3d打印机项目介绍

2022-07-31

第一篇:3d打印机项目介绍

陶瓷3D打印技术介绍【深度解析】

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!

更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、自动化、数字无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

陶瓷3D打印技术概述:

陶瓷材料作为三大基本材料之一,以优良的理化特性在工业界被广泛应用。但因传统陶瓷制备工艺的限制,工业中使用的陶瓷制品往往只具备简单的三维形状。三维打印工艺的发展让复杂的陶瓷产品成为可能。目前来看,已经被成功应用于陶瓷材料的三维打印的工艺包括喷嘴挤压成型,立体光刻成型(面曝光和激光),粘合剂喷射成型,选择性激光烧结或熔融成型,浆料层铸成型(slurry-layer casting)等。

陶瓷3D打印技术原理: 喷嘴挤压成型

喷嘴挤压成型与塑料3D打印的熔融沉积成型技术(FDM)类似。该技术采用混有陶瓷粉末的喷丝(filament)作为原材料,使用100摄氏度以上的温度将喷丝中的高分子材料融化后挤出喷嘴,挤出后的陶瓷高分子复合材料因为温差而凝固。

图 1. 热熔沉积式陶瓷打印机 (美国罗格斯大学开发)

除此之外,也有部分工艺采用高粘度的陶瓷浆料作为原材料,直接通过喷嘴挤出后在空气中干燥固化。这种陶瓷浆料的主要成分是陶瓷粉末和粘合剂,其中粘合剂在成型过程中起到粘合陶瓷粉末的作用。无论是陶瓷喷丝还是陶瓷浆料作为原材料,这种工艺得到的三维模型都需要进一步进行热处理,即脱脂和烧结。脱脂和烧结也是传统陶瓷加工工艺中使用的致密化陶瓷产品的手段。目前来看,面向陶瓷的喷嘴挤压成型工艺受限于相对粗糙的加工精度,还主要集中于实验室研究,成熟的基于该工艺的3D打印机还未出现。

图 2. 冷凝挤压式陶瓷打印机(美国密苏里科技大学开发)

立体光刻成型

立体光刻成型是目前市场上陶瓷打印的主要技术,也是商业化相对成功的技术。该技术采用一种由陶瓷粉末、光引发剂、分散剂等混合而成的光固化胶,工艺本身与目前市场上的DLP和SLA打印机并无大的区别。有的产品(如Lithoz)会因为光固化胶的高粘度而使用特殊的刮刀涂抹手段来加快成型过程中的材料填充,但归根结底其本质与普通树脂成型并无大的区别。与喷嘴挤压出的毛坯件一样,立体光刻工艺制造出的3D模型也需要在高温炉中进行脱脂和烧结。根据有关公司的产品介绍,使用该工艺制造出的陶瓷制品(例如氧化铝、氧化锆、磷酸钙等)密度可高达99%以上。

图 3. Lithoz陶瓷打印机

与此同时,近一两年,研究人员在光固化陶瓷前驱体材料上取得的技术突破(详情可见科学杂志2016年

1月1日相关报道),让立体光刻成型技术在陶瓷打印中的地位更加稳固。陶瓷前驱体是一种在高温下热分解产生陶瓷材料的高分子化合物,它是用于制造碳化硅、碳氧化硅等高温陶瓷的传统手段。具有光敏感性的陶瓷前驱体材料的诞生极大地降低了高温陶瓷的3D打印成本,具有很广泛的应用前景。然后,由立体光刻技术做成的毛坯件中含有大量的有机物,这使得经过脱脂和烧结之后产生的成品往往会相对于初始设计尺寸拥有30%左右的收缩量。这也限制了该技术在陶瓷生产中的使用。

图4. 《科学》杂志报道的美国HRL实验室的陶瓷前驱体打印技术

粘合剂喷射成型

这项技术将粘结剂通过打印喷头喷射到陶瓷粉末上,用来将粉末颗粒粘结在一起。然而,根据有限的文献报道,这种技术产生的陶瓷致密度并不高。可能的解释是其受到了粉末铺设的密度的限制。

图 5. Exone粘合剂喷射成形

选择性激光烧结或熔融

SLS/SLM主要被用于金属材料的3D打印上,在陶瓷的制造中使用并不多。这是因为使用激光直接对陶瓷粉末进行烧结或者融化处理时,加工过程中的温度差极易在陶瓷产品中产生应力,这些应力会在陶瓷产品内部产生大量裂纹;使用粉末层预热可以降低裂纹成形的可能性,但同时精度也有所降低。大量的研究集中在减少加工过程中的温度差,但是难度极大,目前并未取得太大进展。更加简单易行的方案是在陶瓷粉末中掺入高分子化合物作为粘合剂,使用激光来烧结这些高分子化合物以达到间接成型的目的。然后,与粘合剂喷射成型一样,这种工艺也受到了粉末铺设密度的限制,目前的研究文献报道中使用其加工而成的陶瓷制品密度并不高。

图 6. 激光选区熔化成形(RPJ, Volume: 19 Issue: 1, 2013)

浆料层铸成型

在这里,我们将所有基于陶瓷浆料的3D打印技术统称为浆料层铸成型。之所以将他们列为一类,是因为笔者认为这些技术可能是陶瓷3D打印的一个方向。将陶瓷粉末与不同的有机粘结剂混合制备成浆料,再使用传统的3D打印工艺加工成型,这样一套工艺流程不但简单而且效果好。从文献报道可以看出,基于浆料的

工艺要比其他工艺生成的陶瓷致密性更高。

一种使用陶瓷浆料作为原材料的打印机(台北科技大学开发)

除了以上介绍的技术,还有其他一些技术,例如分层实体制造、电子照相印刷技术等,因为应用的并不广泛或者仍然处于初步的研究中

陶瓷3D打印技术特点:

陶瓷3D打印机打印,不但大大缩减成本,且性能稳定,具有无菌等特点。

陶瓷3D打印技术优缺点:

我们知道陶瓷材料具有高强度、高硬度、耐高温、低密度、化学稳定性好、耐腐蚀等优异特性,在航空航天、医疗等行业有着广泛应用。但陶瓷材料硬而脆的特点使其加工成形尤其困难,目前国内陶瓷直接快速成形工艺尚未成熟,正处于研究阶段。

陶瓷3D打印技术材料:

工业级陶瓷3D打印材料有:氧化铝(AI2O3),氧化锆(ZRO2),羟基磷灰石(HAP),磷酸三钙(TCP)等。

陶瓷3D打印知名3D打印机品牌:

法国Ceramaker 3D打印机

奥地利Lithoz公司陶瓷3D打印机

陶瓷3D打印技术应用及经典应用案例分享:

目前陶瓷3D打印主要用在工业产品、珠宝/奢侈品、医疗行业,当然对于从事科研的高校和研究所来讲,也是必备的神器。

更多相关内容,就在深圳机械展!

第二篇:3D打印机教程

【打印虎】3D打印控制软件Repetier-Host使用基础图解教程第二版

玩3D打印机,特别是RepRap这一类3D打印机的朋友,一般都听说过Repetier-Host这个软件。这个软件功能丰富,界面友好,是玩3D打印机入门的好选择。今天我就给大家介绍一下这款软件。

Repetier-Host软件目前版本是1.0.6(打印虎本地下载,百度云下载)。我们在【打印虎】RepRap Prusa i3 3D打印机软件安装图解教程 第二版中,介绍了如何安装、设置这个软件,还有如何连接3D打印机。所以这里我就不再重复介绍了。需要说明的是,以下所有截图来自于Repetier-Host的上一个小版本1.0.5,由于这个软件升级比较频繁,这两个小版本之间界面上也没有什么差别,因此就不再重新截图了,请大家谅解。

假如你已经安装好软件,并且设置好了与3D打印机的连接,我们就可以开始了。Repetier-Host软件主界面是这个样子的:

虽然界面看起来比较简单,但实际上Repetier-Host具有很丰富的功能,是一个相当复杂的软件。下面我逐步介绍给大家。 第一节,模型的载入和查看

既然是玩3D打印机,那一定要有3D模型啊。Repetier-Host软件可以载入已有的3D模型。虽然没有3D建模软件3ds Max之类的强大功能,但它也可以对3D模型做一定的调整。想了解Repetier-Host有哪些功能,可以跟着我一步一步做: 第一步,载入一个模型

按下窗口左上角的“载入”按钮,就可以打开文件选择对话框,载入一个模型文件了。

Repetier-Host支持很多种格式的3D模型文件格式。其中最常见的还是.stl格式。.stl格式是一种非常简单的3D模型文件格式,而且是基于文本的格式。对于特别简单的.stl文件,甚至可以直接用文本编辑工具打开查看、编辑。.stl格式具体是怎样的,以后打印虎会再独立介绍。现在,我们只要知道Repetier-Host是支持.stl格式的模型就可以了。

这里的例子是我从打印虎3D模型库下载的“坐着的猫”3D模型。下载这个文件之后,就可以用Repetier-Host打开了:

最容易发现的是,左侧的3D窗口里面,猫模型已经被载入了。另外,右侧的模型列表中,也出现了相应的一项(红圈圈里面)。这时候如果按下键盘上的F4键,可以将视图状态调整为“适合打印体积”视图,如下图。反之,需要近距离观察模型的话,就再按下F5键,变回“适合对象”视图。

在“适合打印体积”视图下,有一点需要特别注意到。那就是左侧的3D窗口,与一般的3D建模软件有些不同,它的辅助平面上面有一个框框。这个加上框框的辅助平面,形成了一个立方体,代表的就是你的3D打印机所能打印的最大范围。如果3D打印机的设置是正确的(还是要看之前那篇文章哦),那么就代表只要3D模型在这个框里面,就不用担心3D模型超出可打印范围,打印的过程中出问题了。 第二步,使用各种角度各种方法观察模型

缺省状态下,工具栏里面的“旋转”是激活的状态,这代表我们可以用鼠标旋转这个模型,在不同的角度查看它。尝试在3D窗口里面按下鼠标左键,不松手的情况下拖动鼠标,就可以看到整个3D盒子跟着鼠标的方向转动了。

如果鼠标有滚轮的话,还可以同时缩放这个模型。可以发现,不论是旋转,还是缩放,都是以3D盒子的中心点为中心进行的。盒子的中心点处,有一个小小的星作为标示。 如果我们不想以盒子的中心为中心进行缩放操作,而是想以模型为中心,放大观察模型的话,就需要用到工具栏的第二个按钮,平移功能了。

选定平移功能,把鼠标放在3D盒子上,按下鼠标,不要松手,往上移动鼠标,完成一个鼠标拖放的动作。把表示中心的星大致对准猫的身体。再使用鼠标滚轮,这时可以发现缩放操作变为以猫模型为中心的操作了。

再把工具栏调整回“旋转”,用拖放的方式改变模型角度。可以发现,这时的旋转中心,已经变为平移后的中心了。这时候,再通过旋转、缩放的方式观察模型,就方便多了。

其实,也许你已经发现,与其这么麻烦从“适合打印体积”视图开始调整到合适的位置,不如直接按下F5键,从“适合对象”视图开始调整。因为在“适合对象”视图下面,旋转中心直接被设定在了对象的中心处。不用平移了,只要旋转就可以达到合适的角度,这个动作一下子就容易多了。

下面的第三个按钮等会再说。先说第四个按钮。

第四个按钮就是用鼠标左键完成缩放功能。其实和刚才我们已经用了的滚轮功能完全一样,只是方便那些没有鼠标滚轮的人。(

真的还有这样的鼠标吗?)

再下面三个按钮,实际上就是方便用户,快速将视点重置到一个特定的位置上。实际上,视图菜单里面不仅有这三个按钮,而且还有更多的选择。大家可以逐一试试。前面我们已经反复试验过的F4/F5快捷键,在这里也有对应的菜单选项。

再回到3D窗口的工具栏,最下面一个是平行视图按钮。按下这个按钮之后,3D窗口将从缺省的透视投影状态变为平行投影状态。以这种方式观察模型,就不是近大远小了,感觉不是那么真实,但也有一些好处,比如更容易测量、比较两条线的长短。学过机械、建筑的同学自然就懂了。

所有这些按钮,除了那个没介绍的第三个按钮,都是只看不改的。也就是说,改变的只是视点的位置,不会对模型产生任何实际影响。记住这一点,就可以乱来了。额,不是,是不怕乱来了。不管现在的视点状态如何奇怪,按下视点重置的三个按钮之一,或者直接按下键盘F4/F5键,都可以将视点复位。

第二节,模型调整

上面一节,讨论的都是如何有效地观察3D模型。其实,如果你对3ds Max建模工具熟悉的话,这些都是很简单的基础了,和3D打印关系不大。

这一节,我们要深入讨论一下与3D打印直接相关的模型调整方面的功能。首先我们先试试工具栏上的第三个按钮“移动物体”。

按下这个按钮,再拖动3D窗口里面的猫模型,就可以看到猫在X-Y平面上移动了。与很多3D软件不同,这个移动物体功能,不论观察的位置、角度如何变化,都不会在Z轴上改变物体的位置,只是在X-Y轴上移动。很明显,这与3D打印过程中的实际(物理)限制是密切相关的。不管最终是什么样的模型,打印时也必须建立在Z为0的打印平面上。 在较旧的Repetier-Host版本(1.0版以前)中,用户仍然可以沿Z轴手动调整3D物体位置。但也许是由于这个功能用处太少了,在最新版本中已经找不到了。如果你真的需要这样的功能,也许说明你的3D模型文件还没有完全准备好,最好回到3D建模工具里面再调整一下。

其实,X轴和Y轴方向的平移,也并不是特别常用的功能。当载入多个模型的时候,Repetier-Host会自动帮我们搞定平移的事情。当我按下物体放置面板上面的“增加物体”按钮

再载入一次猫模型的时候,就可以看到原来的猫被平移了一点,新的猫被放置到了合适的位置上。

当然,“增加物体”功能,主要还是为了再载入一个不同的模型用的。如果要的就是相同的模型,只要按下“复制物体”按钮就行了。

大多数情况下,自己平移3D模型的意义不大。还不如载入所有的模型之后按下“自动布局”按钮,让Repetier-Host自行安排每个3D模型的位置。

下面几个功能,只能针对一个3D模型进行操作。当我们已经载入了2个模型之后,应该怎么办呢?很简单,在下图所示的3D模型列表中,鼠标单击蓝色的区域,就可以实现只选定一个3D模型了。

试一下之后,你就会发现,虽然选定一个3D模型很简单,但如果想恢复为初始的两个3D模型都选定的状态就没那么容易了。其实这也好办,你只要按住Ctrl键,再用鼠标单击那个没选定的3D模型,一下子就搞定了。两个3D模型的情况学会了,更多3D模型的操纵也难不倒你了。

好,搞明白如何选定一个3D模型,我们就回到3D模型调整功能的学习上来。选定“对象组1”之后,按下“物体对中”按钮。

这时候,左侧3D视窗里面看到的两个猫模型是这样的:

由于我们把“对象组1”的猫模型居中摆放,它不可避免的和“对象组2”的猫模型相交了。这种相交,会导致两个模型都无法正常打印,因此是一定要避免的情况。出现这种情况时,Repetier-Host为了提醒用户,特别把模型用很亮的浅蓝色绘制出来。除了相交的情况,如果你的3D模型出界了,也就是进入了可打印范围之外的区域,同样也会变为这样的颜色。 想解决这个问题,也很简单。只要如上面说的方法,在按下Ctrl键的同时,鼠标单击“对象组2”,把两个对象组同时选定,然后再按下前面已经介绍过的“自动布局”按钮,一切就都恢复原状了。

再下面,是“缩放物体”功能。

按下这个按钮后,会在物体放置面板上增加一块控制面板,供用户输入缩放数据。

有的时候载入的模型尺寸不对,太大或者太小,这时候就需要使用缩放功能了。缺省情况下,X, Y, Z三个轴是锁定的,也就是在X里面键入的数值,比如1.2倍,会同时在三个轴方向上起作用。

如果用鼠标点一下锁图标,把锁打开,就可以分别调整三个轴的缩放比例了。 右边的两个按钮,“缩放到最大”和“复位”,含义都非常明确,就不再具体讲解了。 “旋转物体”功能与上一个“缩放物体”功能很类似,也是展开一块控制面板,供用户输入旋转数据。

按下旋转物体图标,打开旋转物体控制面板。

旋转物体的时候,可以参考3D视窗左下角的坐标轴方向,如下图。对话区域中的XYZ数值,意义是沿着XYZ轴旋转的角度值。通过设置这些数值,可以实现你需要的旋转角度。

右侧的“放平”功能,是一个比较高级的功能。这个功能是Repetier-Host帮助用户计算当前状态的物体旋转能尽可能的贴近打印平面。计算后的旋转角度,会自动填入到XYZ输入框中。“重置旋转”就很简单了,只是把0重置到XYZ输入框,让3D物体恢复到没有旋转之前的状态。

先跳到最后的按钮,“镜像”功能上。这个功能就很简单了,只是把3D物体做镜像处理。本来向左偏的猫头,会改为向右偏。这个功能就没有可用的参数了。

再回过头来看神奇的“切割物体”功能。

这个功能,可以指定一个切割平面,3D物体会被这个切割平面分为两部分,一部分展示出来,另一部分消失掉。但千万别以为3D物体被修改成了这个样子。仔细查阅了英文文档之后,虎哥我确定了一个悲惨的现实,就是这个功能只能看不能用。也就是说,用户只能通过这个功能增强对3D物体的查看,而不能对3D物体进行修改。这……真是一个神奇的功能啊。

最后还有一个基础功能,就是3D模型对象的删除。这个功能也很简单,只要按下上图红圈内的小垃圾桶,即可删除对应的3D模型了。

上面逐一介绍了Repetier-Host为用户提供的模型调整功能,其中最有用的就是平移和缩放功能了。很明显的是,虽然这些功能都为了方便用户使用而设计,但也相对比较简单,不能处理复杂的情况。如果有对3D模型比较复杂的修改要求,建议还是使用3D建模工具完成。 实际上,上面的讲解中,我还省略了很多Repetier-Host提供的高级功能的介绍。这些功能主要包含了对多挤出头3D打印机的支持,以及一些计算得到的模型信息。对这些高级功能真正感兴趣的用户比较少,就留给大家自己发掘吧。

第三节,切片与代码生成,使用Slic3r 把3D模型载入,放置到合适的位置上之后,下面就该执行“技术含量”最高的一项工作了,那就是模型切片。这步操作,实际上就是把用三角面片描述的3D模型,通过特定的算法,翻译为3D打印机能执行的指令组。这个3D打印机指令翻译算法非常关键,它决定着3D打印出来的东西形状是不是够精细,速度是不是够快,塑料材料是不是够省等等一系列关键指标。

了解了这些内容,就知道这一步是很重要的了。废话少说,先切换到切片软件面板观察一下。

可以看出这里的配置还是很复杂的,这里我们先看红圈圈住的几个关键点。我们在上面已经提到,切片生成算法是个很高科技的东西。这么高科技的东西,自然就会有人对它进行专门研究。就像有人专门制造汽车,有人专门制造引擎,同一个汽车,还可能配不同厂家制造的引擎。这里也是类似的情况。“切片软件”那里,就是对切片引擎的选择。Repetier-Host安装的时候,带了两个不同的切片软件。这一节我们先介绍缺省的Slic3r,下一节我们会介绍另一个切片引擎CuraEngine。

截图最下面的红圈圈,是一个Repetier-Host给出的提示信息,说明Slic3r是一个独立的软件,可以在它的网站http://访问到更详细的信息等等。

好,选定了Slic3r,就可以按下按钮了。按下这个按钮之后可能不会立即有反应,可能要稍微等个10秒钟左右,Slic3r的主窗口才会弹出来。如果你是第一次进入Slic3r,同时弹出的还有Slic3r的配置向导窗口。因为配置向导中包含了所有最重要的配置信息,因此我们就从这里开始看。

首先是第一页,欢迎页,没什么特别的,直接点Next。

第二页,选择固件的G-code风格。就像大家说话南腔北调一个道理,虽然3D打印机各种固件都使用G-code与上位机交换信息,但仍然存在很多种不同风格的G-code。如果上位机和固件使用的G-code风格不同,就可能造成无法正确理解对方的意思。因此这个选择是很重要的。因为我们使用的都是RepRap类型的3D打印机,当然选择第一项了。点Next继续。

第三页是热床尺寸。这个很简单,大家按照实际尺寸填写就可以了。点Next继续。

第四页是加热挤出头的喷头直径。这个值通常在0.2到0.5之间。大家根据自己的实际情况填写。我使用的3D打印机加热挤出头是0.4mm直径,因此把这里改为0.4,点Next继续。

第五页是塑料丝的直径尺寸。塑料丝目前有两种标准,3mm和1.75mm,我的3D打印机使用的是1.75mm塑料丝,把输入框中的数字改为1.75,点Next继续。

第六页是挤出头加热温度。上面的提示写,PLA大约要设置在160℃到230℃,ASB大约要设置在215℃到250℃。粗略一想,这范围也太宽了点吧,特别是PLA材料,竟然有上下70℃的范围。但这实际上是符合虎哥我的经验的,不同耗材厂商供应的材料差异很大,同时大部分3D打印机的温度感应器都没有仔细校准过,因此这里只能是根据大家自己的试验,找出最合适的温度值了。需要注意的是,如果打印PLA耗材时温度过高,会产生焦化的现象并且堵住喷头,这就比较麻烦了。因此我建议还是从比较低的温度开始进行试验,对于PLA材料,初始设置在185℃可能是一个比较合适的值。如果发现无法顺利出丝,再适当调高温度。根据自己的情况设置好加热温度之后,点Next进入下一步。

第七页是设定热床温度。这个就简单很多了,我使用PLA材料,就填入数字60,点Next继续。如果你用ABS材料,填入110就好。

最后一页没有需要设定的参数了。按Finish结束整个设置。

到此为止我们已经完成了切片软件所有最基础参数的设置。进入主窗口之后,我们先简单浏览一下。Slic3r的主界面有三个标签页。Print Settings用来设置打印相关的参数;Filament Settings用来设置与耗材相关的参数;最后Printer Settings是关于打印机的硬件参数。

先看最后一个标签页Printer Settings,很容易发现,我们刚刚在向导里面设置的G-code风格以及打印机热床尺寸参数,都在这里了。 点左栏窗口的Extruder 1,看看挤出头的参数设定:

在挤出头的设定中,可以看到刚刚在向导中设置的0.4mm参数。 下面切换到第二个标签页,看一下耗材相关的参数:

这里又可以看到最初在向导中设定的耗材塑料丝直径1.75mm,以及185℃/60℃的挤出头/热床温度设定。

到此为止,所有设置向导中出现过的参数,我们都在主窗口中找到了对应的地方。除了这些最基础的参数之外,还有哪些参数比较重要呢?下面我们再看一下第一个标签页。

我们回到第一个标签页,Print Settings,与另外两个标签页类似,左侧是一组打印相关的参数类型,目前在Layers and perimeters上。右侧主窗口第一栏就是一个重要的参数,层高(Layer height)。为了达到最好的效果,层高最大不应该超过挤出头喷嘴直径的80%。比如我使用的0.4mm的喷嘴,这里最大可以设定为0.32mm。由于我们使用了Slic3r向导设置了喷嘴的直径是0.4mm,层高这里就被自动计算成了现在的值0.3mm。很明显这是符合我的需要的,我就不需要再修改了。

如果你使用一个非常小的层高值(小于0.1mm),那么第一层的层高就应该单独设置。这是因为一个比较大的层高值,使得第一层更容易粘在加热板上,有助于提高整体3D打印的质量。在这里我的层高值并不是一个特别小的值,因此首层层高没有使用更大的层高值,实际设定与层高相同,0.3mm。

Slic3r切片软件可以自动计算挤出头喷嘴直径和层高之间的关系,调整实际挤出的塑料量。因此层高是没有下限的,根据RepRap wiki上的说法,即使设置到0.005mm也是没有问题的。

设置完成之后,左上的下拉列表中,就会显示出如图的“My Settings (modified)”字样。My Setting是当前配置的名字,(modified)代表这个配置刚刚被修改了,需要点击右侧挨着的保存按钮,就可以把修改后的配置保存下来了,同时(modified)也就消失了。

在最重要的地方设置好了之后,我觉得还有必要了解一下一组比较常用的配置项,填充Infill。在左侧选择Infill条目,窗口右侧会出现如下图所示的选项。其中填充密度、填充图样都可以根据具体的需求进行调整。我建议大家可以多试验几种方案,看看打印出的3D模型有什么不同。这里可以提示大家一下,由于PLA本身有一定的透明度,因此填充率对打印出的塑料件的质感有很大的作用。如果不嫌浪费材料,可以尝试用100%填充率打印一些模型,会有惊喜哦。

至此,所有关于Slic3r的基础设定都完成了。关闭Slic3r的配置窗口,回到Repetier-Host主窗口,现在我们可以点击那个巨大的“开始切片Slic3r”按钮了。

按下之后可以看到界面变为以进度条为主的状态了,等待进度条跑完。

代码生成过程完成之后,窗口会自动切换到预览标签页。

可以看到,左侧是完成切片后的模型3D效果,右侧是一些统计信息。在我们这个例子中,需要52分48秒之久才能完成这个模型的3D打印。

这里还有一项非常有用的高级功能,就是逐层预览3D打印的方式。当我选择“显示指定的层”并设定结束层为40的时候,我们就可以观察到第40层及以下的模型。这里我们可以清晰的看到3D模型内部为了填充所使用的蜂窝状网格。

我们还可以选择Gcode编辑子标签,直接观察、编辑G-code代码。

这个标签页的内容,就是我们的3D模型经过切片之后得到的G-code了。这些G-code在打印过程中被传送到3D打印机,逐条执行之后,一个完整的3D模型就生成了。 关于G-code,未来打印虎会单独写一篇教程说明,请关注打印虎的更新内容。在第五节中,我们会说明如何把G-code送到3D打印机,完成整个3D打印任务。

第四节,切片与代码生成,使用CuraEngine CuraEngine的加入实际上是Repetier-Host 1.0版最重要、最吸引人的改进。CuraEngine原本是在Cura 3D打印机控制软件中自带的切片功能,而Cura软件最吸引人的特色,就是它的高速切片功能。很多3D打印机爱好者,就因为Cura切片功能特别好用,会不惜繁琐,先使用Cura进行切片,然后再把G-code导入Repetier-Host进行打印。从这一点,就可以看出Cura的切片功能是多么的受欢迎了。

他山之石,可以攻玉,既然Cura和Repetier-Host都是开源软件,那么好的功能自然也要与大家分享了。从Repetier-Host 1.0版本开始,开发者充分满足了玩家的心愿,把好东西集成到了一起,让3D打印机玩家不用再麻烦地在Cura和Repetier-Host之间切换,而是一站式服务,在同一个界面下完成所有的操作。

为了使用这么神奇的CuraEngine进行切片,我们首先回到切片软件面板。在切片软件选项下,选择CuraEngine作为我们下面要使用的切片软件。同样,按下按钮,这时候CuraEngine的设定页面将会在窗口的左侧出现,而不是类似Slic3r那样弹出一个新的窗口。

下面的两个选项应该是打印机的热床尺寸和加热挤出头的喷头直径。这两个选项CuraEngine并没有再独立列出来,而是直接采用了Repetier-Host的全局设置。这个设置在哪里呢?很简单,按下Repetier-Host主窗口右上角的打印机设置按钮。

打印机设置对话框将弹出来,切换到“打印机形状”这个标签页,就可以看到与Slic3r热床尺寸对应的打印区域了:

实际上,这是我们在文章最开头就假定大家已经设置好的部分。如果你发现这里使用的参数与你的打印机不符,现在赶紧修改也还来得及。

这里另一个标签页“Extruder”就是专门用来设定挤出头的,其中就包含了挤出头喷头直径参数。

确认了打印机形状(也就是热床尺寸)和挤出头喷头直径参数之后,点“确定”关闭打印机设置对话框,回到CuraEngine的设定标签页上。

点击“材料”标签页,这里我们可以设定材料直径、打印温度和热床温度几项。按照你的实景情况设定就好了。与上面介绍Slic3r时的情况一样,关于温度总是比较麻烦的一件事儿,需要大家用自己的真实材料试验几次才行。

到这里为止所有基础信息都已经设置完毕。下面一项比较关键的设置项是3D打印层高。在“打印”选项卡的“速度和质量”子选项卡里面可以设定:

设定时,首先点击左侧蓝色的条目,否则右侧编辑框是灰色的,处在不能编辑的状态下。编辑框由灰色变为白色,就可以改写名称(只是助记,取任何名字都可以),层高以及第一层层高了。

全部配置完成后,点击“保存”按钮,就会保存刚才的修改。再点击右上角的“关闭”按钮,关闭CuraEngine设定选项卡。

细心的朋友可能发现了,对应于上面Slic3r的介绍,这里并没有讲解如何设置填充率。实际上,因为填充率的修改是一个很常见的操作,所以CuraEngine的设定中把这个选项提到了外侧。回到窗口右侧的“切片软件”选项卡:

可以看到填充密度选项直接列在了这里。这下大家可以更加方便地修改了。 全部设定完成后,就可以按下开始切片CuraEngine按钮了。

按下按钮之后最大的变化,就是比Slic3r切片软件速度快了很多。经过我的对比,对于猫模型来说,在我的电脑上Slic3r要花7秒钟完成切片,而CuraEngine只需要2秒钟就完成了。对于更复杂的模型来说,效果会更加明显,有时候CuraEngine会比Slic3r快10倍以上呢。 切片完成之后,就回到Repetier-Host的领域了。同样的预览功能,与上面介绍的完全一样,我们这里就不再重复了。

第五节,运行任务

我们在另一篇教程【打印虎】RepRap Prusa i3 3D打印机软件安装图解教程 第二版中,专门介绍了如何连接电脑和3D打印机。3D打印机光连接好还不够,正式打印任务之前应该先进行基本的校准,这个可以参考【打印虎】RepRap Prusa i3 3D打印机热床找平图解教程。当你确定你已经准备好了之后,就可以开始在Repetier-Host中运行任务了。 运行任务本身很简单,首先确定Repetier-Host已经和Prusa i3 3D打印机连接好了。按下左下角红色的连接按钮,如果按钮的颜色变为绿色,说明电脑和3D打印机的连接已经成功。

然后按下“运行任务”按钮,任务就开始运行了。

按钮按下之后,除了状态栏上有些基础信息之外,似乎程序没什么动静。是出什么问题了吗?其实没有问题,打印最开始的阶段,实际上是在加热热床和挤出头。因此也就没什么声音,挤出头可能也不会移动。目前加热的状态,可以从状态栏上看到:

可以看到,除了加热的状态,状态栏上还有打印时长信息,以及当前打印的层的信息。所有跟3D打印相关的最基础的状态信息,都可以在这里看到了。

如果嫌状态栏显示的信息还不够,可以切换到“3D窗口”标签页旁边的“温度曲线”标签页。这个窗口中,包含了非常详细的与温度控制相关的信息。

这张图是我的打印开始不久的一张截图。下面我们来研究一下这张图里面的信息。 首先,我们看一下图例,了解一下这张图能告诉我们哪些信息。

第一条,红色的曲线,表示挤出头的温度。图中这条曲线快速上升,说明目前正在对挤出头进行加热,刚刚达到目标的185℃。

第二条,青色的曲线,表示热床的温度。这条曲线在前面从22℃左右上升到60℃,并且维持在60℃一小段时间了。

第三条,浅绿色的曲线,表示目标温度。目标温度的实际线有两条,都是绿色,但还有点深浅不同,一条从0直接指向185℃,另一条从0指向60℃。这两条线都不是渐变的,而是直接指向目标温度。 后面几项下一张图继续解说。

这一张图,是3D打印过程已经进行了10分钟左右的状态。可以看出,挤出头、热床的温度已经分别稳定在了目标温度上。

第四条,橙色的粗线,表示挤出头的平均温度,可以看出这个就比较稳定了。

第五条,深绿色,表示挤出头的“输出”。所谓“输出”,大体上可以理解为这个加热器的开/关状态。整个图的第二栏可以看出,加热器并不是一直处在打开的状态,而是时开时关,保证温度大体稳定。

第六条,深绿色,表示热床的“输出”。与上面挤出头输出的概念相同。

这个图最上面标题处,一直维持着一句“已过60分钟”,实际上这里是一个翻译得不太好的地方,原本的英文是Past 60 Minutes,翻译为“过去的60分钟”似乎更妥当。它的意思是Repetier-Host的数据展示是以过去的60分钟为基础的。在“温度曲线记录时长”选项中,除了这种模式之外,还可以选择以自然时间整小时为基础的数据展示方式。需要注意的是,当选择了以自然时间整小时为基础的数据展示方式时,右侧的“温度视窗时间缩放”选项一定要改为60分钟,否则产生奇怪的效果,明明有记录但却无法展示出来。

这个时候,猫模型的底座基本上已经打印好了。

如果你的打印机不出问题,后面的打印过程就没什么特别的事情了。随着时间的推移,塑料模型被一层一层垒高,逐渐成型。一个小时过去了,整个模型逐渐显形,最终的成果给大家展示一下。

第六节,手动控制

在完成了整个3D打印的过程之后,我们已经对Repetier-Host 3D打印控制软件有了一个基础的了解。整个软件里面,我们没有用过的地方已经不多了。最后一个大块的功能,就是我们这一节将要讲解的,手动控制功能。

在电脑和3D打印机断开连接的情况下,手动控制是关闭的。必须先连接上3D打印机才能开始使用这些功能。

连接成功之后,把右侧窗口切换到“手动控制”面板,可以看到这样的界面。如果你屏幕不够大,可能只能看到这个窗口的一部分,使用右侧滚动条上下滚动窗口即可。

这个界面上,最上面的箭头和小房子按钮,都是用来手动调整挤出头位置的。现在可以试一下,先按下标记X的小房子按钮,如果一切正常的话,你的3D打印机应该在X方向复位了。

程序开始运行时,XYZ三个当前坐标值都是红色的。这代表所有轴向还没有复位过,这些坐标值只是估计值,还不能确定。如果按下一个方向的小房子按钮,这个坐标值就会变为黑色,代表这个轴向已经复位过了,之后的操作可以比较放心,不会“出界”了。

再按下X/Y箭头的向右(也就是X正向)第三格,鼠标在这一格上面的时候,四个箭头中间就会显示出10,代表这一次将向X正方向移动10mm距离。按下试试看。需要提一句的是,Repetier-Host在这里的贴图明显出现了错误,最下面很多内容没有展现出来。不过还好,不影响使用,具体哪些被裁了一半的图标代表的是什么,相信你可以轻松地试验出来。 你可以再尝试按下其他按钮。我的打印机在每个方向上,负向都有轻触开关,步进电机不会越位,正向没有这样的硬件保护措施了。如果坐标值是红色的状态,就有可能产生“越界”的情况。如果已经复位,我们之前在打印机设置里面填写的打印机形状,就会在这里起作用。还记得吗?我的打印机是200mm x 200mm x 180mm的大小。这样,当你操作挤出头向X轴正向移动超过200mm时,Repetier-Host程序会自动忽略你的指令,不会超出这个预设的范围。

手动控制面板的下面一栏,是“速度倍率”。这一栏很简单,控制着打印头移动速度和挤出头挤出速度的倍率。以100%为基础,可以在一定的范围内设置。比如,我们把打印头移动色度倍率设为200,再尝试用上面的方法在X, Y, Z轴上移动,可以看出,打印头的移动速度明显加快了。

接下来是挤出头相关的手动控制。在这里我们可以通过点最左边的黑白图标实现开关加热挤出头,图中的162.77℃和200这个数字分别代表挤出头的当前温度和目标温度。对于有多个挤出头的3D打印机而言,在这里还可以分别对每一个挤出头进行设置。当然,我的3D打印机上只有一个挤出头,因此只能对“挤出头1”进行设置了。

除了加热,挤出头上还有一个步进电机,也就是E轴电机,控制着耗材的挤出、回退长度以及速度。按下图中的上、下箭头,就可以手动进行耗材的挤出、回退操作。我的建议是,不要在挤出头达到正常温度(对于我使用的PLA来说是185℃)之前,就对这里进行操作。那样的话,耗材本身肯定是动不了的,结果只会是挤出头里面的无谓磨损。另外,从图中可以看出,挤出操作又分了两种,对应了不同的挤出速度,当然,两个箭头的肯定更快一些啦。

加热床这里就更加的简单了,只有开关这一种操作,同样是通过点击最左边的黑白图标实现。图中所示目前是关闭的。当然,仍然能看到加热床的当前和目标温度。

最后就是风扇控制了。这里的风扇,指的不是加热挤出头上常开的那个风扇,而是侧面专门吹挤出头头部,可以控制开、关状态以及风速的那个风扇。打开这里的按钮试试就知道了。

当然,手动控制这里,还有一个大杀器,就是最上面的一行,直接发送G-code。这个内容比较专业,我不打算在这里详细讲解了。

这已经是我们这篇教程里面第二次提到G-code了。看来G-code确实是比较重要的内容,想玩好3D打印机一定要对G-code有一定的了解。想知道G-code是什么,如何读懂甚至直接写出G-code代码,请继续关注打印虎未来的内容更新。

最后祝大家玩机愉快,想看更多的打印虎教程,请访问打印虎原创教程专区

第三篇:3d打印机分类

目前市场上的快速成型技术分为3DP 技术、FDM熔融层积成型技术、SLA立体平版印刷技术、SLS选区激光烧结、DLP激光成型技术和UV紫外线成型技术等。

3DP技术:采用3DP技术的3D打印机使用标准喷墨打印技术,通过将液态连结体铺放在粉末薄层上, 以打印横截面数据的方式逐层创建各部件,创建三维实体模型,采用这种技术打印成型的样品模型与实际产品具有同样的色彩,还可以将彩色分析结果直接描绘在模 型上,模型样品所传递的信息较大。

FDM熔融层积成型技术:FDM熔融层积成型技术是将丝状的热熔性材料加热融化,同时三维喷头在计算 机的控制下,根据截面轮廓信 息,将材料选择性地涂敷在工作台上,快速冷却后形成一层截面。一层成型完成后,机器工作台下降一个高度(即分层厚度)再成型下 一层,直至形成整个实体造型。其成型材料种类多,成型件强度高、精度较高,主要适用于成型小塑料件。

SLA立体平版印刷技术:SLA立体平版印刷技术以光敏树脂为原料,通过计算机控制激光按零件的各分 层截面信息在液态的光敏树脂表面进行逐点扫描,被扫描区域的树脂薄层产生光聚合反应而固化,形成零件的一个薄层。一层固化完成后,工作台下移一个层厚的距 离,然后在原先固化好的树脂表面再敷上一层新的液态树脂,直至得到三维实体模型。该方法成型速度快,自动化程度高,可成形任意复杂形状,尺寸精度高,主要 应用于复杂、高精度的精细工件快速成型。

SLS选区激光烧结技术:SLS选区激光烧结技术是通过预先在工作台上铺一层粉末材料(金属粉末或非 金属粉末),然后让激光在计算机控制下按照界面轮廓信息对实心部分粉末进行烧结,然后不断循环,层层堆积成型。该方法制造工艺简单,材料选择范围广,成本 较低,成型速度快,主要应用于铸造业直接制作快速模具。

DLP激光成型技术:DLP激光成型技术和SLA立体平版印刷技术比较相似,不过它是使用高分辨率的 数字光处理器(DLP)投影仪来固化液态光聚合物,逐层的进行光固化,由于每层固化时通过幻灯片似的片状固化,因此速度比同类型的SLA立体平版印刷技术 速度更快。该技术成型精度高,在材料属性、细节和表面光洁度方面可匹敌注塑成型的耐用塑料部件

第四篇:桌面级3D打印机

Repetier 1

 产品参数

打印尺寸:200×200×180mm 打印层厚:0.1-0.4mm(可调) 定位精度:XY轴0.015mm Z轴0.0025mm 喷嘴规格:0.4mm(0.3/0.5mm可更换) 打印耗材:PLA、ABS 耗材直径:1.75mm 外观尺寸:450×450×600mm 支持文件格式:STL、G-Code

 产品优势

(1)Z轴采用T型丝杆电机,Z轴传动均匀流畅,模型叠层更加均匀;

(2)热床采用3mm铝基板热床,铝质导热快,热床整体温度均匀,平整不变形; (3)运动轴承采用直线滑块轴承,摩擦系数小,无横向晃动;

(4)LCD脱机打印,中文显示,人机交互模式,操作设计人性化,贴合用户需求。

 产品应用

主要应用于工业产品零部件、模型打印、产品设计、艺术创作、教育应用等领域。

Repetier 2

 产品参数

打印尺寸:180×180×150mm 打印层厚:0.1-0.4mm(可调) 定位精度:XY轴0.01mm Z轴0.0025mm 喷嘴规格:0.4mm(0.3/0.5mm可更换) 打印耗材:PLA、ABS 耗材直径:1.75mm 外观尺寸:380×380×410mm 支持文件格式:STL、G-Code

 产品优势

(1)X、Y轴采用双十字传动结构,使得机器更稳定,有效提高打印精度及速度; (2)传动采用自润滑的石墨铜套,摩擦系数极小,无晃动,有效提高机器的稳定性和使用寿命;

(3)热床采用3mm铝基板热床,铝质导热快,热床整体温度均匀,平整不变形; (4)3.5寸中文触摸屏操作,人机交互模式,操作设计人性化,贴合用户需求; (5)实现断电、断点记忆续打,打印完成自动关机; (6)支持SD卡脱机打印、汉字打印文件名; (7)支持手机app远程操作。

 产品应用

主要应用于工业产品零部件、模型打印、产品设计、艺术创作、教育应用等领域。

第五篇:3D打印机设计参考论文

导读:3D打印机设计参考论文,2015-02-063D打印机DIY,1.1国内外3D打印机的研究现状,1.1.1国外3D打印机的研究现状,1.1.2国内3D打印机的研究现状,1.2 3D打印机的发展趋势,1.2.1 3D打印产业的未来发展前景,1.2.2 3D打印技术未来发展的主要趋势,1.3 3D打印机的工作原理及特点,2总体方案及结构设计,2.2总体框架的设计,2.3温度控制回路的设计,2.4 XYZ三方

3D打印机设计参考论文

2015-02-06 3D打印机DIY 3D打印机设计参考论文 1.1国内外3D打印机的研究现状 1.1.1国外3D打印机的研究现状 1.1.2国内3D打印机的研究现状 1.2 3D打印机的发展趋势 1.2.1 3D打印产业的未来发展前景 1.2.2 3D打印技术未来发展的主要趋势 1.3 3D打印机的工作原理及特点 1.4发展创新与突破 2 总体方案及结构设计 2.1引言

2.2总体框架的设计 2.3温度控制回路的设计 2.4 XYZ三方向控制电机的设计 2.5喷头移动及喷出量调节的设计 3 机械结构 3.1传动方式的选择 3.2转动惯量的计算 3.3喷头的选择 4 电机的选择

4.1伺服电机和步进电机的对比 4.2直流交流伺服电机对比 4.3负载转矩的计算

1 4.4打印速度的初步估计 5 传感器

5.1温度传感器对比 5.2机械位置传感器 5.3压力传感器

6 3D打印机的优点及面临问题 6.1 3D打印机的优点 6.2 3D打印技术面临的问T

3D打印机设计参考论文

【摘要】3D打印是最近两年开始流行的一种快速成形技术, 它以数字模型文件为基础, 通 过逐层打印的方式来构造物体. 我们日常生活中的打印机能打印一些平面纸张材料, 而3D打印机打印出的是立体塑品产品.文章对3D打印的技术体系和国内外产业发展现状、发展态势作了综合介绍,综述3D打印技术的基本概念、发展简史、打印过程原理、应用领域、广泛影响以及面临的问题等.在介绍3D技术的发展历程、3D打印技术的工作原理流程及特点的基础上,分析了3D打印技术的创新点和存在的问题,展望了3D打印技术的未来发展趋势. 关键词:3D打印机;快速成型;结构设计;社会制

【Abstract】:3D printing is one of the last two years became popular rapid prototyping technology,which is based digital model files, through over the printed layer by layer approach to construct objects. Our daily lives printer can print some flat sheet material, and 3D printer to print out the three-dimensional plastic goods products. Article on 3D printing technology system status and domestic industrial development, development made a comprehensive presentation situation, review the basic concepts of 3D printing technology, development history, the printing process principles, applications, and the problems faced widespread impact, etc. In the development process of introduction of 3D technology, working principle and characteristics of the process of 3D printing technology based on the analysis of 3D printing technology innovations and problems, looked to the future development trend of 3D printing technology. Key words:3D printers; rapid prototyping; structural design; social manufacture 引言

随着时代的进步,我们的生活水平日渐提升,同时,人口也在急剧的增长,我们需要越来越多的物品来满足物质生活条件。这就势必造成我们对物品的要求也会越来越高,做工

2 精细、独特且非量产的物品会受广大人们的喜爱。如今,我们拥有了3D打印这一先进的技术,我们可以通过3D打印机来打印各种我们所需要的、想要的。3D打印技术应用面广,它可以用于医疗行业、科学研究、产品模型、建筑设计、制造业及食品等,前景广泛。 3D打印技术,是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。3D打印机则出现在上世纪90年代中期,即一种利用光固化和纸层叠等技术的快速成型装置。它与普通打印机工作原理基本相同,打印机内装有液体或粉末等“印材料”,与电脑连接后,通过电脑控制把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。如今这一技术在多个领域得到应用,人们用它来制造服装、建筑模型、汽车、巧克力甜品等。

1 绪论

1.1 国内外3D打印机的研究现状 1.1.1 国外3D打印机的研究现状

经过十多年的探索和发展,3D打印技术有了长足的进步,目前已经能够在0.01mm的单层厚度上实现600dpi的精细分辨率。目前国际上较先进的产品可以实现每小时25mm厚度的垂直速率,并可实现24位色彩的彩色打印。

目前,在全球3D打印机行业,美国3D Systems和Stratasys两家公司的产品占据了绝大多数市场份额。此外,在此领域具有较强技术实力和特色的企业、研发团队还有美国的Fab@Home和Shapeways、英国的Reprap等。

3D Systems公司是全世界最大的快速成型设备开发公司。于2011年11月收购了3D打印技术的最早发明者和最初专利拥有者Z Corporation公司之后,3D Systems奠定了在3D打印领域的龙头地位。Stratasys公司2010年与传统打印行业巨头惠普公司签订了OEM合作协议,生产HP品牌的3D打印机。继2011年5月收购Solidscape公司之后,Stratasys又于2012年4月与以色列著名3D打印系统提供商Objet宣布合并。当前,国际3D打印机制造业正处于迅速的兼并与整合过程中,行业巨头正在加速崛起。

目前在欧美发达国家,3D打印技术已经初步形成了成功的商用模式。如在消费电子业、航空业和汽车制造业等领域,3D打印技术可以以较低的成本、较高的效率生产小批量的定制部件,完成复杂而精细的造型。另外,3D打印技术获得应用的领域是个性化消费品产业。如纽约一家创意消费品公司Quirky通过在线征集用户的设计方案,以3D打印技术制成实物产品并通过电子市场销售,每年能够推出60种创新产品,年收入达到100万美元。

1.1.2 国内3D打印机的研究现状

自20世纪90年代以来,国内多所高校开展了3D打印技术的自主研发。清华大学在现代成型学理论、分层实体制造、FDM工艺等方面都有一定的科研优势;华中科技大学在分层实体制造工艺方面有优势,并已推出了HRP系列成型机和成型材料;西安交通大学自主研制了三维打印机喷头,并开发了光固化成型系统及相应成型材料,成型精度达到40.2mm;中国科技大学自行研制了八喷头组合喷射装置,有望在微制造、光电器件领域得到应用。但总体而言,国内3D打印技术研发水平与国外相比还有较大差距。

3 近年来,国内企业已实现了3D打印机的整机生产和销售,这些企业共同的特点是由海外归国团队建立,规模较小,产品技术与国外厂商同类产品相比尚处于低端。目前,国产3D打印机在打印精度、打印速度、打印尺寸和软件支持等方面还难以满足商用的需求,技术水平有待进一步提升。在服务领域,我国东部发达城市已普遍有企业应用进口3D打印设备开展了商业化的快速成型服务,其服务范围涉及到模具制作、样品制作、辅助设计、文物复原等多个领域。与内地相比,我国港台地区3D打印技术引入起步较早,应用更为广泛,但港台主要着重于技术应用,而非自主研发。

1.2 3D打印机的发展趋势 1.2.1 3D打印产业的未来发展前景

根据国际快速制造行业权威报告《Wohlers Report 2011》发布的调查结果,全球3D打印产业产值在1988~2010年间保持着26.2%的年均增长速度。报告预期,3D打印产业未来仍将持续较快地增长,到2016年,包含设备制造和服务在内的产业总产值将达到31亿美元,2020年将达到52亿美元。

但3D打印技术要进一步扩展其产业应用空间,目前仍面临着多方面的瓶颈和挑战:一是成本方面,现有3D打印机造价仍普遍较为昂贵,给其进一步普及应用带来了困难。二是打印材料方面,目前3D打印的成型材料多采用化学聚合物,选择的局限性较大,成型品的物理特性较差,而且安全方面也存在一定隐患。三是精度、速度和效率方面,目前3D打印成品的精度还不尽人意,打印效率还远不适应大规模生产的需求,而且受打印机工作原理的限制,打印精度与速度之间存在严重冲突。四是产业环境方面,3D打印技术的普及将使产品更容易被复制和扩散,制造业面对的盗版风险大增,现有知识产权保护机制难以适应产业未来发展的需求。

Gartner公司2011年发布的最新技术发展展望报告判断:3D打印技术目前正在进入概念炒作的高峰阶段,其技术还有待充分成熟,主流市场也有待进一步培育。Gartner公司研究人员认为,3D打印技术成熟到适应市场需求还将需要5~10年的时间。在这一较为漫长的发展过程中,产业可能会面临增长期望落空、技术遭遇瓶颈以及投资撤离等风险。 总之,从中长期看来3D打印产业具有较为广阔的发展前景,但目前产业距离成熟阶段尚有较大距离,对于3D打印市场规模的短期发展不宜过分高估。因此,现阶段产业界对3D打印领域的投入应以加强创新研发、技术引进和储备为主,尤其要重视自主知识产权的建设和维护,争取在未来的市场竞争中占据有利地位。如受到概念炒作影响,在技术尚未充分完善的现阶段大规模投入产能扩张,则投资回报将面临着较大的风险。

1.2.2 3D打印技术未来发展的主要趋势

随着智能制造的进一步发展成熟,新的信息技术、控制技术、材料技术等不断被广泛应用到制造领域,3D打印技术也将被推向更高的层面。未来,3D打印技术的发展将体现出精密化、智能化、通用化以及便捷化等主要趋势。

提升3D打印的速度、效率和精度,开拓并行打印、连续打印、大件打印、多材料打印的工艺方法,提高成品的表面质量、力学和物理性能,以实现直接面向产品的制造;开发更为多样的3D打印材料,如智能材料、功能梯度材料、纳米材料、非均质材料及复合材料等,特别是金属材料直接成型技术有可能成为今后研究与应用的又一个热点;3D打印机的

4 体积小型化、桌面化,成本更低廉,操作更简便,更加适应分布化生产、设计与制造一体化的需求以及家庭日常应用的需求;软件集成化,实现CAD/CAPP/RP的一体化,使设计软件和生产控制软件能够无缝对接,实现设计者直接联网控制的远程在线制造;拓展在生物医学、建筑、车辆、服装等更多行业领域的创造性应用。

1.3 3D打印机的工作原理及特点 1.3.1 3D打印的工作原理

三维打印技术是使用喷头喷出粘结剂,选择性地将零件的截面印刷在材料粉末上面,最后层层将各个截面粘结起来. 可用于制造复杂形状的模型中空模型,或者制造复合材料或非均匀材料的模型等. 图1是三维打印成型机的剖面示意图. 其工艺是先由铺粉辊从左往右移动, 将供粉缸里的粉末在成型缸上均匀铺上一层. 然后按照计算机上设计好的零件模型,由打印头在第一层粉末上喷出零件底层截面的形状, 然后成型缸平台向下移动一定距离,再由铺粉辊从供粉缸中平铺一层粉末到刚才打印完的粉末层上,然后再由打印头按照第二层截面的形状喷洒粘结剂,层层递进,最后得到的零件整体是由各个横截面层层重叠起来的. 图1 三维快速打印技术工作原理示意图

3D打印的主要工作流程如图2所示, 其中3D建模是3D打印的前提,相当于平面印刷中的原稿,3D建模质量的好坏决定了3D打印的质量. 一般现有的3D建模软件都可以实现建模,比如CADPro/e等矢量建模软件,都可以轻易地实现3D建模. 3D分割将建立的3D模型分成一个个的薄片,每个薄片的厚度由喷涂材料及打印机的结构决定, 厚度一般为几十微米到几百微米不等. 分割工序也是由软件来实现,类似于打印机的驱动程序. 喷墨打印中将成型材料一层层喷涂在基材上. 目前比较流行的做法是先喷一层胶水,然后再在上面撒一层粉末,如此反复, 喷头一般可采用喷墨打印机的喷头, 目前也有一些设备厂商提供专用的喷头. 打印完成后,还需要对打印出来的3D模型进行后处理,比如固化处理剥离模型的修整等等,最终完成所需要的模型的制作. 1.3.2 3D打印的特点

与传统模型制作相比,3D打印具有传统模具制作所不具备的优势,主要表现如下: 1. 制作精度高。 经过20年的发展,3D打印精度有了大幅度的提高。 目前市面上的3D打印成型的精度基本上都可以0.3mm以下。

2. 制作周期短。 传统模型制作往往需要经过模具的设计模具的制作制作模型修整等工序,制作的周期长。 而3D打印则去除了模具的制作过程,使得模型的生产时间大大缩短,一般几个小时甚至几十分钟就可以完成一个模型的打印。

3. 可以实现个性化制作。 对于传统模型的制作,个性化模型的生产就显得力不从心,或者是成本高昂。 而3D打印对于打印的数量没有限制,不管是一个还是多个,都可以以相同的成本制作出来。

5 4. 制作材料的多样性。 一个3D打印系统往往可以实现不同材料的打印,而这种材料的多样性可以满足不同领域的需要。 比如金属石料高分子材料都可以应用于3D打印。 5. 制作成本相对低。 虽然现在3D打印系统和3D打印材料比较贵,但是如果用来制作个性化产品,其制作成本就相对较低了 加上现在新的材料不断出现,其成本下降将是未来的一种趋势。

1.4 发展创新与突破

3D打印被用作经济学人杂志封面,主题为看制造业新技术如何改变世界,详细介绍了3D打印的历史和发展,可见人们对于3D打印成为一项可以改变世界的影响力日益关注。 而 3D打印的价值体现在想象力驰骋的各个领域,人们利用3D打印为自己所在的领域贴上了个性化的标签。人们纷纷展示了如何3D打印马铃薯巧克力小镇模型,甚至扩展到用3D打印汽车和飞机,3D打印行业的发展始终凸显着创新突破这一关键特质,主要表现在以下几个方面。

1.4.1 3D打印应用领域扩展延伸

3D打印的优势在2011年被充分应用于生物医药领域,利用3D打印进行生物组织直接打印的概念日益受到推崇。 比较典型的包括Open3DP创新小组宣布3D打印在打印骨骼组织上的应用获得成功,利用3D打印技术制造人类骨骼组织的技术已经成熟; 哈佛大学医学院的一个研究小组则成功研制了一款可以实现生物细胞打印的设备; 另外,3D打印人体器官的尝试也正在研究中。随着3D打印材料的多样化发展以及打印技术的革新,3D打印不仅在传统的制造行业体现出非凡的发展潜力,同时其魅力更延伸至食品制造服装奢侈品影视传媒以及教育等多个与人们生活息息相关的领域。

1.4.2 3D打印速度尺寸及技术日新月异

在速度突破上,2011年,个人使用3D打印机的速度已突破了送丝速度300mm每秒的极限,达到350mm每秒在体积突破上,3D打印机体积为适合不同行业的需求,也呈现轻盈和大尺寸的多样化选择。 目前已有多款适合办公室打印的小巧3D打印机,并在不断挑战轻盈极限,为未来进入家庭奠定基础。

在ViennaUniversityof Technology的一个研究项目中,该团队设计了迄今为止世界上最小的3D打印设备,并且降低了打印设备的制造成本,也有望未来进驻家庭在大尺寸领域,在德国的3D打印公 司发布了4000x2000x1000mm尺寸的3D打印机,该款大尺寸3D打印机使打印大尺寸部件一次成型成为可能。3D打印技术日新月异,在2011年Lexus对外发布了新3D打印技术,该技术基于高科技循环编织技术,使用激光进行3D打印,能够以编织的方式制作复杂的3D模型

1.4.3 设计平台革新

基于3D打印民用化普及的趋势,3D打印的设计平台正从专业设计软件向简单设计应用发展,其中比较成熟的平台有基于WEB的3D设计平台—— 3DTin,另外,微软谷歌以及其他软件行业巨头也相继推出了基于各种开放平台的3D打印应用,大大降低了3D设计 6 的门槛,甚至有的应用已经可以让普通用户通过类似玩乐高积木的方式设计3D模型。 2 总体方案及结构设计

2.1 引言

3 D打印机,专业领域又称快速原型机,是数字化增材技术。经过几十年发展后的逐渐走向民用市场的技术成果。其推广不仅意味着科技的进步,更为工业制造概念增添了新的内涵,有着广阔的发展前景。

本文拟对3 D打印机的控制结构进行设计,在综合考虑性能与经济性的基础上完成其元件 的讨论与选型。

3 D打印机利用不同的材料打印立体模型,利用计算机软件技术,设计者设计出一个初步模型之后,例如一座建筑亦或是人工心脏瓣膜,之后通过3 D打印机 进行打印。打印的原料种类繁多,有机材料、无机材料均可使用。例如塑料、橡胶等。打印材质视具体情况而定。 3 D打印机在9 0年代中期就出现了。随着科技的发展,它已经投人到各种科技工作的领域当中。通过一层一层堆积的液体和粉末来 生产物体,可以用来制造一次性的机械产品以及模型。牙科医生利用3 D打印机扫描患者的牙齿轮廓后复制出合适的矫正模具;产品生产厂商用它来完成对产品功能的设计,以避免在大规模生产后修改设计;展览馆用它复制真品,以避免真品被参观者损毁。

2.2 总体框架的设计 2.2.1 系统概述

系统由输人设备制定部分参数,从存储设备或者直接从计算机 中得到事先建好的三维模型,由单片机对模型进行分析,切片,建立 必要的支撑结构,再从单片机输出控制指令,控制喷头型材料融化,并通过一定的驱动电路驱动电机,带动喷头进行X、Y、Z三个方向的移动,并控制喷头的喷出系统调节喷出材料的多少。每打好一 层,从外 部设备读取下一层的参数,再打印下一 层,直到全部模型完成。完成 模型的打印之后,还需要后期的材料回收工作。

2.2.2 系统框架

输入设备、存储外设、上位机、温度传感器的测量值----单片机分析----温度控制回路、XYZ各方向电机控制、喷出量控制、显示设备

2.3 温度控制回路设计 2.3.1 打印耗材的选用

为了实现3 D打印机的功能,所选材料也很重要。既要由较低的熔点,也要有较好的粘滞性,同时也需要快速成型。综合考虑,我们最终选择了P L AA /B S耗材。

2.3.2 设计思路概述

7 ABS/PLA耗材熔点为230℃左右,分解温度260℃以上,故其通常成型温度在250℃以下。控制回路使用温度传感器返回当前温度,反馈回路保证了温度保持恒定,控制器统一使用了单片机来输出指令

(3)控制回路方框图如下:

设置的空气温度→单片机→D/A转换器→加热电路→当前温度→温度传感器→A/D转换器→单片机

2.4 x y z三方向控制电机的设计

采用化繁为简的思路,将三维打印转化为二维进而转化为一维 打印。即Z方向采用步进电机,由步进电机固定的 给量算出所需的步进角,用这种方式将三维打印先转化为每一平面内的二维打印,再由Y方向也为步进电机带动,则每一平面内的二维打印又转化为很多条 直线上的一维打印。

2.5 喷头移动及喷出量调节的设计 2.5.1 喷头系统的功能要求

熔融挤出系统对喷头系统的基本要求 是:将成型料丝送人液化器中,在其中及时而充分地熔化,由固态变 为熔融态,然后再进一步从更小直径的喷嘴中以极细丝状挤出,按扫描路径堆积成型。而且送丝速度要与扫描速度相匹配,以保证均匀一 致的材料堆积路径。成型工艺对喷头系统的功能要求可以分解为以下几点: 1) 供应功能:将料丝从丝筒上拉出,提供成型材料; 2) 熔丝功能与料丝送进功能:将送进的固态料丝及时且充分地 熔化成为熔融状态并将料丝送人液化器; 3) 流道功能:提供熔融态材料稳定流动的通道; 4) 定径功能:对挤出熔融态物料进行定径,变为满足要求的细小直径的丝材进行堆积; 5) 出丝速度匹配与出丝起停控制功能:出丝速度可控,能根据扫描速度进行调整,实现互相匹配。出丝应能根据路径扫描要求及时起停,以保证高质量的成型路径,尤其是在路径 起停处。 在采用熔丝挤出方式的工艺原理时,就是借助液化器中未熔丝材的活塞作用,将熔融材料挤出喷嘴,出丝推力近似等于送丝驱动力,所以在此特定的工艺原理中,送丝功能和基础功能是等效的。

2.5.2 喷头实现方法设计

基于所选择的打印耗材,喷出技术采用熔融沉积成型技术,根据片层参数控制加热喷头沿模型断面层扫描,同时控制熔融液体的体积 流量,使粘稠液体物料均匀地铺洒在断面层上。

液化器中使用电热丝提供热量使料丝熔融。熔融挤压快速成型工艺对温度的要求极其严格,喷头出丝温度和成型室的温度严格处于一定的温度范围之内,且一旦设定温度控制值之后,须保证其温度保持在平稳状态,不能产生较大 的扰动,否则成型质量将受到影响。这就

8 要求液化器温度必须保持稳 定。因此,我们需要加入上述的温度控制回路来严格控制液化器的温度。

3 机械结构 3.1 传动方式的选择

直线导轨可分为:滚轮直线导轨和滚珠直线导轨两种,前者速度快精度稍低,后者速度慢精度较高。

滚珠丝杠是工具机和精密机械上最常使用的传动元件,其主要功能是将旋转运动转换成线性运动,或将扭矩转换成轴向反覆作用力,同时兼具高精度、可逆性和高效率的特点。

1)与滑动丝杠副相比驱动力矩为1/3 由于滚珠丝杠副的丝杠轴与丝母之间有很多滚珠在做滚动运动,所以能得到较高的运动效率。与过去的滑动丝杠副相比驱动力矩达到1/3以下,即达到同样运动结果所需的动力为使用滚动丝杠副的1/3。在省电方面很有帮助。

2)高精度的保证

滚珠丝杠副是用日本制造的世界最高水平的机械设备连贯生产出来的,特别是在研削、组装、检查各工序的工厂环境方面,对温度·湿度进行了严格的控制,由于完善的品质管理体制使精度得以充分保证。

3)微进给可能

滚珠丝杠副由于是利用滚珠运动,所以启动力矩极小,不会出现滑动运动那样的爬行现象,能保证实现精确的微进给。

4)无侧隙、刚性高

滚珠丝杠副可以加予压,由于予压力可使轴向间隙达到负值,进而得到较高的刚性(滚珠丝杠内通过给滚珠加予压力,在实际用于机械装置等时,由于滚珠的斥力可使丝母部的刚性增强)。

5)高速进给可能

滚珠丝杠由于运动效率高、发热小、所以可实现高速进给(运动)。

3.2 转动惯量的计算

滚珠丝杠根据国家标准JB/T9893-1999 选用长度L=1.0m,公称直径D=12mm,公称导程mmPh40 对本系统而言,丝杠传动折算到马达轴上的总惯量为: Jt=Z1+1/i2[Z2+JS+JW](kg.m2)++= 其中i为两齿轮的传动比,此处取i=Z1/Z2=1 其他符号说明如下:

9 Z1——齿轮l 及其轴的转动惯量;J1=0.0018kg.m2 Z2——齿轮2 的转动惯量,取J2=0.0018kg.m2×=; Js——丝杠转动惯量,kg.m2×; Jw----为工作台折算到丝杠上的动惯量; W——工作台重量,工作台轻,取6kg; S——丝杠螺距,4mm; g——重力加速度,9.8m/s2; 圆柱体的转动惯量:J=1/8MD2 M----圆柱体质量; D----圆柱体直径;

而且选用丝杠的密度(类于铁)为7.8g/m3=r; 滚珠丝杠的转动惯量为:

JS=1/4πD2pl*1/8D2=3.14*0.0124*1.0*7800/32=1.59*10-5( kg.m2 ) Jw=6*0.0042/(9.8*4π2)=2.48*10-7( kg.m2 ) 从而 Jt=3*10-3 ( kg.m2)-。

可见,Jt很小——主要由两个齿轮的转动惯量来决定,从而对电机的功率输出要求不苛刻,在功率不高情况下,可以实现高转速。

这是一个小惯量的系统,该系统启动,加速,制动的性能好,反应快,比较理想。 此类电机最高转速一般是3000r/min上下,取3000为参考研究

按360dpi的分辨率来考虑,则每英寸25.4mm对应360个色点,每两个色点的距离为25.4/360=0.07mm,又打印喷头为双排的,所以,打印喷头周期移动距离d=0.07*2=0.14mm,喷墨一次,喷粘剂一次,两个喷头喷出同步;

设定机械精度:0.005mm,对应的脉冲当量: 由i=1,求得丝杆转一圈,喷头前进4mm。则机械精度对应

丝杆转一周,上位机应该发出的指令脉冲为4mm/0.005mm=800(个)

则对应转速约为3000,上位机脉冲能力至少800*3000/60=40000r/s; 对应6000转的转速,则上位机脉冲能力80000r/s,电子齿轮比不变. CMX :电子齿轮比的分子是电机编码器反馈脉冲。

CDV :电子齿轮比的分母是上位机的给定脉冲(指令脉冲)。

电子齿轮比=CMX/CDV=(131072×100)/ 80000=6553600/200000=32.8。 在此计算电子齿轮比的目的——电子齿轮比把上位机的给定脉冲要换算成与电机编码器反馈脉冲同等意义的信号,便于控制中心按给定指令要求控制伺服转动定位。此外,通过上位机的脉冲能力的估算,对比实现的可能性,得知我们方案的合理性。

3.3 喷头的选择

10 选用Konica512L型号,实现宽度尽可能满足,分辨率满足,控制X轴方向运动,Y轴方向由另一电机控制,控制方式类似,单次位移为36.1mm,精度控制一样。双排式排列方式,使得走完一个幅面的时间相对于单排式减半,利于打印速度的提高。

4 电机的选择

4.1 伺服电机和步进电机的对比

控制电机的比较与选取:电机控制系统按照运动过程的需要分为驱动伺服和驱动步进两大类。伺服有速度控制和位置控制模式。

4.2交流直流伺服电机对比

在20世纪60年代,最早是直流电机作为主要执行部件,在70年代以后,交流伺服电机的性价比不断提高,逐渐取代直流电机成为伺服系统的主导执行电机。控制器的功能是完成伺服系统的闭环控制,包括力矩、速度和位置等。我们通常说的伺服驱动器已经包括了控制器的基本功能和功率放大部分。虽然采用功率步进电机直接驱动的开环伺服系统曾经在90年代的所谓经济型数控领域获得广泛使用,但是迅速被交流伺服所取代。

伺服电机可以考虑直流和交流两种:但直流电动机都存在一些固有的缺点,如电刷和换向器易磨损,需经常维护。换向器换向时会产生火花,使电动机的 最高速度受到限制,也使应用环境受到限制,而且直流电动机结构复杂,制造困难,所用钢铁材料消耗大,制造成本高。而交流电动机,特别是鼠笼式感应电动机没有上述缺点,且转子惯量较直流电机小,使得动态响应更好。在同样体积下,交流电动机输出功率可比直流电动机提高10﹪~70﹪,

此外,交流电动机的容量可比直流电动机造得大,达到更高的电压和转速。 PMSM主要由定子、转子及测量转子位置的传感器构成。定子和一般的三相感应电机类似,采用三相对称绕组结构,它们的轴线在空间彼此相差120度。转子上贴有磁性体,一般有两对以上的磁极。位置传感器一般为光电编码器或旋转变压器。

4.3 负载转矩的计算

PMSM定子转组产生旋转磁场的机理与感应电机是相同的。其不同点是转子为永磁体且n与ns相同(同步)。两个磁场相互作用产生转矩。定子绕组产生的旋转磁场可看作一对旋转磁极吸引转子的磁极随其一起旋转。(同性相斥,异性相吸) 其中θ为失调角,也称功率角;K与定子端电压和转子磁势(磁密)的乘积成正比。Fy和Fs分别是转子、定子的磁势或磁密;p为极对数。

当θ为90度角时,对应最大转矩,称最大同步转矩。对之前我们算得的负载转矩Jt=3.0*10-3kg.m2进行惯量匹配。

根据牛顿第二定律:“进给系统所需力矩T = 系统传动惯量J × 角加速度a角”。加速度α影响系统的动态特性,α越小,则由控制器发出指令到系统执行完毕的时间越长,系统反应越慢。如果α变化,则系统反应将忽快忽慢,影响加工精度。由于马达选定后最大输出T值不变,如果希望α的变化小,则J应该尽量小。

11 传动惯量对伺服系统的精度,稳定性,动态响应都有影响。惯量大,系统的机械常数大,响应慢,会使系统的固有频率下降,容易产生谐振,因而限制了伺服带宽,影响了伺服精度和响应速度,惯量的适当增大只有在改善低速爬行时有利,因此,机械设计时在不影响系统刚度的条件下,应尽量减小惯量。

通常负载的惯量不要大于电机惯量的5倍,最大不要超过10倍。

对于功率P=2π*nT/60对旋转运动的物体来说,转矩和惯量的关系正如直线运动物体的受力和质量的关系。

4.4 打印速度的初步估计

每打一个,计划在Y轴方向移动10次,使宽度达到361mm=对此,计算喷头走完1个幅面的时间T,计划彩印周期T秒,暂时忽略10次Y方向移动时间,有:

电机一转对应丝杆1转对应10个导程共4mm,360mm需要电机转90r,最高转速时,电机每秒转50r,对应时间为1.8s。则10个来回大约18秒,x轴方向10次加减速,对应总时间6s;走完一个幅面,需要大概24秒,加上其余误差时间,30秒就可以完成一个幅面,T=30s,基本实现1分钟打印2页的要求。

求电机匀加速需要时间。

电机300ms,表示静止加速到额定转速的时间,角加速度为 α=50*2π/0.3=1047rad/s2 M=Ma+Mf Ma=(Im+It)α Mf=μWS/2πηι

式中Ma——电机启动加速力矩;

Jm,Jt——电机自身惯量与负载惯量(kg·m3); Mf——导轨摩擦折算至电机的转矩(N·m) μ——摩擦系数,取0.1;

η——传递机械效率,在此取0.15。

滚动螺旋传动的传动效率取0.95;滚动球轴承传动效率为0.99;齿轮的传动效率为0.93;总传动效率为:

η=0.95*0.99*0.93*0.99=0.866=′′′=h

导轨磨擦折算至电机侧的转矩:Mf=0.1*6*0.004/(2π*0.866*1)=4.4*10-4 需要的输出力矩为: T=Jα+Mf=(3.0*10-3+0.388*10-4)*1047+4.4*10-4=3.18N.m 出力力矩T=3.18,小于最大出力力矩=3.81 ,满足要求。

5 传感器

12 5.1 温度传感器对比

温度传感器的接触式特别适合1200℃以下、热容大、无腐蚀性对象的连续在线测温,并且接触式测温系统结构简单、体积小、可靠、维护方便、价格低廉,并且可以可方便地组成多路集中测量与控制系统。a 上面表分析,非接触时的对于1000摄氏度以下误差较大,应该采用接触式的温度传感器。其中,热敏电阻的铜的温度测量范围在-50~150℃,精度在0.1%~0.3%之间,标准化程度高,精度及灵敏度均较好,对于本设计来讲铜更加适合作为温度传感器。

5.2 机械位置传感器

支持直线运动的传动方式主要就是螺杆,和皮带两种,螺杆的精度比皮带高,载荷也大,但速度低一些。三维打印机的打印头基本不受力,对载荷没有要求,打印机的运动特点时,在水平两个方向上速度越快越好,在垂直方向上精度越高越好,速度无所谓(打完一层才动一次)。因此打印机的传动设计一般都是在水平方向使用皮带(同步带),垂直方向用螺杆。

5.3 压力传感器

压力传感器用于检测两个喷头分别对应的三原色颜料用量和粘剂的用量,还有固体粉末当使用情况检测。但物量不够的时候,反馈,提醒用户加入颜料、粘剂或粉末。对应以上表格,可以采用电位器来做测量,且能达到比较高的精度。

6 3D打印机的优点及面临问题 6.1 3D打印机的优点

3D打印技术主要有以下优点:

1.制造快速 3D打印技术是并行工程中进行复杂原型或者零件制造的有效手段,能使产品设计和模具生产同步进行,从而提高企业研发效率,缩短产品设计周期,极大降低了新品开发的成本及风险,对于外形尺寸较小特异形的产品尤其适用[8]。

2.CAD/CAM技术的集成 快速成型技术集成CAD.CAM激光技术.数控技术.化工材料工程等多项技术,使得设计制造一体化的概念完美实现。

3.完全再现三维效果 经过快速成型制造完成的零部件,完全真实的再现三维造型,无论外表面的异形曲面,还是内腔的异形孔都可以真实准确的完成造型,不再需要再借助外部设备进行修复。

4.材料种类繁多 到目前为止,各类3D打印机设备上所使用的材料种类有很多树脂,尼龙,塑料,石蜡纸以及金属或陶瓷的粉末,能满足绝大多数产品对材料的机械性能需求。 5.创造显著的经济效益 与传统机械加工方式比较,开发成本上节约10倍以上,同样快速成型技术缩短了企业的产品开发周期,使的在新品开发过程中出现反复修改设计方案的问题大大减少,也消除了修改模具的问题,创造的经济效益十分明显。

13 6.应用行业领域广 3D打印技术经过这些年来的发展,在技术上已形成了一套体系,同样可应用的行业也逐渐扩大,从产品设计到模具设计与制造材料工程医学研究文化艺术建筑工程等等都逐渐的使用3D打印技术,使得3D打印技术有着广阔的前景。

6.2 3D打印技术面临的问题

现在3D打印技术的精度约为0.1mm, 而且3D打印机本身的售价偏高,不过随着技术的进步和成本的降低,一台普通3D打印机的成本有望比1985年的激光打印机还要低。生物

3D打印机也面临着诸多挑战,其中之一是其打印出的器官如何与身体其他器官尤其是大的组织更好地结合,因为任何打印出来的器官或身体组织都需要同身体的血管相连,而这可能非常难于实现 ,一旦克服了这个技术障碍,在未来几十年内生物打印技术将成为一项标准技术。

当然,要实现3D打印技术的大规模使用还有不少挑战, 首先是打印材料,它根据打印商品的不同,需要各种特殊种类的金属塑料以及陶瓷等成本比较高 。

产权保护: 3D打印技术的意义不仅在于改变资本和工作的分配模式,而且也在于它能改变知识产权的规则 。该技术的出现使制造业的成功不再取决于生产规模而取决于创意。 然而单靠创意也不够,模仿者和创新者都能轻而易举地在市场上快速推出新产品 。因此,竞争优势可能将前所未有地变得比以前更短。

一旦物品能用数字文件来描述,它们就会变得很容易复制和传播,当然盗版也会变得更加猖獗。 当一个新玩具的草图或一双鞋的设计方案在网上流传时,其知识产权的拥有者会失去更多。因此人们在知识产权领域进行的斗争会更加激烈,并且随着开源软件新的非商业模式的出现,3D打印技术需要比目前更加严谨还是更加宽松的法规还有待验证。 税务问题:过去税务局海关对交易征税都是基于商品的价值。如果将来货物的制造模式都是通过购买3D打印机和耗材,从网上下载设计文件,自行打印出所需的物品,那么传统的征税模式将难以为继 ,未来的税基将很可能从增值税消费税转向个人所得税和营业税。

上一篇:爱祖国演讲稿下一篇:50音图快速记忆法