通信设备设施集中监控系统的雷电防护探讨

2024-04-17

通信设备设施集中监控系统的雷电防护探讨(共10篇)

篇1:通信设备设施集中监控系统的雷电防护探讨

人防通信设备监控系统的雷电防护探讨

摘要:在简要分析通信设备设施集中监控系统雷击损坏的主要原因和雷电浪涌侵入途径的基础上,提出了监控系统雷电防护的基本措施。简单介绍了人民防空通信设备监控系统雷电防护的主要技术特点。

Abstract: after a brief analysis of centralized monitoring system of communication equipment and facilities the main causes of lightning damage and lightning surge invasion pathways as the basis, put forward monitoring system lightning protection measures.Brief introduction of the civil air defense communications equipment monitoring and control system of lightning protection in the main technical characteristics.关键词:监控系统雷电浪涌雷电防护布线线路屏蔽等电位连接浪涌保护器 Key words: Monitoring system lightning surge protection against lightning shielding equipotential connection wiring line surge protector 引言

近年来,随着集中监控系统在人防指挥信息保障系统特别是移动通信基站中的广泛应用,监控系统因遭受雷击而损坏的事故时有发生。这种状况不仅不利于通信网的长期稳定、可靠运行,还造成人力、物力和财力上的浪费。因此,如何做好监控系统的雷电过电压防护,有效降低雷击事故发生率,是摆在运营商和设备制造商面前的一个重要问题。概述

雷电浪涌造成监控系统损坏的主要原因有:

首先,监控系统采用了大量的高集成度微电子元器件,而这些元器件本身抗干扰的能力很低。随着微电子技术的迅猛发展,微电子元器件不断涌现,其集成度越来越高,所传递的信号电流也越来越小,对外界的干扰也越来越敏感。

其次,人防通信,特别是移动通信基站的实际运行环境比较恶劣。由于大部分人防通信基站内设有铁塔,比周围的建筑物 / 构筑物都高,遭受雷击的可能性比较大。加之由于技术或经济上的困难,部分局站没有按照相关规范的要求采取整体防雷措施,为站内监控系统留下 了雷击隐患。

最后,长期以来,人防通信基站设备防雷都是以防止雷电浪涌沿局外线路感应为主,对监控系统等在局站范围内的系统的防雷研究较少。但事实上,由于监控系统的连接线路较多,有些线路的敷设长度可达 100 ~ 200 米甚至更长,一旦这些线路遭受雷电电磁场的影响,将雷电浪涌传到各监控设备的接口电路中去,从而对接口电路产生影响和冲击。

近年来,国内外相关标准对局站范围内部的各种通信系统(包括监控系统)的防雷问题也日益重视。如国际电信联盟(ITU)的 K.40 建议 [1] 对电信中心的雷电电磁脉冲的防护提出了指导性方法,而 K.41 建议 [2] 则规定了电信中心内部的通信线路和设备端口的浪涌抗扰性要求。这两个建议的提出表明,国际上已经开始重视通信局站内部设备的雷电浪涌的抗扰性要求。而在最新的通信行业标准 YD/T5098-2001 [3] 中也已经明确提出监控系统的雷电过电压保护的设计要求。2 雷电浪涌侵入集中监控系统的途径

任何一个电磁干扰都必须具备以下三个条件:首先是干扰源,其次是传递干扰能量的途径或媒介(耦合途径),最后是对干扰产生反应的设备(敏感设备)。干扰源、耦合途径和敏感设备被称为干扰三因素。为减小到达敏感设备的干扰能量,必须先弄清干扰源的性质、干扰的耦合方式以及敏感设备自身的耐受能力,才能有的放矢,提出最有效的解决办法。

本文所考虑的干扰源就是雷电电磁脉冲(LEMP),它包括雷电放电电流以及雷电放电时在其周围空间产生的瞬态电磁场,反映在设备上就是雷电浪涌;敏感设备就是监控监控系统;对监控系统而言,雷电浪涌的耦合途径主要有:

1、近场感应。雷击通信局站或其邻近区域时,会在其周围空间产生强大的瞬态电磁场,该电磁场会在处于其空间范围内的金属导线上感应出一定幅值的瞬态过电压(主要是磁场感应),感应过电压的大小主要取决于雷电流的变化率、线缆与雷击点的距离、线缆的长度、各线缆间形成的回路面积以及线缆是否有效屏蔽等因素。它主要施加在与线缆相连的设备端口上,以共模分量为主,差模分量的大小则视线缆的结构型式而定。感应过电压是造成通信局站内监控系统雷击损坏的主要原因。

2、公共地阻抗耦合。雷击时,雷电流沿接地体入地时会引起接地体的地电位升高,如果设备或系统布置不当或者接地不当,会在接地系统与设备间产生较高的过电压(称为反击过电压),从而导致设备损坏。此外,当通过各种线缆(如信号线、数据线等)互连的设备间存在较大的地电位差时,也会导致设备的损坏。

3、传导耦合,主要是指雷电侵入波。雷电侵入波又称为线路来波,它是指沿进局电缆以行波的方式窜入室内的雷电浪涌。雷电侵入波产生的根源可能是感应雷,也可能是直击雷,但从监控系统的角度来看,则可视为传导耦合。对于需要将监控信号上报的无人值守站(特别是移动基站),雷电侵入波是造成监控设备损坏的另一重要因素。3 集中监控系统雷电防护的基本措施

集中监控系统具有线缆类型多、接口类型多、线缆数量大等特点,其雷电损坏以近区磁场感应过电压和雷电侵入波为主,因此监控系统的防护应针对上述特点,从整体上加以考虑,才能起到良好的防雷效果。

监控系统的雷电防护措施可以归纳为以下两个方面:其

一、抑制或衰减雷电浪涌的耦合途径,主要措施包括屏蔽、合理布线、等电位连接和接地等;其

二、提高监控设备本身的浪涌耐受能力,主要包括合理设计内部电路、加装电涌保护器等。3.1 合理布线

如上所述,人防通信基站或其近区遭受雷击时,雷电电磁场在站内监控系统的线缆上产生的感应过电压主要取决于雷电流的变化率、线缆与雷击点的距离、线缆的长度以及各线缆间形成的回路面积以及线缆是否有效屏蔽等因素。因此,合理布线对减小感应过电压水平、降低监控设备雷击损坏率有着十分重要的意义。

在实施监控系统布线时应注意以下几个问题:

1、局站范围内,严禁室外架空走线。室外架空走线有可能遭受直击雷,严重威胁监控系统的正常运行。此外,架空走线形成的环路面积较大,雷击时会产生较大的感应过电压。2、室外线缆的布放应尽量远离铁塔等可能遭受直击雷的结构物,应避免沿建筑物的墙角布线。

3、室内各种监控线缆的布放应尽量集中在建筑物的中部。雷击时建筑物中部的空间电磁场相对较弱,因此将电缆布放在建筑物的中部可有效降低感应过电压。

4、监控线缆及线槽的布放应尽可能避免紧靠建筑物的立柱或横梁。在不可避免时,应尽可能地减小沿立柱或横梁的布线长度。3.2 线路屏蔽

屏蔽是电磁干扰防护及控制的最基本方法之一,其目的是限制或防止某一区域内外电磁场的相互耦合,将电磁场作用限制在规定的空间范围之内,即通过抑制耦合途径来减小干扰源对敏感设备的影响。对通信系统的雷电防护而言,屏蔽可分为建筑物的屏蔽、房间的屏蔽、设备的屏蔽和线缆的屏蔽。这里主要讨论线路的屏蔽。

常见的线路屏蔽方式主要有两类:其

一、采用屏蔽套管或屏蔽槽等外部附加屏蔽;其

二、采用屏蔽电缆。屏蔽套管(金属管屏蔽)的主要优点是屏蔽效能良好,其主要缺点是柔软性差,施工不便。由于屏蔽槽存在较大的缝隙,其屏蔽效能比屏蔽套管的差。但由于其施工方便,如果在施工工程中做好接头和接缝处的处理,还是能取得一定的屏蔽效果。

采用屏蔽电缆是一种常用的线路屏蔽方式。尽管其屏蔽效能不如金属管屏蔽,但在线路不长(如小于 100m)、外界电磁场干扰不是太强烈时,仍具有较好的屏蔽效能。在实施线路的屏蔽时应特别注意以下几个问题:

1、电缆屏蔽层、屏蔽套管或屏蔽槽等屏蔽体的两端必须接地。由于感应过电压主要是由近区磁场感应所致,屏蔽体两端接地后,在屏蔽体与地回路间形成一个闭合的环路,该环路中所链接的磁场所感应出的电势在环路中形成感应电流,该电流产生的磁场方向与干扰磁场方向相反,从而抵消或减小外界干扰磁场对芯线的影响,大幅度降低芯线的感应过电压。2、为最大限度地利用屏蔽体的感应电流,任何影响电流流通的因素都应加以注意。如屏蔽体在整个电缆长度上必须是导电贯通的,并尽可能多点就近接地;做好屏蔽体接头和接缝处的连接,以期获得稳定的低阻抗电气连接;做好屏蔽体的接地,尽可能降低接地引线的阻抗等。

3、在工程实际中,应充分利用现有的金属走线槽和走线架,屏蔽电缆和金属走线槽的配合使用可获得附加的屏蔽效能。3.3 等电位连接和接地

适当的等电位连接和接地是减小反击过电压和地电位差的有效措施。

等电位连接是用连接导体或浪涌保护器将处在需要防雷空间内的防雷装置、建筑物的金属构架、金属装置、外来导体、电气或电子设备等连接起来,其目的是减小需要防雷空间内的各金属部件以及各系统之间的电位差。通信局站的等电位连接和接地包括:由建筑物金属构架、防直击雷装置以及外来导体等相互连接而成的公共连接网,局站内各通信系统所建立的局部等电位连接网,以及上述各连接网间的连接和接地。

原则上讲,监控系统的外露导电部分所形成的局部等电位连接网可具有以下两种结构型式: S 型(星形结构)和 M 型(网型结构)。相应地,它们与公共连接网的连接方式应分别采用 Ss 型和 Mm 型。如图 1 所示。

星形结构一般适用于较小的闭环系统,系统内设备间以及设备与外界的连接线较少,容易与公共接地网隔离。当采用星形结构时,系统的所有金属组件除连接点外,应与公共连接网有足够的绝缘,即仅通过唯一的点连接到公共连接网中形成 Ss 型。此时,设备间的所有线缆应按照星型结构与等电位连接线平行敷设,以避免产生感应环路。Ss 型等电位连接网的主要优点是能抑制外界的低频干扰。其缺点是维护和扩容比较麻烦,且在高频下易引入干扰。

网状结构一般适用于延伸较大的开环系统,系统内设备间以及设备与外界的连接线较多而且复杂。当采用网状结构时,系统的各金属组件应通过多点就近与公共接地网相连形成 Mm 型。Mm 形等电位连接网的主要优点是在高频时可获得一个低阻抗网络,对外界电磁场有一定的衰减作用,且维护和扩容比较方便。其缺点是理论上可能会引入低频干扰。

由于监控系统的采集设备与其它设备间存在广泛的互连,监控设备间的连接线缆也比较多,而且采用了大量的屏蔽电缆。适合于采用 Mm 型等电位连接网。同时,通信局站的实际运行经验表明,合理设计和施工的 Mm 型等电位连接网一般不会引入低频干扰。3.4 内部电路的合理设计

在采用了合理的线缆布置、有效的线路屏蔽以及适当的等电位连接和接地措施后,到达监控设备的浪涌能量会大幅度降低,从而减小雷电浪涌对监控设备的危害。但上述措施不能完全消灭达到监控设备的雷电浪涌,特别是当部分局站没有按照相关规范的要求采取整体防雷措施而导致站内监控设备所处的电磁环境比较恶劣时,雷电浪涌对监控设备的危害仍然存在。因此,在有效抑制雷电浪涌耦合途径的同时,应提高监控设备自身的浪涌耐受水平。

由于感应过电压和反击过电压或地电位差对设备造成损坏的主要原因是共模过电压,适当提高监控设备内模块的共模耐受水平可有效地防止此类损坏。

实际运行经验表明,监控设备的损坏大部分表现在设备的接口部分,因此应审慎地设计监控设备的接口部分电路,以提高其浪涌耐受能力。为达到这一目的,可采用的方法有:优选接口芯片、采用电气 / 光电隔离技术、内置浪涌吸收电路等。3.5 接口防护(加装电涌保护器)

运行经验表明,在综合采用上述防护措施后,基本上可以防止绝大多数由感应过电压和反击过电压或地电位差造成的监控设备的损坏。但在以下两种情况下,监控设备仍有可能因雷电浪涌而损坏:

1、对于需要将监控信号上报的无人值守站(特别是移动基站),外引线(如 E1 线、电话线或 RS422 等信号线)可能会将较大幅值的雷电侵入波引入监控系统。2、当人防通信基站遭受直接雷击且雷击强度较大时,在站区内的长距离监控线缆中可能还会感应出较大的过电压。

此时,可采用加装浪涌保护器(SPD)来降低雷击事故率。信号线用 SPD 的选用应注意以下几个问题:、SPD 的保护水平应满足监控设备浪涌耐受水平的需要。、SPD 应满足信号传输速率及带宽的需要,其接口应与被保护设备兼容。3、SPD 的插入损耗应满足监控设备的要求。、SPD 的标称放电电流应满足标准 [3] 的要求。4 ENP 集中监控系统(PSMS)的防雷技术特点

在认真研究集控系统雷击损坏原因和失效机理的基础上,我们提出了 ENP 集中监控系统的雷电防护的整体方案,该方案具有以下主要技术特点:、将监控系统作为整体进行考虑,综合采用线路屏蔽、合理布线、等电位连接和接地、加装 SPD 等措施,抑制了雷电浪涌与监控系统间的耦合路径,最大程度地减小了感应过电压、反击过电压以及雷电侵入波对监控系统的危害,大幅度地提高了监控系统的整体防护性能; 2、通过内部电路的合理设计,提高了监控设备自身的浪涌耐受能力; 3、对于雷击重点部位,采用有效的接口防护措施,极大地提升了监控系统的雷电防护能力。主要端口的标称放电电流达 5kA 以上,远高于 YD/T5098-2001 [3] 的相关要求。参考文献 [1] ITU-T K.40(1996)Protection against LEMP in telecommunications centres [2] ITU-T K.41(1998)Resistibility of internal interfaces of telecommunication centres to surge overvoltages [3] YD/T 5098-2001,通信局(站)雷电过电压保护工程设计规范

篇2:通信设备设施集中监控系统的雷电防护探讨

摘 要:大规模集成电路和智能化在通信设备中的广泛应用,使得各种先进通信设备对过电压的要求也就越来越高。因此必须采取适当的保护措施以避免因过电压及其所产生的过电流对传输线路、通信设备和人员造成的危害。本文重点介绍“整体防御、综合治理、多重保护”的防范原则,力争将其产生的危害降低到最低点。

关键词:通信设施 防雷措施 降低危害

随着科技的迅猛发展,大规模集成电路和智能化在通信设备中的广泛应用,使得各种先进通信设备对过电压的要求也就越来越高。由于雷电在电源线、信号线、天馈线等上感应的瞬间过电压造成的危害时常发生,因此必须采取适当的保护措施以避免因过电压及其所产生的过电流对传输线路、通信设备和人员造成的危害。

雷电是一种自然现象,它曾给人类社会带来了不少危害,国际电工委员会已将雷电灾害称为“电子时代的一大公害”,雷击、感应雷击、电源尖波等瞬间过电压已成为破坏电子设备的罪魁祸首。从大量的通信设备雷击事例中分析,专家们认为:由雷电感应和雷电波侵入造成的雷电电磁脉冲(LEMP)是通信设备损坏的主要原因。因此只有了解了它的形成过程,寻求有效地防护措施才能减少雷电带来的损失。根据气象观测,地球上每秒钟要出现大约100次左右的闪电雷击。按照电信专用房屋设计规范,通信大楼一般都安装有避雷针、避雷网或避雷带,并且均采取了联合接地的方式。从形式上看,它已具备了良好的防雷和抗外界电磁干扰的性能,然而通信设备为什么有时还会遭受过压过流而损坏呢?甚至还会对操作维护人员的人身构成威呢?这是由于当发生雷电时,带电的云层会在通信设施的天线上产生感应电荷或雷电感应通过通信和电力线路侵入,如果天线和通信线缆与大地之间直流通路不畅,就会由于感应在天线和线缆与大地之间产生高电位而引起过电压,致使通信设施无法承受强电流的侵入而损坏,甚至会危及操作人员的人身安全。

随着长江通信建设速度的加快,先进通信设备在长江通信网的大规模应用,单一的防护体系已不能满足现代通信网络安全的要求,我局也加大了对防雷接地系统的投入,防护体系也日趋完善。防护体系已从单一防护体系转为多级防护,多级防护包括防直击雷、防感应雷电、防地电位反击引起的瞬间过电压影响等多方面的防护,应根据数字程控、数字微波、VHF、光电传输、交直流电源等所有微电子设备的不同功能、不同受保护程度确定防护要点和保护等级。根据雷电引起瞬间过电压的危害的可能侵入的通道,从电源线到数据通信线路都应该做到多级保护。为此我们应采取的防范原则是“整体防御、综合治理、多重保护”,力争将其产生的危害降低到最低点。

一、通信设施的防雷措施

通常来说,避免建筑物及设备遭受雷击的方式大致有四种:①疏导,即将雷云中的电荷通过引线疏导至大地,避免直接雷击或感应雷击电流流经建筑物或通信设备,从而使建筑物或通信设备免受雷击。②隔离,即将雷电所产生的过电压和被保护物隔离开来从而避免雷击。③等位,即将铁塔地、天馈线地、设备工作地、建筑物的公共地等置于等电位上。④中和,即释放出异性电荷和雷云中的电荷进行中和,从而阻止雷电的形成。根据以上的四种避雷方法,具体到一个通信工程的防雷电过电压来说,其主要的措施有以下几种方法。

1.外部防护

篇3:浅析雷电对通信设施的危害及防护

1 室外通信设施雷电的防护

1.1 安装避雷针或接地装置

外部防护主要采用避雷针 (避雷网、避雷线和避雷带) 和接地装置 (接地线、地极) 来加以防护。这是人们长期实践证明的防直击雷的有效方法, 然而, 被动放电式避雷针存在反应速度差、保护的范围小以及导通量小等不足。根据现代通信发展的要求, 避雷针应选择提前放电主动式的防雷装置, 并且应该从30°、45°、60°等不同角度考虑, 做到对各种雷击的防护, 增大保护范围。避雷针或接地装置的要求是:

a.避雷针应当装在高于天线尖端数米, 以防止由于避雷针的存在而损坏天线的辐射图形影响通信效果。一般的做法是避雷针成为天线塔体的主杆, 通信天钱却装在避雷针外线大约1.5个波长以外。

b.避雷地线的直流通路的电阻要求, 应根据不同通信设备, 不同物理环境, 地形地貌和土质条件按规范要求进行实施, 接地电阻越小越好。

c.接地引入线长度应不大于30米, 其材料应采用热镀锌扁钢或铜排, 截面积应不小于40mm×4mm。要尽可能使用3毫米以上的实心导线, 且最好是相同的金属材料。

d.为了增大地表层的过电压的泄放面积, 可采用埋设有一定间隔的多根接地体, 且相互焊接。

1.2 防感应雷击

室外通信设施除安装避雷针或避雷装置的同时, 还要注意消除感应雷击, 其常用的方法是在天馈系统中安装电涌保护器 (SPD) 。在天馈系统中安装SPD时应注意以下方面的问题:一是SPD的接地端必须与地连接可靠, 一般要求接地引线应从天馈线入口处外侧的接地线、避雷带或地网引接, 且接地电阻不得大于5Ω, 不然将会影响到防雷的效果。二是因存在一定的插入损耗, 对天线辐射信号的强度会造成一定的影响, 并且还要注意驻波比, 一般要求天馈系统的驻波比不大于1.5。三是安装通信天线时, 天线的支撑杆要与铁塔可靠连接, 连接电阻等于零。

1.3 通信线路的雷电过电压的防护

室外通信线路的雷电防护要采取多级防护, 在用户终端采用避雷器;野外通信线路安装有防雷装置的分线箱设备;通信杆路要按照设计规程规范安装避雷针和接地极;分线设备和交接设备一定要安装接地极;机房配线架保安单元性能良好。另外, 通信电缆进入通信大楼的通信电缆终端的电缆外套与通信装置的接地, 要采取等电位法进行综合接地连接。

1.4 通信大楼雷害的防护

首先, 通信大楼直击雷害侵入的是通信大楼内的雷电流, 它的防雷措施是在该通信大楼内, 接地干线设计有一条低阻抗的接地母线, 将每层楼的通信装置连接到这条接地母线上, 谋求等电位化。

第二, 从通信大楼流出到楼外的雷电流来看, 只要该大楼的接地电阻是小的, 就会防止接地电位上升;因为接地电阻没有几欧姆左右, 就没有好的防雷效果。

第三, 通信大楼的通信装置的防感应雷措施:通信大楼的防感应雷措施基本上采用住宅内通信装置用的同样的防感应雷措施。其中有点不一样的是:通信电缆的根数较多, 又是大型通信装置。为此, 每个通信装置不会安装旁路回路, 在通信线路一侧的整个引入电缆上插接有避雷器, 一方面, 在交流电源线一侧, 引入建筑物的这部分电缆上插接有避雷器, 通信线路的接地线与交流电源线的接地线还要进行相互连接。通信线路侧用的避雷器, 对于数字电路要用Pn Pn避雷元件, 交流电源线用的避雷器采用氧化锌避雷器。

2 室内通信设备雷电的防护

室内通信设备遭受雷电的形式主要是感应雷。直击雷只发生在雷云对地闪击时才会对地面造成灾害, 而感应雷则不论雷云对地闪击或者雷云对雷云之间闪击, 都可能发生并造成灾害。此外直击雷一次只能袭击一个小范围的目标, 而一次雷闪击都可以在较大的范围内多个小局部同时产生感应雷过电压现象, 应此感应雷击的危害更大。

2.1 室内通信设备雷电的防护

要的、精密的设备的电源开关处, 安装10k A的电源避雷箱, 以及UPS的前端对地加装避雷器, 作为三级保护。目的是用分流 (限流) 技术将雷电过电压 (脉冲) 能量分流疏导至大地, 从而达到保护的目的。

2.2 信号部分的防护

应采用分流限压的措施, 这需要根据通信设备的对雷电的敏感度来确定。在中继线和用户线分别应对地加装避雷器, 电缆中的空线应接地, 并做好屏蔽接地, 在交换机和计费终端之间安装网络避雷器。

2.3 机房通信设备的综合接地

第一, 交换机的等电位连接。程控交换机等电位连接的目的在于减少需要防雷的空间内各种金属部件和系统之间的电位差, 所有进入交换机房的金属导体都应做等电位连接。

第二, 通信设备机房的位置。机房的位置应结合建筑工程的远、近规划, 以及地形位置等因素来确定。对高层建筑, 一般的做法是把机房设在4层以下首层以上的空间。在潮湿的地区, 首层不宜设电话交换机房。

第三, 交换机的接地系统及屏蔽。程控交换机的接地包括:直流电源接地;电信设备机壳或机架屏蔽接地;入站通信电缆的金属护套或屏蔽接地;明线或电缆入站避雷器接地和信号电缆空线对的接地等。通常的做法是把程控交换机的所有接地与全站共用的通信接地装置相连, 然后再把共用接地装置与大楼的防雷接地相连, 做成合设地极。采用合设地极后, 通信设备的接地装置需采用专用的接地干线, 干线的截面积不小于25mm2的多股铜导线。

第四, 进局缆线的布线方法。目前, 交换机的传输网络在室外是采用架空和埋地两种方法。其中对架空线缆进局前应把电话线或电缆在入房前埋地, 埋地长度>50m。而埋地一般是采用金属铠装电缆直接埋地, 或非金属屏蔽电缆穿金属管直接埋地。

2.4 为保证系统正常工作, 每年在雷雨季节

前后或春、秋检修时应定期用精密地阻仪检测地阻值, 以确保地阻值始终保持在规定的范围内。

摘要:分析叙述了关于感应雷和直击雷对各种通信设施带来的危害, 必须采取防护措施, 避免对通信设施和人员造成危害。重点介绍了通信设施雷击防护的要求和具体做法。

关键词:雷灾,通信设施,雷电防护,降低危害

参考文献

[1]中华人民共和国机械工业部.建筑物防雷设计规范[M].北京:中国计划出版社, 2000.

[2]周志敏, 周纪海, 纪爱华.电子信息系统防雷接地技术[M].北京:人民邮电出版社, 2006, 7.

[3]刘世春.通信线路维护实用手册[M].北京:人民邮电出版社, 2007, 5.

篇4:通信设备设施集中监控系统的雷电防护探讨

关键词:雷电事故;通信设施;防雷避雷

中图分类号:TM862

随着科技的不断进步,通讯在我国得到了极大的普及,它早已渗透到人们生活中的方方面面,为人们的日常生活带来了极大便利。然而,如此一来,社会对通讯设备的要求也不断提高,通讯设备能否正常工作将对人们的生活以及社会的正常运转产生直接影响。不仅如此,通讯设备中采用的各类智能化配件和大型集成电路也对过电压提出了更为严格的要求,因此,如何保证通讯设备在雷电电压的干扰下也能正常工作成为了当前工作的重点内容。

1 雷电对通讯设施的影响

作为一种常见的自然现象,无论是在科学技术水平落后的旧中国,还是科学技术日新月异的现代,雷电都给我国造成过许多人力和财力上的损失。而在计算机科学技术的大力推动下,近年来通信设施为了满足与日俱增的社会需求,开始大量采用集成电路和智能化设施,这样一来,也为通信设施的供电电压带来了全新的挑战。因为在供电过程中,电压往往会由于天馈线、信号线或电源线等受到雷击产生的过电压而发生异常,进而影响到各类通信设施的正常运转,甚至造成人员伤亡现象。所以,在通信时代,雷电灾害早已成为了公认的社会公害之一。伴随着近年来,为国内外对通讯设施雷电过电压防护工作研究的不断深入,通信相关领域的研究人员已经在造成通信设备损坏的罪魁祸首上达成共识,即电脉雷电冲,它是由于通信设施受到雷电波冲击和雷电感应的影响后产生的。这一点便很好地解释了为何配置有良好的避雷措施的通信大楼仍旧无法逃脱雷电袭击的现象。在雷电天气中,进入到电力和通讯线路的电荷是由空中的雷电云层通过通信设施上的天线产生的,而这时候大地与线缆之间的连接障碍会使得雷电感应由于过高的电位而引发过电压现象,让通信设施中的电流超过电缆所能承受的极限,从而影响到通信设施的正常工作,甚至造成人员伤亡。

2 通信设施的防雷

2.1 防雷原理

就目前而言,疏导、隔离、等位和中和是我国专门针对通信设备和通信建筑的四大防雷原理。其中,疏导是以保证通信设备和建筑远离雷电或者雷电感应的直接袭击为目的的,在这一过程中,最常采用的便是运用疏导线让那些雷云中的电荷顺利传入到大地中,进而避免给设备的电缆造成的危害影响通信设施的正常工作。其次,隔离通信设施与雷击过程引发的过电压以达到保护的效果的原理被称为隔离。而等位原理则是将各类公共设施,诸如通信设施所在地、天馈线所在地、铁塔地等,放置在等电位上。最后,中和原理是通过杜绝雷电的形成来保护通信设施和建筑物的,在雷电现象中,大气中产生的电荷会与防雷设备产生的相反电荷离子相互产生中和作用。这四类避雷原理便是我国通信设施防雷措施中常用的。

2.2 防雷措施

2.2.1 通信设施外部防雷

接地装置和避雷针是通信设施外部防雷常用的方法,其中,接地装置包含了地极和接地线这两部分,而避雷带、避雷线和避雷网则是避雷针中最常见的三种。在雷电现象中,地面上的电场往往会由于空气中雷云的放电而发生异常,这个时候便需要接地装置和避雷针的协同工作,为了改变雷电导入电的传输方向,需要运用避雷针的顶部产生特定的电场,从而将电流逐步引导到接地线中,并最终通过地极顺利将雷电流释放到大地中,避免对通信设施和建筑造成伤害。但是受限于该过程中的各类变量限制,在日常的防雷避雷过程中,该装置并未能取得良好的效果,无论是在对雷电的反应敏捷度还是所能保护的范围的大小亦或能够承受的雷电流量,它都始终处于被动的状态,无法满足正常的通信设施和建筑物的快速防雷要求的。要想防雷措施跟上我国飞速发展的通信领域的脚步,则务必要求避雷针能彻底改变以前的被动状态,在防雷过程中能够主动对通信设施和建筑物采取预防雷手段,不仅如此,还需要提高避雷针同时抵御各类雷击的能力,让避雷针可以兼顾到周边通信设施和建筑物的安全,提高对雷击产生的电流的承载量,这就要求避雷带和避雷线能够与保护物外部的所有金属零件的良好联通。除此之外,还需要将电涌保护器安装到天馈系统中,以实现对感应雷击的消除,为了保证通信设施外部良好的防雷效果,在安装电涌保护器时,还需要用接地线将它的接地端与地网牢固连接起来。而在复杂的通信工程中,防止供电系统遭受雷电攻击也极为重要,这个时候便需要将避雷装置延伸到供电系统的配电房和变压器中,保证供电系统的正常安全运行。

2.2.2 通信设施内部防雷

在日常的通信设施内部防护中需要针对供电电源线路进行防护,因为我国供电部门采用的高压避雷装置无法对雷电的过电压进行保护,这就要求在通信设施的内部防雷中,需要增加对低压线路的保护措施,避免过电压对电路造成损坏。在这一过程中,避雷器将被安装到从高压变压器到总配表盘再到配电箱之间的所有电缆和各类高灵敏度的仪器的前端口中,这样是为了把雷电产生的过电压运用不同的限流和分流手段引入到大地中,以达到保护通信设施的目的。不仅如此,还需要对通信设施的信号进行防护,在所有设备的电缆内芯端口安装避雷器,保证所有电缆的空线都与地面良好连接。最后在避雷器的引导下,所有的雷电流都将通过接地系统进入大地之中,保护通信设施和建筑不受雷电的伤害,进而避免人员和财产损失。另外,还需要注意各个接地系统之间的间距,将无法达到安全要求的设备连接到一起,让它们的电位保持统一。

最后,除了对通信设施采取严格的雷电过电压保护措施外,还需要定期对通信设施内外避雷装置进行安全检查,及时解决和排除存在的隐患问题,确保通信设施的快速、安全运行。

3 结束语

综上所述,通讯网络在我国的大范围普及和通讯设备不断采用的各种全新的智能设备和集成电路的现状,使得无论是通讯网络的可靠性还是通信设备的安全性,都受到了雷电事故的威胁。因此,这就要求我国务必认真对待通信设施的雷电过电压防护工作,积极采取有效的防范措施,才能将雷电对我国通信设施造成的损失降到最低限度,让通信设备的安全性得到大幅度提高,保证通信设备的更快速、更安全的运行。

参考文献:

[1]关晓曼,梁栋,徐以哲.通信台(站)雷电过电压分析及防护方式选择[J].内蒙古气象,2011(44):165-173.

[2]陈丽红,杨红.Milos500型自动气象站雷电过电压防护[J].江西气象科技.,2012(43):115-117.

[3]彭松,王艳艳,薛冬梅.通信设施对雷电电压防护措施研究[J].魅力中国,2011(63):128-130.

[4]黎珊,吴运东,邓晓兰.通信线路的雷电过电压及抑制措施[J].中国新通信,2011(53):104-108.

[5]李立新.淺析雷电对通信设施的危害及防护[J].江西通信科技,2013(74):103-120.

作者简介:刘鹏宇(1985.01-),男,在公司工程中心任职,信息通信工程建设技术专责,工程师,2007年毕业于沈阳工业大学计算机科学与技术专业,学士学位,东北大学软件工程领域工程专业,硕士学位,研究方向:通信工程建设。

篇5:广播电视设备的雷电防护

【摘 要】随着现代科技的高速发展,线缆电视、电视微波传输、电视发射机、广播发射机、微机网络等一些广播电视设备防雷电的问题日益突出。

因此,经过分析得知雷电侵入广播电视设备的主要途径有:直接侵入、地电反击侵入、电源线路侵入、信号线路侵入、天馈线路侵入等一些途径。

所以我们必须通过全面维护、综合防御等手段来防止雷电袭击造成的损害,以此来加强广播电视设备防雷电工作的实际效果。

篇6:通信机房雷电防护隐患解决方案

【摘要】本文介绍了通信机房雷电防护存在的一些问题,对产生的雷电事故安全隐患和处理方法作了较全面的分析和整治,提醒工程技术人员要重视机房雷电防护相关问题,尽量避免和减少通信机房雷电灾害的发生。【关键字】通信局站

防雷

等电位

接地

一、简介

六安解放路局地处于六安市中心,该局站内部微波落地铁塔(高97米)与机房距离较近(低于6米),同时该铁塔为周围最高构筑物。因此解放路局落雷率高、极易遭受雷击。在历年的雷雨季节,解放路局有多次损坏设备的现象,主要有:机房空调、发电机组控制板、动环监控系统采集设备、交换机、电脑等。所以解放路局为重点防雷保护地区,必须进行防雷改造,保障网络安全。

二、总体思路

为了有效降低解放路局雷击灾害,经对该局现场仔细查勘,主要存在以下隐患:

1、未联合接地

解放路局由于建站时间较早,建筑内有电信设备,也有微波设备,局站内有变压器中性点接地网、电信设备工作地、保护地、落地铁塔地网、建筑地网等这些地网由于建设时间不同,这些地网在地下相互独立,均未达到单独建地网所需距离及共用接地的要求。

2、电源系统防雷措施不够

解放路局的交流输入端无首级电涌保护器,油机房、空调室、数据机房、交换机房的交流电源均未设立次级电涌保护装置。没有达到交流供电系统多级防雷保护的要求。在一楼总直流电源输出端未安装用于抑制直流线路上电压浪涌的防护器件。

3、室内等电位系统未完善

解放路局存在等电位不完善,数据机房静电地板未接地、部分设备保护地未接地,传输机房内光配柜内金属加强芯汇接线未接地,部分电子设备未接地。

机房光配线架未接地

三、隐患整改及处理过程

本次隐患整改工程主要采取等电位联接、区分雷电流引下线和保护接地引上线、正确设计和安装多级电涌保护器,对解放路通信局进行综合防雷改造.1、联合地网

在解放路通信站的铁塔下新建一组地网作为各类接地引出线的抽头点,并将新建地网与原变压器地网、铁塔地网、机房接地之间焊接连通,机房接地引入点与其它地网焊接连通点之间大于5M,在铁塔与机房接地抽头点之间埋设6块高效降阻模块,使得从铁塔入地的雷电流的能量得到有效衰减。并做好新建地网的防腐处理。

解放路局新建地网示意图

2、合理配置多级电源避雷器

电源线是雷电通过电场感应而引雷入室的主要途径,即使是电源线通过地埋方式,也不能完全解决雷电波入侵的问题,因此安装多级电源避雷器以抑制雷电波入侵是首要选择。

实现电源防雷多级保护性能优化的关键技术要求是:各级保护特性的合理分工;每级暂态电流的配比;每级启动电压的合理搭配;级间退耦;每级防雷器材的选用;负载电流的设计等等。

因解放路站是共址局站,微波铁塔为周围最高构筑物,落雷几率较高,属防雷一类站,加之机房周围的电磁环境极为复杂,故电源避雷器的第一级通流容量确定为100KA。第二级通流容量确定为40KA。

第一级100KA电涌保护器装在电源的进线处。市电由此直接进入,所以,第一级电源电涌保护器装在防雷区1区与0区之间,防止雷电波侵入。

第二级40KA交流电涌保护器安装在空调机房、油机房、传输机房和交换机房的分配电屏处安装,实现交流电源的多级保护。由于铁塔离机房距离非常近,安装第二级电涌保护器是极为必要的,也是必须的。

在一楼直流总输出端安装工作电压-48V的直流电源电涌保护器,对机房内各类使用直流电源的设备提供防雷保护。

该局站所有的电脑用插排全部用新采购带防雷模块的插排予以替换,特别要注意防雷插排的接地端子一定要与地线排连接良好。下图为各级防雷模块安装示意图:

解放路局电源防雷系统图

3、室内接地线的隐患整治

在传输机房中设置一块分接地汇接排,作为传输机房的接地汇集排。将传输机房内各类接地线汇接在此,并引至一楼总汇接排。

在空调机房内设置一块分接地汇接排,作为空调机房的保护地,防雷地的接地汇接排。将空调机房各类接地线汇接在此。并引入总汇接排。

(1)完善机房室内接地的连接

对各机房内未良好接地的通信设备重新敷设保护接线,做到完全等电位连接。

(2)信号部分的保护

鉴于信号线是光纤引入,做好所有入局光缆金属加强芯的接地及MODF机架接地工作。(3)机房静电地板接地改造

所有机房防静电地板金属支架加装铜排作等电位连接,并可靠接入总地线排。

机房等电位连接示意图

四、总结及成效

(一)改造成效

解放路局经防雷系统改造过后,截止到目前已经三年多没有遭到雷电破坏发生设备故障了,改造效果非常显著。

(二)经验总结

为了防治雷击灾害事故,排除隐患,确保设备长期、安全、稳定的运行,针对目前通信机房防雷容易忽视的一些问题提出以下几方面的建议,供参考:

1、进户电缆铠装层两头切实做好接地(因为雷击电流的趋肤效应,90%的雷电流集中在电缆的表层,切实做好铠装层入户前的接地,就可以把雷电流在入户前泻放掉大部分,从而最大限度的保护基站设备);

2、室内防雷设备接线正确,地线连接牢固,尽量垂直走线,并确保捷径路线接入总接地汇流排;基站联合地网的阻值要求小于10欧姆,综合机楼联合地网的阻值要求小于1欧姆,并且应具备一定的散流面积,保证雷电流的有效泻放;

3、每年雨季前例行检查所有防雷器工作情况, 并确保防雷器保护空开处于工作状态;防雷模块是否有发热现象;防雷器失效应及时更换(防雷模块绿色窗口变为橙色或红色后,应及时更换防雷模组),这里着重指出防雷模块故障,其对地产生漏电流可导致前端漏电保护装置跳闸,直到去除故障防雷模块后前级漏电保护开关方能合上闸;

篇7:学校监控机房雷电防护

1.设计概述

雷电的危害简单的分直接雷害和间接雷害,虽然直接雷击可能给人类的生命财产带来无法比拟的危害,但是随着社会的不断发展,弱电子设备的广泛应用,单单的直接雷防护措施已经满足不了社会的防护需求。为了建筑设备内部设备安全、可靠的运行,为了降低雷电给人类带来的巨大损失和间接损失,雷电的间接雷害以及操作过电压的防护显得越来越重要。

雷电的危害从直接雷到雷电感应,然后还有雷电波侵入、雷电电磁脉冲和地电位反击,所以针对雷电的危害途径,我们应该从外到内设计一套完整的综合防雷方案,保证建筑安全,切断雷电的入侵途径。

直接雷:闪电直接击在建筑物、其他物体、大地或防雷装置上,产生电效应、热效应和机械力者,给建筑带来直接损害。

雷电感应:闪电放电时,在附近导体上感应出的静电感应和雷电感应,它可能使进入建筑物的金属导体之间产生很高的电动势,并产生火花。

雷电波侵入:由于雷电对架空线路或金属管道的作用,雷电波可能沿着这些管线侵入室内,危机人身安全或损失设备。

雷电电磁脉冲(LEMP):闪电直接击在建筑物防雷装置和附近引起的效应,使装置电位升高以及产生电磁辐射干扰。

地电位反击:建筑物的外部防雷系统(如避雷针、避雷网等)遭受直接雷击,则在接地电阻的两端产生危险的过电压,此过电压由设备的接地线、建筑物或附近的其他建筑物的外部防雷系统或其他自然接闪物(各种管道、电缆屏蔽管等)引入设备,造成设备的损坏的现象。

设计说明 1)勘察报告

……学校教学楼为三层钢筋混泥土结构,直接雷防护验收合格。本次工程范围为学校主控室设备的感应雷雷防护。

学校主控室,位于教学楼二层,机房面积为4.8m×2.7m,地面铺设有防静电地板,千兆网络交换机48口1个,机柜1个,UPS 1个,监控机柜1个;塑钢窗户1个,金属防盗门1个。

学校电源采用埋地引入到一层总配电室,一层配电箱控制开关为200A/3P,主控室内主设备由机房配电箱供电,机房配电箱从总配电箱处直接取电.电源供电制式为TN-S系统。

室外4个定点摄像机、1个云台摄像头,需加装信号SPD。室外监控系统电源由机房AC220V集中供电,在监控终端由开关电源分别转换为DC12V(定点、云台监控设备);传输线路采用网线传输视频信号。2)设计依据

 GB50057-94(2000版)《建筑物防雷设计规范》

 YD/T5098-2005《通信局(站)防雷与接地工程设计规范》  GB50343-2004《建筑物电子信息系统防雷技术规范》  GB50198-94《民用闭路监视电视系统工程技术规范》  08D800-8《民用建筑电气工程设计与施工-防雷与接地》

2.电源系统过电压保护

学校电源供电引入方式采用埋地引入到一层总配电室内,电源SPD安装位置如下: 解决方案:

1)在一层总配电室总配电柜处安装一套380A-A/4电源防雷器,并在该电源SPD前端串接保护空开,空开额定电流选择原则不大于1/1.6倍,该处选择为63A,4个。接地线采用BVR25mm,连接相线BVR16mm。接地线直接与建筑物总配电柜PE排连接。

2)在主控室配电箱处安装380B-B/4电源SPD一套。并在该电源SPD前端串接保护空开,空开额定电流选择原则不大于1/1.6倍,该处选择为32A,4个。接地线采用BVR16mm,连接相线BVR10mm。接地线直接与主控室内配电箱中PE排连接。3)在监控机柜内室外摄像头集中供电线路中和UPS前端各安装一套220C-C/2电源防雷器,并在该电源SPD前端串接保护空开,空开额定电流选择原则不大于1/1.6倍,该处选择为16A,各2个,共4个。接地线采用BVR10mm,连接相线BVR6mm。接地线直接与监控机柜连接。

23.信号系统过电压保护

1)主控室网络机柜内的1个48口交换机安装雷震子RJ45-1000M 24口的以太网防雷器SPD 2台,接地线采用BVR6mm。

2)主控室内监控系统视频线接口前串联安装RS485信号SPD 5套,接地线采用BVR6mm。(传输线路为双绞线,接口处转接同轴线路)

3)主控室内监控系统控制线接口前串联安装RS485信号SPD 1套,接地线采用BVR6mm。

4)在室外监控设备线路上串联安装230BC-2D 4套和230BC-3D 1套(云台),接地线采用BVR6mm压线鼻子接到新增加的SPD防水箱内。222

24.等电位连接

在主控室防静电地板下敷设一圈等电位铜带,规格为30×2mm紫铜,间隔1m采用绝缘子固定。监控室内所有金属装置与等电位铜带连接。

机房内金属体做等电位连接线规格:机柜内设备、UPS、金属防盗门、防静电地板支架等--6mm²;机柜、金属加强芯--16mm²。

5.接地

1)在主控室内剔主筋1点,要求连接主筋直径不小于Φ16mm,采用Φ16mm热镀锌圆钢与剔出的钢筋进行焊接,焊接长度不小于10cm,并两面施焊。引出后焊接一段20cm长40×4mm热镀锌扁钢头,焊接长度不小于8cm,三面施焊。焊接处刷防锈漆。扁钢头预留螺孔方便主接地线连接。一条BVR35mm2连接线与等电位连接带连接。接地阻值要求≤1Ω,不能满足要求时增加人工接地体。

2)在各个监控点下剔主筋1点,要求连接主筋直径不小于Φ16mm,采用Φ16mm热镀锌圆钢与剔出的钢筋进行焊接,焊接长度不小于10cm,并两面施焊。引出后焊接一段20cm长40×4mm热镀锌扁钢头,焊接长度不小于8cm,三面施焊。在焊接处刷防锈漆。扁钢头预留螺孔方便主接地线连接。室外监控终端设备SPD均安装在防水箱内;主接地线使用BVR16mm²压接线鼻子接在防水箱内的汇流排上,另一段接设置的热镀锌扁钢头。接地阻值要求≤4Ω,当不能满足要求时增加人工接地体,直至满足要求。更详细做法参照图集08D800-8《民用建筑电气设计与施工--防雷与接地》埋地的管型接地极安装等执行。人工接地体与地下管道及线缆等金属物以及人行通道之间间距不少于3m。

电源SPD安装图

监控系统图

网络系统图

篇8:通信设备设施集中监控系统的雷电防护探讨

1 通信设施的常用避雷方法

雷云通常是指密集在大地上空且带有大量正、负电荷的云。如果雷云中的电荷大量聚集且具备高强度电场时, 周边的正、负雷云之间或雷云与大地之间就会产生强烈的放电现象, 即为我们平常所见的雷电。雷电作为一种自然现象, 给人类社会带来了不少的危害。雷电引发的瞬间浪冲击对以集成电路为核心的通信系统有很大的威胁。大量统计结果证明, 在绝大多数的通信设施雷击破坏事件中, 雷电感应和雷电波侵入造成的雷电电磁脉冲是造成通信设施损坏的主要原因。

当前, 一般情况下, 建筑物或者通信设备避免遭受雷击的方法有以下几种:第一, 疏导设置。其主要原理是将雷云中的电荷通过引导线疏散至大地, 避免直接的雷击或感应雷击电流流经建筑物或通信设备, 从而使建筑物或通信设备免受雷击;第二, 隔离设置, 即将雷电产生的过电压与被保护建筑物或者设备隔离开, 来避免雷击;第三, 等位设置, 即将铁塔地、天馈线地、设备工作地、建筑物的公共地等置于等电位上;第四, 中和设置, 即释放出异性电荷和雷云中的电荷进行中和, 从而阻止雷电的形成。

2 通信设施的防雷措施

具体到某个通信工程的防雷过电压主要的防雷过电压措施分两类:内部防护和外部防护。

2.1 外部防护措施

外部防护的主要手段是避雷针等类似设备和接地装置。雷云放电接近地面时会造成地面电场发生畸变, 这时, 避雷针顶部会形成局部电场强度畸变, 来影响雷电先导入电的发展方向, 引导雷电向避雷针放电, 然后再接地引下线、接地装置将雷电流引入大地, 从而使被保护物免受雷击, 这是目前为止防止雷击的最通用、最有效的方法。但是, 被动放电式避雷针存在反应速率低、保护范围有限、导通量不足等缺点。所以, 为了适应现代通信发展的要求, 避雷针要采用提前放电主动式的防雷装置, 且可以调整避雷针角度的, 扩展装置保护范围。具体要求和方法如下。

首先, 避雷针要与天线之间有一定的间隔, 通常应装在高于天线尖端的数米之处, 以保证天线的通信效果;其次, 避雷地线的直流通路电阻要求要足够低, 一般为10Ω~50Ω。雷电的浪涌电流较大, 频谱较宽且持续时间短, 所以需要尽量小的电感量;再次, 注意接地引入线长度应不长于30m, 其材料应采用热镀锌扁钢或铜排, 截面积应不小于40mm×4mm。地线不能用扁平编织线和绞合线, 因为这两种线易被腐蚀且不利于泄放雷击电流;第四, 可在地下埋设据有一定间隔的多根接地体, 并将其焊接在一起, 这样可以起到增大地表层过电压的泄放面积的作用;最后, 对一些大型且重要的通信工程中, 可以考虑安装放射性避雷装置。放射性避雷装置是目前世界上最先进的防雷装置之一, 其核心部分是放射源, 放射源可以连续自行发射α粒子, 发射的α粒子使周围空气电离产生大量的电子。这些电子在雷电场作用下运动逐渐加速, 给空气带来连续的多极电离或雪崩电离, 进而形成与电场强度成正比的电子流, 在电子流作用下将已经存在的低电场消除, 将有可能形成高电场将为低电场。放射性避雷装置在此作用机制下可以有效地防止发生雷击, 起到显著的消雷作用。这种放射性避雷装置不仅防护面积较大, 防护面积半径为260m左右, 且安全可靠, 对人身无伤害。

2.2 内部防护措施

线路是雷电入侵的主要通道, 因此内部防护首先应该是电源部分的防护。对于高压部分, 供电部门已采取相应措施, 如安装专用的高压避雷装置。但是, 线对线的过压则是难以控制的。按照国家规范, 对于3 80 V低压线路进行电压保护主要分为三级:一级保护, 建议在高压变压器后端到通信局或者通信站配电机房总配电盘的电缆内芯线两端对地加装避雷器;二级保护, 建议在楼宇总配电盘至楼层配电箱间电缆内芯线两端对地加装避雷器;三级保护, 建议在所有重要的、精密的设备以及UPS的前端对地加装避雷器。目的是用限流技术将雷电脉冲能量分流疏导至大地, 从而达到保护的目的。限流技术中采用的防护器的质量、性能的好坏将直接影响防护的效果的好坏, 所以相关部门在引进装置时, 要对避雷装置的质量进行严格的把关, 以避免在此环节出现问题。

其次是信号部分防护, 这部分的防护要依据通信设施对雷电的敏感度来判定。可以在所有信息系统进入楼宇的电缆内芯线端时, 加装相应的避雷器, 电缆中的空线要接地, 且要做好屏蔽接地。然后对于接地处理, 接地系统要把电流引入大地, 达到保护设施安全的目的。一般建筑物的接地系统有建筑物地网、电源地、逻辑地和防雷地等, 其中建筑物地网与法拉第网相接, 电源地地阻要小于10Ω。需要注意的是, 通信设施要求交直流工作地、安全保护地以及防雷地必须独立, 若相互之间距离达不到规范的要求, 则出现地电位反击事故的可能性会大大增加。因此, 各接地系统之间的距离不能达到要求要求时, 应尽量使它们连接在一起, 如实际条件不允许直接连接, 可通过地电位连接来保证各类接地点的基准电位是唯一值。为保证防雷系统正常工作, 工作人员在每年的雷雨季节前后检修时, 应定期用精密地阻仪检测地阻值, 以确保地阻值始终保持在科学合理的区间内。

总之, 现代通信网络的发展及大规模集成电路、智能化在通信设备中的广泛应用使得我们不得不将通信设施的防雷设施作为一项系统的工程来对待。由于当前的防雷措施还存在一定的局限性, 不能做到十分有效地防护雷击破坏通信设施。所以, 要做到防雷措施的全面有效、实用经济就必须对各种防雷措施的优劣势继续不懈地研究, 对其不足之处加以改进, 从而利用人类的智慧尽量将自然的雷击危害降到最低限度, 保证通信系统的安全高效运作。

参考文献

[1]王俊.浅谈通信设施雷电过电压防护措施[J].中国水运, 2006, 6 (10) .

[2]李恩博.通信设施对雷电电压防护措施研究[J].科技信息, 2009 (7) .

[3]瞿建新, 许玉昆.浅谈通信设施雷电过电压防护措施[J].技术经济协作信息, 2009 (11) .

[4]程磊.浅谈通信局防雷与接地保护中的几个问题[J].铁道通信信号, 2009 (5) .

篇9:通信设备设施集中监控系统的雷电防护探讨

【关键词】计算机信息系统;电子科学技术;雷电防护技术

【中图分类号】TP31 【文献标识码】A 【文章编号】1672-5158(2013)01—0052-01

雷电具有发生频率高,重复性和危害性等特点,根据雷电危害的途径划分,可以将雷电危害分为三类——直接雷危害、雷电静电感应危害和雷电电磁感应危害。在人类广泛应用电子技术前,雷电对我们生活的主要危害是直接雷危害,主要针对人和物进行雷击。电子科技得到普及后,由于我们的生活生产越来越多的与计算机电子电气设备相互联系,雷电对我们的危害就由原先的直接危害进入到雷电静电感应危害和雷电电磁感应危害。

雷电防护技术应遵循的原则

内蒙古兴安盟地处内蒙古自治区东北部,西北部倚靠兴安岭,由于兴安岭的分支都延绵向东南方向,所以兴安盟地势是由东南向西北逐渐升高,因此造就了兴安盟气候变化多样的局面,根据内蒙古兴安盟气象局多年来对该地区雷电的发生的统计资料来看,兴安盟年平均雷电日数二十九天左右,全年发生雷电现象无规律,但是可知夏季是兴安盟雷电多季,特别在中午之后到下午傍晚期间。根据我国对年平均雷暴日的划分等级来看,内蒙古兴安盟地区属于中雷区。

雷电防护技术应遵循以下原则:首先,计算机系统雷电防护遵循的原则与其他安全原则相同,都要以“预防为主,安全第一”为唯一方向。其次,针对内蒙古兴安盟地区的各方面条件等进行详细的分析,例如地理晴况、土壤水文条件、气象环境、雷电活动情况和规律以及雷击事故的原因和后期的解决办法等,在上述条件都调查清楚的基础上制定相符合的雷电防护措施。

计算机信息系统的雷电防护技术分析

根据对雷电危害的防护途径划分,可以将防护雷电分为三个部分:直接雷的防护、感应雷的防护以及线路来波的防护。

(1)、直接雷的防护

雷电不通过其他物体而直接击打在设置有计算机信息系统的建筑物上被看做是直接雷,针对直接雷击的主要防护措施就是采取在建筑物等上面安装避雷针和接地装置。通都是在建筑物最顶端安装避雷针或避雷线等,避雷针或避雷线都有多条进引导,根据原则应该布置四根以上的引下线进行引导,在两条相邻的线之间最大相隔距离应小于等于十二米,称为对称布置法。其主要目的在于分离相间布置的引下线,使其相隔较远,进而可以均衡电位。在对避雷设施的要求上是保证用镀锌扁钢与建筑物顶端的避雷针和避雷带下端接地连接,这样可以在最大的安全范围内对计算机信息系统的各个设备进行保护,针对不同的雷击途径和计算机信息系统,要采取不同的防雷措施,以期取得最好的雷电防护效果。

(2)、感应雷的防护

所谓感应雷即是我们常说的二次雷击,二次雷击又分为静电感应雷和电磁感应雷。在雷电产生的时候,由于雷电电流变化极大,又有电流产生,因而会产生强大的交变流电磁场,金属又是电流的良好导体,这样一来周围的金属物件都会产生感应电流,感应电流会向周围的物体进行放电。此时如果雷击导线连接,并被感应电流感应到,就会对计算机的通信连接设备产生极大的破坏。

在对计算机信息系统的感应雷电防护中,应该始终注意使建筑物内个楼层间进行分层屏蔽感应电流。对避雷设备要注意对其线路终端的设施进行架空,在供电变压器两侧都要进行金属氧化物避雷器的安装,主要是安装在高低压两侧。在这里值得注意的是,针对计算机信息系统的各个电源设备设施的所有接地线,都要分别和电缆沟的铜排进行相连接,这样就能够形成环形接地母线连接。

对计算机系统的雷电电磁干扰防护措施中,对屏蔽网的设计应该着重注意对计算机系统的中心机房装设,可以对电磁干扰进行评比的屏蔽网,此屏蔽网要特别根据抗电磁干扰的要求进行设计。盒状的金属壳体,以及包围在金属壳体外围的导线,以及连续的金属网等来构成一个比较完整的屏蔽设计。对屏蔽设计的要求主要有一下几点:第一,注意对计算机信息系统中心机房的屏蔽,如果机房的计算机设备对屏蔽的要求较高,那么就要针对这种情况在机房周围安装金属屏蔽网。第二,对设备的信号线的屏蔽,以及包括电源线注意防电磁干扰。要特别注意的是所有的信号线不论是在建筑物室外还是室内,都必须进行屏蔽设计。通过上述分析可以看出,在采取屏蔽电磁干扰和对地进行接地的两项技术措施,都能有效的保证计算机信息系统的安全,这也是在最大范围内降低了最小的破坏程度。

(3)计算机信息系统雷电防护中的线路来波防护

线路来波防护主要是针对雷电通过架空的线路或者其他金属管道产生雷电波并由架空线路或者金属管道作为媒介直接导人计算机信息系统中枢机房内的危害进行防护,即保证了设备设施的安全,又保证了操作人员的切身安全。根据我国国内雷击事件的统计和分析,在所发生的雷击事故中,雷电波侵入造成的破坏事故所占比例为一半以上。因此,要减少或杜绝此类雷击事故发生,就要主要两点:第一是给计算机信息系统的中枢机房装置避雷设备,从而达到控制电压幅值波动较大的目的;第二,对进线端进行保护设计,这样可以在雷电进入中枢设备的源头进行控制,减少雷电波发生。

近年来由于电子信息技术的高速发展,人们的生活和工作等对计算机系信鼠设备的依赖越来越强烈,为了保护我们的利益,就要保证这些系统的安全运行。雷电是我国十大自然灾害中影响最为广泛,且破坏力度最大的灾害之一,它的产生会发生不同程度的电磁干扰现象,这就会给我们的计算机信息系统的运作带来不可避免的影响,那么如何降低影响也是确保经济和社会稳定发展的关键。

参考文献

[1]龚细明,苗健,段和平.计算机信息系统的雷电防护技术初探[J].江西气象科技,2005,(08)

[2]宋佰春,李斌,袁安芳.计算机信息系统的雷电防护技术初探[J].计算机应用于软件,2008,(10)

[5]刘佼;徐彬彬;孙大雨;川气东送扬子站雷击风险评估方法综述[A];第八届长三角气象科技发展论坛论文集[C];2011年

[4]卢干斌;李碧;浅谈CORS系统的整体防雷[A];全国测绘科技信息网中南分网第二十四次学术信息交流会论文集[C];2010年

篇10:计算机信息系统雷电防护

介绍了雷电对计算机信息系统的危害及雷电侵害计算机网络设备的.几种途径.从直击雷和雷电感应方面对计算机信息系统进行防雷设计,并对电源系统、信号系统提出了具体的防雷措施,将雷电流通过接地、等电位连接等方式泄放到大地中,从而使机房内的设备免遭雷击而正常工作.

作 者:何俊华 宾雍伟 宾雪 作者单位:何俊华(湖南科技学院,湖南,永州,425100)

宾雍伟,宾雪(永州市气象局,湖南,永州,425000)

上一篇:高三第一学期物理教学计划下一篇:带声调规范的汉语拼音快速输入