3d打印机的介绍

2022-06-20

第一篇:3d打印机的介绍

陶瓷3D打印技术介绍【深度解析】

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!

更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、自动化、数字无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

陶瓷3D打印技术概述:

陶瓷材料作为三大基本材料之一,以优良的理化特性在工业界被广泛应用。但因传统陶瓷制备工艺的限制,工业中使用的陶瓷制品往往只具备简单的三维形状。三维打印工艺的发展让复杂的陶瓷产品成为可能。目前来看,已经被成功应用于陶瓷材料的三维打印的工艺包括喷嘴挤压成型,立体光刻成型(面曝光和激光),粘合剂喷射成型,选择性激光烧结或熔融成型,浆料层铸成型(slurry-layer casting)等。

陶瓷3D打印技术原理: 喷嘴挤压成型

喷嘴挤压成型与塑料3D打印的熔融沉积成型技术(FDM)类似。该技术采用混有陶瓷粉末的喷丝(filament)作为原材料,使用100摄氏度以上的温度将喷丝中的高分子材料融化后挤出喷嘴,挤出后的陶瓷高分子复合材料因为温差而凝固。

图 1. 热熔沉积式陶瓷打印机 (美国罗格斯大学开发)

除此之外,也有部分工艺采用高粘度的陶瓷浆料作为原材料,直接通过喷嘴挤出后在空气中干燥固化。这种陶瓷浆料的主要成分是陶瓷粉末和粘合剂,其中粘合剂在成型过程中起到粘合陶瓷粉末的作用。无论是陶瓷喷丝还是陶瓷浆料作为原材料,这种工艺得到的三维模型都需要进一步进行热处理,即脱脂和烧结。脱脂和烧结也是传统陶瓷加工工艺中使用的致密化陶瓷产品的手段。目前来看,面向陶瓷的喷嘴挤压成型工艺受限于相对粗糙的加工精度,还主要集中于实验室研究,成熟的基于该工艺的3D打印机还未出现。

图 2. 冷凝挤压式陶瓷打印机(美国密苏里科技大学开发)

立体光刻成型

立体光刻成型是目前市场上陶瓷打印的主要技术,也是商业化相对成功的技术。该技术采用一种由陶瓷粉末、光引发剂、分散剂等混合而成的光固化胶,工艺本身与目前市场上的DLP和SLA打印机并无大的区别。有的产品(如Lithoz)会因为光固化胶的高粘度而使用特殊的刮刀涂抹手段来加快成型过程中的材料填充,但归根结底其本质与普通树脂成型并无大的区别。与喷嘴挤压出的毛坯件一样,立体光刻工艺制造出的3D模型也需要在高温炉中进行脱脂和烧结。根据有关公司的产品介绍,使用该工艺制造出的陶瓷制品(例如氧化铝、氧化锆、磷酸钙等)密度可高达99%以上。

图 3. Lithoz陶瓷打印机

与此同时,近一两年,研究人员在光固化陶瓷前驱体材料上取得的技术突破(详情可见科学杂志2016年

1月1日相关报道),让立体光刻成型技术在陶瓷打印中的地位更加稳固。陶瓷前驱体是一种在高温下热分解产生陶瓷材料的高分子化合物,它是用于制造碳化硅、碳氧化硅等高温陶瓷的传统手段。具有光敏感性的陶瓷前驱体材料的诞生极大地降低了高温陶瓷的3D打印成本,具有很广泛的应用前景。然后,由立体光刻技术做成的毛坯件中含有大量的有机物,这使得经过脱脂和烧结之后产生的成品往往会相对于初始设计尺寸拥有30%左右的收缩量。这也限制了该技术在陶瓷生产中的使用。

图4. 《科学》杂志报道的美国HRL实验室的陶瓷前驱体打印技术

粘合剂喷射成型

这项技术将粘结剂通过打印喷头喷射到陶瓷粉末上,用来将粉末颗粒粘结在一起。然而,根据有限的文献报道,这种技术产生的陶瓷致密度并不高。可能的解释是其受到了粉末铺设的密度的限制。

图 5. Exone粘合剂喷射成形

选择性激光烧结或熔融

SLS/SLM主要被用于金属材料的3D打印上,在陶瓷的制造中使用并不多。这是因为使用激光直接对陶瓷粉末进行烧结或者融化处理时,加工过程中的温度差极易在陶瓷产品中产生应力,这些应力会在陶瓷产品内部产生大量裂纹;使用粉末层预热可以降低裂纹成形的可能性,但同时精度也有所降低。大量的研究集中在减少加工过程中的温度差,但是难度极大,目前并未取得太大进展。更加简单易行的方案是在陶瓷粉末中掺入高分子化合物作为粘合剂,使用激光来烧结这些高分子化合物以达到间接成型的目的。然后,与粘合剂喷射成型一样,这种工艺也受到了粉末铺设密度的限制,目前的研究文献报道中使用其加工而成的陶瓷制品密度并不高。

图 6. 激光选区熔化成形(RPJ, Volume: 19 Issue: 1, 2013)

浆料层铸成型

在这里,我们将所有基于陶瓷浆料的3D打印技术统称为浆料层铸成型。之所以将他们列为一类,是因为笔者认为这些技术可能是陶瓷3D打印的一个方向。将陶瓷粉末与不同的有机粘结剂混合制备成浆料,再使用传统的3D打印工艺加工成型,这样一套工艺流程不但简单而且效果好。从文献报道可以看出,基于浆料的

工艺要比其他工艺生成的陶瓷致密性更高。

一种使用陶瓷浆料作为原材料的打印机(台北科技大学开发)

除了以上介绍的技术,还有其他一些技术,例如分层实体制造、电子照相印刷技术等,因为应用的并不广泛或者仍然处于初步的研究中

陶瓷3D打印技术特点:

陶瓷3D打印机打印,不但大大缩减成本,且性能稳定,具有无菌等特点。

陶瓷3D打印技术优缺点:

我们知道陶瓷材料具有高强度、高硬度、耐高温、低密度、化学稳定性好、耐腐蚀等优异特性,在航空航天、医疗等行业有着广泛应用。但陶瓷材料硬而脆的特点使其加工成形尤其困难,目前国内陶瓷直接快速成形工艺尚未成熟,正处于研究阶段。

陶瓷3D打印技术材料:

工业级陶瓷3D打印材料有:氧化铝(AI2O3),氧化锆(ZRO2),羟基磷灰石(HAP),磷酸三钙(TCP)等。

陶瓷3D打印知名3D打印机品牌:

法国Ceramaker 3D打印机

奥地利Lithoz公司陶瓷3D打印机

陶瓷3D打印技术应用及经典应用案例分享:

目前陶瓷3D打印主要用在工业产品、珠宝/奢侈品、医疗行业,当然对于从事科研的高校和研究所来讲,也是必备的神器。

更多相关内容,就在深圳机械展!

第二篇:3D打印机的概念及发展

3D打印机诞生于20 世纪80 年代中期,是由美国科学家恩里科·迪尼(Enrico Dini)最早发明的,发展至今已经成为一种潮流,并开始广泛应用在设计领域,尤其是工业设计,数码产品开模等,它可以在数小时内完成一个模具的打印,节约了很多产品到市场的开发时间和成本。

与传统的纸质打印机不同,3D打印遵从的是加法(堆积)原则。打印时,先用相关软件将产品图纸转化为3D图像数据并上传电脑,通过3D打印机,放入相应特殊的耗材( 胶水、树脂或粉末等)后,打印喷头就会根据图像数据一层一层地将东西打印出来,再堆叠在一起成为一个立体物品。3D 打印机可以用各种原料打印三维模型,打印的原料可以是有机或者无机的的材料,由此可以根据不同需求打印出塑料玩具、饰品和金属零件、产品模型等,甚至可以用不同颜色材料打印出彩色3D模型。

随着技术的不断进步及市场需求的扩大,3D打印机将呈现四个方面的发展趋势:

(一)3D打印速度和效率将不断提升。随着开拓并行、多材料制造工艺方法的采用,打印速度和效率有望获得更大提升;

(二)3D打印材料更加多样化。随着先进材料的不断发展,智能材料、纳米材料、新型聚合材料、合成生物材料等将成为3D打印材料;

(三)3D打印机价格大幅下降。一些较小规模的3D 打印机制造商已经开始推出一万美元以下的3D打印机。随着技术进步及推广应用,3D打印机的价格有望大幅下降。

(四)3D打印机应用领域更加广泛。3D打印机诞生后,早期主要用于航空航天、机械、医疗、建筑等行业的模型制作。随着其进一步走向成熟,3D打印机已开始用来制造汽车、飞机等高科技含量零部件、皮肤、骨骼等活体组织。专家预计,在不久的将来,从鞋、眼镜到厨房用具、汽车等各种产品都可以用3D打印机生产出来。

随着3D打印技术的不断发展和完善,在不久的将来3D打印机将会普及,甚至走入家庭,我们期待着这一天。

3D打印机

彩色3D打印

金属3D打印

3D医学模型

3D维纳模型

3D打印机耗材

第三篇:3D打印技术的种类

3d打印几种主流快速成型工艺的成型原理及优缺点

来源:互联网 作者: 2013-12-09 10:27:14

1. SLA激光光固化( Stereolithography Apparatus )

该技术以光敏树脂为原料,将计算机控制下的紫外激光按预定零件各分层截面的轮廓为轨迹对液态树脂连点扫描,便被扫描区的树脂薄层产生光聚合反应,从而形成零件的一个薄层截面。当层固化完毕,移动工作台,在原先固化好的树脂表面再敷上一层新的液态树脂以便进行下一层扫描固化。新固化的一层牢固地粘合在前一层上,如此重复直到整个零件原型制造完毕。美国3DSYSTEMS 公司是最早推出这种工艺的公司。该项技术特点是精度和光洁度高,但是材料比较脆,运行成本太高,后处理复杂,对操作人员要求较高。适合验证装配设计过程中用。

2. 3DP三维打印成型( 3Dimension Printer )

其最大特点是小型化和易操作,多用于商业、办公、科研和个人工作室等环境。而根据打印方式的不同,3DP三维打印技术又可以分为热爆式三维打印(代表:美国3D Systems公司的 Zprinter系列——原属ZCorporation公司,已被3D Systems公司收购)、压电式三维打印(代表:美国3D Systems公司的ProJet系列和前不久被Stratasys公司收购的以色列Objet公司的三维打印设备)、DLP投影式三维打印(代表:德国Envisiontec公司的Ultra、Perfactory系列)等。

热爆式三维打印工艺的原理是将粉末由储存桶送出一定分量,再以滚筒将送出之粉末在加工平台上铺上一层很薄的原料,打印头依照3D 电脑模型切片后获得的二维层片信息喷出站着剂,粘住粉末。做完一层,加工平台自动下降一点,储存桶上升一点,刮刀由升高了的储存桶把粉末推至工作平台并把粉末推平,如此循环便可得到所要的形状。该项技术的特点是速度快(是其他工艺的6倍),成本低(是其它工艺的1/6)。缺点是精度和表面光洁度较低。Zprinter系列是全球唯一能够打印全彩色零件的三维打印设备。

压电式三维打印,类似于传统的二维喷墨打印,可以打印超高精细度的样件,适用于小型精细零件的快速成型。相对SLA,设备维护更加简单;表面质量好,Z轴精度高。

DLP投影式三维打印工艺的成型原理是利用直接照灯成型技术(DLPR)把感光树脂成型,CAD的数据由计算机软件进行分层及建立支撑,再输出黑白色的Bitmap档。每一层的Bitmap档会由DLPR投影机投射到工作台上的感光树脂,使其固化成型。DLP投影式三维打印的优点: 利用机器出厂时配备的软件,可以自动生成支撑结构并打印出完美的三维部件。相比于快速成型领域其他的设备,独有的voxelisation专利技术保证了成型产品的精度与表面光洁度。

3. FDM熔融沉积成型( Fused Deposition Modeling )

FDM工艺,也叫挤出成型,关键是保持半流动成型材料刚好在熔点之上(通常控制在比熔点高1 0C左右)。 FDM喷头受CAD分层数据控制使半流动状态的熔丝材料(丝材直径般在1.5mm 以上)从啧头中挤压出来,凝固形成轮廓形状的薄层,一层叠一层最后形成整个零件模型。美国3DSYSTEMS 公司的BFB系列和Rapman系列产品全部采用了FDM技术,其工艺特点是直接采用工程材料ABS 、PC等材料进行制作,适合设计的不同阶段。缺点是表面光洁度较差。

4. SLS造择性激光粉末烧结( Se1ected Laser Sintering )

该法采用C02激光器作能源,目前使用的造型材料多为各种粉未材料。在工作台上均匀铺上一层很薄的(100μ-200μ) 粉未,激光束在计算机控制下按照零件分层轮廓有选择性地进行烧结,一层完成后再进行下一层烧结。全部烧结完后去掉多余的粉未,再进行打磨、烘干等处理便获得零件。目前,工艺材料为尼龙粉及塑料粉,还有使用金属粉进行烧结的。德国EOS公司的P系列塑料成型机和M系列金属成型机产品,是全球最好的SLS技术设备。

SLS技术既可以归入快速成型的范畴,也可以归入快速制造的范畴,因为使用SLS技术可以直接快速制造最终产品。

5. DED多层激光熔覆( Direct Metal Deposition )

相当于多层激光熔覆,利用激光或其它能源在材料从喷嘴输出时同步熔化材料,凝固后形成实体层,逐层叠加,最终形成三维实体零件。DED的成型精度较低,但是成型空间不受限制,因而常用于制作大型金属零件的毛坯。

6. LOM薄板层压成型( Layered Object Manufacturing )

基本原理:利用激光等工具逐层面切割、堆积薄板材料,最终形成三维实体。利用纸板、塑料板和金属板可分别制造出木纹状零件、塑料零件和金属零件。各层纸板或塑料板之间的结合常用粘接剂实现,而各层金属板直接的结合常用焊接(如热钎焊、熔化焊或超声焊接)和螺栓连接来实现。最大缺点:做不了太复杂的零件,材料范围很窄,每层厚度不可调整,精度有限。

第四篇:3D打印机的发展现状与趋势(范文)

3D打印机的发展现状与趋势综述

Xcxx

( 大学 )

摘 要:3D打印(3D printing),即快速成型技术的一种,其实质是增材制造技术,被誉为是第三次工业革命的重要标志之一。近年来,国内外3D打印技术蓬勃发展,在航空航天、生物医学工程、工业制造等多个方面有着广泛地应用。本文通过介绍3D打印技术的概念及应用,阐述了国内外3D打印技术及产业的现状,并结合数据,对3D打印的发展趋势有一定预见性的分析。 关键词:3D打印 技术现状 发展趋势

0.前言

为了让读者更快速更全面的了解3D打印机的发展现状和趋势,特写了这篇综述。3D打印技术是制造业正在迅速发展的一项新兴技术,是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。文章通过介绍3D打印的概念及应用领域,重点阐述了3D打印技术及产业在国内外的发展现状,结合数据分析,对3D打印的发展趋势有一定预见性的分析。

1.技术现状

1.1 3D打印技术概念

严格意义上来说,3D打印技术是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。是制造业正在迅速发展的一项新兴技术,被英国《经济学人》杂志在《第三次工业革命》一文中,称为第三次工业革命的重要标志之一。3D打印作为一种通俗化名称,其实质是增材制造技术,因此又称为添加制造(AM,Additive Manufacturing)。美国材料与试验协会将增材制造技术定义为:基于3D模型数据,采用与减式制造技术相反的逐层叠加的方式生产物品的过程,通常通过电脑控制将材料逐层叠加,最终将计算机上的三维模型变为立体实物,是大批量制造模式向个性化制造模式发展的引领技术。 1.2 3D打印技术的应用领域

近20年来,3D打印技术在各领域发展迅速,主要被应用于产品原型、磨具制造,以及艺术创作、珠宝制作等领域,替代这些领域传统以来的精细加工工艺。除此之外,该技术在鞋类、建筑、工程和施工(AEC)、汽车,航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支、生物工程以及其他多个领域都有所应用,从市场份额来看,3D打印技术应用在汽车及零配件领域占37%,在消费品领域占18.2%,应用于航空航天和国防军工占13.7%,在商业机器领域占11.2%,在医疗领域占8.8%,在科研方面占8.6%。同时,3D打印技术为这些产业的创新开拓注入了新鲜的血液,如2010年澳大利亚Invetech公司和美国Organovo公司合作,尝试以活体细胞为“墨水”打印人体的组织和器官,是医学领域具有重大意义的创新。 1.3 3D打印技术及产业的国内外发展现状 1.3.1 国际情况

经过多年的探索和发展,3D打印技术有了长足的发展。3D打印技术在国外发展较快,目前已经能够在0.01mm的单层厚度上实现600dpi的精细分辨率。打印的速度也有所提高,国际上较先进的产品可以实现每小时25mm厚度的垂直速率,并可以实现24位色彩的彩色打印.截至2012年底,3D打印成型公司Stratasys的产品已经可以支持123种不同材料进行3D打印。

目前,美国Z corp公司与日本Riken Institute于2000年研制出基于喷墨打印技术的、能够制作出彩色原型件的三维打印机。2000年底以色列的Object Geometries公司推出了基于结合3D Ink—Jet与光固化工艺的三维打印机Quadra。在全球3D打印机行业,美国3D Systems和Stratasys两家公司公司的产品占据了绝大多数市场份额。其中,3D Systems公司的实力最为强大,代表了3D打印技术目前的技术水平和未来的发展趋势,可以为专业人士及类似消费者提供3D打印系统。此外,在此领域具有较强技术实力和特色的企业或研发团队还有美国的Fab@Home和Shapeways、英国的Reprap等。在欧美发达国家,3D打印技术已经初步形成了成功的商用模式,如在消费电子业、航空业和汽车制造业等领域,3D打印技术可以以较低的成本、较高的效率生产小批量的定制部件,完成复杂而精细的造型。同时,国际3D打印机制造业正处于迅速的兼并与整合过程中,行业巨头正在加速崛起。 1.3.2 国内情况

近年来,我国积极探索3D打印技术的研发,自20世纪90年代初以来,国内多所高校开展了3D打印技术的自主研发。在3D打印设备制造技术,3D打印材料技术,3D设计与成型软件开发,3D打印工业应用研究等方面取得了不错的成果,有部分技术已经处于世界先进水平。清华大学在现代成型学理论、分层实体制造、FDMT艺等方面都有一定的科研优势;华中科技大学在分层实体制造工艺方面有优势,并已推出了HRP系列成型机和成型材料;西安交通大学自主研制了三维打印机喷头,并开发了光固化成型系统及相应成型材料,成型精度达到0.2mm。中国科技大学学自行研制了八喷头组合喷射装置;有望在微制造、光电器件领域得到应用。但总体而言,国内3D技术的研发水平还有较大差距。我国港台地区很多高校和企业都有自己的3D打印设备,RP技术应用更为广泛,但并非自主研发。

目前,国内对3D打印设备进行产业化运作的公司实体主要有:北京殷华,湖北滨利机电,深圳维示泰克,江苏敦超等,这些企业已经基本实现了3D打印机的整体生产和销售。但这些企业多是由海外归国团体建立,规模小,产品技术与国外厂商同类产品相比尚处于低端水平。目前,国内3D打印机在打印精度、打印速度、打印尺寸和软件等方面还难以满足商用的需求,技术水平有待进一步的提升。

2.发展趋势

2.1.困难与挑战

根据国际快速制造行业权威报告《Wholes Report 2011》发布的调查结果,全球3D行业打印产业产值在1988~2010年期间保持着26.2%的年增长速率。报告预期,3D打印产业未来将持续较快地增长,到2016年,包含设备制造和服务在内的产业总产值将达到31亿美元,2020年将达到52亿美元。但3D打印技术要进一步扩展其产业运用空间,目前仍面临着多方面的瓶颈和挑战:一是成本方面,现有3D打印机造价仍普遍较为昂贵,给其进一步普及应用带来了一定困难;二是概念方面,现在3D打印技术的概念普及范围还不是很广,国内外各个高校也还没有开设相应课程介绍、学习这门新兴技术;三是打印材料方面,首先不能把所有的材料都制成极精细的糊状,目前3D打印的成型材料多采用化学聚合物,材料选择的局限性较大,成型品的物理特性也不理想,并且安全方面也存在一定的隐患.四是精度、速度、效率方面,打印速度也很慢,不能用于大批量生产。改善3D打印系统的可靠性、生产效率和制作大件能力,要提高3D打印的速度和效率。 2.2 发展趋势

Gartner公司2011年发布的最新技术发展展望报告判断:3D打印技术目前正在进入概念炒作的高峰阶段,其技术还有待充分成熟,主流市场也有待进一步培育。3D打印技术成熟到适应市场需求还将需要5~10年的时间。现阶段产业界对3D打印领域的投入应以加强创新研发、技术引进为主,尤其要重视自主知识产权的建设和维护,争取在未来的市场竞争中占据优势地位。随着智能制造,控制技术,材料技术,信息技术等不断发展和提升,这些技术也被广泛地综合应用与制造工业,3D打印技术也将会被推向一个更加广阔的发展平台。未来,3D打印技术的发展将体现出精密化、智能化、便捷化以及通用化等主要趋势,可在以下几方面进行改善:

2.2.1 精密化

可提升3D打印的速度效率和精度,开拓并行打印、连续打印、大件打印、多种材料打印的工艺方法,提高成品的表面质量、力学和物理性能,以实现直接面向产品的制造,开发更为多样的3D打印材料。3D打印机可以向双色或多色打印机发展,同时进行两种以上颜色的渲染,得到更有层次和立体感的打印模型。 2.2.2 .智能化和便捷化

目前,3D打印设备在软件功能、后处理、设计软件与生产控制软件的无缝对接等方面还有许多问题需要优化。例如,成型过程中需要加支撑,成型过程中需要不同材料转换使用,加工后的粉末去除方面,都需要软件智能化和自动化程度进一步提高。同时,随着3D打印技术越来越普遍地运用到服装、设计、生活生产当中,只有用户在使用过程中觉得简易上手,技术门槛低,复杂程度低,才能使用户有更好的使用体验,才能更普遍地推广这一技术。而这一系列问题都直接影响到设备的普及和推广,设备智能化、便捷化是走向普及的保证。目前,3D打印的小型无人飞机、小型汽车等概念产品已问世:3D打印的家用器具模型.也被用于企业的宣传、营销活动中。 2.2.3 通用化

3D打印是近年来国际上的发展热点,其输出设备称为3D打印机,是作为一个计算机的外部输出设备使用。它可以直接将计算机中制图软件中的三维设计图形输出成一个三维彩色实体,在科学教育,工业制造,产品创意,工业美术等方面有广泛地应用前景和巨大的商业价值,这同时要求3D打印技术向低成本、高精度、高性能的方向发展.随着技术的日益成熟,3D打印店将越来越多,个性化打印定制服务成为一种潮流。通过3D打印技术.创新公司将凭借与竞争对手的标准化产品相同的价格为用户提供定制化体验,该产品将根据你自己确切的具体信息进行定制,通过3D打印制造并直接送到你的家门口。

3.总结

3D打印作为一种新兴的产业,在国内外正在蓬勃发展,将来也会发展地更加通用,更加成熟。文章主要是整合了前人比较零散的观点,对3D技术的发展趋势有预见性的分析,但其分析可能并不是特别的全面,希望可以之后可以从不同的角度和方向更好的完善。3D打印技术给人们带来了巨大的生产自由度,但目前只能做些小规模的装饰品,要谈到大规模工业生产,取代传统的工业生产方式,仍然还有很长的路要走。相信市场的巨大需求会加速3D打印机及其应用的普及,势必像电脑一样走入千家万户,更好地方便人们生活,为提升人们的生活品质提供服务。

参考文献

[1]王雪莹.3D打印技术与产业的发展及前景分析[J].中国高新技术企业,2016(26):3-5 [2]第三次工业革命[J].经济学人(英),2012-04-21 [3]卢秉恒,李涤尘.增才制造(3D打印)技术发展[J]机械制造与自动化,2013,42(4) [4]王忠宏,李扬帆,张曼茵.中国3D打印产业的现状及发展思路[J]经济纵横,2013(1) [5]古丽萍.蓄势待发的3D打印机及其发展[J].北京:数码印刷,2011(10):64-67. [6]丁博强.3D打印推动第三次工业革命[J].上海:创意产业,2013(2). [7]童岱.3D打印将撼动全球制造业.中国科学报,2012. [8]王雪莹.3D 打印技术与产业的发展及前景预见.第七届全国技术预见学术研讨会文集.

第五篇:3D打印机的主要技术平台及优缺点

3D打印技术从狭义上来说主要是指增材成型技术,从成型工艺上看,3D打印技术突破了传统成型方法,通过快速自动成型系统与计算机数据模型结合,无需任何附加的传统模具制造和机械加工就能够制造出各种形状复杂的原型,这使得产品的设计生产周期大大缩短,生产成本大幅下降。3D打印,俗称“三维打印技术”或 “快速制造技术”,是对一系列“增材制造”技术的总称。

那么,3D打印技术主要分为哪几种,优缺点是什么呢?以下详细说明:

一、FDM:熔融沉积成型工艺

熔融沉积成型工艺(Fused Deposition Model-ing, FDM)是继LOM工艺和SLA工艺之后发展起来的一种3D打印技术。该技术于1988年发明,随后Stratasys公司成立并在1992年推出了世界上第一台基于FDM技术的3D打印机——“3D造型者(3DModeler)”,这也标志着FDM技术步入商用阶段。国内的清华大学、北京大学、北京殷华公司、中科院广州电子技术有限公司都是较早引进FDM技术并进行研究的科研单位。FDM工艺无需激光系统的支持,所用的成型材料也相对低廉,总体性价比高,这也是众多开源桌面3D打印机主要采用的技术方案。

FDM成型原理:熔融沉积有时候又被称为熔丝沉积,它将丝状的热熔性材料进行加热融化,通过带有微细喷嘴的挤出机把材料挤出来。喷头可以沿X轴的方向进行移动,工作台则沿Y轴和Z轴方向移动(当然不同的设备其机械结构的设计也许不一样),熔融的丝材被挤出后随即会和前一层材料粘合在一起。一层材料沉积后工作台将按预定的增量下降一个厚度,然后重复以上的步骤直到工件完全成型。下面我们一起来看看FDM的详细技术原理(如图1)。

FDM成型技术的优点:

(1)成本低。熔融沉积造型技术用液化器代替了激光器,设备费用低;另外原材料的利用效率高且没有毒气或化学物质的污染,使得成型成本大大降低。

(2)原材料以材料卷得的形式提供,易于粉末材料搬运和储存以及快速更换; (3)原材料在成型过程中无化学变化,相对金属粉末,树脂固化制件成型的变形小。 FDM成型技术的缺点:

(1)需要配合支撑结构打内腔模型时,支撑面效果欠佳。

(2)需要对整个截面进行逐步打印,成型时间较长,成型速度相对SLA 慢7%左右。

二、SLA与DLP:立体光固化成型工艺

SLA立体光固化成型工艺又称立体光刻成型,该工艺最早于1984年提出并获得美国国家专利,是最早发展起来的3D打印技术之一。该专利申请两年后便成立了3D Systems公司,并于1988年发布了世界上第一台商用3D打印机SLA-250。SLA工艺以光敏树脂作为材料,在计算机的控制下紫外激光将对液态的光敏树脂进行扫描从而让其逐层凝固成型,SLA工艺能以简洁且全自动的方式制造出精度极高的几何立体模型;

DLP 投影成型技术导引:为了提高光固化成型速度,由之前激光扫描固化提高到固化更快面积更大的投影固化技术; SLA激光光固化成型原理:

液槽中会先盛满液态的光敏树脂,氦-镉激光器或氩离子激光器发射出的紫外激光束在计算机的操纵下按工件的分层截面数据在液态的光敏树脂表面进行逐行逐点扫描,这使扫描区域的树脂薄层产生聚合反应而固化形成工件的一个薄层。

当一层树脂固化完毕后,工作台将下移一个层厚的距离以使在原先固化好的树脂表面上再覆盖一层新的液态树脂,刮板将黏度较大的树脂液面刮平然后再进行下一层的激光扫描固化。因为液态树脂具有高黏性而导致流动性较差,在每层固化之后液面很难在短时间内迅速抚平,这样将会影响到实体的成型精度。采用刮板刮平后,所需要的液态树脂将会均匀地涂在上一叠层上,这样经过激光固化后将可以得到较好的精度,也能使成型工件的表面更加光滑平整。新固化的一层将牢固地粘合在前一层上,如此重复直至整个工件层叠完毕,这样最后就能得到一个完整的立体模型。当工件完全成型后,首先需要把工件取出并把多余的树脂清理干净,接着还需要把支撑结构清除掉,最后还需要把工件放到紫外灯下进行二次固化。 SLA工艺成型效率高,系统运行相对稳定,成型工件表面光滑精度也有保证,适合制作结构异常复杂的模型,能够直接制作面向熔模精密铸造的中间模。尽管SLA的成型精度高,但成型尺寸也有较大的限制而不适合制作体积庞大的工件,成型过程中伴随的物理变化和化学变化可能会导致工件变形,因此成型工件需要有支撑结构。目前SLA工艺所支持的材料还相当有限且价格昂贵,液态的光敏树脂具有一定的毒性和气味,材料需要避光保存以防止提前发生聚合反应。SLA成型的成品硬度很低而相对脆弱(笔者在一次3D打印体验活动中看到了SLA成品触地碎裂的情况)。此外,使用SLA成型的模型还需要进行二次固化,后期处理相对复杂。

DLP投影固化成型原理: 光源透过聚光镜,使光源均匀分布,菲涅尔镜是光源垂直照射在液晶屏上,液晶屏两面分别有偏振膜,偏振膜是液晶显示成像的基础,任何液晶屏自身都有偏振膜,液晶屏的成像显示就是透明显示的,图像就会通过液晶屏照射到光敏树脂上,托板与底模之间固定高度的树脂通过投影的光发生固化成形并附着在托板上,再由托板将固化成形的部分拉起,让液体再次补充进来,托板在下降,从而托板与底模之间的薄层树脂再次发生固化并附着在之前成形的固化树脂上,周而复始,逐层固化直到完成模型整体成形。

1.光源 2.聚焦透镜 3.菲涅尔透镜 4.偏振膜 5.液晶屏 6.偏振膜 7.储液槽底模 8.光固化树脂 9.光固化成型托板

紫外线光源采用半导体LED光源,或者辅助增加高压钠灯来提高光源强度,缩短曝光固化时间。液晶屏上放着的是储液槽,储液槽下方是透明薄膜结构,要比较松弛,不要过于绷紧,不利于固化脱模。

光固化成型优点: (1)表面质量好;

(2)整面固化,成型速度快; 光固化成型缺点:

(1)尺寸的稳定性差。成型过程中伴随着物理和化学变化,导致软薄部分易产生翘曲变形,因而极大地影响成型件的整体尺寸精度。所以需要设计成型件的支撑结构,否则会引起成型件的变形。

(2)可使用的材料种类较小。目前可使用材料主要为感光性液态树脂材料,并且因为材料本身特性问题,不能对成型件进行抗力和热量的测试。

(3)液态树脂具有气味和毒性,并且需要避光保护,以防止其提前发生聚合反应,选择时有局限性。

(4)需要二次固化。在很多情况下,经过快速成型系统光固化后的原型树脂并未完全被激光固化,所以通常需要二次固化。

三、SLS:选择性激光烧结工艺

SLS技术起源于1986年,于1988年研制成功了第一台SLS成形机。随后,由美国的DTM公司将其商业化,于1992年推出了该工艺的商业化生产设备SinterStation 2000成形机。在过去的20多年里,SLS技术在各个领域得到广泛的应用,研究选择性激光烧结设备工艺的单位有美国的DTM公司、3D Systems公司、德国的EOS公司,在国内也有许多科研单位开展了对SLS工艺的研究,如南京航空航天大学、中北大学、华中科技大学、武汉滨湖机电产业有限公司、北京隆源自动成型有限公司、湖南华曙高科等; 图所示为SLS的成型原理

SLS选择性激光烧结工艺成型原理:

选择性激光烧结加工的过程先采用压辊将一层粉末平铺到已成型工件的上表面,数控系统操控激光束按照该层截面轮廓在粉层上进行扫描照射而使粉末的温度升至熔化点,从而进行烧结并于下面已成型的部分实现粘合。当一层截面烧结完后工作台将下降一个层厚,这时压辊又会均匀地在上面铺上一层粉末并开始新一层截面的烧结,如此反复操作直接工件完全成型。在成型的过程中,未经烧结的粉末对模型的空腔和悬臂起着支撑的作用,因此SLS成型的工件不需要像SLA成型的工件那样需要支撑结构。SLS工艺使用的材料与SLA相比相对丰富些,主要有石蜡、聚碳酸酯、尼龙、纤细尼龙、合成尼龙、陶瓷,甚至还可以是金属。当工件完全成型并完全冷却后,工作台将上升至原来的高度,此时需要把工件取出使用刷子或压缩空气把模型表层的粉末去掉。 SLS选择性激光烧结优点:

(1)可以采用多种材料。从理论上说,任何加热后能够形成原子间粘结的粉末材料都可以作为SLS的成型材料。

(2)过程与零件复杂程度无关,无须支撑结构,且制件的强度高。 (3)材料利用率高,为烧结的粉末可重复使用,材料无浪费。 SLS选择性激光烧结缺点:

(1)原型结构疏松、多孔,且有内应力,制作易变性; (2)需要预热和冷却浪费很长时间;

(4)且制成陶瓷、金属制件的成型表面粗糙多孔,后期较难处理; (5)材料不易存储,且材料成型过程产生有毒气体及粉尘,污染环境。

四、PolyJet聚合物喷射工艺

PolyJet聚合物喷射技术是以色列Objet公司于2000年初推出的专利技术,PolyJet技术也是当前最为先进的3D打印技术之一,2012年Stratasys 和Objet宣布进行合并,交易额为14亿美元,合并后的公司名仍为Stratasys。此项合作也将Polyjet技术推向了更高更广的3D打印市场,令3D打印热进一步升温,且会加快数字制造商用化的进程;

PolyJet聚合物喷射技术成型原理:

PolyJet的喷射打印头沿X轴方向来回运动,工作原理与喷墨打印机十分类似,不同的是喷头喷射的不是墨水而是光敏聚合物。当光敏聚合材料被喷射到工作台上后,UV紫外光灯将沿着喷头工作的方向发射出UV紫外光对光敏聚合材料进行固化。完成一层的喷射打印和固化后,设备内置的工作台会极其精准地下降一个成型层厚,喷头继续喷射光敏聚合材料进行下一层的打印和固化。就这样一层接一层,直到整个工件打印制作完成。工件成型的过程中将使用两种不同类型的光敏树脂材料,一种是用来生成实际的模型的材料,另一种是类似胶状的用来作为支撑的树脂材料。这种支撑材料由过程控制被精确地添加到复杂成型结构模型的所需位置,例如是一些悬空、凹槽、复杂细节和薄壁等结构。当完成整个打印成型过程后,只需要使用Water Jet水枪就可以十分容易地把这些支撑材料去除,而最后留下的是拥有整洁光滑表面的成型工件。

PolyJet聚合物喷射优点:

(1)质量高: 领最薄层厚能达到16微米; 可以确保获得复杂、精确的部件与模型; (2)清洁: 适合于办公室环境,采用非接触树脂载入/卸载,容易清除支持材料; (3)多彩多样: FullCure 材料品种多样,可适用于不同几何形状、机械性能及颜色的部件,所有类型的模型均使用相同的支持材料,因此可快速便捷地变换材料。

PolyJet聚合物喷射缺点:

(1)Polyjet打印使用费用较高,如果要考虑成本因素,就要斟酌了;

(2)光敏聚合物类材料打印模型适合试验设计性,而不适合功能性和耐用性成品,如果需要对模型成品的强度和稳定性有较高要求,就不太合适;

五、3DP 三维印刷成型工艺

3DP三维印刷成型技术导引:三维印刷工艺(Three-Dimension Printing,3DP)由美国麻省理工大学的Emanual Sachs教授发明于1993年,3DP的工作原理类似于喷墨打印机,是形式上最为贴合“3D打印”概念的成型技术之一。3DP工艺与SLS工艺也有着类似的地方,采用的都是粉末状的材料,如陶瓷、金属、塑料,但与其不同的是3DP使用的粉末并不是通过激光烧结粘合在一起的,而是通过喷头喷射胶粘剂将工件的截面“打印”出来并一层层堆积成型的;

3DP三维印刷成型工艺成型原理:

首先设备会把工作槽中的粉末铺平,接着喷头会按照指定的路径将液态胶粘剂(如硅胶)喷射在预先粉层上的指定区域中,此后不断重复上述步骤直到工件完全成型后除去模型上多余的粉末材料即可。3DP技术成型速度非常快,适用于制造结构复杂的工件,也适用于制作复合材料或非均匀材质材料的零件。 3DP三维印刷成型优点: (1)成型速度快;

(2)在粘结剂中添加颜料,可以制作彩色原型,这是该工艺最具竞争力特点之一。 (3)成型过程不需要支撑,多余粉末的去除比较方便,特别适合于做内腔

3DP三维印刷成型缺点:

(1)强度较低,只能做概念型模型,而不能做功能性试验;

(2)材料问题,在成型时对加工环境要求较高,并容易产生粉尘等污染;

上一篇:企业考察邀请函范文下一篇:求职英文介绍信范文