热喷涂技术在循环流化床锅炉中的应用

2024-04-23

热喷涂技术在循环流化床锅炉中的应用(共8篇)

篇1:热喷涂技术在循环流化床锅炉中的应用

热喷涂技术在循环流化床锅炉中的应用

分析了循环流化床锅炉的磨损及原因,阐述了国内外用于高温抗冲蚀磨损热喷涂防护涂层的研究和应用进展.

作 者:蒋建敏 傅斌友 贺定勇 董娜 李现兵 作者单位:北京工业大学材料科学与工程学院刊 名:航空制造技术 ISTIC英文刊名:AERONAUTICAL MANUFACTURING TECHNOLOGY年,卷(期):“”(2)分类号:V2关键词:热喷涂 循环流化床 高温冲蚀磨损

篇2:热喷涂技术在循环流化床锅炉中的应用

循环流化床锅炉因其高燃烧效率和燃烧清洁性及对燃料的适应性而迅速发展起来,它使用含硫高、灰分高、发热值低等其他锅炉不能燃用的燃料能干净地燃烧, 大大减少硫化合物和氮氧化合物的产生和排放,减少环境污染,目前我国循环流化床锅炉的容量主要有75t/h、130t/h、220t/h和440t/h 等。随着环保要求的日趋严格,国家对烟尘及二氧化硫的排放提出更严格的要求,现执行的《火电厂大气污染物排放标准》(GB13223-)中对新建燃煤电厂的烟尘排放浓度提高到50mg/m3、二氧化硫的排放浓度提高到400mg/m3。循环流化床锅炉通过掺烧石灰石可解决烟气脱硫问题,同时也导致静电除尘器的除尘效率下降,采用静电除尘器处理的烟尘排放浓度很难达到环保要求。

二、静电除尘器改造前的状况

山西鲁能晋北铝业有限责任公司自备电厂一期工程装机容量为3×25MW机组,锅炉采用济南锅炉厂YG-240/9.8-M1型高温高压、单汽包横置式、单炉膛、自然循环、全钢架π型布置循环流化床锅炉,每台锅炉配备一台XKD135x4/2干式、卧式、板式双室四电场静电除尘器,汽轮机由武汉汽轮机厂生产,其中#1机为抽凝机组,#2、3机为背压机组,机组为母管制,主要供给氧化铝厂工业用汽。4台锅炉分别于1月~6月建成投产。一期工程静电除尘器主要规范:设计处理烟气量430000 m3/h、除尘效率98%、入口烟气含尘量21.25g/cm3、烟气停留时间18~19S、电场风速0.88m/s、收尘极板总有效面积 10800m2、电场数量4个、同级间距400mm。

3月公司委托太钢能源环保部监测站对自备电厂#1、#2、#4炉的烟气排放及脱硫效率进行了监测,

山西省环保局于205月再次进入该公司对烟气排放及脱硫进行监测,监测时自备电厂将锅炉负荷降至50%运行,但仍未能达到环保要求,烟气排放浓度在400 mg/m3。

三、静电除尘器存在问题及其原因分析

我们从静电除尘器本体、锅炉燃料的变化、锅炉燃烧的变化、锅炉炉内脱硫添加剂的使用等几个方面进行分析,总结出造成静电除尘器除尘效率降低的原因有以下几点:

(1)设计煤种灰分与实际煤种灰分偏差较大,造成烟气中的粉尘含量较大。

(2)由于除尘器设计值与实际烟气量偏差较大(设计值430000m3/h,实际运行值530000m3/h以上)。烟气量大的主要原因有:由于采购原煤达不到设计要求,使锅炉燃煤量增加,燃烧份额增加相应的烟气量也增加。

(3)循环流化床锅炉采用炉内脱硫,钙硫摩尔比为2.3时脱硫效率能够达到90%(石灰石粉的加入量设计为1.5t/h,石灰石中CaO含量为 54.56%)。目前为确保脱硫效果需要的石灰石量为3~41.5t/h。由于石灰石粉的加入致使烟气中灰的比电阻降低,致使静电除尘器对比电阻低的粉尘难以有效捕集导致除尘效率下降。

(4)安装时由于安装质量问题造成静电除尘器内部的大框架变形,小框架在长时间运行后也随之变形,影响了静电除尘的正常工作效率。

四、改造方案的论证与确定

(一)除尘器改造方案的考察

自山西鲁能晋北铝业有限公司决定对自备电厂静电除尘器进行改造后,立即组织人员到同类型循环流化床锅炉的山西某电厂(哈尔滨锅炉厂锅炉)、天津某电厂 (济南锅炉厂的锅炉)的济南某热电公司进行实地考察交流,同时向国内几家大型除尘器生产厂家和权威环保研究院所进行咨询。在与其的交流中发现两厂的烟气排放也均未达到国家环保要求,而且都是在机组投产后相继进行了改造,并且改造后的效果良好。从当时掌握的信息来看,由于国家环保监察力度加大,有许多的循环流化床锅炉在设计中就将静电除尘器改为电袋复合式除尘器。

(二)除尘器改造方案的确定

鉴于以上原因,山西鲁能晋北铝业公司根据自己生产的实际情况和需求,组织人员进行技术攻关,并综合各方面的建议、意见,提出以下四条整改方案。

方案一:对现有静电除尘进行大修。每台除尘器大修费用约70万元。

方案二:在现有静电除尘入口处增加沉降室,四电场后增加一级电场。每台除尘器改造费用约需要230万元。

方案三:将静电除尘全部改造为袋式除尘器。每台除尘器改造费用约需550万元。

方案四:保留现有静电除尘器一电场(对其进行大修),其余三个电场在原有静电除尘器设备外壳不变的情况下改为袋式除尘器,增加袋式除尘器的控制系统,改为电袋组合式除尘器。每台除尘器改造费用约需400万元。

四种改造方案提出后,支持各种方案的言论都有,主要是聚焦在要效益还是要环保的话题上。公司决策层对各种方案进行仔细分析论证,分析了各自的优缺点:

方案一优点:对现有电除尘进行大修,彻底解决由于安装及设备存在的问题,提高收尘效率,对锅炉的正常运行没有影响,静电除尘器的控制系统不用改动,节省资金的投入。

缺点:大修后只能小幅提高除尘效率,但是由于设计收尘面积偏小以及目前所使用的煤种肯定达不到排放标准。

方案二优点:电除尘入口处增加沉降室,四电场后增加一级电场,

此种方案在经过改造后对锅炉的正常运行没有影响,静电除尘器的控制系统不用改动,烟气排放有可能达到环保要求,投入资金量相对较小。

缺点:电除尘器对工况变化适应能力差,当工况变化幅度较大以及脱硫用石灰石粉投入量较大时,烟气中的粉尘比电阻降低,对其除尘效率影响较大。必须留有足够的余量,来适应工况的变化。增加一个电场不仅站地面积大,而且对气力输灰系统也要进行相应的改造。

方案三优点:将电除尘全部改造为袋式除尘器,此种方案可保证烟气排放达到环保要求。

缺点:改造为袋式除尘器后,除尘器的阻力要远远大于静电除尘器的阻力,锅炉吸风机满足不了锅炉满负荷运行,不得不更换吸风机。另外,流化床锅炉尾部烟气中烟尘颗粒度较大,对除尘器前部的袋式冲刷、磨损较为严重,从而缩短了滤袋和脉冲阀的使用寿命,使设备运行维护费用大大增加。并且控制和配电系统要全部改变,改造投入资金量大,

方案四优点:保留现有静电除尘器一电场,其余三个电场在原有静电除尘器设备外壳不变的情况下改为袋式除尘器,增加袋式除尘器的控制系统,改为电袋组合式除尘器,利用现有电除尘及袋式除尘器的优点。电袋组合型除尘器是通过电除尘器与袋式除尘器有机结合的一种新型的高效除尘器,收尘效率可达到70%左右。与单纯袋式除尘器对比,滤袋更换频率较低。

从山西鲁能晋北铝业公司自备电厂的实际情况来看,只需将静电除尘器的后三个电场极板拆除利用原来的空壳喇叭口外延1.5m即可(外延空间足够),配电设施不用增加,技改用时较短,不影响机组发电运行。

缺点:从此方案粗略计算的阻力和风量来看,风机的风量和气力输灰刚刚能够满足额定负荷需要,改造前还要对锅炉进行精确的试验和计算。另外,程序控制系统要作相应改变。

经过对以上四种方案的反复论证及实地考察,选用方案四:电袋组合式除尘器。

(三)除尘器改造方案的实施

山西鲁能晋北铝业公司决定委托中钢集团天澄环保科技股份有限公司,将除尘效率最低的#2炉静电除尘器根据现场实际情况,改造为电袋组合除尘器。

改造初期,在设计袋式收尘区的收尘面积上,公司提出要求:既能满足锅炉满负荷运行的风量要求,又能最大程度增加袋式收尘区的收尘面积。通过精密计算和论证,最后决定将电袋组合除尘器分隔为前后两个收尘仓室(即静电收尘单元和袋式收尘单元),经静电除尘器过滤后的含尘烟气由外引烟道进入袋收尘单元,净化后的烟气经净气室向大气排放。为方便检修,在不停炉的情况下检修工作人员既可进入袋收尘单元进行工作,又将后部的袋收尘单元纵向分隔为两个仓室,袋收尘区域总过滤面积:8624m2,滤袋材质:进口 PPS PTFE双面浸渍处理,PTFE线进行缝制。袋收尘单元的清灰采用脉冲离线清灰,除尘器净气室进出口设置气动提升阀, 使用的是在线清灰。

#2除尘器运行正常稳定,年9月26日检测机构对#2炉电袋除尘器进行了环保监测。

#2炉静电除尘器改造为电袋组合除尘器后,此前粗略计算的阻力和风量、风机的风量和气力输灰系统完全能够满足锅炉额定负荷的需要。烟尘排放不仅远远低于国家粉尘排放标准,而且能够保证生产,其他三台静电除尘器也在底全部改造完毕。

五、除尘器改造后的经济效益

除尘器改造后的效益主要划分为两部分:一部分是改造后除尘器节省的电量,即:节省电量=电袋组合除尘器运行比原静电除尘器运行节省的电量-风机增加的电量(滤袋阻力增加风机电流增加)-喷吹增加的压缩空气使用的电量(大约40m3的空压机,11KW)。第二部分就是环保费用节省的费用,主要根据山西鲁能晋北铝业有限公司向环保部门缴纳环保费时,检修工作量减小产生的效益。

改为袋式除尘器后,相同负荷的情况下,除尘器增加的阻力,目前控制在700pa~1000pa之间,锅炉每台吸风机最多增加1个电流,按照每天3台锅炉运行,6台吸风机24小时的耗电为:1×6×10×0.85×24=1224(KWh),另外40立方的空压机24小时的耗电为:11×24=264(KWh) 。同时测算出每台静电除尘器一个高压电场每天的平均耗电量为472.5(KWh)。

因此,我们可以按照每天3台电袋组合除尘器运行,每天节省电量大约为:472.5×3×3=4252.5(KWh)。电除尘器改造为电袋组合除尘器, 除去风机增加的耗电量;增加的压缩空气,折算成空压机(40立方)耗电量;按照每天3台锅炉运行,24小时节省的电量为:4252.5-1224-264=2764.5(KWh),一个月为82920KWh,按照发电成本0.2元计算,每个月至少可节省16584元。4 台锅炉改造完成后,厂用电率下降了1%,和计算出每天节省的电量也匹配。

改造之后,山西鲁能晋北铝业有限公司的环保费用就可以节省290万元。如表3:

六、结语

篇3:热喷涂技术在循环流化床锅炉中的应用

1.1 煤泥综合利用的必要性

上海大屯能源股份有限公司是集煤炭生产、煤炭加工、电力、铝业、运输为一体国有大型企业, 选煤厂产生的煤泥副产品产量达20余万t, 由于其粒度细、水分高、粘度大, 发热量低、运输不便, 综合利用难度大。如果长期堆存, 不仅占用大量土地, 而且严重污染环境。随着煤炭入洗比例的日益加大, 煤泥处理问题已严重制约了煤炭洗选加工企业的正常生产和发展。对煤泥进行资源综合利用已成为煤炭主产区面临的重要课题。

1.2 循环流化床锅炉具备掺烧煤泥的条件

上海大屯能源股份有限公司热电分厂为公司自备热电厂, 五炉四机布置, 锅炉编号为4#、5#、0#、8#、9#炉, 均选用循环流化床锅炉 (CFB) 。该锅炉具有煤种适应能力强、SO2排放量低、NOX排放量低、负荷调节性能好等特点, 特别适合综合利用煤矸石和煤泥, 变害为利和保护环境。目前4#、5#炉以燃烧煤矸石为主, 0#、8#、9#炉以燃烧煤泥为主。热电厂锅炉技术参数如表1所示。

1.3 燃烧煤泥的优势

煤泥属于煤炭洗选后的废弃物, 其发热量高于煤矸石, 灰分中软性的含粘土物质多, 燃烧后生成的灰、渣成分中硬性的二氧化硅量较煤矸石的少, 因此可有效解决循环流化床锅炉最突出的受热面磨损问题, 可以提高锅炉运行的可靠性和使用寿命。热电厂紧靠煤泥产地——大屯选煤厂, 在选煤厂建设MNS煤泥管道输送系统, 可直接输送至热电厂锅炉内燃烧, 具有投资少、运营费用低的优点[1]。

2 MNS煤泥输送系统主要设备介绍

煤泥管道输送系统是专门为燃烧煤泥电站锅炉输送煤泥的一套系统, 它集煤泥储存、搅拌、输送、给料于一体, 不仅有效的防止固体沉淀、结块, 且具有输送系统压力高 (0~18 MPa) 、输送量大 (0~60 m3/h) 、输送距离远、位置高、输送量无级调节、远程控制、无污染、管路布置灵活等优点。系统由搓和机、上料螺旋、搅拌缓冲仓、预压螺旋、液压闸板阀、浓料泵、高压低摩阻复合管、双向高压浓料换向阀、管路分流阀、多功能给料器、锅炉接口器、自动控制系统等组成。MNS煤泥管道输送系统技术参数为[2]:介质为纯煤泥, 含水量30 (1±3) %, 比重1.05 t/m3, 粒度≤1 mm (偶见粒度≤50 mm) , 单泵额定输送量≥16m3/h, 单泵最大输送量20m3/h, 水平输送距离540 m, 垂直输送高度35 m。煤泥输送系统示意图如图1所示。

2.1 搓和机

搓和机由破碎、搓和、驱动等部分组成, 其作用是通过螺旋轴密集的粉碎刀片将煤泥与水充分搅和均匀后送出。进入搓和机中大的偶见物料如矸石、砖块、木块等, 长径不得超过50 mm, 但绝对不允许有金属、橡胶制品等无法破碎的物体进入搓和机中。在搓和过程中需从入料口加入适量的水, 使煤泥达到最适合管道输送的状态, 从而降低系统工作压力, 减少设备的维护量, 延长设备的使用寿命。

1.搓和机;2.链式输送机;3.搅拌缓冲仓;4.预压螺旋;5.浓料泵;6.闸板阀;7.分流换向阀;8.高压低摩阻复合管;9.多功能给料器;10.锅炉接口器;11.清洗回流管

2.2 搅拌缓冲仓

搅拌缓冲仓为矩形卧式搅拌机构, 由方仓、搅拌螺旋、液压滑架、泵房综合液压站、减速电动机、液压缸、料位计、电控系统等部分组成, 其作用是把仓中较大的煤泥结块打散或把仓内板结的煤泥搅开, 将煤泥始终保持均匀的状态, 保持煤泥的可泵送性。

2.3 浓料泵

浓料泵主要由执行部分、液压动力部分和控制部分、润滑部分、冷却部分等组成, 其作用是通过左、右主油缸不断交替的吸送行程, 使物料升压输送到输送管道中, 并通过泵外铺设的管道输送到达锅炉给料点, 完成泵送作业。

2.4 锅炉接口器

锅炉接口器是连接锅炉与给料装置的顶部给料专用设备, 其上设有外部通风口、观察窗。

其作用是将锅炉内顶部偶然上升的热风和热辐射封住, 不使外部给料设备温度升高的太多, 防止管道内的粘稠物料干结以及烧坏外部设备, 锅炉接口器必须接入足量的锅炉一次风用作封闭冷却。另外, 观察窗还可以了解粘稠物料的下落情况。

2.5 液压系统

主要由浓料泵和搅拌缓冲仓液压滑架、液压闸板阀、双向高压浓料换向阀、分流阀、多功能给料器等部分组成, 其中浓料泵液压动力包为整个液压系统的关键, 它由三个子系统组成, 即主泵送液压系统;补油及控制油路系统;S管阀摆动液压系统。

3 MNS煤泥管道输送系统建设与应用

热电厂MNS煤泥管道输送系统于2005年3月完成了可行性研究报告, 2006年7月开始施工。该项目一期工程与热电厂二期扩建项目即8#、9#机组 (2×15MW) 相配套, 采用三套MNS系统配置, 满足0#、8#、9#锅炉煤泥燃料的供应及输送。

(1) 该项目首先对选煤厂浮选工艺进行改造, 消除浮选对精煤产品的影响, 解决浮选工艺的高油耗、高电耗等问题。改造前通过浮选后的尾矿经浓缩、压滤的煤泥产率为4.45%, 含水率为23%, 发热量约11302 kJ;压滤改造后原矿煤泥产率为13.9%, 灰分为24.45%, 发热量为1254 kJ。根据煤泥管道输送系统和锅炉燃烧特点进行的浮洗工艺改造, 不仅大大降低了浮选工艺的耗油、耗电量, 简化了生产工艺, 浮选后的煤泥更有利于输送, 各项经济技术指标更有利于锅炉燃烧。

(2) 该系统于2007年10月完成安装、调试。三套煤泥输送系统其设计输送量均为20 m3/h, 浓料泵出口压力18 MPa, 输送距离约540 m, 管道内径为125 mm。系统调试期间, 也出现了系统稳定性差的问题, 如:管道阻力大、管道振动、法兰间漏泥、活塞寿命短、管道堵塞、泵压高跳泵等。但通过对煤泥管道进行优化, 如3#煤泥管道由原直径φ125 mm改为φ180 mm, 1#、2#煤泥管路改为φ200 mm;煤泥混合后含水率由33%左右降低到30%左右, 基本解决了上述问题。2008年3月投运以来, 运行稳定, 每日能够消耗选煤厂生产的全部煤泥约600 t左右。

4 煤泥输送系统运行注意事项

运行前检查动力包油箱的油位, 油位不得低于油位计的3/4。系统第一次泵送或管路经清洗后长期放置, 再次泵送浓料之前, 首先泵送清水, 检查各管接头处的密封性能。在泵送过程中, 若泵送压力突然升高, 则应立即操作 (按下) “反泵”按钮, 使之反向泵送 (自动) 2~3个行程, 然后松开, 使泵转入正泵。若如此操作重复2~3次, 泵送压力仍然很高, 则可能是发生堵管, 须暂时停泵并消除堵管故障。泵送过程中, 不允许有吸空或无料泵送现象, 经常观察各油压表、油温表压力、温度是否正常, 若液压油温升至70℃时, 应停机作冷机处理待油温降低后方可继续泵送。每次停机前都必须停止加料继续运转5 min, 把机器中的粘稠物料基本排出后再停机, 以防下次开机时启动困难。煤泥中的橡胶、铁器等都要提前捡出, 不得进入搓和机, 否则将损坏设备。锅炉压火或停炉前必需先停止泵送煤泥, 示意图如图2所示。

5 运行效果

2008年4月开始煤泥管道输送系统正式移交运行。2008年, 以煤矸石为主要燃料的4#、5#机组发电量18216万k Wh, 供热737487吉焦, 而以煤泥为主要燃料的8#、9#机组发电量19 734万kWh, 供热813 202吉焦。其中8#、9#、0#3台锅炉用掺烧煤泥13.9万t, 可替代原煤9万余t, 投运当年即可收回全部投资, 凸显热电厂资源综合利用效益。

目前3套系统运行均正常, 至2009年6月, 1#浓料泵已泵送4471560次, 2#浓料泵已泵送2737 966次, 3#浓料泵已泵送3139950次, 泵送量为0.02 m3/次, 合计输送量已达23.8万t, 取得了较好地资源综合利用效益。随着姚桥矿煤矿选煤厂的建设, 煤泥管道输送系统进一步推广应用到440 t/h CFB锅炉的方案正在编制、筹划中。

参考文献

[1]中矿机电工程技术研究所.大屯煤电 (集团) 有限责任公司矸石热电厂MNS煤泥管道输送工程可行性研究报告[R].北京:中矿机电工程技术研究所, 2005.

篇4:热喷涂技术在循环流化床锅炉中的应用

关键词富氧燃烧;CFB锅炉;热效率;膜法富氧

中图分类号TB文献标识码A文章编号1673-9671-(2011)041-0188-01

循环流行化床锅炉技术是近二十年来迅速发展的一项高效低污染清洁燃烧技术。国际上这项技术在电站锅炉、工业锅炉和废弃物处理利用等领域已得到广泛的商业应用,并向几十万千瓦级规模的大型循环流化床锅炉发展;国内在这方面的研究、开发和应用也逐渐兴起,已有1000多台循环流化床锅炉投入运行或正在制造之中。未来的几年将是循环流化床飞速发展的一个重要时期。如何进一步提升循环流化床锅炉的热效率,实现发电企业的节能减排,是摆在我们面前的一项重要任务。富氧燃烧技术作为一种高新的节能燃烧技术,在循环流行化床锅炉燃烧中的创新应用,很好的实现了CFB锅炉的进一步节能减排,具有巨大的市场潜力。本文着重讨论了富氧技术应用于循环流化床锅炉燃烧中的技术问题和可行的实施方案。

1富氧燃烧技术介绍

富氧燃烧(oxygen enriched combustion)指的是使用比通常空气(含氧21%)含氧浓度高的富氧空气进行燃烧。它是一项高效节能的燃烧技术,富氧空气在燃烧过程中提供了更富丰的氧元素,使可燃物燃烧更充分,减少了固体不完全燃烧的排放,减少了氮和其他惰性气体随烟气带走的热能,其具有明显的节能和环保效应。富氧燃烧的特点是火焰温度高、降低燃料燃点、提高热效率、减少烟气排放量等。

2富氧燃烧技术的研究成果

2.1节能效果

因氮气量减少,空气量及烟气量均显著减少,故火焰温度和黑度随着燃烧空气中氧气比例的增加而显著提高,进而提高火焰辐射强度和强化辐射传热等,如当空气中氧气的浓度为25%时,火焰的黑度经计算为0.2245,增加约6%,同时燃烧带火焰对物料的辐射传热量提高的程度约为20.4%。日本曾在以气、油、煤为燃料的不同场合进行了富氧应用试验,得出如下结论:用23%的富氧助燃可节能10~25%;用25%的富氧助燃可节能20~40%;用27%的富氧助燃则节能高达30~50%等。

2.2氮氧化物和二氧化硫的排放

富氧燃烧时炉膛温度升高,使得热力型Nox 的生成量增加,但是如果将炉膛温度控制在950℃ 以下,氮氧化物和二氧化硫的量不会增加太多,反而是因烟气量减少后提高了氮氧化物和二氧化硫的浓度,更加易于捕捉。使用富氧助燃技术后,烟气中SOX总量有所减少,NOX含量和总量也均减少。节能本身就是一种有效的减排,因为硫为燃料本身固有,使用富氧助燃技术后,由于燃料总量减少,所以产生的SOX总量也有所减少,因此也是控制大气SOX排放的一种有效方式。

3应用分析

3.1炉膛温度控制

将富氧助燃技术应用到CFB锅炉,就需要把CFB锅炉的优势和富氧燃烧的优点结合起来,即:在富氧的燃烧的状态下依然保持炉膛内脱硫效果,控制较少氮氧化物生成,同时把富氧燃烧的传热效率高、燃烧完全、烟气排放量低的优点结合起来。要达到这样的效果,就需要将炉膛温度控制在原来空气燃烧时炉膛所适应的范围870℃~950℃。

据文献资料显示60%富氧燃烧时炉膛最高温度为95O℃ ,炉膛温度较用空气燃烧升高30℃~50℃左右,正常情况下CFB锅炉的最佳运行温度为870℃~920℃ ,可以推断在采用30%富氧燃烧且燃料量不变的情况下炉膛温度会稍低于950℃,这个温度是在CFB锅炉的运行温度范围。而燃烧温度在氧浓度大于30%时变化不大 ,所以使用氧浓度为27~45%的膜法富氧技术是可以满足CFB锅炉节能需要。

3.2CFB锅炉供风系统改造

CFB锅炉富氧燃烧技术关键是将富氧送到最需氧的地方,而且通过综合优化使整个锅炉给风更加合理,从而使燃料能在炉膛内完全燃烧,释放出有效热量,达到减少风量、降低排烟温度、节能和环保等目的。具体做法是将富氧空气通过喷枪对称布置直接在二次供风的位置喷入炉膛,提高火焰温度,使得辐射热显著增加。该方式要特别注意注氧点的布置,防止爐膛局部温度偏高,应采用对称燃烧技术,使燃料在炉膛中心强化燃烧(见下图)。

膜法富氧与CFB锅炉供风系统结合示意图

4讨论

1)要严格控制炉膛温度分布,合理布置注氧点,将炉膛的温度控制在950℃以下,同时合理分配二次风,保证温度梯度不超标。

2)采用富氧燃烧后,燃料相应减少,同时反回料也因燃烧完全而减少,锅炉物料循环量也就减少,使得整个炉膛的温度梯度变大。但是富氧燃烧后三原子分子浓度增大(CO2浓度增加),多原子分子的辐射传热要比单分子要强,这样炉膛的辐射传热就增强,可以弥补因循环量小的热量传递。

3)富氧燃烧会产生局部高温,会对炉炉膛的水冷壁和耐火材料产生影响。

5结论

循环流化床锅采用富氧燃烧技术能提高锅炉的运行效率,使固体燃料燃烧更加充分,增加传热效率,同时减小了CFB锅炉旋风分离器的负荷和锅炉磨损;烟气量减小,排烟损失减小;有害气体浓度升高,便于NOX 和C02的捕捉,从而达到节能减排的目的。

富氧燃烧在CFB锅炉中的应用是一项创新科技,但其在燃烧过程中容易产生大量的氮氧化合物,虽然已经有一些方法对其进行控制,但还不是特别理想,还需要广大科研工作者在此基础上进行深入的研究。

参考文献

[1]李洪宇,王华.低氧燃烧与富氧燃烧的性能比较分析[J].工业加热,2003,32(5):9-12.

[2]张清,陈继辉,卢啸风,刘汉周.流化床富氧燃烧技术的研究进展[J].电站系统工程,2007,23.

[3]沈光林.膜法富氧燃烧技术在工业锅炉中的应用[J].工业锅炉,2002,6:22—25.

[4]苏俊林,潘亮,朱长明.富氧燃烧技术研究现状及发展[J].研究与开发,2008,3:1-4.

作者简介

篇5:热喷涂技术在循环流化床锅炉中的应用

高压交流变频调速技术是上个世纪90年代迅速发展起来的一种新型电力传动调速技术,主要用于交流电机的变频调速,其技术和性能远远胜过以前采用的调速方式(如串级调速、液力耦合器调速、转子水阻调速等),高压变频以其显著的节能效益、完善的保护功能、方便的通信功能以及高调速精度、宽调速范围,得到了广大用户的认可,成为企业电机节电方式的首选方案。

江苏森达沿海热电有限公司现有三台循环流化床锅炉,三大风机采用液力耦合器调速,三大风机的稳定运转对正常生产至关重要,对设备要求特别苛刻,因此在高压变频器的选用上非常谨慎,12月15日我公司扩建一台4#炉UG-130/5.3-M8采用了北京合康HIVERT-Y06/096高压变频器2台和HIVERT-Y06/048高压变频器1台在公司4#炉安装调试,稳定运行至今,为国产高压变频器赢得了荣誉。

二、循环流化床锅炉工艺

循环流化床是一种适于固体燃料的清洁高效燃烧技术。固体颗粒(燃料、石灰石、砂粒、炉渣等)在炉膛内以一种特殊的气固流动方式(流态化)运动,离开炉膛的颗粒又被分离并送回炉膛循环燃烧。炉膛内固体颗粒的浓度高,燃烧、传质、传热、混合剧烈,温度分布均匀,固体颗粒在炉膛内的内循环和外循环十分强烈,在炉膛内的停留时间较长,保证了较高的燃烧效率。

循环流化床燃烧技术是近二十多年来发展的洁净煤燃烧技术,其燃烧方式特别适用于高灰分低挥发的煤矸石、洗中煤等劣质煤,具有较好的燃料适应性,可变废为宝,体现节能要求。另外,循环流化床锅炉在燃烧过程采用炉内加石灰石、低温燃烧,可同时达到脱硫脱硝的目的,具有较好的环保特性。

燃料由给煤机送入炉膛;一次风由锅炉底部送入,主要用于维持燃料粒的流化;二次风沿燃烧室侧壁多点送入,主要用于增加燃烧室的氧量,提高燃烧效率;燃烧后的大量颗粒随烟气进入旋风分离器,与烟气分离;分离出来的颗粒经回料阀回到燃烧室继续燃烧;分离出来的烟气则经过除尘器除尘后,由引风机引入烟囱排出。实际运行中,循环流化床的燃烧效率可高达97%~99%。

三、技术方案分析

由于其独特的燃烧特性,与传统的煤粉炉相比,循环流化床锅炉对风量、风压的控制有更高的要求:为了保证锅炉燃烧的经济性,当燃料量改变时,必须相应地调节送风量,使之与燃料量匹配;为了保证锅炉运行的安全性,必须使引风量与一次风量相配合以保证炉膛压力在正常范围内;通过一次风量及风压的调节以保证炉膛内物料的正常流化。

与常规煤粉炉相比,循环流化床锅炉配置的风机压头较高,目前调节风量的主要是通过调节风门开启度或采用变频调速技术控制风机转速。当采用调节风门开启度的方式进行风量控制时,容易出现这样几个问题:(1)节流损失大;(2)系统响应速度慢、调节品质差,自动投入率低,难以满足实际要求;(3)执行机构易出问题,维修费用高;(4)电机启动时会产生过电流,影响电机绝缘性能和使用寿命。变频调速技术由于较好地解决了上述问题,正逐步在循环流化床机组中得以运用。

由于循环流化床锅炉中的一次风机、二次风机、引风机均属于二次方转矩负载,在忽略风道变化因素后,有风量与转速成正比、风压与转速二次方成正比、机械轴功率与转速立方成正比的关系。当采用高压变频器对这些电机进行变频调速控制时,仅通过相对小范围内的频率改变,调节电机转速,即可实现风量的控制,而且调节精度及响应速度有很大改善。同时,当电机转速降低时,由于轴功率与转速三次方成正比的对应关系,电机的轴功率显著下降,节能效果明显,

四、高压变频装置特点

高压变频技术的具体实现有多种方式,国内外的高压变频器厂家目前主要采用如下一些解决方案:高-低-高方案、三电平-多电平方案、电流源方案、功率单元串联方案等等。高-低-高方案需要输入、输出变压器,存在中间低压环节电流大、效率低、可靠性下降、体积大等缺点,只适合很小容量的高压电动机;三电平-多电平方案存在控制复杂、需要加滤波器等缺点,只有少数国外厂家采用。电流源存在输入功率因数低,维护成本高等缺点。

在实际运行中,性能优良的高压变频器对电网谐波污染小,北京合康亿盛科技有限公司采用多重化的脉宽调制技术,输出波形为非常完美的正弦波。噪音低,发热低,不会引起电机转矩脉动,对电机没有特殊要求。由于使用移相技术和二极管整流,在整个调速范围内功率因数达到95%以上,且整机效率R97%,无需进行功率因数补偿。电压输入范围较大,输入电压在-20%~15%,频率在45Hz~55Hz波动范围内设备均能正常工作。采用空间矢量PWM控制方式,单元叠波输出,有效抑制输出谐波含量,避免输出共模电压过大。采用双电源切换技术,独特的供电设计,特有的过电压保护技术,保证高压变频器稳定、可靠运行。实践证明采用单元串联、直接高-高方式的拓朴结构的高压变频器在负载连续运转要求严格的环境中应用具有独到的优势。

五、变频前后耗电情况对比

我公司于月起开始将高压变频器应用4#炉UG-130/5.3-M8的三大风机(引风机,一次风机,二次风机),目前高压变频运转稳定,平均节电率达到20%以上,取得了显著的经济效益。以下为我公司安装高压变频前后数据对比:

节能计算:

工频条件下:4#炉三台风机平均每小时耗电量为:1558.1 kWh

变频条件下:4#炉三台风机平均每小时耗电量为:1185.9 kWh

平均每小时的节电量:1558.1-1185.9=372.2kWh

年节电量:372.2×6500=2419300kWh(按年运行6500小时计算)

年节电收益:2419300×0.45=108.8万元(按每度电0.45元计算)

成本回收时间: 4#炉三台风机年节电收益108.8万元情况下,具有显著的经济效益。短期内就能回收成本。

除了明显的节电效益,采用变频器还有以下优点:(1)高压变频器优良的软启动/停止功能(可以零转速启动),启动过程最大电流小于额定电流,大大减小了启动冲击电流对电动机合电网的冲击,有效减少了电机故障,从而大大延长了电机的检修周期和使用寿命,同时还可有效避免冲击负荷对电网的不利影响;(2)使用变频后,原调节风门全开,大大减少其磨损,延长了风门使用寿命,降低检修维护费用,进一步降低了风道阻力;(3)使用变频后,原液力耦合器取消,节省了液力耦合器的维护费用;(4)高压变频器特有的平滑调节减少了风机以及电机的机械磨损,同时降低了轴承、轴瓦的温度,有效减少了检修费用,延长了设备的使用寿命。

六、结论

篇6:循环流化床锅炉技术问答

1、什么叫流态化?流化床?

答:固体颗粒在流体作用下表现出类似流体状态的现象称为流态化。流化床是完成流态化的设备。

2、CFBB的工作过程?

答:燃煤首先被加工成一定粒度范围的宽筛分煤,然后由给煤机经给煤口送入循环流化床密相区进行燃烧,其中许多细颗粒物料将进入稀相区继续燃烧并有部分随烟气飞出炉膛。飞出炉膛的大部分细颗粒由固体物料分离器分离后经返料器送入炉膛,再继续燃烧。燃烧过程中产生的大量高温烟气经过热器、省煤器、空气预热器等受热面,进入除尘器进行除尘,最后由引风机排至烟囱进入大气。

3、CFBB有哪两个部分组成?

答:第一部分由炉膛(流化燃烧室)、气固分离设备(分离器)、固体物料再循环设备(返料装置返料器)和外置换热器(有些CFBB没有此设备)等组成,形成一个固体物料循环回路。第二部分为尾部受热面,布置有过热器、再热器、省煤器和空气预热器等。

4、气固分离器的主要作用及特点?

答:是将大量高温固体物料从气流中分离出来,送回燃烧室,保证燃料和脱硫剂多次循环反复燃烧和反应。

特点:(1)能够在高温情况下工作;(2)能够满足较高浓度载粒气流的分离;(3)具有低阻特性;(4)具有较高的分离效率;(5)与锅炉整体适应,结构紧凑。

5、返料装置的作用及种类?

答:是将分离器分离下来的高温固体物料稳定的送回压力较高的燃烧室内,并且保证气体反窜进入分离器的量为最小。分类有:机械阀和非机械阀两种。

6、布袋除尘器的工作原理?

答:含尘气体从袋式除尘器入口进入后,由导流管进入各单元室,在导流装置的作用下,大颗粒粉尘分离后直接落入灰斗,其余粉尘随气流均匀进入各仓室过滤区中的滤袋,当含尘气体穿过滤袋时,粉尘即被吸附在滤袋上,而被净化的气体从滤袋内排除。当吸附在滤袋上的粉尘达到一定厚度电磁阀开,喷吹空气从滤袋出口处自上而下与气体排除的相反方向进入滤袋,将吸附在滤袋外面的粉尘清落至下面的灰斗中,粉尘经卸灰阀排出后利用输灰系统送出。

7、气力除灰的定义?

答:气力除灰是一种以空气为载体借助于某种压力设备(正压或负压)在管道中输送粉煤灰的方法。

8、小仓泵的工作原理、工作过程、常见故障有哪些?

答:(1)工作原理:小仓泵正压气力除灰系统是结合流态化和气固两相流技术研制的,是一种利用压缩空气的动压能与静压能联合输送的高浓度、高效率气力输送系统,而且是边流化、边输送,改悬浮式气力输送为流态化气力输送,因此系统的整体性能指标大大超过常规的气力除灰系统,是目前世界上成熟的气力输送技术之一。

(2)工作过程:本系统采用仓泵间歇式输送方式,每输送一仓飞灰即为一个工作循环,每个工作循环分四个阶段,a进料阶段、b加压流化阶段、c输送阶段、d吹扫阶段。

(3)常见故障a加不起压,一直加压;b堵管(仓泵底部气塞与灰泵之间滤网结死,必须找机务拆开清理);c仓泵不进料,进料阀不动作(联系热工或电气人员处理);d出料阀不动作(联系热工处理);e气动电磁阀不动作;f单向阀不动作;g压缩空气压力低不动作;h仓泵电源失去。

9、冷渣机启停顺序?

答:开机(1)打开进水阀(2)注满水后打开出水阀(3)启动电机(4)调整所需转速、(5)给料。

关机(1)停止给料(2)排净料后转速调“0”(3)切断电源(4)等30分钟后关出水阀进水阀。

10、何谓临界流速、临界流量及影响临界流量和临界流速的因素。

答:临界流速就是床料开始流化的一次风速,即由固定床转为鼓泡床的临界风速和风量,这时的一次风量就是临界流量。

影响临界流量和临界流速的因素有:

(1)如果床料的当量直径增大临界流量随之增大;(2)床料颗粒密度增大临界流量也增大;(3)床料的堆积空隙率增大临界流量增大;(4)床料的运动粘度或温度增高临界流量减小;(5)料层膨胀高度对临界流速基本没有影响。

11、何谓物料的循环倍率,及影响物料循环倍率的因素?

答:物料循环倍率是指由物料分离器捕捉下来且返回炉内的物料量与给进的燃料量之比。影响物料循环倍率的因素:

(1)一次风量:一次风量过小,炉内物料流化状态发生变化,燃烧室上部物料浓度降低,进入分离器的物料相应减少,这样不仅影响分离效率,也降低分离器的捕捉量,回送量自然减少;

(2)燃烧的颗粒特性:当颗粒较粗且所占份额较大,在一次风量不变的情况下,炉膛上部物料浓度降低回送量减少;

(3)分离效率:分离器效率降低,回送量减少;

(4)回料系统:回料阀内结焦或堵塞,回料风压头过低都会使回料量减少。

12、如何控制与调整床温,及影响床温的因素有哪些?

答:(1)影响床温的主要因素是燃料发热量、风量、运行中还有燃料品质的变化,因此即使工况稳定也要注意床温的变化,运行中随着床料的增加床层阻力也增加,在风门开度不变的情况下风量也会逐渐减少床温会随之升高,返料量对床温也有很大影响;

(2)为保证脱硫效率床温应稳定在850—950℃如果不脱硫,床温可适当升高(正常运行时床温可控制在870—930℃℃)为了维持床温运行稳定,主要通过风量和燃料量来控制,稳定负荷运行时,可以在小范围内调整风量燃料量或两者同时调整来调节床温,温度太高,可以减煤增风,温度降低可以加煤减风,满负荷运行时风量一般保持不变,如有温度波动一般情况下通过改变给煤量即可调整控制。

(3)正常运行时当床温控制在870—930℃范围时应密切注意温度上升趋势和变化情况,同时要加强对风室静压监视和汽温汽压的监视,如发现异常应及时采取措施切实避免结焦现象发生。

13、回料阀故障的因素、现象、如何处理?

答:原因:(1)回送装置风帽小孔堵塞;(2)风帽脱落,回料风堵死;(3)异物落入回送装置。现象:(1)床温难以控制,稍加给煤床温增加很快,难以稳定;(2)如在运行中突然堵塞,床温急剧上升甚至可能结焦;(3)汽压下降。

处理:(1)汇报值长,适当降低负荷控制床温;(2)将回送装置逐只隔离后检查,若有异物及时取出处理好后恢复运行;(3)若回料阀堵死,将回料风隔绝,打开回料风室检查孔或将回料风管脱开将回料风室内的灰料放尽后恢复。

14、锅炉结焦的现象、原因、如何预防及处理?

答:现象:(1)床温急剧升高;(2)氧量指示下降甚至到0;(3)一次风机电流减少;(4)炉膛负压增加;(5)引风机电流减少;(6)床料不流化,燃烧在料层表面进行;(7)放渣困难,正压向外喷火星;(8)观察火焰时局部或大面积火焰呈白色。

原因:(1)煤的灰熔点低;(2)燃烧时监视调整不当造成超温;(3)一次风量过小,低于临界流化风量;(4)点火升压过程中煤加的过快过多或加煤未加风;(5)单侧燃烧器运行造成流化不均匀而产生低温结焦;(6)压火操作不当或压火启动由于动作缓慢造成物料流化不起来而局部结焦;(7)炉膛内耐火砖大面积脱落或炉膛内有异物破坏床料流化;(8)回料装置不正常或堵塞;(9)负荷增加过快操作不当;(10)床温表失准,运行人员误判断;(11)风帽损坏渣漏至风室造成布风不均;(12)放渣过多造成床料低;(13)未及时放渣造成床料过厚;(14)一次风室破裂物料不流化。

预防:(1)控制好入炉燃料颗粒度一般控制在8mm以下;(2)点火过程中严格控制进煤量不超过20%;(3)升降负荷时严格做到升负荷先加风后加煤,减负荷先减煤后减风;(4)调整燃烧时做到少量多次的调整方法,避免床温大起大落;(5)经常检查给煤机的给煤情况,观察火焰及回送装置是否正常;(6)放渣根据床料差压做到少放勤放,放渣结束后,认真检查确认放渣门关严后方可离开现场。

处理:(1)立即停煤停风,锅炉停止运行;(2)打开人孔门检查结焦情况后关闭;(3)根据要求冷却,冷却后进行清理,当发现局部结焦时应采取有效的方法将焦块破碎后由放渣口放出,人工打渣应使用专用工具。

15、热烟气流态化点火步骤。

答:(1)启动一次风机,全关总风门及点火调节风门使旁路风门全开;(2)启动油泵待油压达到约2.0MPa时可准备点火,如看不到火焰应立即关闭调油阀门;(3)油燃烧器点着后,逐渐加大总风门和点火调节风门,密切注视热风炉的燃烧状况、排出的热风温度和风室压力的变化,并逐渐加大风量使床料进入流化状态,以均匀加热床料,同时注意调整燃烧器的给油量和风量,使排出的热风温度逐渐满足床料点火的要求;(4)当床料加热到8000C左右时即可投煤,煤量渐增,并注意控制温升速度,可适当减少热风量;(5)当床温升到9300C左右且基本稳定后,停止油燃烧器,调整给煤量,使燃烧投入正常。

16、正常停炉步骤。

答:(1)与邻炉联系好,保持母管压力,汽温正常;(2)逐渐减小给煤量,一二次风量及引风量,降低热负荷;(3)当负荷下降到60%时,将自动改为手动,维持汽包水位正常;(4)关闭煤闸门,待给煤机刮板内煤走完后停给煤机,然后停二次风机,关闭风门挡板;(5)若长时间停炉需煤仓走完后停给煤机;(6)当燃烧室温度降到6500C以下停高压风机一次风机引风机关闭风门挡板;(7)关闭主汽隔离门,开启主汽隔离门前疏水,过热器联箱疏水门逐渐降低负荷,待汽机停妥后,按汽机要求停炉,关隔离门(单炉运行根据汽机要求关闭);(8)加强上水至汽包水位+200mm左右,关闭给水门开省煤器再循环门;(9)严格控制汽压,当汽压升高接近时,可开启排汽门,正常后关闭,当汽压下降快时可关小或关闭部分疏水;(10)停止除尘器运行,并将罐内存灰放完后,停止系统运行。

17、一次风的作用?如何调整?有何注意事项?

答:一次风的作用是流化炉内原料,同时给炉膛下部密相区燃料提供氧量,提供燃烧。一次风由一次风机供给,经布风板下一次风室通过布风板和风帽进入炉膛,由于布风板风帽及床料(或物料)阻力很大,并要使床料达到一定的流化状态,因此一次风压头很高,一般在1400-2000mmH2O范围内。

一次风压头大小主要与床料成分,固体颗粒的物理特性、床料厚度以及炉床温度等因素有关。一次风量取决于流化速度和燃料特性以及炉内燃烧和传热等因素,一次风量一般占总风量的50%当燃煤挥发份较低时一次风量可大些。一次风与二次风比为50:50。

18、二次风的作用?如何调整?有何注意事项?

答:二次风的作用主要是补充炉内燃烧的氧气和加强物料的掺混,另外CFBB的二次风被适当调整炉内温度场的分布,对防止局部温度过高,降低NOX排放量起着很大作用。

二次风一般由二次风机供给,二次风最常见的分二级在炉膛不同高度给入(有的分三级),二次风口分二级从炉膛不同高度给入,二次风口根据炉型不同,有的布置于侧墙,有的布置于四周炉墙,还有四角布置,布置于给煤口和回料口以上的高度,运行中通过调整一二次风比就可控制炉内燃烧和传热。

19、回料阀的作用?如何调整?有何注意事项?

答:自平衡回料阀调整正常后一般不在作大的调节,回料风占总风量的比例很小,但压头较高,因此中小锅炉由一次风机供给,较大锅炉则需单独设置回料风机,对回料阀和回料风应经常监视,防止回料阀内结焦。

20、回料系统有哪几部分组成?具体作用各是什么?

答:物料循环系统中的分离器与回料阀之间的回料管称为回料立管(料腿);

作用是输送物料,系统密封,产生一定的压头防止回料风或炉膛烟气从分离器下部进入与回料阀配合使物料能够由低压向高压(炉膛)处连续稳定的输送。

21、加料阀自平衡原理是什么?

答:U型阀是应用比较普通的非机械阀,阀的底部布置有一定数量的风帽,阀体由隔板和挡板三部分组成。U型阀是个小型流化床,回料风一般由下部两个小风室通过流化风帽进入阀体内,运行中通过调整回料风量就可以调整回料量的大小,一旦调好负荷没有大的变化不需调整;

U型阀属于自平衡阀即流出量根据进入量自动调节,阀本身调流量功能较弱;

当由于某种原因使颗粒循环流率下降,则进入料腿中的物料量减少若回料装置仍以原来的流率输送物料,则必然使料腿中的料位高度低,从而导致输送率减少,直到与循环流率一致。

22、影响床温因素有哪几种?如何调整?

答:(1)影响炉内温度的原因是多方面的,如负荷变化时,风煤未能更好的配合,给煤量不均或煤质变化,物料返回量过大或过小,一二次风配比不当,过快地排放冷渣等,运行中随着床料的增加床层阻力也增加,在风门开度不变的情况下风量也会逐步减少,床温随之升高,返料量对床温也有很大帮助。

(2)为保证脱硫效率,床温要稳定在850—950℃如果不脱硫,床温可适当升高,为了维持床温运行稳定,主要通过风量和燃料量来调节,稳定负荷运行时,可以在小范围内调整风量燃料量或两者同时调整来调节床温,温度太高,可以减煤增风,温度降低可以加煤减风,满负荷运行时风量一般保持不变,如有温度波动一般情况下通过改变给煤量即可调整控制。

23、点火系统有哪几部分组成?具体的作用各是什么?

答:该系统主要有油箱、油泵、电弧点火器、热风炉本体、油燃烧器及阀门、管路等组成。点火系统中雾化风是使燃油充分雾化,便于燃烧完全,燃烧风提供燃油完全燃烧足够的氧气并有足够的压头使高温段的高温顺利进入风室加热床料,点火过程中点火失败燃烧风起到吹扫的作用,混合风是在燃烧不稳定时起到风障的作用。

24、在升炉过程中如何控制汽包壁上下温差?

答:严格按照升温规定的时间升温升压,保持燃烧工况稳定,加强定排,促进水循环,保持汽包高水位。

25、简述循环流化床燃烧时的炉内动力特性?

答:CFBB燃烧是在鼓泡床基础上增大流化速度使气固两相的动力特性发生变化,而进入湍流床和快速床状态,由于流化速度高(一般在4-10m/s)绝大部分的固体颗粒被烟气带出炉膛这时在炉膛出口布置一个物料分离器把固体颗粒分离下来,并返送炉内再燃烧,如此反复循环就形成了循环流化床,其燃烧技术的最大特点是燃料通过物料循环系统在炉内循环反复燃烧,使燃料颗粒在炉内停留时间增加直至燃烬。

26、引起锅炉结焦的因素有哪些?如何防止?

答:因素:(1)燃煤的灰熔点低;(2)燃烧时监视调整不当造成超温;(3)一次风量小,低于临界流化风量;(4)点火过程中煤加的太快、过多或加煤未加风;(5)单侧燃烧器运行造成物料流化不均匀而产生低温结焦;(6)压火操作不当或压火启动由于动作缓慢造成物料流化不起来而局部结焦;(7)耐火砖大面积脱落或炉膛有异物破坏床料流化;(8)回料装置返料不正常或堵塞;(9)负荷增加太快或操作不当;(10)床温表失准运行人员误判断;(11)风帽损坏渣漏至风箱造成布风不均;(12)放渣过多造成料层低;(13)未及时放渣造成床料过厚;(14)一次风箱破裂物料不流化。

防止:(1)控制好入炉燃料颗粒度;(2)点火过程中严格控制进煤量不超过20%;(3)升降负荷时严格做到升负荷时先加风后加煤,减负荷时先减煤后减风;(4)燃烧调整时做到少量多次的调整方法避免床温大起大落;(5)经常检查给煤机的给煤情况,观察火焰及回送装置是否正常;(6)放渣根据床料差压,做到少放勤放,放渣结束后认真检查确认放渣门关严后方可离开现场。

27、回料阀故障的原因有哪些?运行中如何处理?

答:原因:(1)回送装置风帽小孔堵塞;(2)风帽脱落,回料风室堵死;(3)异物落入回送装置。

处理:(1)报告值长适当降低负荷控制床温;(2)将回送装置逐只隔离后检查回送装置,若有异物及时取出,处理好后及时恢复运行;(3)若回料风室堵死,将回送风隔绝,打开回料风室检查孔或将回料风帽脱开将回料风室内的回料方尽后恢复。

28、床温急升如何处理?床温剧跌如何处理? 答:(1)床温高于10500C时虽经减煤加风措施,温度升高,此时可通过炉内加入沙子并打开炉膛放掉一部分炉渣,直至床温恢复正常。

(2)床温剧跌低于8000C时虽采取加煤减风措施仍然下降,炉子有灭火的可能,此时可通过炉门加入干燥的0-5mm的烟煤以提高床温,若床温仍不可能升高可采取压火操作,过一段时间等引子煤着火后再启动,启动时一定要先开吸风机,通风5min以防爆炸,但风量不可太大,炉膛负压维持在-200Pa即可,时间不可过长,以防结焦。接着开一、二次风机观察床温变化,如温度突然下降低于6000C时可投入油枪助燃。

29、如何控制床压?有哪些注意事项?

篇7:循环流化床锅炉的应用和选择

摘要:本文对循环流化床锅炉的实际使用效果、存在问题及其原因进行了论述分析,结合自己单位的应用体会,对循环流化床锅炉在适应性方面进行了阐述,并提出了选择循环流化床锅炉时应注意的事项。

循环流化床锅炉在国外是六十年代开发成功投入运行的,目前已有大型循环流化床锅炉投入电站运行。在我国八十年代开始研制开发中小型循环流化床锅炉,中国科学院热物理研究所、清华大学、浙江大学等科研院所与锅炉生产厂家联合开发,使循环流化床锅炉完善化设计、规模化生产、投入正常运行的步伐进一步加快。目前国内生产的35t/h以下的循环流化床锅炉设计、制造、运行技术已比较成熟。75t/h循环流化床锅炉也有二百余台投入运行,240t/h及更大容量的循环流化床锅炉将在近期建成投运。也有一些锅炉生产厂引进国外技术生产循环流化床锅炉,为循环流化床锅炉的发展注入了新的活力。进入九十年代特别是近两年,许多单位把循环流化床锅炉作为新建锅炉房的首选炉型。

一、循环流化床锅炉的使用效果

循环流化床锅炉正以明显的特点和优势得到越来越广泛的应用。从已投运的75t/h及以下容量的循环流化床锅炉来看,其在实际应用中有以下优点:

(一)锅炉效率高

循环流化床锅炉的清洁燃烧技术使得进入锅炉的固体可燃物燃烧效率达95%以上,有的甚至高达99.5%,大大减少了锅炉的固体不完全燃烧热损失,这是链条炉和抛煤机炉无法比拟的,固体不完全燃烧热损失的减小,使该型锅炉热效率一般都在85%以上,吨汽耗标煤在110kg左右,从而称之为高效节能炉型。

(二)运转设备少

该炉型只有三台风机及给煤机,没有过多的转动机械,较煤粉炉省去了复杂的制粉、粗细粉分离、送粉等系统,较链条炉省去了故障频繁的炉排部分,给设备的稳定连续运行创造了良好的条件。如果筑炉部分不出现故障,机械检修的任务量较其他炉型为最少。

(三)操作简单 运行稳定

目前已投运的各种容量及参数的循环流化床锅炉来说,从点火启动、运行操作到压火备用和事故处理,在技术上都比较成熟,许多使用单位都积累了丰富的经验。只要保证不间断给煤、炉膛料差稳定,控制好炉膛温度,循环流化床锅炉即可在50—110%的负荷下安全稳定运行。

(四)循环流化床锅炉投运初期的部分缺陷已被解决

投运初期的循环流化床锅炉主要存在漏风、点火困难、结焦、磨损等问题,经过几年的完善化研制和对运行工况的积极探索,这些问题都得到了良好的解决。如:一些厂家采用全密封的模式水冷壁结构彻底解决了漏风问题;点火方式改为床下点火后使点火成功率达100%,而且点火耗油也降低50%左右。经过十几年的研究开发,35t/h及以下容量循环流化床锅炉的生产、运行技术已比较成熟;75t/h循环流化床锅炉在各方面的缺陷也得到了较好的解决,连续运行时数已突破4000小时,年累计运行时数将近8000小时。

(五)循环流化床锅炉在使用中遇到的问题及原因分析

循环流化床锅炉投运十几年来也经历了十分艰难的历程,一些厂家过分夸大循环流化床锅炉的某些优点,使一些增设了循环流化床锅炉的单位遇到许多麻烦,主要原因是:

1、部分厂家在循环流化床锅炉的漏风、点火等问题未得到良好解决时就过分夸大该型锅炉的节能效果、煤种适用性极广可烧炉渣等个别优点,使一些单位安装投运后遇到漏风、点火困难、磨损严重、甚至带负荷能力差等问题。

2、循环流化床锅炉是一种新型锅炉,其点火燃烧方式不同于层燃炉和室燃炉,一些制造厂家是参照其他单位或国外的资料编写的使用说明书,在点火启动、运行操作技术上没有实践经验,很难给使用单位良好的技术指导,尤其是在点火启动、运行操作、工况调整等方面,使许多单位进行了长时间的摸索,走了不少弯路。

3、该炉型依然没有很好地解决磨损等问题,故障停炉多,开停车频繁,使得选择循环流化床锅炉作为主要供热设备的厂家在系统生产上受到不同程度的影响。

二、循环流化床锅炉的应用体会

我厂于1995年底投运一台75t/h中参数循环流化床锅炉,笔者参与了该炉的考察调研、设备选型,参加完成了锅炉房设计、工艺管道辅机的施工安装及设备的试车投产,现在该炉是我车间的主要供热设备。投产两年多来,经过工程技术人员的共同努力,对该炉的点火启动、防磨检修及运行操作技术都积累了一定的经验,对循环流化床锅炉也有了新的认识。

我厂投产的75t/h循环流化床锅炉从第一次点火到顺利熟练掌握点火运行操作技术仅用了半个月的时间。投产初期,设备运行良好,锅炉热效率在89%以上,燃烧效率在96%以上,该炉从试车到正常运行在当时确实创国内较好水平,各项性能指标也达到甚至超过设计要求。由于我厂的这台锅炉是锅炉厂重大改型设计后的第一台,尚处于完善化设计的初始阶段,各项防磨措施正在完善中。所以,锅炉投产半年后,其主要受热面相继出现问题,该炉型弱点开始明显暴露出来:膜式水冷壁、高温过热器、省煤器、相继出现磨损泄露现象,在九六年六月份的第一次大修中,为校正旋风分离器的中心筒和旋风筒顶的龟裂,将旋风筒顶打掉重新浇注,从此,旋风筒顶的被冲刷成突出问题,之后的两年时间里,先后四个厂家九次对顶进行浇注,给生产和供热带来极大影响。为此我们对锅炉的磨损原因进行了仔细分析,并采取了积极有效的防磨措施。

(一)膜式水冷壁的磨损及防护

磨损的部位主要在后膜壁两侧的夹角处,分析原因主要是因为锅炉的烟气出口在炉膛后部,烟气流从后膜壁顶部引出炉膛时,烟气夹带的颗粒与后膜壁碰撞后下落,由于后膜壁两侧的夹角处是烟气的相对静止区,所以颗粒浓度较大,燃用高灰份煤种或高料差运行会使其浓度相对增加,磨损进一步加剧。两年的时间里,后膜壁两侧夹角处卫燃带上部曾三次更换八段管子。

为解决卫燃带上部的磨损,我们采取了多项防磨措施。在九七年度设备大修时,根据一些单位提供的情况和资料介绍,采取了喷涂金属粉末的办法,以增加其表面的抗磨性。由于是立管喷涂,很难在表面喷涂均匀,而该炉最忌悔的就是不平整表面。所以开炉一段时间后,未喷上或喷层较薄的仍磨损泄露。由于金属粉末是几种金属的合金,一旦泄露,其可焊性极差,必须将喷涂层彻底磨净,给抢修带来较大难度。为此我们订购了铁铝瓷防磨护瓦,拟扣在膜壁上,起保护膜壁、分离细灰的作用,但有些护瓦不能紧贴膜壁,使细灰从缝间流过仍对膜壁造成磨损。经过分析试验,我们自行设计制造了一种小盖瓦,使其能紧紧贴住膜式壁,将贴壁下降流的细灰分离,从而起保护作用。

(二)高温过热器的磨损及防护

高温过热器的磨损部位在上段约800mm的范围内,分析原因主要是烟气从中心筒垂直出来,向后转弯时,因为惯性作用使大部分烟气及携带的颗粒从高温过热器上部经过,造成磨损。为此我们在高温过热器之前顶部浇注一道耐磨混凝土梁,以使烟气能适当改变方向,另外,在其可能受冲刷的直管段迎风面,加上铁铝瓷防磨护瓦,防止冲刷磨损。

(三)省煤器的磨损及防护

省煤器为蛇形光管,上护不锈钢角钢,磨损部位主要在其入口靠炉前部位,磨损原因是由于烟气从低温过热器出来后转弯进省煤器,因惯性作用使省煤器入口烟气偏流所至;加上省煤器是52组,烟气流通面积小,流速快,是其磨损加剧的又一原因。

为了解决烟气偏流的问题,我们先在省煤器入口上方增设了布风板,使烟气尽可能垂直均匀进入省煤器,此项措施使省煤器在已盲8组的情况下,又运行一年的时间。另外,在省煤器更新时,我们将52组光管式改为36组鳍片式省煤器,在不减少水侧流通面积的情况下,增加了烟气侧的流通面积。

(四)旋风分离器顶部的磨损及防护

旋风分离器顶部在九八年度大修之前,曾有四个施工单位选用多种物料配方,九次对其进行浇注修补,大多采用了加有碳化硅、棕刚玉、钢纤维等耐磨性极好的固料,一些施工单位和耐磨浇注料生产厂过高估计自己物料性能和浇注效果。大都宣称,物料浇注好后三天内可以拆模、点火开炉;个别单位竟说,24小时后即可不拆模开炉。但事与愿违,经过实践均出现了不同程度的踏落,即使自然养生一周,然后蒸汽烘炉三天,再点火开炉,也只运行三十余天,即被严重冲刷,甚至将280mm的耐磨浇注料顶部冲透。由此我们走了不少弯路,严重影响了冬季的蒸汽供应和系统生产。

经过分析认为,烟气从炉膛后部烟窗出来时,经转弯进入高温旋风分离器时,由于惯性作用,高温烟气夹带的颗粒对顶部造成冲刷。为此我们认为,浇注料本身的质量固然重要,施工质量、自然养生及浇注料的初期烧结也决不能轻视。我们在敦促施工单位保证物料和施工质量的同时,尝试着增加自然养护时间和低温洪炉时间,为保证低温烧结良好,我们在旋风筒顶打浇注料时,垫一层薄钢板做防护,主要目的是在点火运行初期,使浇注料在钢板的保护下能缓慢烧结,在其烧结之前不被冲刷,待其烧结良好后,浇注料的耐磨性会比烧结前增加许多,薄钢板的炭化需要一定的时间,炭化脱落后,浇注料已有较强的抗磨能力。

(五)改变煤种 调整运行工况 减轻对锅炉的磨损

锅炉投运初期,燃用河南义马煤,该煤种灰份高,挥发份高,易点火,炉膛料差易控制,但灰份高必然使烟气中夹带的颗粒浓度增加,磨损加剧,而且高料差运行使物料的飞扬高度增加,过度区的高度提高,烟气中的灰粒增加,磨损进一步加剧。所以我们经过试验,燃用灰份低、发热量高、粒度细、煤质疏松的煤种;并适当降低了炉膛料差,由运行初期的9500Pa降到8300Pa左右,突破了锅炉生产厂提供的指标,炉膛温度也由运行初期的850—950°C提高到950—1050°C,为锅炉的减轻磨损和正常运行提供了有力保证。经过采取以上的防磨措施和为减轻磨损对运行工况的调整,使锅炉的运行周期明显提高,由原来的连续运行1000多小时提高到4000多小时。也使我们对循环流化床锅炉有了新的认识,彻底改变了循环流化床锅炉不能长周期运行的看法。

三、选择循环流化床锅炉的企业应注意的几点

根据我们在考察选型及运行检修中的经验,结合我们了解到的一些循环流化床锅炉设计制造单位及使用厂家的情况,想就选择循环流化床锅炉谈以下几点看法。

(一)循环流化床锅炉对煤种的适用性

循环流化床锅炉是作为燃用劣质煤的项目开发研制出来的,但它对不同煤种几乎都有良好的适应性。一般情况下,其燃用各种固体燃料的热效率或燃料的燃尽率较其他炉型都要高,对劣质煤其燃尽率可达99%以上,对优质燃料或含碳量较高的煤种,由于其燃尽率相对较低,故其热效率也要稍低。

但在实际运行中,不能一味追求劣质煤的燃尽率而选择燃用劣质煤,因为劣质煤的灰份较大,势必会使锅炉的磨损更加严重。因此在实际选择燃用煤种时应作好技术经济比较,尤其是需要远程购煤的锅炉用户,应对燃煤的粒度、硬度、固定碳、发热量等指标进行考察比较,并尽量不选择劣质煤。

(二)循环流化床锅炉对企业生产性质的适应性

循环流化床锅炉由于是高效节能炉型,且对负荷有较好的适应性,可在50—110%的负荷下运行,目前正在各行各业积极推广,适应各种性质的企业锅炉房设置。但由于循环流化床锅炉的磨损问题尚未得到很好的解决,所以在选择时还应注意根据企业的性质选择好锅炉的容量。对连续性生产企业,如果没有其他锅炉作热负荷调整,一般不宜设置大容量的循环流化床锅炉;对新建单位的锅炉房,也不宜选择大容量的循环流化床锅炉,宜选择同型号的两台锅炉同时投运,以保证系统生产的连续性。

(三)更适宜设置循环流化床锅炉的企业

在离煤矿较近的地方和劣质煤产地宜选择循环流化床锅炉进行热电联产,选择廉价的燃料以获得较好的经济效益。

此外,许多企业有大量低热值的废料被廉价处理或废弃,为充分利用能源,变废为宝,可选择适当容量的循环流化床锅炉燃用低热值的物料,作为节能项目,创造效益。

四、锅炉选型时要考虑的问题

在确定选择循环流化床锅炉后,还要对其进行认真的选型考察,目前国内生产循环流化床锅炉的厂家有几十个,其布置方式、部件结构及各种性能指标也不尽相同,投运后的效果也相差较大,因此应对锅炉部件性能及使用效果认真考察后做出选择。循环流化床锅炉不同于层燃炉和室燃炉的主要部件有三个:布风装置、分离器、返料器。

(一)布风装置

循环流化床锅炉采用的布风装置主要有两种形式:风帽式和密孔板式。目前,我国常用的是风帽式布风装置,从几年来的运行实践证明,风帽式布风板布风均匀,当负荷变化时,流化质量稳定。但风帽顶部容易被烧坏是存在较多的问题。一些锅炉制造厂已对风帽结构、大小、材质进行了改进,改善了流化质量,增加了风帽的使用寿命。

(二)分离器

分离器是循环流化床锅炉至关重要的部件,其布置位置也是一个十分重要的问题,它直接影响锅炉结构布置和运行特性。按分离器的结构形式可分为旋风分离器、惯性分离器、组合型分离器等;按分离器工作温度的不同,又可分为以下四类:

1、高温分离,即在炉膛出口进行分离,工作温度一般在850°C以上。

2、中温分离,即在过热器后进行分离,工作温度一般在400—600°C

3、低温分离,是在省煤器中间或之后的分离方式,目前国内很少单独使用。

4、组合型分离,即采用高温分离和中温或低温分离相结合的分离方式。

根据上面两种分类方式,目前国内主要采用的是高温旋风分离器、高温惯性分离器、高温惯性旋风组合分离器、高温惯性中温旋风组合分离器,也有一些锅炉制造厂在炉膛的二次风上方布置屏式过热器、管式过热器、蒸发受热面和省煤器,炉膛出口温度在400°C左右进入旋风分离器。

从目前已投运的循环流化床锅炉的实际使用情况来看,采用高温分离特别是高温旋风分离,在技术上已非常成熟,由于旋风分离较其他分离方式的分离效率要高,所以已有相当一部分35t/h及以下循环流化床锅炉和百余台75t/h循环流化床锅炉采用了该分离方式,且运行情况良好。其缺点是体积大,且在燃用高灰份煤种时,分离器顶部的磨损问题尚未完全解决。

惯性分离通常有烟气转弯的U型分离、百叶窗分离、撞击式平面分离等方式,由于惯性分离的效率较低,因此很少单独使用,一般与其他分离形式结合构成组合型分离,如高温惯性旋风分离器、高温惯性中温旋风分离器等。

(三)返料器

目前,国内大多采用非机械式的风力返料,只是各锅炉生产厂家的返料方式不太一样,从实际应用情况看也都比较好,均能正常返料,但返料器的漏风问题应引起重视,特别是高温返料时,应确保返料器的严密性,在施工时就应保证砌炉的灰缝饱满,外护钢板的焊缝要满焊。

总之,循环流化床锅炉在我国的投入实际应用虽然只有短短的十几年,发展却十分迅速,目前循环流化床锅炉的推广应用正在积极有效地进行,希望各使用单位在选择时一定结合自己的实际,作好考察分析;也希望锅炉研制及生产厂家在进一步完善锅炉的各项性能指标的同时,对循环流化床锅炉的使用说明及运行操作技术进行认真总结,以更有利于循环流化床锅炉的推广应用。

篇8:热喷涂技术在循环流化床锅炉中的应用

SNCR脱硝技术是将NH3、尿素等还原剂喷入锅炉炉内与NOX进行选择性反应,不用催化剂,因此必须在高温区加入还原剂。还原剂喷入炉膛内温度为850~1 100℃的区域,迅速热分解成NH3,与烟气中的NOX反应生成N2和水。

在850~1 100℃范围内,NH3或尿素还原NOX的主要反应如下。

以NH3为还原剂:

以尿素为还原剂:

SNCR烟气脱硝技术不需要催化剂,因此投资相对少;系统简单紧凑,占地面积较少;氨氮比在0.8~2.5,运营成本中等;不产生二次污染及废水。SNCR烟气脱硝技术的脱硝效率一般为30%~80%。脱硝效率受锅炉结构尺寸影响很大。

1 SNCR烟气脱硝技术工艺流程

氨水通过卸氨泵将罐车氨水输送至氨水储罐,氨水和稀释水通过氨水泵和稀释水泵提压送至计量混合柜进行定量配比,混合后的氨水浓度为5%~10%。氨水通过喷射柜调节后与压缩空气一并进入喷枪,在压缩空气的作用下雾化进入高温烟气内部,与烟气充分混合并与NOX发生反应。

NH3还原NOX的主要反应为:

当反应温度过高时,由于氨的分解会使NOX还原率降低,另一方面,反应温度过低时,氨逃逸增加,也会使NOX还原率降低。此外,NH3是高挥发性和有毒物质,过量的氨会造成新的环境污染。

SNCR烟气脱硝技术主要工艺流程见图1。

2 SNCR烟气脱硝技术应用效果

以山东泰安某电厂为例。该厂有3台75 t/h循环流化床锅炉,采用SNCR脱硝工艺。3台锅炉均燃用煤泥,1#、2#锅炉喷枪设置为炉膛出口烟道,喷头为4个,沿烟道水平方向垂直进入,每侧2个,喷头为扇形;3#锅炉有左右两个炉膛,因此将喷枪设置在尾燃带以上0.5 m上处,喷头为8个,水平方向垂直进入,每侧4个,喷头为锥形。氨水的浓度为20%,用除盐水稀释后浓度为5%~10%,稀释后单台锅炉氨水的流量为60 L/h。

3 台锅炉的脱硝效果见表1。

表1 脱硝效果

因循环流化床锅炉氮氧化物的生成受锅炉床温及氧量的影响,因此脱硝效果也会有所波动。但通过半年左右的运行,3台循环流化床锅炉脱硝设施脱硝效率在50%左右,达到了预期的效果。

图1 SNCR烟气脱硝技术主要工艺流程

3 结论

随着国家对火电厂氮氧化物排放标准的不断提高,循环流化床锅炉原有低氮燃烧的特点已不能满足排放的要求,因此必须采用切实可行的脱硝治理措施降低污染。对于循环流化床锅炉机组,因本身NOX的生成浓度较低,因此SNCR脱硝技术无论是投资成本还是脱硝效果都是较好的选择。

参考文献

[1] 马广大.大气污染控制工程(第二版)[M].北京:中国环境科学出版社,2003.

[2] 郝吉明,马广大.大气污染控制工程(第二版)[M].北京:高等教育出版社,2008.

[3] 戴树桂.环境化学[M].北京:高等教育出版社,2006.

[4] 杨建华.循环流化床锅炉设备及运行[M].北京:中国电力出版社,2010.

[5] 蒲恩奇.大气污染治理工程[M].北京:高等教育出版社,1999.

[6] 冯裕华,付仲逑.环境污染控制[M].北京:中国环境科学出版社,2003.

[7] 王文选,肖志均,夏怀祥,火电厂脱硝技术综述[J].电力设备,2006,(8):1-5.

[8] GB13223-2011,火电厂大气污染物排放标准[S].

上一篇:荷塘月色教学设计下一篇:成功人士案例