地铁车站设计总结

2024-05-08

地铁车站设计总结(精选6篇)

篇1:地铁车站设计总结

浅谈地铁车站防火设计

摘要:为了完善现有地铁车站防火系统,根据目前地铁车站防火设计,从烟气控制、安全疏散和应急处置等地铁火灾防灾减灾的三方面,论述了地铁车站防火的应急处置流程和地铁火灾应急预案性能化设计思想。关键词:地铁火灾;烟气控制;安全疏散;应急预案

地铁车站是乘客停留和向地面安全疏散的重要场所,其防灾减灾是地铁安全控制的首要问题。目前,北京地铁车站主要有岛式车站、双层车站、侧式车站和换乘车站等形式。根据火源位置的不同,车站火灾可分为站台火灾、站厅火灾、设备间火灾等,并按照同一时刻仅一处发生火灾考虑。根据车站的结构形式、防火分区、有无列车着火及列车着火部位(头部、尾部和中部)等的不同,可以组合多种火灾工况,相应的通风排烟模式、人员疏散方式和应急预案也不尽相同。这就提高了对火灾时烟气控制、人员疏散和应急处置等防灾减灾的关键环节的要求。地铁火灾烟气控制

地铁车站的正常通风系统与火灾通风排烟系统共用同一系统,二者之间可通过风机反转或组合风阀的开关实现转换,主风机一般是大型轴流式风机。站台 着火时,隧道和车站的排烟系统会实现联动,以便更快更好地排除火灾烟气和留出疏散路线。由于烟气流动受到很多因素特别是建筑结构和通风系统的影响,所 以不同车站在不同火灾条件下的最佳通风排烟模式不尽相同,需要进行优化。

车站通风排烟应保证站台发生火灾时楼梯处的新风气流由站厅流向站台,且风速不低于1.5m/s;在疏散时间内烟气层底面下降到1.5m、离火源10m以外的疏散路线上的空气温度低于65℃,烟气浓度低于O.002 5(C0体积分数)。岛式车站火灾在上述各种通风排烟模式下的数值模拟及现场试验结果表明通风排烟主要靠车站通风排烟系统完成。车站排风、两端区间风机停止的通风排烟模式为最佳。车站风机排风运行时,将烟气从顶部风口排出车站,区间风机对车站排烟的贡献较小。因此,区间通风系统是否向车站送风需根据情况而定。一般地,区间通风排烟系统不开启时对车站排烟比较有利,烟气流向稳定,楼梯口能保持较大的下降风速,能保证两端疏散通道的安全。

当车站不同位置发生火灾时,车站风机排风、区间风机排风运行模式也十分有效,可使疏散通道上的烟气温度不超过60℃,烟气相对浓度不到5%,人员疏散通道的断面迎面风速满足大于2 m/s的要求,对火灾烟气的扩散起到很好的压制作用。此模式下,东站厅火灾时,选择由站台通过西站厅从A、C出入口到达地面为疏散路线。西侧站厅火灾时,选择由站台通过东站厅从B出入口到达地面为疏散路线;西楼梯口火灾时,选择由站台通过东站厅从B出入口到达地面为疏散路线;东楼梯口火灾时,选择由站台通过西站厅从A、C出人口到达地面为疏散路线;站台中部火灾时,选择由站台分别通过东、西站厅从A、B、C出入口到达地面为疏散路线。安全疏散

车站站台是地铁车站中人员最密集的区域,也是乘客到达地下的最深场所,同时也是跟区间隧道相通的部位。因此决定了它的火灾危险性和安全疏散的重要性

通常地铁车站站台层到站厅层都设有2组或2组以上的楼、扶梯,设楼、扶梯的数量和宽度是由下站的远期高峰小时上下午客流和车站的超高峰系数计算得来的。然而,还应该根据车站的具体位置,用列午经过该车站的高峰小时断而客 流来核算,同时楼、扶梯的数罩和宽度必须满足发生火灾的情况下,6min内将一列列下额定载客数量的乘客和站台上候午的乘客及丁作人员全部撤离站台。地铁车站站台上的人行楼梯和门动扶梯宜沿车站纵向均匀设置,l同时应满足站台有效长度内任一点距最近梯口或通道口的距离不得大丁50m。乘客使用的人行楼梯其宽度单向通行不小于1.8m,双向通行不小于2.4m当宽度大于3.6m时,应设置中 间扶手,楼梯应符合建筑模数。地铁车站设备、管理用房区安全出口及楼梯宽度为1.0m;单面布置房间的疏散通道宽度为1.2m;双面布置房间的疏散通道宽度为1.5m。站台有效长度外两侧均需设楼梯至轨道面,通向区间,便于区间发生火灾时人员疏散。

防灾疏散计算公式如下

T1(Q1Q2)/{0.9[A1(N1)A2(B0.2)]}6min

式中:

Q1—远期高峰断面客流和列车额定载客数量(1440人);

Q2—远期站台上候车的乘客及工作人员(人);

A1—自动扶梯通过能力[人/(min · m)];

A2—人行楼梯通过能力[人/(min · m)];

N—自动扶梯台数;

B—人行楼梯总宽度(m);

式中的“1”为人的反应时间,(N1)为考虑1台自动扶梯损坏小能运行的机率。

由于自动扶梯采用的越来越多,故必须考虑自动扶梯计入事故疏散用,供人员疏散时使用的楼梯及自动扶梯,其疏散能力均按正常情况下的90%计算。发生火灾的情况下,车站内和出入口处的自动扶梯均朝疏散方向运转。这样自动扶梯的供电必须按一级负荷,自动扶梯必须具有双向运行的功能。

地下车站防火分区(有人区)安全出口的设置应符合下列规定:

车站站台和站厅防火分区,其安全出口的数量不应少于两个,并应直通车站外部空间,其他各防火分区安全出口的数量也小应少于两个,并应有一个安全出口直通车站外部空间。与相邻防火分区连通的防火门可作为第二个安全出口。房间建筑面积小于5㎡,且经常停留人数不超过I5人时,可设置1个疏散门,竖井爬梯出入口和垂直电梯不得作为安全出口。

附设于设备及管理用房的门至最近安全出口的距离小得超过35m,位丁尽端封闭的通道两侧或尽端的房间,其最大距离不得超过上述距离的1/2。

地下出入通道长度小宜超过100m,如超过时应采取措施满足人员疏散的消防要求。

为确保发生灾害或出现故障时能顺利的疏散旅客,在站厅、站台、出入通道、楼梯、重要值班室及重要设备机房、区间隧道等均设置应急照明。

除在站厅、站台、楼梯、通道、人行通道拐弯处等均设置疏散标志外,还应沿主要疏散方向按防火规范要求间距设置自发光疏散标志。

在运营管理方而,车厢之间应连通,有利于事故情况下人员的疏散,乘客可在车厢内流动选择站台的下车位置,从而节省时间。车厢山应增加安全乘车知识和紧急疏散路线、措施的宣传广告。

地铁车站还设有防灾自动报警与监控系统,通常设在车站控制室、通信机房、信号机房、变电所、配电室、电缆间等。对于发生火灾后影响全局的重要部位和火灾危险大的部位,还应增设手动报警按钮。

另外,目前地铁车站在设备用房较集中的一端设置一部安全疏散楼梯直达地面,从安全的角度考虑在车站站台层另一端也应设置一部安全疏散楼梯直达地面,这样即有利于区间与车站的安全疏散,又有利于发生火灾时消防人员进入车站、区间。地铁车站火灾的应急处置

3.1 地铁车站火灾应急处置的一般流程

事故应急处置包括预防、预备、响应和恢复4个阶段,一般按照事先编制的应急预案实施。围绕该4个阶段研究和编制了较为详细的北京地铁车站火灾应急预案。该预案制订车站火灾的报警流程、应急组织流程、设备动作流程、通风排烟模式、人员疏散流程和疏散路线,明确地铁各职能部门和现场工作人员的职责和任务以及应急指挥救援的体系。针对地铁车站内可能出现的各种火灾工况提出相应应急预案,并建立应急预案数据库。

3.2 火灾自动报警系统

安装火灾自动报警系统,是要在火灾发生的早期,能提供准确的探测信号,以便相关人员能作出适当和有效的救灾和疏散行动,同时启动火灾联动控制,以防止火灾曼延,组织烟气流排放。

根据地铁车站的特质、火灾危险性、疏散和补救难度,地下车站的火灾自动报警系统将按一级设置,而地面和地上车站则按二级设置。火灾探测器将采用光电感烟探测器和手动火灾报警器为主,电缆夹层则采用缆式线型定温探测器,而安装有气体自动灭火装置的重要设备房间则同时采用光电感烟探测器和感温探测器。

3.3 消防给水系统

地铁的消防给水水源采用城市自来水,每座车站(包括地上、地面及高架车站)由城市两路自来水管各引一根消防给水管与车站环状网供水系统相接,以增加供水的可靠性。3.4 消防灭火装置 3.4.1 消火栓系统

地下车站站厅、站台、设备及管理用房区域、人行通道设室内消火栓,其用水量不小于20L/s,地面及高架车站则按《建筑设计防规范》的要求,设室内消火栓,其用水量不小于10L/s。

消火栓的布置保证有两只水枪的充实水柱同时到达室内任何部位。水枪的充实水柱不应小于10m。消火栓的间距决定于所采用的消火栓是单口单阀或是双口双阀。单口单阀消火栓不应超过30m;双口双阀消火栓则不应超过50m。地下站厅层、地面和高架车站均采用单口单阀消火栓,而站台层则可采用单口单阀或双口双阀消火栓。

3.4.2 气体自动灭火装置

地下车站的计算机房、通信及信号机房、地下变电所,由于灭火难度较大,均设置气体自动灭火装置,但当这些重要设备房间设于地面和地上车站内时,则不须要设气体自动灭火装置。3.4.3 自动喷水灭火系统

《地铁设计规范》及《高层民用建筑设计防火规范》对各种形式地铁车站设置自动喷水灭火系统并无规定,这与香港地铁运营中的五条地铁线路均不设置自动喷水灭火系统的设计概念一致,所以车站也不设自动喷水灭火系统。

除了规范没有规定外,不设自动喷水灭火系统主要原因是如果在站台层内设置自动喷水系统,发生火灾后自动喷水系统启动,除对人员疏散造成影响亦可能令乘客恐慌。另一方面,由于喷水导致地面湿滑,人员疏散速度下降,甚至导致人员摔倒产生践踏,而引至人员伤亡;再者,自动喷水系统导致烟气中水分增加和烟气温度下降,二者均会令烟雾下降影响排烟效果和对人员疏散造成障碍。

鉴于上述主要原因,建议在车站内的公共区域不设置自动喷水灭火系统。3.4 应急照明和指示标志

确保在紧急情况下,乘客能有充足之指示及照明安全离开车站。

消防用电设备按一级负荷供电,并应在末级配电箱处设置自动切换装置,当发生火灾切断三级用电时,应能保证消防设备正常工作。

下列部位应设置疏散应急照明:

(1)站厅、站台、自动扶梯、自动人行道及楼梯口;

(2)疏散通道及安全出口;

(3)管理设备房。

下列部位应设置醒目的疏散指示标志:

(1)站厅、站台、自动扶梯、自动人行道及楼梯口;

(2)人行疏散通道转弯处、交叉口及安全出口;沿通道长向每隔不大于20m处;

(3)疏散通道和疏散门均应设置灯光疏散指示标志,并设有玻璃或其它不燃烧材料制作的保护罩;

(4)指示标志距地面小于1m。结论

地铁火灾是地铁运营的安全隐患之一,必须予以有效控制。本文从烟气流动规律、通风排烟模式、人员疏散策略、应急预案等方面,分析和阐述烟气控制、人员疏散和应急处置等3项关键技术的核心内容和分析方法。介绍地铁车站火灾的应急处置流程和地铁火灾应急预案性能化设计思想。

参考文献:

[1] 中华人民共和国建设部.GB50157-2003地铁设计规范[S].北京中国计划出版社,2003. [2] 建筑设计防火规范(GB50016-2006).

[3] 原震,赵新文.如何解决地铁站台隧道的通风排烟问题[J].消防技术与产品信息,2003,(11)[4] 杨英霞,陈超,等.关于地铁列车火灾人员疏散问题的几点讨论[J].中国安全科学学报,2006,16(9):45.

[5] 中华人民共和国建设部.GB 50157—2003地铁设计规范.中国计划出版社,2003. [6] 李胜利,毛军,等.地铁火灾应急预案研究及计算机仿真软件开发研究报告[R].北京:北京市地铁运营有限公司,北京交通大学,2006.

此为课程小论文,不具有任何权威性,对于数据的真实性及后果概不负责

篇2:地铁车站设计总结

岩土隧道分院 宛超群

摘 要:结合当前城市轨道交通车站设计的不足以合肥轨道交通2号线玉兰大道站总体设计方案为例,结合站址环境及车站的功能定位,对车站布置方案进行多方面综合分析,并进行经济技术方面的比较,确定最优方案并谈谈自己对轨道交通设计的理解。关键词:轨道交通;土地利用;车站设计;综合利用 轨道交通车站与周边城市环境不融合

轨道交通车站在地区环境的重要地位和作用还未被充分重视,由于缺乏对在车站地区交通接驳、公共空间环境、地下空间利用等方面整体化、人性化、细节化的规划设计,从而导致很多车站与周边环境品质地下。主要表现为换乘不便,缺乏接驳停车设施和集散广场,车站与周边建筑地上地下衔接不紧密,导向指示标志不清晰,出入口、风亭、冷却塔等构筑物缺少整体景观设计等。

导致城市轨道交通与土地利用不协调的因素是较为复杂的,涉及规划、建设、管理等各个层面。就规划设计层面来说,受我国传统规划设计技术体系和规划编制方法的影响,不少规划虽提出了“轨道交通与土地利用协调发展”的理念,但缺乏从宏观到微观系统性的规划互动研究。一方面,在轨道交通网络布局、站位布点、车站出入口设置等规划设计中,时常过于注重工程技术的可行性和工程建设成本的控制,忽视轨道交通与城市功能的密切结合,尤其是与规划的城市功能相结合;目前我们地铁车站设计都是把周边规划作为设计的边界条件,而没有真正做到把轨道交通站点作为规划的一部分。另一方面,在规划城市功能布局、确定建设用地规划指标、进行城市空间环境设计等工作中,对轨道交通与土地利用互动关系也存在认识不足的问题。启示

2.1 合理选择轨道交通站位是实现轨道交通引导发展的前提条件,车站设置应能够极大的改善交通服务质量和可达性,要与城市需要发展的地区相结合。

2.2 建设以车站为核心的结构紧凑、混合的土地利用模式。在轨道交通车站周围适于步行的范围内布置商业、居住、就业岗位、公共设施和开敞空间,并形成以车站为核心,向外递减的开发强度分布。根据现状条件和区位,不同轨道交通车站地区的功能定位将有所区别。重要的城市轨道交通节点地区一般亦是城市或地区的公共活动中心。

2.3 综合利用轨道交通地下、地上空间。充分挖掘土地资源。在车站地下建设中,结合换乘以及周边建筑衔接等需求,进行地下空间的综合开发利用;利用部分车俩段、停车场上盖进行物业综合开发,节约使用土地。

2.4 体现以人为本的理念,重视车站地区的环境设计和建设,将轨道交通车站融入城市生活。在车站地区提供人性化的轨道交通服务、便捷的换成条件、友好的步行系统、宜人的景观环境,将轨道交通车站地区塑造为充满活力的高品质地区。

合肥2号线玉兰大道站整体规划设计思路和对策

3.1 站位及站址环境

合肥市轨道交通2号线是东西走向的主干线,全线共设24座车站,平均站间距1.3公里,玉兰大道站是中间站,位于长江西路高架南侧,玉兰大道路口西侧处,沿长江西路东西向布置,路口东南角为盛臣大富豪酒店,西南角为绿地公园和安徽名人馆,西北角为永辉商城,东北角为合肥市第一人民医院西区。地面交通流量较大,市政管线密集,长江西路现状道路宽为60米,为双向六车道; 玉兰大道道路红线50米,交通流量较大。

本站位于长江西路与玉兰大道交叉口处,改地段地下管线纵多,但大多管线埋深较浅,有一埋深2.9米直径400mm的横跨车站主体的污水管,和沿着车站主体纵向上方埋深2.24米直径400mm的雨水管,考虑施工期间永久改迁至车站主体外。拟定车站有效站台中心处覆土3.3米。3.2 设计思路

玉兰大道设计的思路分为2个层面:

○1车站地区规划范围内的整体城市设计。车站周边规划为教育用地,城市公共绿地和居住用地,东边为商业金融及医疗配套建筑。在此区域,重点研究车站站位与周边土地利用优化地区各类交通系统及其组织以及地区整体空间形态等问题。

○2车站核心区的一体化设计。重点研究车站主体与周边建筑、道路地上、地下空间的衔接,交通组织和接驳换乘,以及人性化公共空间设计。3.3 设计对策

玉兰大道站设计的最终方案吸纳了土地利用、交通系统、综合利用地下空间等方面的理念和作法,其主要设计对策体现在以下几个方面。3.1.1 优化调整周边土地利用

基于对玉兰大道站地区发展优势和劣势的分析,将玉兰大道站地区设计定位为:“和谐、宜居、繁荣、便捷的区域公共中心”。靠近车站为公建与居住相混合的用地、文化娱乐用地、居住用地等,以车站为中心5~10min最佳步行区域内的土地利用模式,创造集换成、商业、零售、餐饮、办公为一体的全天候地区公共中心。3.3.2 创造为人行服务的交通环境

交通系统的设计是影响轨道交通车站能否发挥交通功能的重要因素。车站应十分重视与周边道路、公交接驳、自行车和步行环境的设计,其核心理念是创造为人行而非车行服务的交通环境,提供便捷、安全、高效、舒适的交通换成条件以提高轨道交通的吸引力,从而使其成为更多人选择的出行方式。

为此,将公交驻车功能与接驳功能分离设置,缩短公交与地铁的换成距离;在地铁出入口附近设置公交港湾、自行车停车位;地铁车站方案也进行了优化,增设了过街出入口,并将出入口与车站风亭建筑结合设置。3.3.3综合利用地下空间

利用地铁开挖的契机,将地下车站与周边用地以及道路的地下空间进行综合性开发是集 2 约高效利用土地资源的一种有效途径。由于玉兰大道复杂的地形及地下管线密集等因素的影响要求车站不宜开挖过大地下面积,因此在满足站内人流通行和人防要求的前提下让通道出入口最大程度的兼顾市政过街功能。3.4 总图设计方案介绍

玉兰大道西侧做单层设备外挂,这样可以尽量利用城市公共绿地广场地块,可以少占安徽名人馆地块,主体工程量小,节省投资。鉴于玉兰大道较宽,为了更好的吸引各象限客流在1、2号出入口预留了过街接口条件。由于受长江西路高架对主体围护结构施工的影响和高架对施工期间交通疏解的影响,结合充分利用城市公共绿地,尽量少占安徽名人馆地块的原则,经多方案比选,最终确定将设备用房外挂与主体之外的方案。如下图所示:

玉兰大道站总平面图

3.5 车站内部空间设计原则

3.5.1 车站建筑防灾设计严格按照《建筑设计防火规范》、《高层建筑设计防火规范》、和《地铁设计规范》及国家现行的其他有关规范、规定的要求执行。除考虑车站自身的消防设计,还应注意出入口、风亭、冷却塔等地面构(建)筑物和相邻建筑的防火间距,并应满足《地铁设计规范》第23.2.10-23.2.12条噪声的要求。车站主体及风亭、出入口应远离加油站、加气站或其它危险品场地,其距离应符合现行国家标准《汽车加油加气站设计与施工规范》的要求,否则应采取相应的防灾措施;

3.5.2 车站设计规模应根据按控制期高峰小时预测客流集散量和车站行车管理、设备用房的需要来确定,要与站厅、站台、出入口通道、楼扶梯以及售检票等部位的通过能力相匹配,同时满足事故发生时乘客紧急疏散的需要。应注意车站分向客流、突发客流的影响。超高峰系数根据车站规模及周边用地情况所决定的客流性质不同分别取1.2~1.4;

3.5.3 车站设计应合理组织各种客流,减少相互交叉干扰,保证乘客方便进站、迅速出站,车站的站厅、站台、出入口、通道、楼梯、自动扶梯和售检票机等各部位的通过能力应相互 匹配;

3.5.4 车站的规模、人行楼梯及自动扶梯的设计除应满足上、下乘客的需要外,还应满足站台层的事故疏散时间不大于6min;

3.5.5 地铁车站建筑设计应以功能为主,并注重交通性建筑应具备的简洁明快、美观大方、易于识别等特点,建筑设施突出交通功能,体现现代交通建筑的时代气息,同时还应与周围的城市环境相协调;

3.5.6 地下车站在满足使用功能要求的前提下,尽量优化设备、管理用房布置,并进行标准化、模块化、集约化设计以压缩工程规模,节省投资;

3.5.7 地铁车站设计应积极配合城市地下和地上空间的综合开发并与周边地下过街道、地下商场、人行天桥及物业开发相结合。凡与车站合建或连通的物业开发区、过街通道等公共设施的防火措施,应满足地铁车站的要求;发生灾情时,应保证系统的相对独立性和可靠性; 3.5.8 凡与规划路网相交的车站应根据换乘客流量及线路、站址等具体条件选择便捷的换乘方式,当不能同步实施时,应预留接口条件;

3.5.9 车站设计应符合有关规范、规定,满足客流、行车组织与运营管理、设备的要求; 3.5.10 全线需统一考虑无障碍设计。车站应设无障碍电梯和残疾人专用厕所及盲道等无障碍设施。车站至少应有一处出入口设置无障碍电梯;

3.5.11 地下车站设计应按六级人防设防,车站出入口通道及风道应符合相应的人防要求,在站台层端部应预留按人防分区设置区间隔断门的条件;

3.5.12 车站设计应充分考虑与交通枢纽及公交站点的衔接,实现地铁公交一体化; 3.5.13 地铁车站顶板上覆土厚度,应按城市规划部门、市政园林部门和市政管线部门的要求进行具体协调,合理确定;

3.5.14 车站站厅层公共区应预留安检设施的设置空间。3.5 车站内部空间设计方案介绍 a)站厅层布置

站厅层均由中部公共区及两端的设备及管理用房组成。

公共区划分为非付费区和付费区,两区域之间设有进、出闸机和固定栅栏分隔,非付费区和付费区为完全独立的区域,在分隔带上靠近出闸机附近设有票务处(非付费区内设半自动售票机),以负责解决票务纠纷和办理补票业务。在非付费区内设有足够的乘客集散空间,布置有自动售票机,同时还设有银行等公共服务设施,在付费区内设有2台上行自动扶梯、1台下行自动扶梯,2部2.4m宽步行楼梯,楼扶梯八字布置。站厅层付费区内设有1台残疾人电梯。

车站两端布置有通风空调机房和隧道风机房及设备用房,车站主要的设备管理用房集中布置车站外挂部分,这样可以有效的缩小车站主体建筑规模,降低投资成本,主要设有车站控制室、站长室、综合监控室、公安值班室、公安通信设备室、AFC票务管理室、AFC设备室、会议室、通信设备室、信号设备室、照明配电室、男女更衣室、茶水间、清扫间、垃圾间、民用通信设备室、UPS电源室、气瓶间、通风空调电控室、通风空调机房等房间。在主 4 要管理用房集中区设置一直接出地面的消防专用通道。车站布局紧凑、功能分区合理,出入口布置满足消防疏散要求。

玉兰大道站站厅层平面图

b)站台层

车站采用11m岛式站台,有效站台长为120m。站台层东端布置有照明配电室、电缆井、清扫间、垃圾间、废水泵房等房间;西端布置有照明配电室、电缆井、再生设备间、牵引混合变电所、屏蔽门控制室、等房间。

玉兰大道站站台层平面图

c)车站剖面设计

地铁车站剖面设计原则是合理确定轨面埋深、车站顶板覆土深度,满足综合管线敷设和公共区人体工程学的空间感受合理确定站厅、站台层净高。玉兰大道受横穿车站主体埋深2.9米的污水管限制,车站有效中心覆土拟定为3.3m,轨面埋深14.95m。站厅层净高4700m,站台层净高4550m.玉兰大道站1-1剖面图

玉兰大道站2-2剖面图 结语

轨道交通车站设计对策为:

4.1 优化车站站位与周边土地利用,使二者相辅相成。

4.2 创造为人行而非车行服务的站区交通环境,提供安全、高效、快捷的交换条件。4.3 综合利用轨道交通空间,节约利用土地资源。

参考文献: 【1】 《合肥市城市轨道交通线网规划》(2009.6);

【2】 《城市轨道交通工程项目建设标准》(建标104-2008); 【3】 《合肥市轨道交通2 号线工程预可行性研究报告》(2009.2); 【4】 《地铁设计规范》(GB50157-2003);

【5】 《城市轨道交通技术规范》(GB 50490-2009); 【6】 刘建国.《城市轨道交通概论》;

篇3:地铁车站设计总结

本车站位于西安市建工路与金华南路交界处。车站设计起点里程为CK27+901.421, 终点里程为CK28+091.821, 车站总长190.400 m, 本站标准段宽度19.2 m, 扩大段宽度24.8 m。有效站台中心处地面高程约为422.873 m、底板高程约405.69 m, 有效站台中心处车站埋深约16.2 m (从现地面起算) , 扩大段的车站埋深约19.55 m (从现地面起算) 。

车站主体施工方法采用明挖法施工。车站的围护结构设计采用钻孔灌注桩+内支撑 (第一道混凝土支撑, 二、三道钢支撑) 的围护支护方案, 本站采用基坑内降水使用高压旋喷桩 (直径800间距1 400) 与钻孔灌注桩 (直径1 200间距1 600) 共同形成止水帷幕, 钻孔灌注桩和旋喷桩的插入深度均为6.5 m。

2 周边环境

车站沿东二环 (金华南路) 呈南北走向, 距离车站较近且对基坑有影响的建、构筑物有3个, 分别为高层办公楼 (9层混凝土结构) 、东二环立交桥 (连续梁结构) 、多层办公楼 (4层砖混结构) :1) 9层的混凝土结构信号厂办公楼 (基础采用混凝土预制摩擦桩, 桩型为AZHa-240-1313C, 桩长26 m) , 位于车站基坑东侧5 m处。2) 东二环立交桥 (高3.5 m~9.2 m, 采用桩基础, 桩径1 500 mm, 桩长40 m~45 m) 位于车站基坑西侧11 m处, 呈南北走向。3) 多层办公楼 (4层) 位于车站基坑东侧7 m处。

3 场地地层岩性特征

根据钻探揭露, 本区间沿线地层自上而下依次为第四系全新统人工填土, 上更新统风积新黄土、残积古土壤, 中更新统风积老黄土及残积古土壤等地层, (1) -1杂填土, (1) -2素填土, (3) -1-1层新黄土 (水上) , (3) -1-3层饱和新黄土, (3) -2层古土壤, (4) -1-2-1层老黄土 (水下) , (4) -1-2-2层老黄土 (水下) 渗透系数为7 m3/d。

4 车站基坑的问题

1) 由于高层距离基坑仅5 m, 且高层的基础为预制摩擦桩。本站采用基坑内降水, 止水帷幕插入 (4) -1-2-1层老黄土层, 未进入不透水和相对不透水层, 经过降水和基坑开挖之后高层的沉降难以控制。2) 拟建车站东北侧为信号厂住宅楼, 为砖混结构, 整体刚度较小, 采用浅基础, 地基处理以灰土垫层为主。结合本车站工程地质及水文地质条件, 若基坑施工长时间大幅度抽取地下水对上述建 (构) 筑物有较大的影响, 容易产生地基不均匀沉降, 造成建 (构) 筑物倾斜、开裂。3) 车站西侧立交桥结构形式为连续梁, 对沉降变形非常敏感, 较大幅度的降水和基坑开挖可能引起立交桥的不均匀沉降, 导致桥身结构变形、开裂。4) 建工路车站有10 m深饱和软黄土。在土体的侧压力作用下易发生变形, 且长时间降水易产生较大的地面沉降;且容易出现缩孔现象。

5 设计分析原理

5.1 考虑周边建筑物对建筑的影响

由于9层的混凝土结构信号厂办公楼距离基坑仅5 m, 且此高层的基础为预制摩擦桩 (基础采用混凝土预制摩擦桩非端承桩, 桩型为AZHa-240-1313C, 桩长26 m) 。要保证基坑的安全就必须考虑此建筑的附加荷载, 车站埋深约为16.2 m, 建筑物桩长26 m, 如果把建筑物的荷载都附加在基坑边上, 偏于保守, 采取折减系数又没有依据, 因此本文提出新的思路, 仅供大家参考。此建筑物的桩长在基坑地面以下的摩擦力对基坑没有影响, 因此只需要考虑基坑地面以上部分的摩擦力占总摩擦力的比值乘以总的附加荷载为基坑实际承受的附加荷载。

5.2 基坑开挖对地面沉降的影响

基坑围护结构的变形形状同围护结构的形式、刚度、施工方法等有着密切的关系。将内支撑和锚拉系统的开挖所引起的围护结构变形归为三类, 第一类为悬臂式位移;第二类为抛物线位移;第三类为上述两种形态的组合。根据工程实践经验, 地表沉降的两种典型形状为三角形和凹槽形。根据目前的围护桩加内支撑方式, 地表沉降类型为凹槽形, 此沉降可通过里正深基坑等软件计算得出。

5.3 降水对地面沉降的影响

土体一般由土体颗粒, 空隙水和气体三相组成。一般认为土体变形是空隙水的排出, 气体体积减小和土体发生错动而造成的。长期的基坑降水将形成地下水降落漏斗, 抽取承压水使得含水层组的空隙水压力降低, 有效应力增加, 土体压密, 导致基坑周围的地面沉降。降水引起的沉降计算思路:

1) 首先通过稳定的渗流公式, 计算出井点降水的漏斗曲线, 确定基坑周边任意点的水位下降值。根据达西定律[1]:

其中, Q为稳定涌水量, m3/d;k为渗透系数;c可通过边界条件得出, m。

2) 降水过程中处于地下水位之下的土体, 当地下水被疏干时, 浮力消失, 所消失的浮力转化为自重应力, 其自重应力增加值相当于浮力消失值, 并可视等同于原始状态下土体附加应力增加值。土体在附加应力作用下产生压缩变形的公式如下:

其中, s为最终沉降量, mm;Δp为降水引起的附加应力, MPa;H为压缩层厚度, mm, 本计算中均取到设计水位;Es为土体压缩模量, MPa;e0为孔隙比;as为压缩系数, MPa-1。

6 在设计中针对以上问题所采取的措施

针对高层办公楼、东二环立交桥、多层办公楼与基坑距离太近的特点采用以下几点措施:第一, 围护结构的第一支撑采用混凝土支撑, 混凝土截面大, 抗压刚度大, 因此水平向的水平位移小, 可减小建筑物的地面沉降。第二, 在建筑与基坑最近处增加围护桩直径, 以减小围护桩的变形, 可减小建筑物的地面沉降。第三, 提前设置回灌井如建筑物的沉降超过报警值, 及时回灌阻止建筑物沉降。第四, 本站采用动态施工法, 如沉降值过大可采用注浆加固措施。第五, 由于有10 m多深的饱和软黄土, 为了防止塌孔和缩孔, 可采用套管或者泥浆护壁。

7 结语

围护结构的设计方案依赖于地质条件、周边环境、施工工艺、经济条件。因此不同地域的围护结构设计方案完全照搬恐是行不通的, 应具体问题具体分析。由于水平有限, 本文难免有错误和不足之处, 恳请专家和读者批评指正。

摘要:以西安地铁三号线延兴门车站的基坑支护工程为实例, 介绍了该工程的概况、工程地质条件、工程的基本支护设计, 分析了基坑降水对周边建筑物的影响, 并提出了保护周边建筑的措施。

关键词:深基坑,止水帷幕,地面沉降,内支撑,基坑降水

参考文献

篇4:地铁车站防灾设计的思考

关键词:地铁车站;防灾设计;思考

引言

伴随着现代城市的高速发展,越来越多的城市出现了地铁,其作为现代城市发展的大动脉有着诸多不可比拟的优势和无法替代的功效,随着地铁线路长度和客运量的不断增长,地铁的各种灾难事故也在不断增多。地铁事故的发生不但会造成人员伤亡,而且还会造成城市的交通堵塞,因此对地铁事故的分析及预防有着重要的现实意义。

1.地铁车站的特点及发生灾害的原因

城市地铁的建成解决了部分交通问题,为我们出行也提供了极大的便利。不过由于其结构封闭性,一旦发生火灾则扑救困难,人员伤亡也比较大,损失更是难以估算。地铁已经成为现代化城市重要的地下交通工具,随着城市交通轨道建设的发展,地铁的运行路程和客运量连年持续增加,但地铁火灾事故也经常出现。对于火灾事故的处理,很多国家都有过伤亡惨重。火灾事故是地铁运输系统中危险性较高的事故类型,它对地铁运营系统的危害性主要体现在燃烧产生的烟气、毒害物质、燃烧辐射热等对人员的威胁。以往地铁火灾的防治工作往往只着眼于在地铁系统内部发生火灾时的应对措施,多强调一些硬件设施的设置和完善,而没有从系统和全局上去认识地铁防灾系统。由于地下空间限制,以及浓烟、高温、缺氧、有毒、视线不清、通信中断等原因,救援人员很难了解现场情况;又由于大型的灭火设备无法进入现场,进入的救援人员需要特殊防护等特点,因此救人、灭火困难大。实时产生大量的人员流动和列车停靠,特别是运营高峰时段系统高速运转、设备的高负荷输出及不规范使用设备等各种因素,使得地铁车站火灾事故发生的可能性长期存在。

2.车站内消防疏散方案

2.1车站内消防疏散方案

地铁人员从地铁内部到地面开阔空间的疏散和避难都要有一个垂直上行的过程,比下行要耗费体力,从而影响疏散速度。同时,人员疏散路线与火灾产生有害高温烟气流动方向一致,疏散时还要防止人员中毒、窒息、视线被阻等情况,要求疏散早于烟雾扩散,往往时间紧迫难以完成。疏散楼梯、安全通道、安全出口、紧急安全门是火灾时乘客疏散和消防人员灭火救援的必要途径,必须以人为本,确保安全疏散体系的科学合理可靠。在进行地铁车站规划设计时,应着眼于优先选用岛式站台,线路之间应采取可靠的结构分隔,这样有利于车站的功能使用和人员疏散,更重要的是可有效控制火灾影响范围和事故蔓延。在地铁相关人员的帮助下,火灾发生6min内把列车上和站台、站厅内一切人员转移到地面的安全地带。

2.2实际工程中存在的问题

车站内一旦起火,由于地下站内氧气不足造成燃烧不完全,会产生大量浓烟同时伴随着有毒气体释放。浓烟积聚不散,对人员逃生和火灾扑救都将带来很大的障碍。在一些交通量大的道路可结合地铁站设置地下人行通道或过街地道以疏解人流。为了在发生火灾时,能够迅速确定报警区域及部位,并实施有效隔离,将整个车站划分为若干个防火分区。在地铁电视中插播安全教育片,播放相关提醒广播,还应定期进行火灾疏散演习,切实提高乘客的安全意识和应对火灾的自救能力。同时应完善列车紧急安全门的控制方式,列车车头车尾设置的紧急安全门,应在车头驾驶室内可以控制,并附设就地应急控制的安全装置。所以设计疏散通道和出口的数量与宽度时,要在严格根据规范需求设计的条件上,参考多方面的因素,以乘客量高的时间段的客流量计算,留设足够的安全系数。

3.加强地铁车站防火设计的相关措施

3.1加强火灾预防教育

目前地铁建设已经进入快速发展阶段,任何一个城市的地铁规划已经不是单一的一条线,均已成地铁网络。地铁作为城市交通立体化的契机,必然使地铁车站成为城市交通换乘和衔接系统中的重要节点,地铁火灾预防教育任重道远,涉及社会诸多层面,教育范围较广,实施困难较大。但通过坚持长期而有效的教育,可使安全意识深入人心,在潜移默化中指导人们预防火灾发生,具有广泛持久社会效应。因此,地铁车站建筑装修材料和列车车厢内装饰材料的不燃难燃化,是预防火灾发生和阻止火势蔓延扩大的有效措施,应予以高度重视。虽然见效缓慢,但效果稳固长久,是从根本上控制火灾起因的最佳措施。

3.2设置消防专用通道

地铁必须根据自身的交通运输功能和日常客流量大的特点,按照相应的防火设计规范在建筑、结构、机电方面进行综合防火设计。使其真正具有对火灾及时预警和控制的能力,减少因设施缺陷引起的不必要损失。同时在重点区域醒目位置做标识,方便事故发生后及时迅速的救援逃生。通道和出口的设计疏散能力与实际需求有非常大的距离,况且发生火灾后有害气体和热气流严重阻碍人的活动进而导致步行速度大大降低,在地下车站的管理用房处应设置直通地面的安全出口,或与车站出口组合设置消防专用通道,便于火灾时消防人员及时进入车站进行灭火救援行动。

3.3考虑隧道安全疏散通道与车站有效衔接

地铁工程中,应选择可靠性高和耐高温性良好的电气设备,以免出现因电气设备故障而造成火灾的局面。在区间隧道应优化电缆、管线的布置,利用有限空间沿隧道壁设置宽度为0.6m的安全疏散通道,并根据隧道的长度合理设置连接两条隧道的联络道,在联络道处设置防火门和应急照明,距离疏散楼梯口或者通道口不得大于50m;附设于设备及管理用房的门至最近安全出口的距离不得超过40m,位于尽端封闭的通道两侧或尽端的房间,其最大距离不得超过22m;安全操作规范的制定:对车站电气设备的使用与保养、地铁列车的操作、消防设备的操作与检修均应制定相应的安全规范,杜绝由于技术操作上的错误而造成火灾。地铁工作人员站在防火战线最前沿,我们要加强安全意识教育,提高每个公民应对各种灾难的意识和能力,只有这样才能在发生灾难时,人们才不会惊慌失措,才能有效的保证人民的生命安全。

4.结束语

地铁是城市交通的重要组成部分,是城市现代化程度的重要标志。地铁灾害问题也逐渐得到人们的关注。火灾事故的救援工作难度很大,尤其是人员的安全以及疏散方面相当严重。地铁设计人员和管理人员要及时吸取经验教训,不断完善地铁的防火设计和防灾系统的设置,完善地铁防火救援系统。

参考文献:

[1]地下街火灾危害性与防火设计对策初探.消防科技与产品信息,1995(6).

[2]张伟,姜韦华,张卫国.城市地下交通隧道火灾的防护.地下空间,2002,22(3):268~270

篇5:地铁车站地面建筑设计探讨论文

摘要:文章以地铁的地面车站的建筑设计的各个环节为研究对象,对设计过程进行了深入细致的分析,有独到的见解和创新构思,对地铁建设项目有很好的参考作用,值得地铁地面车站设计单位和设计师学习。

关键词:建筑设计;地铁地面车站;操作技术;研究探讨

在解决城市交通拥挤,提高人们出行服务能力方面,地铁发挥了较强的优势和作用,因而,在城市的建设里程和在建城市不断增多。据悉以来,石家庄、秦皇岛、兰州等城市纷纷把城市地铁建设项目列入年度计划,今年春节石家庄的地铁1号线已经开通运行,投入使用。为了提高地铁的使用效能,方面顾客乘行,对地面车站的建筑设计要进行科学的研究,使其强化“方便和服务”的功能。地铁地面车站的建筑设计是一项系统性很强的设计工作,既要考虑地铁的运行状况影响,要要考虑到乘客的方便周到,还要考虑到建筑物对城市周围环境的影响,在环保、能源、市政基础设施共享程度等多方面需要进行周密的勘察和科学的构思,从提出严谨的优化方案。

1构成地面车站建筑设计的主要因素

1.1地铁地面站位的具体选址

在设计过程中,要做好的首要工作,就是搞好站位选址。站位选址要通过人工勘察和卫星扫描,对站位选址要结合城市的长远规划,对地形地貌、能源供应、环境影响、客流状况,就行充分的了解和估计。

1.2车站设计类型的选择

现行的地铁车站有两种建筑模式,一种是地下车站,另一种是地上车站;对于地下车站来说,地面部分主要为附属设施,即出口、入口和风亭等;对于地上车站来说,建筑主体工程、乘客的进出通道工程和风亭等,要综合考虑。1.3建筑周边的环境情况综合考虑客流因素和地铁的运行效益,车站选址应位于繁华地段,,一般存在建筑林立和土地资源紧缺的情况。要在建筑面积、造型、多功能分区利用和经济便利方面,综合考虑,反复斟酌。

2具体的设计技术措施

2.1出入口建筑物的设计和风亭建筑的设计

地铁车站的出口和进口是主要的建筑,无论从利用上,还是确保地铁高效运行以及地铁的服务能力和经济效益等方面,都是关系非常紧密的因素。进口的设计要满足客流不能太拥挤,出口不能太长。设计过程要对入口建筑物的体量充分考虑。一般的出口建筑和入口建筑的体量标准来源于出入口的宽度,这要根据日常的客流量确定,出口和入口楼梯的宽度是由客流疏散状况决定的,扶梯的数量多少是根据服务能力配备的,扶梯和楼梯的宽度之和就是出入口建筑需要的宽度。这是出口和入口的内部情况;对于出口和入口的外部情况来说,需要多街道路段的交通情况和周围建筑的使用状态进行充分的考虑,外面开阔通常,则有利于客流疏散,口外交通相对拥挤,客流疏散能力相对较低,所以对于每个地铁的出口和入口的建筑设计,体量是相对固定的,在设计过程中,根据体量的需要,充分发挥设计的风格优势,综合考虑土建工程和装修工程、电气工程各种建筑的特点,出入口建筑体的设计,从功能上讲,也必须具备两个要点:第一建筑物体的辨识度要高。方便乘客寻找;第二与周边建筑和其他环境因素的高矮色调等相互协调。不产生光污染和形成客流噪声的集聚。进口和出口的位置考虑客流的视线不受影响。地铁车站出入口的建筑设计,注重实际应用是一个方面,更重要的在设计过程中,尽可能渗透城市的文化因素,既具有明显的标识作用,有增添交通设施的特种色彩,提高省市建设的.个性文化发展空间,打造城市建设的靓丽风景,满足人们日益提高的旅游休闲的心理需求。地铁车站的风亭设计思路必须满足地铁运行过程中的各种功能需求,一般情况下,数量的设置和建筑面积都必须符合严格的规定,所受的控制条件较多,风亭尽管不与乘客直接接触,但对乘客的影响很大,既要考虑对地铁外面环境的影响,又要考虑地铁内部的实际需要,必须满足两方面的环评标准。因此,风亭的设计要结合绿地和风景园林,同时做好风井的环境绿化。

2.2地面车站的设计

地铁的地面车站分为起点站和终点站。要借鉴火车站和公交车站的设计有点,在环保措施和人性化服务功能上下功夫,信息共享平台和运行调度尽可能实现一体化设计,考虑到通风采光的最大化利用和节能设施的配备。

2.3高架车站设计

地铁的高架车站属于城市的新型建筑,每一座高架车站的设计,都是一件艺术品,犹如一幅画,一首诗,给城市建设增添了特殊的景观。作为空中建筑,显著的设计风格是高大、舒展和豁亮。体现出较为明显的时代感和科技感。有的采用植物或动物形状的整体设计,使整个建筑像一颗植物或者一个动物,连同建筑体周围的草坪和绿化设施的簇拥,高架车站就像巨大的花篮,轻托着搭在上面的十字飘带,若果从低处仰望车站,与周围的建筑形成连绵不断,巍峨飘逸的壮观景象。在使用方面,设计上注重整合利用内部空间,对外型设计的艺术性要高,体现出城市文化发展的风向标和科技发展改善人们生活的力度;对于一个城市来说,高架车站的设计,要形成群体的风景优势,形成新的风景亮点,打造城市的旅游品味。对于不同线路的地铁的高空车站设计,尽量风格和艺术造型上保持一致,表现手法上,相得益彰,特别指出的是切忌地下车站、地上车站、高空车站混乱设计建设,对城市美化和发展不利。一条整体的地铁线路上很多高架车站被高架桥相互串联穿越城市的一片区域,在不同的地理区位,外观造型设计必须服从区域性特征需要。高架车站的设计必须满足地铁的功能需要,技术要点主要取决于车辆配备选选型和编组的必要的专业条件要求。高架车站在建设过程中涉及不到工程占地,根据客流量的实际需求,可以选择不同的高层设计,或两层;或三层;高架车站作为构造建筑,设计风格开放、新颖和大气;是其它建筑设施所不具备的外观形象,既是城市的构造元素也是功能元素,在景观建设和服务利用等方面都是前所未有的,自主创新的空间和潜力很大。就目前的城市高架地铁车站来说,与其说是设计建造,倒不如说是创造,只有融合城市各种优秀的文化因素,地铁高架车站才能设计的漂亮、挺拔和经济使用。

3结束语

篇6:地铁车站军用梁铺盖法施工设计

摘 要:采用道路两侧倒边铺设加强型单层**式军用梁铺盖法明挖施工方案进行地铁车站施工,达到交通不断路的目的。通过对24m**式军用梁的结构拼装设计、承台设计、桥面系设计、盖挖顺作配套施工设计,对军用梁在交通行车和临时堆土加载过程中的最不利情况下,运用MidasCivil671软件验算军用梁主要杆件内力,证明该方案的合理性和可行性。

关键词:地铁车站;军用梁;铺盖法;施工;方案设计 工程概况

南京地铁二号线一期工程新街口站位于南京市商业中心地区新街口,车站以新街口环岛为中心分为两段呈东西向布置。西端布置在汉中路路中,东段布置在中山路路中,地面交通十分繁忙,车流密度大,与南北向1号线新街口站呈“T”形相交并相互换乘。环岛下为一号线和二号线共用的大圆盘地下结构,该圆盘已随一号线新街口站施工完毕。

新街口站的总建筑面积为24918m2,其中主体建筑面积22275m2,附属面积2644m2,车站长414.4m,宽21.6m,车站总高约12.69m。顶部覆土约2.836m,车站为3‰坡,西高东低。

新街口站为地下二层岛式车站,车站有效站台宽度14m,地下一层中央为站厅层,两端为商业区,地下二层为站台层,该站主体结构采用军用梁满铺的铺盖法施工,以钻孔咬合桩(直径800,咬合厚度200mm)为车站围护结构。车站临时铺盖工程施工设计总说明

为了最大限度减小车站施工对地面交通的影响,同时满足车站工期要求,结合车站范围内的地质资料,新街口车站采用满足城市A级道路荷载和交通能力要求的军用梁等构件快速形成临时路面系统,东段、西段主体结构均采用军用梁满铺的铺盖顺作法倒边施工,保证东西向15m宽(4车道)通行能力。

本车站军用梁均采用单层加强型**式军用梁,跨度分别为24m和28m,24m跨度的军用梁应用于车站主体结构(除东西端头井)部位,军用梁榀中心间距为1.0m(局部3.52m、0.6m);28m跨度军用梁应用于东、西端头井部位,军用梁榀间距为0.6m。东段铺盖共设置24m跨度军用梁139片、28m跨度军用梁35片,设置4个出土口,出土口大小为8.85m×3.0m,出土口距东段两端头约为23.5m,中间间距为40.0m;西侧铺盖工程共设置24m跨度军用梁185片、28m跨度军用梁12片,设置5个出土口,出土口大小也为8.85m×3.0m,中间间距为40.0m。现仅以24m跨度军用梁为例,介绍其施工设计方案。

本工程基坑宽为23.3m,铺盖结构拟采用长24.3m加强型**式军用梁。加强型**式铁路军用梁是我国自行研制的中等跨度适用的一种铁路桥梁抢修制式器材,是一种全焊构架、销接组装、单层或双层的多片式、钢桥面体系的拆装式上承钢桁梁。本设计采用单层结构,选用加强型单层**式军用梁(由加强三角架和辅助端构架组合而成)。

主体结构施工前,先处理好北边15.0m宽军用梁铺盖工程下的地下管线,再施工该处的钻孔咬合桩,待钻孔咬合桩施工完毕后,施工桩顶冠梁,待结构混凝土达到强度后,开挖该段第一层土方,并架设军用梁,铺设临时路面,然后恢复北边军用梁铺盖工程处地面交通,然后倒边施工南边剩余9.3m宽军用梁铺盖工程。

倒边铺盖军用梁分2期围挡施工,1期围挡内进行北边15.0m宽4车道临时铺盖工程施工,临时铺盖军用梁每片总长24.3m,1期铺设的军用梁每片长15.0m、间距1m(靠近出土口间距0.6m);2期围挡内施工南边临时铺盖工程,临时铺盖军用梁每片长9.3m,此范围内的9.3m长军用梁与1期已施工15.0m军用梁按照规范连接起来,最终形成每片长为24.3m军用梁铺盖系统工程。3 车站临时铺盖工程详细设计方案 3.1 军用梁结构及桥面系设计方案

根据盖挖顺作倒边施工方案,军用梁各部件用平板拖车运至现场,在现场完成拼装施工,在第一层土方开挖及钢支撑施工完成后,用25t吊车吊装到位。军用梁便桥临时铺盖系统的结构形式设计:车站主体结构盖挖顺作倒边施工部分采用加强型**式军用梁支撑形式和桥面系组成。军用梁只用作承托临时铺盖及地面车辆等荷载。3.2 加强型**式军用梁结构及其承台设计 本车站军用梁均采用单层加强型**式军用梁,跨度为24m,应用于车站主体结构部位。军用梁榀中心间距为1.0m(出土洞口宽3m,出土洞口外围军用梁榀中心间距0.6m);军用梁系统结构采用斜向及纵向联结系,以加强军用梁整体稳定,所有的纵向联结构件均为军用梁系列定型产品。

为满足军用梁铺盖倒边施工的需要,保证1期围挡内临时铺盖工程的稳定性和安全性,1期围挡内施工的临时铺盖军用梁两端固定方案为:北端为L形围护桩承台,南端为1000mm×600mm混凝土支撑墩+钢板桩挡土墙,支撑墩设置正对于军用梁的加强三角下支撑点,钢板桩挡土墙深为5.0m。2期围挡内施工临时铺盖军用梁时,需拔除1期施工完成的南侧钢板桩。

1、2期围挡见图1和图2。

3.3 桥面系统设计

根据设计文件及加强型**式军用梁桥面系使用规范,为尽可能减轻军用梁上荷载,又能满足减振、安全要求,考虑只在北侧双向4车道15m宽的临时铺盖上设置行车桥面系,满足A级荷载要求。因此,车站主体北侧16m宽桥面系,沿车站东西向先铺设40cm宽、5cm厚、间距3m木板(设在钢板下层,起减振、降低噪声作用),再沿南北向铺设单层2cm厚防滑钢板(钢板采用A3花纹钢板,规格尺寸为12m×2m),最后在3m宽出土口部位东西向再铺设一层6m宽、9m长、2cm厚防滑钢板局部加强。根据设计检算,为满足龙门吊将盖挖土方吊至地面后暂时弃于南侧桥面上,在临时弃土范围内铺设1.2cm厚钢板以满足施工要求。

3.4 盖挖顺作配套施工设计

施工时以中间临时立柱为分隔线,两侧均采用两台电动葫芦提升、拼装钢支撑。在军用梁架设之前,完成第一道钢支撑掏槽、导梁和L形支撑承台施工,然后架设军用梁、铺设桥面系,完成临时铺盖工程,快速形成道路交通。对于盖挖段军用梁下面的支撑架设,为满足钢支撑架设需要,还设置了4道东西向导梁,导梁采用I20形工字钢,位于军用梁及第一道钢支撑下,且紧贴第一道钢支撑,两侧导梁通过在冠梁下预埋吊钩焊接牛腿,安装电动葫芦;中间两道导梁采用“U”形卡和钢梁、螺栓固定导梁于军用梁上,每根导梁上安装1台10t电动葫芦,利于钢支撑拼装和架设。施工时以中间临时立柱为分隔线,两侧均采用2台电动葫芦提升、拼装钢支撑。在军用梁架设之前,完成第一道钢支撑掏槽、导梁和L形支撑承台施工,然后架设军用梁、铺设桥面系,完成临时铺盖工程。临时铺盖系统完成之后,通过沿车站纵向布置的导轨梁和横向的桁车天梁下悬吊的10t电动葫芦配合进行车站钢支撑架设、土方倒运和模板、钢筋等材料运输。土方开挖时主要采用挖掘机辅助开挖倒运。

3.5 军用梁行车和堆土时的荷载验算 3.5.1 荷载验算前提条件

材料为15MnVq、16Mnq钢材,车速不超过3km/h,城市A级荷载。3.5.2 计算模型

通过单层24m跨度加强型**式军用梁交通通行和临时堆土受力计算采用韩国MidasCivil671软件计算,Midas为空间结构通用有限元计算软件,内建了国内各种规范规定的材料和荷载,包括城A和各种型钢材料和截面。本次计算加载为加强型**式军用梁结构。

本结构取一片梁建立模型,每片梁间距1m,每片梁间以横向连接系连接,结构计算沿纵向(车行方向)取1m进行荷载简化,计算结构模型见图3,取本标段的第2期围挡所示为计算工况。

在计算模型的左边15m(军用梁北侧)范围为双向4车道车行范围,汽车活载按城市A级荷载考虑。临时路面系统考虑为2cm厚钢板,在每个出土口范围,由于梁片间跨度达3m,需另外在上面再铺一张6m宽、9m长、2cm厚钢板,局部加强。

在计算模型的右边9m(军用梁南侧)范围为出土口施工范围,为在军用梁上临时堆土考虑,在军用梁上铺设一层1.2cm厚钢板,在出土口的两侧分别考虑临时平铺一定高度的开挖土方。3.5.3 荷载(1)恒载

结构自重:钢材容重78.5kN/m3。桥面钢板自重:2cm厚钢板、宽15m,1.2cm厚钢板,宽9m。q1=78.5×0.02=1.57kN/m;q2=78.5×0.012=0.942kN/m。土的自重:按试算法考虑的松土厚度为1.8m,松土的平均容重为16kN/m3,则q3=1.8×16=28.8kN/m。(2)活载

汽车活载:城市A级车辆荷载,4车道布置,车道折减系数0.67。

纵向分布系数:城A车辆荷载为轮间距1.8m,车道间距1.3m。纵向车队取2个最重轴,轴重140kN,轮重70kN,两重轴间距1.2m。其作用影响范围,考虑横向联系位置,取4m,即总共4片梁承受。纵向分布系数=2/4=0.5。

冲击系数μ=0.6686-0.3032×lg(24)=0.25。3.5.4 荷载组合

结构自重+桥面钢板自重+土的自重+汽车活载×0.67×0.5×(1+0.25)。

3.5.5 单元内力计算结果

计算结果数值以拉为正,以压为负,计算结果如表1所示。3.5.6 结论

在出土口两侧允许平均堆土厚度1.8m的情况下,以上各杆件都满足承载力的要求。其中最外端加强三角的外斜杆,是整体承载力控制杆件。本结构按纵向(车行方向)4m计算,如果覆土不是集中在4m宽范围内,可按照体积相应提高容许土层厚度。在平均堆土厚度为1.8m的情况下,按高峰期单个出土口每天最大可出土300m3考虑,则出土口两侧允许堆土宽度的范围为300/(9×1.8)=18.5m,即出土口单侧考虑9.3m就可以满足施工出土高峰期需求。实际施工中可考虑在其余地段也满铺钢板,用作堆放钢支撑等其他施工材料。4 结语

上一篇:《昆虫记》读书笔记1000字左右下一篇:婚育证明各种情况