移动基站的危害简介

2022-09-03

第一篇:移动基站的危害简介

针对移动基站危害的案例

案例:

我们公司是东边一座17层酒店,移动公司做了信号覆盖,但是信号一直很差。酒店周围的居民区信号也很差。现在移动公司提议在酒店西面的写字楼(17层)楼顶安装基站。公司就在17楼啊,这样安装基站对写字楼和酒店的工作人员的身体危害大骂

酒店都做了信号机房,信号还那么差,基站的功率岂不要很大啊 回答:

你们酒店做的应该是室内信号覆盖!室内信号覆盖系统是主要针对高 住宅及办公商用楼层信号差、信号杂乱、容易受干扰提出的覆盖解决方案。 信号差的可能性

1、基站设备未安装完毕,因设备安装完毕还要配置传输、数据等其它方面的工作。

2、基站设备安装完毕,因其它原因暂时未开通。

3、你所在楼层对应的设备有故障。如信号差请向10086进行反映,投诉处理人员会到现场勘察,勘察完毕会报给相应的部门来处理。

对于室外楼顶安装基站不对对你所在楼层进行覆盖,它只是针对居民小区进行覆盖。

对于你所说的安装基站对身体危害性,现有的移动通信网络(包括联通、电信)设备都是经过国家相关部门检测合格后批准生产的,对于人体危害性现在全世界范围都没有实际的案例,就通信原理来说肯定会有辐射,但是辐射在安全范围!

能够产生辐射的东西很多,无线电对讲机、电吹风、电视机、电脑、无线路由器、手机等电器都会产生辐射!所以辐射无处不在。。。。 移动通信企业的一线工作人员很多都在做基站相关的维护、安装作业,尤其是维护人员每天都在近距离接触设备,到目前为止也没有任何一例关于无线电辐射造成的职业病病例!

所以,你不用太担心!那么大的企业而且多家公司都在做无线业务,目前3G业务已经开通。如果会对公众的身体产生危害为什么还要生产这些设备呢!

第二篇:移动通信基站对人体的危害及案例

例一:

从1998年开始至2005年2月,北京市丰台区玉林西里小区46号楼首都医科大学家属楼,先后有20余人被确诊为癌症。几名住在该楼的首都医科大学教师联合调查后怀疑,架在楼顶的数个通讯发射装置可能是致癌“元凶”。

46号楼总共20层,每层8户人家,1991年开始入住,1998年起有人因患癌症而死亡。去世的人多数只有60多岁,年纪最轻的仅48岁。据统计,癌症患者大多集中在6层至18层之间。每层西南——西北朝向的5号房间,成了发病率最高的屋子。5号房住户中,一共有10人患癌(包括两对夫妻共同患病),其中4人已离世。

经调查,几位老师发现,46号楼楼顶装有数个手机发射基站,而其它楼的屋顶则都没有。案例二:

2005年2月21日,天津市大港区装有心脏起搏器的万先生,因借用家人手机打电话引起心率突变,幸好及时送到医院保住了性命。

案例三:

200多名居民搬到北京顶秀欣园后开始出现失眠、心悸、掉头发等症状。2004年11月,居民对安装在楼顶的移动基站是否存在电磁辐射提出质疑。

家住3号楼的刘先生,在搬到顶秀欣园前身体一直很好,连感冒都很少。但自从搬到顶秀欣园后,总是感冒,而且失眠、掉头发。家住3号楼的李女士也像刘先生一样,以前身体不错,搬到顶秀欣园后才得的心脏病,而且体质变得虚弱了。家住6号楼的张先生,其14岁的女儿突然在学校昏倒,送到医院检查,发现女儿贫血。一年前,他曾带女儿到医院检查过身体,女儿身体很好,什么病也没有。这些患有不同症状的居民,都怀疑自己的症状与近在咫尺的移动基站电磁辐射有关。

中国联通北京分公司双庙移动基站位于北京市丰台区石榴庄的顶秀欣园东北角五金皮革厂5层楼的楼顶,根据测量该基站距离最近的顶秀欣园3号楼仅18米,其中3号楼的

5、

6、7层阳台正对着移动基站。为此,顶秀欣园小区的居民代表曾多次找到五金皮革厂,要求拆除移动基站,但遭到拒绝。虽然经过检测,该基站的电磁辐射没有超过国家标准,但居民仍然难以安心。

案例四:

2005年4月中旬,回龙观龙锦苑6区的居民发现,紧挨小区的南墙外一幢未竣工的6层楼的楼顶上出现了一座发射塔。由于发射塔周围方圆500米范围内,包括龙锦苑6区、龙跃苑2区的数十幢居民楼及龙锦苑4区,龙跃苑1区、2区的部分居民楼,发射塔的东边还有正在建设的E08小区,鉴于附近老人和孩子较多,三四十米高的发射塔很快引起了附近居民的重视。

铁塔为北京正通网络通信有限公司的微波发射基站,工作原理与手机基站相似。而北京市环保局辐射处证实,这座发射基站未得到许可,可视为违法建设。

案例五:

2000年7月,美国马里兰州神经内科医生ChrisNewman向手机生产商摩托罗拉和一家通信公司Verizon通讯要求8亿美元的司法赔偿,该医生认为,由于这几年使用无线设备导致他患上脑癌。

该医生的恶性肿瘤长在右耳后部,是1998年3月发现的。这项诉讼包括1亿美元的补偿性赔偿和7亿美元的惩罚性赔偿。美国食品和药品署(FDA)认为,现在还没有证据显示手机发射的电波会引起健康问题。不过,现在同样也没有证据证明使用手机是安全的。

第三篇:移动通信基站的维护

移动通信系统中的基站主要负责与无线有关的各种功能,为MS(移动台)提供接入系统的UM接口,直接和MS通过无线相连接,系统中基站发生故障对整个移动网的影响是很大的。引起基站故障的原因很多,但大多可归为以下四类:

一.因传输问题引起的故障

移动通信虽属于无线通信,但其实际为无线与有线的结合体。移动业务交换中心(MSC)与基站控制器(BSC)之间的A接口以及基站控制器(BSC)与基站收发信台(BTS)之间的ABIS接口其物理连接均为采用标准的2.048MB/S的PCM数字传输来实现。另外基站的各部件的稳定工作离不开稳定的时钟信号,而基站的时钟信号是从PCM传输中提取的,爱立信的基站不提供外部时钟输入的端口,这些基站设备是基于采用传统的PDH组网方试而设计的。

目前传输设备正从PDH向SDH逐步过度,而按照SDH的传输体制,由于指针调整的原因,其传送时钟是通过线路码传输,由分插复用器(ADM)专门的时钟端口输出。如果采用从SDH的随路码流中提取时钟的方法,将会带来诸如失步,滑码,死站的问题。如新桥站原采用爱立信RBS200设备,传输采用SDH系统,此站自开通以来一直不稳定,后经爱立信工程师到现场检查发现为基站同步不好,建议采用PDH传输系统,或基站采用RBS2000设备,(RBS2000对同步要求较RBS200低),后用RBS2000设备替换原RBS200设备,基站工作正常至今。

日常维护中经常有基站所有或部分载频不稳定,时而退服时而工作的现象,BSC侧对CF测试结果为BTS COMMUNICATION NOT POSSIBLE 或CF LOAD FAILED。此类故障大都为传输不稳定有误码,滑码而引起的。当传输误码积累到一定时,BSC无法对基站进行控制,数据装载,此时可在本地模式下通过OMT对IDB数据从新装载,复位后可恢复正常。

二,因基站软件问题引起的故障

基站系统中的软件是指挥和管理基站各部件有序,正常工作的。若基站IDB数据与基站情况不匹配,则基站一定无法正常工作。如在对北码头基站进行传输压缩(两条压缩为一条)后发现A,B小区工作正常而C小区工作不正常,说明BSC无法与C小区进行通信,于是怀疑与之想邻的B小区的软件设置有误,经查看发现B小区的传输方式被误设为STANDALONE(单独方式),一条传输时ABC各扇区的传输方式应分别设为CASCADE,CASCADE,STANDALONE,将B的传输方式改为CASCADE后基站恢复正常。

三,因基站硬件引起的故障

此类故障较常见,现象也较明显,一般有故障的硬件其红色FOULT灯会点亮,但有时不能被表面假象所迷惑。

例如唐闸基站B扇区一载频(TRU)退服,到站后发现此载频的红色FOULT灯和TX NOT ENABLE 灯都亮,于是判断为TRU硬件损坏,更换后故障现象依旧,此时更换TRU就犯了"头痛医头,脚痛医脚"的错误,TRU退服可能为其本身硬件故障也可能为与之相连的其他硬件或连线的故障。用OMT软件诊断后提示为CU到TRU间的连线故障,检查发现连线松动,重新连接后故障消失。对此类故障建议先用OMT软件进行故障定位,根据OMT的建议替换单元进行操作,而不能只看表面。

四,因各种干扰引起的故障

移动通信系统中的干扰也会影响基站的正常工作,有同频干扰,邻频干扰,互调干扰等。现在陆地蜂窝移动通信系统采用同频复用技术来提高频率利用率,增加系统容量,但同时也引入了各种干扰。

日常维护中新建站以及扩容站新加载频的频点选取不合理基站将无法正常工作,对此类故障应与网优配合,综合考虑各种因素,选取合理频点,消除以上干扰。

对移动通信系统中基站的各类故障应认真分析,找到其真正原因,才能以最快的速度排除故障,提高网络质量。

五、移动通信基站维修实例

1 爱立信模拟基站系统RBS883障碍处理一例

江苏南通易家桥站的模拟基站系统为RBS883,原经安装调测后,基站能正常工作。运行一段时间后,交换侧测试发现系统中B小区第十个载频没有发射功率,经到现场观察发现其对应的COMB不能调谐。

我们知道,江苏目前的爱立信模拟基站系统RBS883一般均使用自动调谐的形式,即功率合成器采用自动调谐合成器。其调谐过程主要是由功率监测单元接受从功率合成器中耦合出的-32dB的射频信号和从方向耦合器中耦合出的-40dB的射频信号,通过对这两个射频信号进行比较处理后,功率监测单元启动并控制相应的自动调谐合成器上的电动步进马达转动,从而实现自动调谐功能 。

下面我们对RBS883的具体结构作一说明。

在RBS883系统中,自动调谐功能主要由以下结构共同协调完成:功率监测单元(PMU-AT)、信道收发信机(TRM)、自动调谐合成器(COMB)、方向耦合器。其工作原理如下:当某一信道收发信机的发信机打开后,其输出功率信号经射频线输入到功率合成器中的环形隔离器并最后进入合成器腔体中,同时从环形隔离器中(功率合成器上的Pi口)耦合出-32dB的射频信号,经功率监测单元面板上的参考信号输入端口(COMB端口,共有八个,分别与位于无线机架A中的八个合成器腔体相连),输入到功率监测单元中;另外,输入到合成器腔体中的射频信号最后进入方向耦合器并经天馈线系统发射,同时也从方向耦合器的前向功率(PFWD)口耦合-40dB的射频信号,经功率监测单元面板上的Pout FWD口输入到功率监测单元中。

功率监测单元对以上两种射频信号进行比较处理,当两信号相差7-9dB以上时,功率监测单元就会通过步进马达控制线(从功率监测单元面板上的M01-M08端口至功率合成器上的步进马达信号连接头)向相应的功率合成器送步进马达控制电源信号,启动步进马达转动,并控制其转动量使其准确调谐到相应的频率上。

首先更换COMB,问题依旧,证明COMB正常;将功率计接到TRM的TX口,用LCTRL1软件将TRM的功率打开,发现功率计有功率显示,证明信道盘TRM正常;一般说来,如果功率监测单元或方向耦合器坏,会导致该小区所有载频出现问题,而不应是某一载频退服,因此我们可断定功率监测单元及方向耦合器没有问题。

于是我们将目光转移到连线上:与相邻载频(第八个或第十二个载频)同时对换COMB端的Pi输出头与马达连接后发现,该载频能正常工作,而相邻载频却不能工作,从而将障碍定位在Pi输出线和马达连接线上;更换从功率合成器上Pi口至功率监测单元上COMB口间的连线后,载频正常工作,问题解决。

这些问题都因功率合成器上Pi口至功率监测单元上COMB口间的连线损坏,功率监测单元无法接收从功率合成器中耦合出的-32dB的射频信号,进而无法控制COMB调谐。

2 爱立信数字基站系统RBS200障碍处理一例

江苏南通的海北站(RBS200系统)曾发生过某个载频不能工作的情况:交换侧测试反应为该套载频接收正常但不能有效发射;到基站观察发现,该套载频在推服过程中,RRX、TRXC及SPU一切正常,而RTX不能有效锁定,导致整套载频无法正常工作。

我们知道,爱立信数字基站系统RBS200一般均采用自动调谐合成器的形式。自动调成器实质是一个窄带合路器,其输入被机械地调谐到指定的GSM频点。在每一个合路器的输入端都有一个步进马达,它受控于它所连接的RTX。两个输入被合路成一路输出,若干个合成器的输出可以被连接成一条链。在调谐期间,发射机将其合路器的输入设置到可以给出最大前向功率的位置,而且还检验反射回的功率,如果反射功率超过最大允许值,那么发射机将其自身禁用并发出一个错误代码。

下面我们联系RBS200的具体结构作一说明。

RBS200系统的自动调谐功能主要由以下结构共同协调完成:无线发射顶(RTX)、自动调谐合成器(COMB)、发射机带通滤波器(TXBP)、监测耦合器单元(MCU)及发射机分路器(TXD)。

其工作原理如下:语音信息经过编码、交织、加密等一系列处理过程后,由TRXC通过TX总线传送到无线发射机(RTX),无线发射机对其进行调制和放大,并经自动调谐合成器(COMB)调谐和发射机带通滤波器(TXBP)滤波后,最后传送到监测耦合器单元(MCU)并经天馈线系统发射出去;与此同时,监测耦合器单元的一个输出被连接到发射机分路器(TXD)单元的输入端,经发射机分路器分路后,由其输出端连接到相应的一个RTX的"PT"口,RTX将该信号与其自身发射信号进行分析比较后,进而控制自动调谐合成器使其准确调谐到相应的频点上。

我们检查并更换硬件设备COMB、RTX及TXD,结果在检查RTX时,发现该RTX的"PT"端口中的针头歪掉了,导致该RTX与从TXD过来的射频线不能有效接触,RTX收不到从TXD反馈加来的参考信号,无法将该信号与其自身发射信号进行分析比较,进而无法控制自动调谐合成器使其准确调谐到相应的频点上,因此该载频不能正常工作。将该RTX的"PT"端口中的针头拨正后,该套载频工作正常。 3 爱立信数字基站系统RBS2000障碍处理两例

(1)因缺少环路终端而导致基站退服

启东土管局基站为RBS2000站,原为5/5/5配置,后因信令压缩的需要,经网络规划人员现场测试分析后,决定将其改型为4/4/4配置,并经信令压缩成一条传输线。压缩传输后基站能正常工作。后因某种原因基站迁址,由原少年宫迁至启安宾馆,在重新开通时,基站的A小区能正常工作,而B、C小区却不能工作,从交换机侧反应为CF数据灌不进去。

经到现场用OMT软件观察发现,TEI值、PCM等设置一切无误,而用Monitor菜单也不能发现任何告警信息;对B、C小区重新灌入原IDB后,障碍依旧,断定IDB数据无误。在C机架的DXU中灌入A小区的IDB数据并改变架顶的PCM连接方式,使原C、B机架分别对应A、B小区,则C机架(对应A小区)能正常工作,而B机架(对应B小区)却不能工作;对B机架进行同样的操作后,情况与C一致,由此判断B、C机架设备无障碍。

在判断基站软、硬件一切正常的情况下,我们将目光转移到传输上。该站现为4/4/4配置,一条传输线,从DF架连到A机架的C3口,并从A机架的C7口出来连到B机架的C3口,然后再从B机架的C7口连到C机架的C3口。

在检查连线及IDB中传输设置无误后,对传输通道进行环路测试并用万用表检查通路,没有发现任何问题。最后在C架的C7口加上一环路终端,重新推站,基站恢复正常。 在基站工作正常的情况下,我们曾做过如下试验:将整个基站断电一段时间后再供电、起站。共断过三次电,其中有两次在不加环路终端的情况下基站能正常工作,而另一次却必须加上一环路终端基站才能工作。由此可见,因掉电而退服的基站,这种障碍现象并不是必然的,而是具有一定的偶然性,即可能会出现这种障碍。

在我们日常操作维护中,对于只有一条传输线的RBS2000基站(其它站型的基站尚未出现如此现象),当出现故障时,我们首先应该按照正常的步骤进行操作维护,包括用OMT观察告警信息、复位、拔插硬件板、检查软件设置及硬件故障等。在一切努力均告失败的情况下,试着在C架架顶的C7端口加上一个环路终端,可能会帮助我们解决问题。

(2)因硬件原因引起基站告警

南通北码头基站为RBS2000站型,经工程局安装并调测后,基站能正常工作。但经过一段时间的话务统计分析发现,该基站的A、B小区有较高的拥塞和掉话。通过BSC观察发现,该站的A、B小区均有分集接收告警,同时A小区还有驻波比方面的告警。到基站用OMT观察,发现有分集接收丢失告警及VSWR/POWER检测丢失告警。

由于告警均与天馈线系统有关,我们先用驻波比测试仪分别对A、B小区的四根天馈线进行了测试,结果发现测量值均在标准范围内,证明天馈线本身没有问题。 我们知道,分集接受是解决信号衰落、提高信号接收强度的重要措施之一。小区通过两根接收天线接受信号,可以产生3dB左右的增益,同时通过对两路信号的对比来判断接受系统是否正常。如果TRU检测两路信号的强度差别很大,基站就会产生分集接收丢失告警。分集接收丢失告警可能是TRU、CDU、至TRU的射频连线或天馈线故障引起的。

由于在本例中,我们注意到A、B小区均有分集接收告警且拥塞和掉话均较高,于是怀疑A、B小区的天馈线相互错位。后经高空作业人员对天馈线逐一检查,发现A、B小区的接受天线相互错位。因此A、B小区的两根接收天线接受方向不一致,方向不对的天线就接收不到该小区手机发出的信号或接受信号很弱,从而使小区产生分集接收丢失告警且伴随着较高的拥塞和掉话。经更改后,分集接收丢失告警消失,且拥塞和掉话降到了指标范围内。

对于VSWR/POWER检测丢失告警,我们也从原理上对其进行了分析处理。我们知道,在RBS2000中,每个TRU都通过Pfwd和Prefl两根射频线分别与CDU的Pf与Pr相连,从而检测CDU的前向功率和反向功率。如果反向功率过大,则说明天馈线驻波比太大或CDU有问题,这时TRU会自动关闭发射机产生ANT VSWR告警。同时TRU还对Pfwd和Prefl这两根射频线进行环路测试,如环路不通,则产生一个VSWR/POWER告警。在本例中,由于出现了VSWR/POWER告警,于是我们对其环路进行了检查。在RBS2000中,Pfwd和Prefl这两根射频线的接口处在FU上,其一端分别连到CDU前面板的Pf和Pr口,另一端则通过背板连线连到TRU的后背板,并与TRU通过射频头相连,从而形成Pfwd和Prefl的整个环路。我们对CU、FU上的接头进行认真检查,确定一切正常后,对TRU的后备板进行了检查,结果发现后备板的射频头接口处凹了进去,导致TRU与后备板接触不好所致。经更改后,VSWR/POWER检测丢失告警消失。

六、移动通信基站的防雷

防雷是一项综合工程,它包括防直击雷、防感应雷以及接地系统的设计。根据信息产业部批准的中国通信行业标准:"移动通信基站防雷与接地设计规范"以及产品的特点和工程设计的经验,提出以下解决方案。 1.接地系统

防雷工程设计中无论是防直击雷还是感应雷,接地系统是最重要的部分 1.1对接地电阻的要求:

从理论上讲接地电阻愈小愈好。据我们的经验,地阻决不能大于4欧姆,应力争小于1欧姆。 1.2应采用联合接地:

接地的"流派" 很多,近年来联合接地的观点占了上风。因为,现代化的城市不可能以足够的距离作几个地网来满足使用要求。采用联合接地时只要保证各种接地作到共地网而不共线的原则,机房设备做到用汇流排或均压环实现设备的等电位联接即可。 2.直击雷的防护:

移动通信基站天线通常放在铁塔上,防直击雷避雷针应架设在铁塔顶部,其高度按滚球法计算,以保护天线和机房顶部不受直击雷击,避雷针应设有专门的引下线直接接入地网(引下线用40mm?4mm的镀锌扁钢)。铁塔接地分两种情况:若铁塔在楼顶上,则铁塔地应接入楼顶的钢筋网或用三根以上的镀锌扁钢焊接在避雷带上。若铁塔在机房侧面,则建议单独作铁塔地网,地网距机房地网应大于十米。否则两地网间应加隔离避雷器。 3.感应雷的防护:

感应雷是指由于闪电过程中产生的电磁场与各种电子设备的信号线、电源线以及天馈线之间的耦合而产生的脉冲电流。也指带电雷云对地面物体产生的静电感应电流。若能将电子设备上电源线、信号线或天馈线上感应的雷电流通过相应的防感应雷避雷器引导入地,则达到了防感应雷的目的。 3.1天馈线糸统的防雷与接地

基站至天线的同轴电缆不采用金属外护层上、中、下部接在铁塔上的方案。我们建议天线同轴电缆从铁塔中心引下,这样可以减少由于避雷针接闪后的雷电流沿铁塔泄放时对同轴电缆的感应电流。因为铁塔四支柱同时泄放雷电流入地时铁塔中心的感应场最弱。若天线塔高度超过30m,天馈线电缆在塔的下部电缆外护层可接地一次(可直接接铁塔或直接接地皆可)。

电缆进入机房走线架接在六个天馈避雷器(组件)上,型号为CT1000H-DIN和CT2100H-DIN,前者工作频率范围为850-960MHZ; 后者为1700-1900MHZ。天馈避雷器组件由紫铜构成,紫铜构件的接地应采用截面积大于25平方毫米的多股铜线接在机房内的汇流排上。本防雷设计用的天馈避雷器采用∏型网络高通滤波器方案,它不同于国内外惯用的气体放电管方案。这种避雷器扦入损耗低(小于0.2dB),驻波小(小于1.15),雷电通流量大(最大可作到50KA/在8/20μs下),残压低(小于18v)。

对室外基站,天馈避雷器和机柜接地都应分别接入接地排(见图LDTA2000-01) 3.2 供电糸统的防雷与接地

移动通信基站外供电源可能是架空线进入,也可能是穿金属管埋地进入基站。无论是什么情况,都应在出入基站的电源线出口处加装大通流量的电源避雷器,因为电源线架线长,走线也较复杂,易应感应较强的雷电流。设计了CY380-100GJ(10/350us) 电源避雷器。雷电通流量在10/350us波型下雷电通流量大于50KA,后面应再配置两级并联型避雷器。三级防雷器之间的间距应在10m以上。若基站较小,三级防雷不能保证上述距离,则应当设计为串联型电源避雷器它是由二级或三级并联式避雷器加隔离电感后的组合。雷电通流量仍为10/350us波型下大于50KA,工作电流可达60A。若基站用电超过60A,则只能作并联方案。

对室外基站由于供电线路很长。应设计具有三级防雷功能的大雷电通流量的串联型电源避雷器。雷电通流量为60KA,工作电流35A。电源避雷器接地线也接在机柜的接地排上。

基站三相电源供电应采用三相五线制。外线进入基站的第一级电源避雷器接地线可以就近接电源保护地(PE)。第二级电源避雷器接地可接供电设备的保护地。第三级电源避雷器接机房汇流排。 3.3 信号线路的防雷与接地 由基站外进出的信号线都应穿金属管埋地,避免感应过大的雷电流。信号线的进站处都应加相应接口和相应信号电平的信号避雷器。信号线超过5m长度的,在其线两端设备的端口,加装相应的信号避雷器。

第四篇:关于移动基站的公益诉讼起诉书

起诉状

原告:姓名,性别,出生年月,具体地址,联系方式电话。 原告:同上。(一般原告超过十个人就要选出2人至5人作为代表代为进行诉讼)

被告:**市移动公司

诉讼请求:

1、请求法院判决**市移动公司撤除设置在()楼面的移动通信基站,并将楼面恢复原状。

2、请求被告承担本案的一切诉讼费用。 事实与理由:

2002年被告于某某鉴定建筑物租赁3年合同,每年租金()元,在某某楼顶上设置移动通信基站,基站距离旁边的房屋距离有的不到十几米。通信基站的装置势必在其周围形成强大的电磁场,从而形成电磁污染,长期生活在此种磁场下,必将对我们尤其是正在发育阶段的小孩和抵抗力较弱的老人身体健康造成严重的损害,甚至产生病变。近几年,通信基站附近的居民越来越多人反应头痛、头晕、疲倦无力、失眠多梦、记忆力减退等症状,部分人员则发生嗜唾、胸闷、心悸等症状,基站的电磁辐射严重威胁附近居民的身体健康。

根据《电信条例》的立法精神,电信企业设置的电信设备需要安装在 民用建筑物上,实行的是“政府许可、企业补偿”的原则。但是**市移动公司既未经有关主管机关批准,也未依据电信条例的相关规定事先通知建筑物附近的居民,擅自在某某城楼顶面设置移动通信基站,附近住户无疑会受到电磁场的辐射,影响到身心健康。另外根据《侵权责任法》第15条和《建设项目环境保护管理条例》第25条有关规定,原告要求拆除基站、恢复原状。

原告曾多次与某某协商不要在楼顶设置基站,但都被拒绝,为此,现特提起诉讼,请求人民法院支持原告的诉求。

此致

**市人民法院

附: (1)本起诉状副本1份;

(2)证据材料()份。

起诉人:

2013年10月10日

第五篇:移动通信基站耗电量估算模型的研究

1 引言

当前国内经济增速下降,经济结构面临调整而能源消耗持续增长,国内节能减排形势严峻。国资委将通信运营商在节能减排考核中由“一般类”企业调整为“关注类”企业,使得通信运营商的节能减排的任务艰巨。通信运营商能源消耗构成中电力消耗超过占80%,而基站电费占整个电力消耗中的比重超过60%。所以基站电费估算模型的研究对于通信运营商提高电费管理水平有着非常重要的意义。 2 基站耗电量构成

2.1. 基站

基站是基站子系统(BSS,Base Station Subsystem)的简称,是指在一定的无线电覆盖区域中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台,本文所指的基站特指移动通信用基站(以下均称为基站)。本文研究的基站耗电量,即定义为以安装基站设备为主的小型机房的耗电量,对于以传输设备为主且安装有基站设备的综合业务机房不在研究范围。 2.2. 基站耗电量构成

基站耗电量构成主要有四部分:主设备耗电、空调耗电、电源设备耗电、其他。 2.2.1. 主设备耗电

现有基站安装的主设备主要为无线设备和传输设备。无线耗电设备对于GSM基站主要为BTS和BSC。基站中安装的传输耗电设备主要为PTN(分组传送网)设备和SDH(同步数字系列)设备。主设备耗电尤其是无线设备耗电是基站耗电的主要部分,考虑到SDH设备的逐步减少,主设备耗电数据分析中仅考虑PTN设备耗电。 2.2.2. 空调耗电

为了给基站通信设备提供良好的运行环境,基站机房通常设置空调,且空调耗电是基站总耗电的重要组成部分;现有基站机房安装的空调主要为3P和5P的舒适性空调,通常每个基站安装1~2台舒适性空调。每台3P空调的耗电功率约为2.9kW,每台5P空调的耗电功率约为4.8kW。 2.2.3. 电源设备耗电

基站机房为达到良好运行,通常安装有电源设备,用于将380V/220V的交流市电转换为-48V的直流电,电源设备耗电主要为电源设备在整流过程中引起的电能损失和模块休眠功耗。现有电源设备厂家均宣称单个整流模块休眠时所产生的功耗在5W以内,所以电源设备耗电主要为整流模块在整流过程中所损失的电能。现有电源设备厂家整流模块的工作效率均在90%以上,高效整流模块的

工作效率通常在95%以上,故电源设备的耗电可按实际用电的10%进行估算。 2.2.4. 其他耗电量

其他耗电量主要有线损和其他设备、照明等耗电量。线损指电能在传输过程中因为电阻和电导所消耗的功率损耗。电抗所产生的无功功率所引起的电能损耗不计入线损。基站机房的线损主要为交流电缆上的损耗和直流电缆上的损耗。机房内的交流电缆的损耗和直流电缆的损耗较小,约占机房总耗电的1%~2%,可以忽略不计。供电局所要求的引入电缆的线损根据各地的要求,不在考虑范围之内。其他设备主要有监控设备等,因耗电量较小可不予考虑,照明系统由于机房为无人值守,仅在维护人员检查、维护时使用,可以忽略不计。 3 基站耗电量估算模型基站耗电量影响因素

基站电费影响因素有主观因素和客观因素,主观因素主要有管理因素、供电局的要求以及工程建设进度等等,由于主观因素无法客观量化,加之各地不统一,所以不加考虑。本论文仅研究基站由于客观因素所产生的耗电量。影响基站耗电量的客观因素主要有设备配置、厂家、空调配置、基站位置、气候、节假日等因素。 3.1. 基站耗电量估算模型的提出

耗电量估算先采用模块法,将耗电量分解为主设备耗电、空调耗电、电源设备耗电以及线损等模块,逐一分析各个模块,然后根据各个模块的耗电量和得出总的基站耗电量。基站耗电量估算模型如下。

基站总耗电量=(主设备耗电量+空调耗电量+电源设备耗电量+其他及照明耗电量)×耗电量波动系数。耗电量波动系数可根据实际情况取1.1~1.2。 3.2. 估算模型中各部分的详细论述 3.2.1. 主设备耗电量分析

主设备耗电量采取回归模型预测法进行预测,对于多因素共同作用的耗电量估算,将针对多个因素,从不同维度逐一分析,综合考虑各因素之间的关系进行估算;对于单独的影响因素根据计算数据采取系数法的办法进行修正。主设备耗电量为一个与设备配置、厂家、位置、节日等因素有关的一个函数,即主设备耗电量=f(设备配置,厂家,位置,节日等)。

本次数据分析采用的数据为陕西某运营商动环监控系统中采集的2012年1月到2012年6月的每日基站开关电源电流数据,每日电流数据分时间有四个采集值。主设备每日的耗电量根据每日电流的平均值与电压值(取53.5V)相乘再乘以小时数(24h)得出,主设备每月的耗电量为每日耗电量之和。数据样本中将基站开关电源电流小于20A和大于200A的基站数据排除,总体样本中同时

排除新能源基站,最后得到有效样本。 3.2.2. 设备配置

基站里的设备配置直接决定着主设备的耗电量,现有的基站主要有2G基站、3G基站、2G和3G共站基站等,因2G和3G共站基站无分项计量数据,无法单独分析3G和2G基站的耗电量,故本次不研究2G和3G共站基站的耗电量,仅研究2G基站的耗电量,2G基站耗电量将根据载频配置进行分析,因设备载频配置与厂家等因素均具有一定的关系,所以将设备的载频作为主要因素结合以下因素进行分析。 3.2.2.1. 厂家因素

不同厂家的设备耗电量不同,下表为根据载频数对不同厂家的设备耗电量2012年1~6月平均值进行拟合得出的曲线。

厂家1

平均值 厂家2 厂家3

3.3-1 不同厂家耗电量拟合曲线

由上图可以看出在载频数小于8时,各个厂家的设备耗电量比较接近;在载频数大于8时,厂家1的设备耗电量较高,厂家2和厂家3的设备耗电量较小;在载频大于20时,不同厂家的设备耗电量差异将可能超过20%,厂家的对设备耗电量的影响不可忽略。 3.2.2.2. 基站位置

根据不同的基站位置不同,将样本中的基站根据位置分为农村、乡镇、市郊、县城和市区,对不同位置的基站随载频变化的数据进行拟合得到以下曲线。下表为不同区域2012年1~6月平均值进行拟合得出的曲线。

图3.3-2 不同位置基站耗电量拟合曲线

由上图可看出乡镇和农村的耗电曲线比较接近,市郊和县城的耗电曲线比较接近,在基站电费标杆中可不作区分。在基站电费标杆研究中针对位置可区分市区、市郊、县城和农村,根据不同的拟合曲线进行预测即可。 3.2.2.3. 节日因素

节日因素对基站耗电量的影响主要反映在春节期间,下图为2012年1~6月的单基站平均耗电量。

图3.3-3 单基站平均每月设备用电量

由于2012年春节为1月23日,1月到2月的耗电量明显高于3~6月的耗电量,1月和2月的平均耗电量约为3~6月平均耗电量的1.11~1.16倍,而农村地区1月的耗电量约为3~6月耗电量的1.4~1.6倍,变化较大。

3.3. 空调耗电量分析

空调耗电量随季节和气候影响较大,陕西省11月~3月份随地域不同基站空调基本处于不工作或少工作状态,耗电量较小;而6月~9月随着室外温度的升高,空调耗电量明显增大,最高时几乎全天24小时运行。同时对于基站机房,空调数量、室内气流组织、是否有智能通风以及机房的围护结构等都对空调耗电量有着较大的影响,无法准确预测,所以空调全年耗电量可根据经验值取主设备耗电量的0.2~0.5倍计取。即空调年耗电量=主设备年耗电量×(0.2~0.5),陕北可取0.2~0.3,陕南和关中可取0.4~0.5,对于单独月耗电量可根据空调是否工作以及工作时间取不同的系数进行估算。 3.4. 电源及其他耗电量分析

电源设备耗电量可根据电源设备的效率进行估算,通常按主设备耗电量的10%进行估算,即电源设备耗电量=主设备耗电量×10%。线损和监控设备、照明耗电量可忽略,不予考虑,其他突发因素所引发的耗电量变动可直接调整波动系数即可。 4 结论及结束语

综上,移动通信基站耗电量模型的研究主要结论如下: (1) 主设备的配置直接决定基站耗电量的大小,不同厂家对主设备耗电影响较大,基站耗电量估算模型应分厂家研究取定,在基站电费标杆研究中针对位置可区分市区、县城和农村,根据不同的拟合曲线进行预测即可。春节对主设备耗电影响较大,春节所在月及相邻月的耗电量预测可根据非春节月耗电量平均值的1.11~1.16倍进行估算。 (2) 电源设备耗电可根据主设备耗电量的10%进行估算,空调年耗电量可根据主设备耗电量的0.2~0.5倍进行估算,机房内的线损、监控设备、照明等耗电量可忽略。 (3) 基站耗电量除受以上因素的影响外还受到如人口、话务量、突发性事件以及主观性等因素的影响,基站的耗电量存在一定的波动,基站耗电量估算时,需要根据实际情况选定波动系数。

同时基站耗电量管理应通过电量预估、电量采集、电量分析和电量核查等四个环节构成,基站电费估算模型的确立,只是针对目前对移动通信基站的能耗状况无法定量采集的现状,为电费管理提供了可操作的依据,它具备少投入、易操作、易推广的优势,可降低企业的电费支出,实现创建节约型通信企业的初级目标。从长远看,建立电能采集系统获取准确完整的电能基础数据,建立完善有效的电能统计、分析和评估体系,才能真正做到“科学管理电能,有效降低成本,实现企业低成本高效运营的长远目标。

上一篇:元旦公司节目三句半下一篇:移动互联网应用场景