂支架,其密度应满足强度和变形要求。 (3)中楼板预埋件、预留孔洞的设置经监理检查验收后,方可浇筑中楼板混凝土。 (4)中楼板底标高应考虑支架、搭板沉降及施工误差后,仍能满足下部建筑限界要求。 (5)中楼板达到设计要求的拆模强度后方可拆模。

4、顶板施工

除严格遵循上节中楼板施工要求外,还应在施工过程中采取如下措施: (1)跨度在8m以上的结构,必须在混凝土强度达到100%时方可拆除模板; (2)顶板混凝土终凝前应对顶面混凝土压实、收浆成细毛面; (3)终凝后应及时养护,并尽量采用蓄水养护,养护时间不少于14d; (4)顶板上堆放设备、材料等附加荷载前必须进行强度验算。

(5)养护期结束后应立即施作顶板防水层和防水保护层,采用砂浆或混凝土作保护层时应进行养护。

上一篇:百货商场经营管理下一篇:碧海石油化工锦西