多传感器信息融合应用

2024-04-27

多传感器信息融合应用(精选9篇)

篇1:多传感器信息融合应用

摘要:介绍了当今国际上流行的几种智能驾驶系统,并分析了采用单一传感器的驾驶系统中存在的问题,给出了信息融合技术的原理和结构。讨论了多传感器信息融合技术在智能驾驶系统(ITS)中的应用算法及其有待进一步解决的问题。

关键词:贝叶斯估计 信息融合 障碍探测 智能驾驶

随着传感器技术、信息处理技术、测量技术与计算机技术的发展,智能驾驶系统(辅助驾驶系统一无人驾驶系统)也得了飞速的发展。消费者越来越注重驾驶的安全性与舒适性,这就要求传感器能识别在同一车道上前方行驶的汽车,并能在有障碍时提醒驾驶员或者自动改变汽车状态,以避免事故诉发生。国际上各大汽车公司也都致力于这方面的研究,并开发了一系列安全驾驶系统,如碰撞报警系统(CW)、偏向报警系统(LDW)和智能巡游系统(ICC)等。国内在这些方面也有一定的研究,但与国外相比仍存在较大的差距。本文将主要讨论多传感器信息融合技术在智能驾驶系统(ITS)中的应用。

1 ICC/CW和LDW系统中存在的问题

1.1 ICC/CW系统中的误识别问题

ICC/CW系统中经常使用单一波束传感器。这类传感器利用非常狭窄的.波束宽度测定前方的车辆,对于弯曲道路(见图1(a)),前后车辆很容易驶出传感器的测量范围,这将引起智能巡游系统误加速。如果前方车辆减速或在拐弯处另一辆汽车驶入本车道,碰撞报警系统将不能在安全停车范围内给出响应而容易产生碰撞。类似地,当弯曲度延伸时(见图1(b)),雷达系统易把邻近道路的车辆或路边的防护栏误认为是障碍而给出报警。当道路不平坦时,雷达传感器前方的道路是斜向上,小丘或小堆也可能被误认为是障碍,这些都降低了系统的稳定性。现在有一些滤波算法可以处理这些问题并取得了一定效果,但不能彻底解决。

1.2 LDW系统中存在的场景识别问题

LDW系统中同样存在公共驾驶区场景识别问题。LDW系统依赖于一侧的摄像机(经常仅能测道路上相邻车辆的位置),很难区分弯曲的道路和做到多样的个人驾驶模式。LDW系统利用一个前向摄像机探测车辆前方道路的地理状况,这对于远距离测量存在着精确性的问题,所有这些都影响了TLC(Time-to-Line-Crossing)测量的准确性。现常用死区识别和驾驶信息修订法进行处理,但并不能给出任何先验知识去识别故障。

篇2:多传感器信息融合应用

针对以上系统存在的一些问题,研究者们纷纷引入了多传感器信息融合技术,并提出了不同的融合算法。基于视觉系统的传感器可以提供大量的场景信息,其它传感器(如雷达或激光等)可以测定距离、范围等信息,对两方面的信息融合处理后能够给出更可靠的识别信息。融合技术可以采用Beaurais等人于提出的CLARK算法(Combined Likelihood Adding Radar)和Institude Neuroinformatik提出的I

[1] [2] [3] [4] [5]

篇3:多传感器信息融合应用

煤炭安全监控的主要内容包括:对井下的CH4、CO、O2、CO2等气体浓度的检测:对风速、风量、气压、温度、粉尘浓度等环境参数的检测:对生产设备运行状态的检测、监控等等。虽然目前国内已有多种型号的监控系统投入使用, 但大多数系统设备老化, 传感器使用率低, 检测参数单一, 电缆用量大, 故障率高, 性能不能满足要求。若要在不增加硬件投资的情况下提高系统的运行可靠性, 增加传感器检测点数, 使得监控系统的监控范围广、检测参数多、速度快, 真正实现实时监控;势必采用先进的信息处理技术方面满足要求。

1.1 检测信息只做简单处理, 即滤波去杂;智能化程度不高。

1.2 检测系统不能进行危险性评价, 无法进行事故预警。

1.3 计算机网络仅被用于传输监控结果, 没能利用网络获取安全信息, 进行智能分析与决策。

1.4 传感器数量较少, 检测信息不全面。

由于监控系统处于长期不间断地工作方式, 且煤矿井下工作环境恶劣, 各种干扰会对监控系统性能产生严重影响;传统方法是采用算术平均值的数字滤波方法来减少干扰的影响, 但当传感器故障, 信息不可靠时, 这种方法便失去了意义。若是作为系统最前端的传感器数据不准确, 监控系统也就失去了有效性, 所以如何处理这些由于单个传感器不能完全提供所需的信息导致的不确定性, 保障系统的稳定性和有效性成为根本问题。采用增加同类传感器的个数, 消除单一传感器所带来的局限性, 并应用多传感器信息融合理论来处理多源数据, 是解决这种问题的有效方法。

2 信息融合概述

多传感器信息融合 (Multisensor Information Fusion) 是指对来自多个传感器的数据进行多级别、多方面、多层次的处理, 从而产生新的有意义的信息, 而这种新信息是任何单一传感器所无法获得的。

多传感器信息融合技术是早在二十世纪七十年代由现在战争引出的一个新科学;在军事领域, 必须利用多传感器所提供的观测数据实时进行目标发现, 优化综合处理来获取目标属性、行为意图、态势评估、威胁分析和辅助决策等作战信息处理。

近些年来, 随着科学技术的不断进步, 特别是微电子技术、信号检测与处理技术、计算机技术和网络通信技术等的飞速发展, 对信息进行实时处理已成为可能, 正是在这种情况下, 信息融合理论很快得到了广泛应用。

信息融合就是利用计算机技术对按时序获得的若干传感器的观测信息在一定准则下加以自动分析、优化综合, 为完成所需要的决策和估计任务而进行的信息处理过程。按照这一定义, 各种传感器是信息融合的基础, 多源信息是信息融合的加工对象, 协调优化和综合处理是信息融合的核心。数据融合作为一门交叉学科其理论基础依然是数学知识, 融合方法在不同的领域和不同的应用方面也不尽相同, 但所有的基础都可以看成是对于不确定性问题研究的扩展。

信息融合主要完成对来自多个信息源的数据进行自动检测、关联、相关、估计及组合等的处理。Hall和Waltz等人把多传感器信息融合分为如下三级:第一级融合是信息是信号处理级的信息融合, 也是一个分布检测问题, 它通常是根据所选择的检测准则形成最优化门限, 以产生最终的检测输出。传感器向融合中心传送经过预处理的检测和背景杂波统计量, 然后在融合中心直接进行分布式恒虚警检测、预滤波;根据观测时间、传感器类型、信息的属性和特征来分析和归并数据, 这样可控制进入第二级的信息量, 以避免融合系统过载。有了融合的多传感器数据之后就可以完成象单传感器一样的识别处理过程。信号处理级融合方法主要有加权平均法、卡尔曼滤波法等。第二级是特征提取以获得来自每个传感器的特征向量, 然后融合这些特征向量并基于获得的联合特征向量来产生状态估计。特征级融合方法主要有模糊推理法、神经网络法、产生式规则法等。第三级是决策级信息融合。每个传感器都完成变换以便获得独立的状态估计, 然后再对来自每个传感器的属性分类进行融合, 决策级融合方法主要有贝叶斯概率理论、证据理论、Dempster-Shafer (简称D-S方法) 等。

3 结论

篇4:多传感器信息融合技术探析

关键词:多传感器系统;信息融合;功能模型;发展趋势

中图分类号:TP212文献标识码:A文章编号:1007-9599 (2012) 01-0000-02

Analysis of Multi-sensor Information Fusion Technology

Tan Lin

(Military Command Information of the Department of Shandong Province,Jinan250099,China)

Abstract:Multi-sensor information fusion is a multidisciplinary involving signal processing,information theory,artificial intelligence,fuzzy mathematics theory has been widely used in military and civilian fields.This paper introduces the concept of multi-sensor information fusion,describes the functional model of multi-sensor information fusion,methods and applications,and their development trends are analyzed.

Keywords:Multi-sensor system;Information fusion;Functional model;Development trends

一、概念

多传感器信息融合,又称多源信息融合,是用于包含多个或多类传感器或信息源的系统的一种信息处理方法。目前,关于多传感器信息融合的定义有多种描述方式,其中,应用比较典型且应用比较广泛的是Walz和JDL的定义。Walz将其定义为通过对多个传感器产生的数据或信息进行检测、组合估计、关联等多级操作,从而得到关于观测环境或目标的精确状态、身份估计以及完整、及时的态势评估的过程。JDL将其定义为对多源数据或信息进行关联组合,以估计或预测观测环境或目标相关状态的过程。无论怎样定义,基本原理都是充分利用多源系统中各信息源所提供的信息的不同特征,按照某种优化准则,将这些互补冗余的信息进行重新组合、关联,从而产生对观测目标或环境的一致性解释和描述。多传感器信息融合通过对各种分离的观测信息进行优化组合,从而导出更多的有效信息,以达到利用多个信源协同工作的优势来系统整体效能的最终目的。

二、功能模型和主要方法

(一)功能模型

根据输入信息的抽象层次,多传感器信息融合可以分为信源、预处理、检测级融合、位置级融合、目标识别融合(特征级融合)、状态级融合(态势估计)、威胁估计和精细处理。如下图所示。

1.信源主要有红外、雷达、ESM、声纳、敌我识别器、通信情报、电子情报、侦察情报等。

2.信源预处理,是指根据信息特征和属性、传感器种类、观测时间等各种基本信息,对多源信息进行分选、误差补偿、过程分配、像素级或信号级数据关联等。主要目的是降低系统需要处理的数据量,避免系统过载,提高系统性能。

3.检测级融合是第一级融合,属于信号处理级的融合。它根据预先设定的检测准则形成最优化检测门限,从而产生最终的检测输出。其结构主要有五种:分散式结构、树状结构、串行结构、并行结构和带反馈的并行结构。

4.位置级融合是第二级融合,它通过综合来自多传感器的关于同一观测目标的时间和空间等信息,建立该观测目标的航迹,并得出观测目标的行进速度和位置等信息,主要包括空间融合、时间融合和时空融合。具体过程主要有数据校准、数据关联、目标跟踪、状态估计、航迹关联、估计融合等。其结构主要有集中式结构、分布式结构、混合式结构和多级式结构。

5.目标识别融合,也叫属性分类或身份估计,属于第三级融合,是指通过组合来自多个传感器的关于观测目标的识别属性或数据,得到关于观测目标身份的联合估计。根据融合时所应用的关于观测目标的信息层次,该级融合可以分为数据级融合、特征级融合和决策级融合三种方法。

6.态势估计,属于第四级融合,他通过对战斗力量部署及其变化情况进行评价,估计敌方兵力结构和部署特点,推断敌方意图,并最终形成战场综合态势图,从而为最优决策提供依据。主要包括:提取进行行为估计要考虑的各要素,为态势推理做准备;分析并确定事件发生的深层次原因;根据以往时刻发生的事件,预测将来时刻可能发生的事件;形成战场态势分析报告和综合态势图,为指挥员提供辅助决策信息。

7.威胁估计,属于第五级融合,它是基于当前态势,包括敌方杀伤能力、行为企图、机动能力和运行模式等各种先验知识,估计出对未来一段时间内敌方威胁、我方薄弱点以及战争行动发生的程度或严重性,并作出相应指示与告警。主要包括:估计潜在事件;判断威胁时机;估计/聚类作战能力;进行多视图评估;预测敌方意图等。

8.精细处理,属于第六级融合,主要包括传感器管理、信源要求、融合控制要求、性能评估和任务管理等。

9.数据库处理,主要包括两种数据库:融合数据库和支持数据库。前者主要包括目标位置数据库、身份数据库、威胁估计数据库、态势估计数据库等,后者主要包括观测数据库、环境数据库、档案任务数据库、技术数据库、算法数据库、条令数据库等。

(二)主要方法

多传感器信息融合的目标是通过对各信源的观测信息进行优化组合,以期得到对观测环境或目标的一致性描述和解释。因此,信息融合面临的一个最基本的问题就是如何处理来自各传感器的信息的多样性、复杂性和不确定性。目前,能够应用于多传感器数据融合的方法可以分为为随机类方法和人工智能方法两大类。随机类方法主要有统计决策理论、D-S证据推理、产生式规则、多贝叶斯估计法、Kalman滤波等;而人工智能类方法主加权平均法、要包括专家系统、人工神经网络、模糊逻辑理论、粗糙集理论等。其中,加权平均法和Kalman滤波融合方法主要应用于动态环境中的低层次数据融合,统计决策理论、贝叶斯估计法、D-S证据推理、模糊逻辑理论主要应用于静态环境中的高层次数据融合,粗糙集理论、产生式规则方法适用于动态或静态环境中的高层次数据融合,而人工神经网络则可以应用于动态或静态环境中的各层次数据融合。

由于各类方法具有互补性,因此,在实际应用中,通常将多种方法组合运用,如粗糙集神经网络方法、模糊神经网络方法等,以提高融合的精度和效率。

三、主要应用和发展趋势

信息融合理论和技术最早起源并应用于军事领域,随后随着该理论和技术的推广,信息融合已被广泛应用于民事和军事领域中。民事应用主要包括:工业过程监视、工业机器人、智能制造系统、遥感、患者照顾系统、船舶避碰与交通管制系统、空中交通管制、智能驾驶系统、网络入侵监测系统、火灾报警、数字旅游、金融信息融合等。军事应用包括从单兵作战、单平台武器系统到战术和战略指挥、控制、通信、监视和侦察等广阔领域,具体应用范围包括:采用多元的自主武器系统和自备式运载器;采用单一武器平台或分布式多源网络系统的广域监视系统;采用多个传感器进行截获、跟踪和指令制导的火控系统;情报收集系统;敌情指示和预警系统;军事力量的指挥和控制站;弹导导弹防御中的BMC3I系统;协同作战能力、网络中心战、C4ISR、地面/海面/空中单一态势图等复杂系统中的应用。

尽管多传感器信息融合技术已经取得了很大的发展,但仍有很多应用需要进一步研究和探索,主要有以下几个方面:(1)复杂环境下信息融合,主要包括复杂环境下的分布检测融合研究、复杂电磁环境下的目标跟踪算法研究、复杂目标运动环境下的多源融合跟踪研究等;(2)无线传感器组网信息融合研究,主要包括机会信息融合问题、传感器优化管理问题等;(3)信号融合理论研究,主要包括稳定信号特征提取和建立、数据融合和信号融合的联和优化问题以及信号的关联性和一致性问题等;(4)图像融合研究,主要包括图像融合评价体系的构建、基于遥感图像融合的三维成像技术研究、图像融合系统的实时处理等;(5)其他内容,如空间信息融合、面向通用知识的融合、信息融合中的智能数据库技术和精细化处理研究等。

参考文献:

[1]何友,王国宏,关欣.信息融合理论及应用[M].北京:电子工业出版社,2010,3

[2]何友,薛培信,王国宏.一种新的信息融合功能模型[J].海军航空工程学院学报,2008,5

[3]丁锋,姜秋喜,张楠.多传感器数据融合发展评述及展望[J].舰船电子对抗,2007,6

[4]杨露菁,耿伯英.多传感器数据融合手册[M].北京:电子工业出版社,2008,5

篇5:多传感器信息融合应用

多传感器信息融合技术与无人机PHM系统

通过分析多传感器数据融合技术故障诊断方法,针对无人机的特点,在不增加系统硬件的.情况下,充分利用无人机现有传感器获取的信号,提高无人机故障预测与健康管理(PHM)系统状态监测、健康评估和故障预测推理的准确性,并确定推理结果的置信度.

作 者:陈伟 罗华 作者单位:解放军炮兵学院刊 名:航空科学技术英文刊名:AERONAUTICAL SCIENCE AND TECHNOLOGY年,卷(期):2009“”(6)分类号:V2关键词:无人机 故障预测与健康管理 信息融合技术

篇6:多传感器信息融合应用

光电传感器因其灵敏轻便等优势而被广泛应用于自动化设备检测装置中。20世纪80年代,美国军事领域开始应用光电传感器信息融合技术;3月15日,美国国防先期计划研究局(DARPA)公布了在阿灵顿召开的已进入第二阶段的MIST-LR项目会议,指出在未来的第三阶段,将开发出能够提升飞行器性能的原型系统传感器,极大发挥其在民用和军事两个方面的助推器作用。

1 应用必要

第一,光电传感器获取信息的过程实际是一个多对一的对应抽样过程,在将客观世界空间的信息传输至传感器这一过程中信息丢失的问题难以避免;第二,军事领域中光电传感器的数量庞大,急需处理的信息量也繁多冗杂,这些都会给人工处理带来一定困扰,而光电传感器信息融合技术的应用巧妙地解决了这一信息综合处理的难题;第三,应用环境决定了光电传感器性能发挥的好坏,但截至目前尚未有一个国家可以开发出适用于任何环境下且性能优于其他类型的光电传感器。

2 概念优点

光电传感器信息融合的过程正是为了完成目标分类、识别及跟踪等任务而进行信息自动分析综合处理的过程。军事领域中的目标识别及跟踪可以实现光电传感器目标属性中的监视功能,有利于精确定位与预估判决。我国航天技术的高速发展离不开当前最热门的技术之一――航天技术上光电传感器信息融合技术,它能够有效提高空间的分辨率和系统的可靠性,无疑成为我国GDP增长的“助推器”。

3 工作原理

光电传感器能够有效检测到光强度变化的情况并将光强度的变化转换为电信号的变化。通常情况下,光电传感器这种小型电子设备由三部分组成:发送器、接收器与检测电路。发送器负责向目标发射来源于发光二极管、激光二极管及红外射二极管等的光束,不间断发射出的光束经过像光圈、透镜这种光学元件后达到由光电二极管、光电三极管及光电池构成的接收器中,接收器接收到光束后会将其传输至能够过滤该信号是否有效并决定是否应用的检测电路。详细流程见下图所示。

需要强调的一点是发射板和光导纤维作为光电传感器结构元件的一种也独具特色。众所周知,三角形的结构最为稳定,因此由极细小的三角锥体反射材料组成的三角反射板是一种能保证光束可以准确无误地从反射板返回的发射装置,其结构极其稳固且具有极强的实用性。

4 应用领域

4.1研制抄表系统

为及时结算用户的电费,一般由电力部门派专门的抄表人员到有关用户处定期走家串户地查看、抄写设置在现场的电能表,通过人工读取、记录、计算和收费。这不仅浪费人力,而且还会因人工读取造成不必要的误差,给用户带来不必要的麻烦和损失,甚至会发生不法分子假冒抄表人员入室作案而影响社会治安。因此,无论是电力部门还是用户们均迫切要求改变当前的落后状态。随着微电子技术、传感器技术、计算机技术及现代通讯技术的发展,可以利用光电传感器来研制自动抄表系统。

电能表的铝盘受电涡流和磁场的作用下产生的转矩驱动而旋转,采用光电传感器则可将铝盘的转数转换成脉冲数。如在旋转的光亮的铝盘上局部涂黑,再配以反射式光电发射接收对管,则当铝盘旋转时在局部涂黑处便产生脉冲,并可将铝盘的转数采样转换为相应的脉冲数,并经光电耦合隔离电路,送至CPU的T0端口进行计数处理。采用光电耦合隔离器可以有效地防止干扰信号进入微机,再结合其它传输方式便可形成自动抄表系统。目前自动抄表系统没有大规模使用与当前的技术有莫大关系,这套技术还有很多需要改进之处,相信在未来几年随着技术的发展,自动抄表将在全国范围内实现。

4.2节能灯具设计

光敏传感器、红外传感器、颜色传感器已进入各种自控节能LED照明系统的设计方案之中,它们的自主控制、方便应用使得不少公共照明LED灯具和居家照明灯具实现智能化。光电传感器可以协助公共照明的LED灯具实现灯光的自动开启关闭,可以智能的感应人和车辆进出而自动开关灯光,可以智慧的控制LED灯光开启的时间和控制亮度,甚至按人类的意愿自动调整光线的色温,营造人类想要的光氛围。

4.2.1光敏传感器应用

光敏传感器中最简单的电子器件是光敏电阻,它能感应光线的明暗变化,输出微弱的电信号,通过简单电子线路放大处理,可以控制LED灯具的自动开关。对于远程的照明灯具,如街灯、庭院灯、草坪灯等都可经济而简单的实现节能自动控制。太阳能路灯本身是利用太阳光发电、储能的LED照明灯具,无需电网供电也就无需架设成本不菲的输电线路,因此使用光敏传感器可以实现极低成本、自动开启关闭的节能管理。

4.2.2红外传感器应用

红外热释电传感器(PIR)在LED照明中的应用已有近十年的`历史。红外传感器的视角有限,需要搭配菲涅尔透镜才能扩大探测区,才能监视移动的热源(人或车)。菲涅尔透镜有两个作用:一是聚焦作用,将热释红外信号折射在PIR上;二是将探测区内分为若干个明区和暗区,使进入探测区的人能以温度变化的形式在PIR上产生变化的热释红外信号。

4.3航天技术应用

我国神舟十号发射成功后到与天宫一号的自动交会对接,多项航天技术成果移植国民经济成为经济发展“倍增器”,其中光电传感器技术发挥了重要作用。神舟十号和天宫一号对接机构十分复杂,由上百个传感器、上千轴承组合而成。对接任务要求严丝合缝且不能漏气。另外考虑到飞行器在太空环境中失重要经历高低温的变化,因此必须保证对接时不出现故障。手控交会对接时要有精确的传感器测量设备,不断测量两个飞行器之间的距离、相对速度和姿态等,稍有差池后果不堪设想。最后对接时,要求轴向误差≤18cm。这些对航天员的身心都是极大的挑战,要求他们具有极高的眼手协调性、操作精细性和过硬的心理素质等。在交会对接的过程中,航天员需要紧盯电视图像,根据实时传输的数据让两个航天器一点点逼近,根据仔细计算决定速度变化方案完成交会对接,其中传感器起到决定性作用,为实现航天梦奠定最强基础。

4.4工业自动化装置

光电传感器具有非接触、响应快、性能可靠等特点,在工业上常用于非接触测量物位、距离和条码等信息,因此在工业自动化装置和机器人中获得广泛应用。随着现代检测技术的发展出现了很多新型的光电传感器,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。相关应用行业的系列产品如下:

1)光电式烟雾报警器。没有烟雾时,发光二极管发出的光线直线传播,光电三极管没有接收信号,没有输出;有烟雾时,发光二极管发出的光线被烟雾颗粒折射,使三极管接受到光线,有信号输出,发出报警。如今频遭吐槽的雾霾天气说明环境污染问题严重,而光电式烟雾报警器则可通过光在烟道里传输过程的变化检测到烟道中的烟尘浊度;2)点钞机的计数传感器。具有结构微型化、操作简便化、使用耐用型等特点的点钞机在我们的日常生活中应用频繁,其不光在金融机构中被大量使用,也逐渐成为一些大型企事业单位必备的办公用品,成就其的正是结构简单、响应速度快、精确度高的光电传感器。点钞机的技术传感器采用两组由一个红外发光二极管和一个接收红外光的光敏三极管组成的红外光电传感器,没有钞票时,接收管受光照导通而输出为0;有钞票时,接收管光通量不足而输出为1且产生一个脉冲信号,经检测电路输入至负责计数和显示的单片机。只有不断提升光电传感器的性能,才能满足商业经济和财务自动化日新月异变化而产生的高要求。

参考文献

[1]黄斌.基于多传感器信息融合的节能控制系统.测控技术,2013(4).

[2]赵娟妮.多传感器数据融合技术及其在光伏电站监控系统中的应用.科技信息,2013(7).

[3]魏宏飞,赵慧.多传感器信息融合技术在火灾报警系统的应用[J].现代电子技术,2013(6).

篇7:多传感器融合学习心得

通过一学期的学习,对多传感器信息融合有了一定的了解,学习了多传感器信息融合中的多种方法,并在小组论题和作业中都有所体现,下面我谈一下自己的学习心得。

一、多传感器信息融合的产生与发展

多传感器信息融合是由美国军方在20世纪70年代提出的,通过对各传感器获得的未知环境特征信息的分析和综合,得到对环境全面、正确的估计,它避免了单一传感器的局限性,可以获取更多信息,得出更为准确、可靠的结论。主要用于对军事目标(舰艇、飞机等)的检测、定位、跟踪和识别,具体应用在海洋监视、空对空或地对空防御系统等。

二、多传感器信息融合主要方法

多传感器信息融合是建立在传统的估计理论和识别算法的基础之上,主要有卡尔曼滤波、贝叶斯理论、D-S证据理论和小波变换等,下面我简单介绍一下各种算法。

1)卡尔曼滤波

卡尔曼滤波器实际上是一个最优化自回归数据处理算法。首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程来描述:

X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值: Z(k)=H X(k)+V(k)

上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的方差 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

假设现在系统的状态是k,根据系统模型,可以基于系统上一状态而预测出现在状态:

X(k|k-1)=A X(k-1|k-1)+B U(k)………..(1)

式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的方差还没更新。我们用P表示方差:

P(k|k-1)=A P(k-1|k-1)A’+Q ………(2)

式(2)中,P(k|k-1)是X(k|k-1)对应的方差,P(k-1|k-1)是X(k-1|k-1)对应的方差,A’表示A的转置矩阵,Q是系统过程的方差。式子1,2就是卡尔曼滤波对系统的预测。

现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):

X(k|k)= X(k|k-1)+Kk(k)(Z(k)-H X(k|k-1))………(3)其中Kk为卡尔曼增益(Kalman Gain):

Kk(k)= P(k|k-1)H’ /(H P(k|k-1)H’ + R)………(4)

到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的方差:

P(k|k)=(I-Kk(k)H)P(k|k-1)………(5)

其中I 为单位阵。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。

式子(1)、(2)、(3)、(4)和(5)就是卡尔曼滤波的5 个基本公式。2)贝叶斯理论

考查一个随机试验,在这个实验中,n个互不相容的事件A1、A2、„、An必发生一个,且只能发生一个,用P(Ai)表示Ai的概率,则有:

P(A)

1(6)ii1n设B为任意事件,则根据条件概率的定义及全概率公式,有

PAiBPBAiPAiPBAPAjjj1n

i=1,2,„,n

(7)

这就是贝叶斯公式。

在(7)中,P(A1)、P(A2)、„、P(An)表示A1、A2、„、An出现的可能性,这是在做试验前就已知道的事实,这种知识叫做先验信息,这种先验信息以一个概率分布的形式给出,常称为先验分布。

现假设在试验中观察到B发生了,由于这个新情况的出现,对事件A1、A2、„、An的可能性有了新的估计,此处也已一个概率分布PA1B、„、PA2B、PAnB的形式给出,因此有:

PAiB≥0

(8)PAB=1

(9)

ii1n这称为“后验分布”。它综合了先验信息和试验提供的新信息,形成了关于Ai出现的可能性大小的当前认识。这个由先验信息到后验信息的转化过程就是贝叶斯统计的特征。

3)D-S证据理论

D-S证据理论是经典概率理论的扩展,当先验概率难以获得时,证据理论就比概率论合适。

D-S方法与其他方法的区别在于:它具有两个值,即对每个命题指派两个不确定性度量(类似但不等于概率);存在一个证据属于一个命题的不确定性测度,使得这个命题似乎可能成立,但使用这个证据又不直接支持或拒绝它。下面先给出几个基本定义:

设Ω是样本空间,Ω由一互不相容的陈述集合组的幂集2构成命题集合。定义1 基本概率分配函数M 设函数M是满足下列条件的映射:

M:2→[0,1](1)不可能事件的基本概率是0,即M(Φ)=0;(2)对于A,则有:

0≤M(A)≤1

(3)2中全部元素的基本概率之和为1,即

AMA=1 则称M是2上的概率分配函数,M(A)称为A的基本概率函数,表示对A 的精确信任。

定义2 命题的信任函数Bel 对于任意假设而言,其信任度Bel(A)定义为A中全部子集对应的基本概率 之和,即

Bel:2→[0,1]

Bel(A)=MB,对所有的A

BADou(A)=Bel(-A)Bel函数也称为下限函数,表示对A的全部信任。由概率分配函数的定义容 易得到:

Bel(Φ)=0 Bel(Ω)=M(B)

B定义3 命题的似然函数Pl Pl:2→[0,1]

Pl(A)=1-Bel(-A),对所有的A

Pl函数也称为上限函数,表示对A非假的信任程度。信任函数和似然函数有如下关系:

Pl(A)≥Bel(A), 对所有的A

而(Bel(A),Pl(A))称为信任空间。

三、多传感器信息融合的应用

随着多传感器信息融合技术的迅速发展,除了在军事领域的应用,近年来在许多民用领域也得到了快速的应用,例如:图像融合、智能机器人、故障诊断、智能交通系统等。

1.军事应用

随着信息技术的发展和近几场局部战争的实践,网络中心战将成为未来信息化作战的主要模式,因此信息融合将成为发展各分系统的最基本要求。

信息融合技术是随着信息处理和指挥自动化系统的发展而形成的,它的优越性来源于系统的“组合效应”。现代战争要求各作战平台能相互支援、通力协作,以形成一个紧密结合的整体,最大限度的发挥整体合力。因此,在信息化技术的帮助下,不同武器装备实现了效能的互补,不同军种之间实现了功能的互补,具备了互联、互通、互操作的能力,从而使不同军种的不同武器系统在技术上融为一体,在作战时空上融为一体,进而使体系对抗成为联合作战的主体。

2.交通系统

由于交通检测器获取信息的局限性,无法全面掌握整个路网的交通信息,因此,通过信息融合技术在交通领域中的应用,提高交通管理中的效率。

信息融合技术在交通领域中主要用于车辆定位、车辆身份识别、车辆跟踪、车辆导航及交通管理。这其中关键的就是对交通数据进行融合。因此,监控中心必须对各个数据源的数据进行校验,避免单个信息源失效而导致的判断失误。

3.图像融合

随着数字图像处理技术的迅速发展,人们获取图像的途径越来越多,因此图像融合成为一个热门研究领域。

多传感器图像融合可进一步提高图像分析、理解与目标识别能力。图像融合就是充分利用多幅图像资源,通过对观测信息的合理支配和使用,把多幅图像在空间或时间上的互补信息依据某种准则融合,获得对场景的一致性解释或描述,使融合后的图像比参加融合的任意一幅图像更优越,更精确的反映客观实际。

篇8:多传感器信息融合应用

对不确定信息的融合过程实质上是一个不确定性推理过程。传统的数据融合算法常用Bayes决策理论和D—S证据理论。但是这2种算法都有各自的缺点, 目前许多文献中提出基于神经网络的数据融合方法, 然而神经网络方法本身所固有的缺陷, 如有限样本学习问题、黑箱结构及初始化参数权值的选取等问题均没有很好地解决[1]。笔者提出采用模糊理论进行多传感器信息融合。

由模糊集理论发展起来的模糊信息处理技术能给不确定性探索和模拟人类识别机理提供一种简单有效的手段。模糊系统将人类经验知识加以结构化, 其每一个参数均有着明确的物理意义, 允许将多传感器信息融合过程中的不确定性直接表示在推理过程中。

1 多传感器信息的模糊综合评判

针对煤矿瓦斯监测系统中检测的多传感器信息, 可利用模糊集理论作出综合评判。在进行综合决策时, 将多传感器信息看作因素集。模糊集的基本思想是把普通集合中的隶属关系灵活化, 使元素对集合的隶属度从原来只能取0, 1值扩充到可以取[0, 1]区间的任一数值, 因此, 该方法很适合用来对传感器信息的不确定性进行描述和处理[2]。

如果煤矿监测系统的监测结果有n种状态, 则其状态结果的评语集U可表示为{u1, u2, …, un}, 多传感器信息因素集V为{v1, v2, …, vm}。

对V中的每一因素根据评语集的等级指标进行评判, 可构造出模糊关系矩阵:

R= (ry) m×n

式中ry表示由单因素传感器i推断出状态集U中的j状态的可能程度, 即vi对uj的隶属程度。在监测状态评判过程中, 由于各传感器所处测点信号的强弱不同, 传感器本身性能也存在差异, 而且对瓦斯事故的影响程度不同, 需要引入因素权重向量。称ai (i=1, 2, …, m) 为每个传感器的因素权重, 它是传感器因素集V上的模糊子集, 即ai=μ (vi) , 模糊向量A= (a1, a2, …, an) , 当满足undefined时, 称之为因素权重向量。经过模糊变换得到的B是煤矿瓦斯状态的可能程度。评判过程可以看作是模糊向量A与模糊关系矩阵R的合成运算, 合成运算采用广义模糊运算, 即按普通矩阵乘法形式:相乘时, 取两元素中最小者 (即合取) , 相加时, 取两元素中最大者 (即析取) 。用模糊变换来进行模糊综合评判:

B=A·R= (b1, b2, …, bn)

式中“·”表示广义模糊运算的评判算子, 则

∀bj∈B

bj= (a1∧*rj1) ∨* (a2∧*rj2) ∨*…∨* (am∧*rjm)

式中j= (1, 2, …, n) , 表示两因素关联对于第j种评语状态的隶属度。

2 多传感器模糊信息融合算法

2.1 多传感器信息融合结构

煤矿瓦斯监测信息的融合属于决策级融合。融合的对象是各个传感器的局部决策结果, 此时, 每个传感器为了获得一个独立的属性判决需要完成一个变换, 然后, 顺序融合来自各个传感器的属性判决。即在各传感器独立判决的基础上, 作出融合中心的全局判决过程。融合结构如图1所示。在该结构中, 局部传感器根据其检测结果进行特征提取, 完成局部判决, 并将局部决策结果送到融合中心。在各个传感器的局部判决的基础上, 融合中心作出融合系统的全局判决。

2.2 数据融合系统的算法

在融合系统中, 因素集V是由m个传感器构成的传感器集合, 融合系统的决策结果通常分为若干等级, 称之为决策集, 记为D={d1, d2, …, dm}。

采用的融合规则是把二元假设检测问题的融合规则设计推广到允许局部传感器作为多级或软判决的情况。假设每个局部判决器的观测域都可以被分为J个互不相容的子区域, 这样, 如果传感器i的观测位于第j个子区域, 则设置ui=j (j=0, 1, …, j-1) 。这些软判决被送到融合中心, 在融合中心产生全局判决。在此融合结构下, 每个传感器的判决结果为决策集上的各等级的可信度度量。对第i个传感器Vi而言, 其决策结果记为ri (ri1, ri2, …, rin) , 归一化后, 可得其对融合中心的输入向量r′i= (r′i1, r′i2, …, r′in) 。得到由向量组成的m×n矩阵R, 称之为决策矩阵:

undefined

对融合系统中的每个传感器而言, 其作用程度各不相同, 故为不同类型的传感器赋以权重, 其是V上的模糊子集, 即模糊向量A= (a1, a2, …, am) , 其中, ai=μ (vi) , i= (1, 2, …, m) , 并满足:

undefined

在融合中心的合成运算中, 传感器权重向量A与决策矩阵R的合成结果为评语集上的模糊子集。记合成结果为B, 则

undefined

在融合中心的全局判决中, 输入为合成运算的结果B, 同样可以采用最大隶属度、重心法等确定最终的全局判决。笔者采用最大隶属度的方法, 即:

undefined

若存在i0使得

undefined

则判定u属于undefinedi0。

3 实验数据分析

在煤矿瓦斯监测系统中, 需要进行大量传感器检测现场参数。常见的检测参数有瓦斯浓度、温度、压力等, 这里仅以3种检测信号为例进行说明。传感器集合:V= (v1, v2, v3) ={瓦斯浓度传感器, 温度传感器, CO传感器}。权值分配策略:A= (a1, a2, a3) = (0.6, 0.3, 0.1) 。状态集取U= (安全, 中等, 危险) , 表1给出融合结果, 并对以单一传感器进行评判结果进行了对比。

表1中, 融合结果是取融合中心合成运算的算子为模糊集并交运算。从表中可以看出, 融合后的隶属度值和单传感器的隶属度值相比, 降低了系统的不确定性, 并且能够发挥多传感器信息融合的优势, 大大减少由于受单传感器信息量局限引起的误报和错报, 降低了不确定性, 有效地提高了状态监测的准确率, 从而增加状态监测的置信程度, 提高并改善了监测系统的性能。

4 结语

在煤矿瓦斯监测系统中, 瓦斯事故的发生与井下很多因素有关。为了提高多传感器检测数据的利用率, 降低单一传感器检测的不确定性, 将基于模糊逻辑的多传感器信息融合技术应用于系统中, 充分利用多源信息的冗余性和互补性, 从而增强监测的可靠性, 提高系统的检测性能, 能更发地保障煤矿安全生产。

参考文献

[1]童树鸿, 沈毅, 刘志言.数据融合的模糊模型和算法研究[J].哈尔滨工业大学学报, 2002, 34 (1) :7-11.

[2]郭利, 张锡恩, 马彦恒.模糊数据融合算法在设备状态监测中的应用[J].传感器技术, 2004, 23 (6) :73-80.

[3]朱大奇, 于盛林.应用模糊数据融合实现电子电路的故障诊断[J].小型微型计算机系统, 2002, 23 (5) :633-635.

篇9:多传感器信息融合应用

摘 要:针对目前煤炭企业生产安全监控系统的结构特点,分析了单一传感器信息采集存在的问题,提出了基于嵌入式智能代理的多传感器信息融合的方法来提高系统信息的精确性和可靠性。在智能代理技术的基础上,确定了煤矿多传感器信息融合的结构模式,建立了多级信息融合的模型。该模型有效地构成了智能分布式监控系统,对于提高煤炭安全生产具有重要意义。

关键词:煤炭企业;智能代理;多传感器信息融合

中图分类号:TP273文献标识码:A文章编号:1672-1098(2008)01-0061-04

收稿日期:2007-09-05

基金项目:安徽省教育厅自然科学研究资助项目(2006KJ016C)

作者简介:胡胜利(1978-),男,安徽淮南人,在读博士,讲师,主要从事信息融合、计算机支持的协同工作等研究。

Research on the Information Integration Model of

Embedded Multi-sensor

HU Sheng-li1,2,DING Rui-guo3,LIU Pan2

(1. School of Computer Science And Engineering,Anhui University of Science and Technology, Huainan Anhui 232001, China;2. School of Mechanics, Electronics and Information Engineering , China University of Mining and Technology, Beijing 100083, China;3. Liuan Human Resource Center, Liuan Anhui 237005,China)

Abstract: Aiming at the characteristics of current work safety monitoring system in coal mining enterprises, information collection problem with single sensor was analyzed. Multi-sensor information integration based on embedded intelligent agent technique was put forward to improve the systems information precision and reliability. Based on intelligent agent, multi-sensor information integration structure model for coal mines was defined, and the multi-level information integration model was built. The model is significant to improve work safety in coal mines.

Key words:Coal mining enterprise;intelligent agent;multi-sensor information integration

煤炭企业作为我国重要的、传统的能源工业,对国民经济的发展具有重要的意义。在煤炭企业生产管理的各个环节中,生产的安全监控又极其重要。目前,生产的安全监控主要包括瓦斯监控、风速测量、温度测量等环境参数,也包括煤仓煤位、水仓水位、压风机风压、各种机电设备开停等生产参数的监控[1]。监控信息的准确性又是整个系统的关键。然而现有的监测系统不论是基于标准模拟信号传输的集散式监测系统,还是基于串行通信技术的分布式监测系统,都是将各个单一传感器的检测输出信号直接作为系统的采集信息。由于煤矿井下的工作环境较为恶劣,各种传感器大都是非线性,各种干扰会对监测系统的测量产生严重的影响,使得传感器的输出信号不能准确地反映被测物理量,造成测量准确度不高,稳定性差等问题。多传感器的信息融合理论的研究将为解决这一问题提供有效的理论依据。

另外,生产监测的各种信息都是通过单片机与上位机进行通信,在上位机进行集中式信息融合。这样容易造成上位机信息量过大,处理速度较慢。现有的单片机侧重于控制,软件功能弱,难以实现较为复杂的分析和计算。随着硬件和软件技术的快速发展,嵌入式系统却完全可以实行较为复杂的运算,从而实现在采集端对信息进行处理,以避免信息集中的缺点。

1 多传感器信息融合

近几年来,多传感器信息融合MSIF(Multi-sensor Information Fusion)技术发展很快,受到人们的普遍重视,频繁地被许多军事和非军事领域所引用[2-3]。多传感器信息融合实际上是对人脑综合处理复杂问题的一种功能模拟,充分利用多传感器资源,通过对这些传感器及观测信息的合理支配和使用,将各种传感器在空间或时间上的冗余或互补信息依据某种准则进行组合起来,产生对被测对象的一致性解释或描述。其目的是基于各传感器分离的观测信息,通过对信息的优化组合导出更多的有用信息。它的最终目标是利用多传感器共同或联合的操作优势,来提高整个传感器系统的有效性,消除单个或少量传感器的局限性。

因此,多传感器系统比由它的各组成部分的子集所构成的系统更有优越性。在多传感器数据融合系统中,各种传感器的数据可以具有不同的特征,可能是实时的或非实时的、模糊的或确定的、互相支持的或互补的,也可能是互相矛盾或竞争的。它与单传感器数据处理或低层次的多传感器数据处理方式相比,更能有效地利用多传感器资源。

2 嵌入式智能代理

由于目前煤矿生产监测的各种信息都是通过单片机与上位机进行通信(见图1)。

图1 基于单片机的数据传输

如果把现场的信息能直接进行处理,再进行传输,那会大大提高传输的速度和精度。采用嵌入式智能代理技术恰好可以解决这个问题[4-5]。目前嵌入式系统已经在家电、通信、工业控制等方面得到了广泛使用,使用嵌入式智能代理技术就是在采集端使用嵌入式系统PC(Personal Computer)对信息进行数据融合处理,对现场的设备或安全状态做出判断和预测,然后将处理结果通过网络进行传输(见图2)。

图2 基于嵌入式智能代理的数据传输

嵌入式智能代理的采用,把传统意义上的简单的数据传输,转变为决策分析所需的信息传输,大大减少了网络传输的数据量,降低了系统对网络性能的依赖程度。传感设备信号可采集量的多少,很大程度上依赖于嵌入式智能代理的数据处理能力。当前,计算机芯片的运算能力已达到了每秒数百亿次,数字信号处理芯片的发展以及多芯片处理技术的发展也是日新月异,已能够满足系统的运算要求。另外,嵌入式智能代理也增加了远程分析的可操作性,由于实现了信息传输,只要能上网,即使决策人员在移动过程中(如汽车)也可对其进行实时的监测和诊断。

在对信息进行信息融合时, 其性能评估的结果往往是对多个传感器信号反馈信息的加权和。

P=A1×W1+A2×W2+…+A璱×W璱+

A璶×W璶(1)

式(1)中: 玏璱为各传感器的反馈信息(i=1,…,n);A璱为对应的权值系数(i=1,…, n); n为传感器通道数。

例如在瓦斯监控中,监控系统与瓦斯、一氧化碳、风速、负压、温度等因素都有关系,每种因素影响的程度又都不一样。有时现场情况发生变化,各种因素的影响程度又会发生变化[6],因此,整个系统要具有适应性,必须能对式(1)中的各个变量进行调整,其中包括:①改变各传感器反馈信息在评估中所占的权值系数;②增加或减少传感器的反馈信息量;③改变传感器的通道数。在现有的实时监控系统中,对权值的调整比较好实现,但对后两种的调整难以实现。而在系统中使用嵌入式技术,可根据实际环境和预测决策需求,及时增加某一个或几个传感器的反馈信息量,以提高预测决策的准确性。即使在工作环境发生巨大改变,原有的传感器无法满足需要时,也可通过适当增加传感器的通道数来保证监控质量。

3 嵌入式多传感器信息融合模型

3.1 嵌入式系统结构

在现有的井下生产监控系统结构中(见图3),玁1,N2,N3为嵌入式智能代理结点,S1……S璱为各个传感器。整个系统分为两部分:嵌入式智能代理和计算机网络通信。代理结点处于系统的底层,是整个系统的主要处理部件,主要完成信息的融合功能和系统管理功能,如代理结点的添加和删除、网络的通信等。计算机网络可以使用现有的以太网技术,也可以在井下使用无线通信技术,如GPRS等[7-8]。

图3 系统结构图

代理结点中的嵌入式系统采用的是嵌入式PC, 主要把硬件(CPU、RAM、I/O口、网络等)集成在一块主板上, 将操作系统和应用软件存储在Flash芯片中。 为了满足管理和信息处理功能的需求, 可以采用处理器+DSP的主从结构, 使系统既保证了高性能又保持了低成本(见图4)。 其中, 玈1……S璱为各个传感器信号,信息采集和信息处理由DSP完成。μP为微处理器,可采用目前流行的ARM芯片。Flash可达256 M,用来存储信息融合算法。

图4 智能代理结点结构图3.2 多级信息融合模型

由以上分析可知,每一个智能代理信息融合的结果都可以通过网络直接获得,但为了获得更加综合和准确的信息,分布在不同位置的智能代理之间应该能够相互通信,协调工作。因此,信息融合的过程可以分为两部分:单一智能代理融合和智能代理间的融合(见图5)。

其中,Sensor Node为嵌入式智能代理,Knowledge Database为某一领域的知识库,Sensor Control&Management;可以完成传感器的管理功能,如增加一个传感器或传感器失灵时,系统可以做出调整。在整个系统中,通过三个融合过程的完成,融合结果的状态值可以通过网络展现给决策者,同时也可以和其他智能代理点进行通信,协调完成综合信息的判断。

(1) 数据层融合(Raw Data Fusion) 直接在采集到的原始数据上进行融合,对未经处理的原始数据,提取特征向量,主要完成数据的关联。如温度、风速等。要求传感器是同质的(传感器观测的是同一物理现象),如果多个传感器是异质的(观测的不是同一个物理量),那么数据只能在特征层或决策层进行融合。使用的技术有Kalman滤波和贝叶斯方法。

(2) 特征层融合(Feature Fusion) 从数据融合层产生的数据中提取有代表性的特征, 将这些特征融合成单一的特征向量,然后运用模式识别的方法进行处理。使用的方法有贝叶斯方法和D-S证据理论。

(3) 决策层融合(Decision Fusion) 在每个传感器对目标做出识别后, 将多个传感器的识别结果进行融合,做出决策控制。有时,最终状态的判别除了底层传感器信息的融合以外,还需要大量的领域知识进行辅助判断。因此,在框架中给出了知识库。实际使用时,可以采用神经网络模型进行对领域知识进行训练。图5 多级信息融合框架

4 小结

本文阐述了基于嵌入式智能代理的多传感器信息融合方法的技术框架,列举了其中技术基本要素,重点研究了多传感器信息融合和嵌入式智能代理两大关键技术。

(1) 采用了处理器+DSP主从结构。整个嵌入式系统中,处理器可完成系统管理及网络通信功能。DSP作为协处理器可完成信号处理、分析、信息融合等功能。这种结构较好地保证信号分析处理系统的实时性要求。

(2) 嵌入式智能代理充当了井下生产现场和地面决策之间的中间环节。这样,各种传感器信息可以在各自的智能代理点中独立完成信息融合和分析,各个智能代理点的分析结果又可以综合在一起为决策服务。

因此,基于嵌入式的多传感器信息融合可以满足分布式系统数据的实时检测,在煤炭生产监测和安全诊断领域会发挥重要作用。

参考文献:

[1] 付华,沈中和,孙红鸽.矿井瓦斯监测多传感器信息融合模型[J].辽宁工程技术大学学报,2005,2(24):239-240.

[2] HALLD L,L LINAS J.An introduction to multisensor data[J].Proc IEEE,1997,85(1):6-10.

[3] 王耀南,李树涛.多传感器信息融合及其应用综述[J].控制与决策,2001,16(5):519-520.

[4] 刘云,林先澄.基于高性能DSP的嵌人式AUV数据融合处理系统的研究[J]. 计算机与数字工程, 2005, 9(33):24-25.

[5] RAMI ABIELMONA,EMIL M.PETRIU,THOM WHALEN.Multi-Agent System Information Fusion for Environment Monitoring[J].Sorrento,Italy:IMTC 2006-Instrumentation and Measurement,2006,1 174-1 175.

[6] 阎馨, 屠乃威. 基于多传感器数据融合技术的瓦斯监测系统[J]. 计算机测量与控制, 2004, 12(12): 1 140-1 141.

[7] 郭智渊,高丽云.GPRS在矿井救灾无线通信系统中的应用[J].山西煤炭,2004,24(1):55-56.

[8] 郝成,李辉,姚征.基于GPRS的地方煤矿安全监控监测系统[J].工矿自动化,2006(1):30-31.

上一篇:膜材料的简介制备下一篇:300字作文难忘的北京奥运会