110kv变电所课程设计

2023-06-17

第一篇:110kv变电所课程设计

110kv变电站继电保护课程设计

110kV变电站继电保护设计 摘要

继电保护是电网不可分割的一部分,它的作用是当电力系统发生故障时,迅速地有选择地将故障设备从电力系统中切除,保证系统的其余部分快速恢复正常运行; 当发生不正常工作情况时,迅速地有选择地发出报警信号,由运行人员手工切除那些继续运行会引起故障的电气设备。可见,继电保护对保证电网安全、稳定和经济运行,阻止故障的扩大和事故的发生,发挥着极其重要的作用。因此,合理配置继电保护装置,提高整定和校核工作的快速性和准确性,对于满足电力系统安全稳定的运行具有十分重要的意义。

继电保护整定计算是继电保护工作中的一项重要工作。不同的部门其整定计算 的目的是不同的。对于电网,进行整定计算的目的是对电网中已经配置安装好的各种继电保护装置,按照具体电力系统的参数和运行要求,通过计算分析给出所需的各项整定值,使全网的继电保护装置协调工作,正确地发挥作用。因此对电网继电保护进行快速、准确的整定计算是电网安全的重要保证。

关键词:110kV变电站,继电保护,短路电流,电路配置 0 目录 0 摘要 ....................................................................第一章 电网继电保护的配置 ............................................... 2 1.1 电网继电保护的作用 .................................................. 2 1.2 电网继电保护的配置和原理 ............................................ 2 1.3 35kV线路保护配置原则 ................................................ 3 第二章 3 继电保护整定计算 .................................................2.1 继电保护整定计算的与基本任务及步骤 .................................. 3 2.2 继电保护整定计算的研究与发展状况 .................................... 4 第三章 线路保护整定计算 ................................................. 5 3.1设计的原始材料分析 ................................................... 5 3.2 参数计算 ............................................................ 6 3.3 电流保护的整定计算 .................................................. 7 总 结 ................................................................. 9 1 第一章 电网继电保护的配置 1.1 电网继电保护的作用

电网在运行过程中,可能会遇到各种类型的故障和不正常运行方式,这些都可能在电网中引起事故,从而破坏电网的正常运行,降低电力设备的使用寿命,严重的将直接破坏系统的稳定性,造成大面积的停电事故。为此,在电网运行中,一方面要采取一切积极有效的措施来消除或减小故障发生的可能性:另一方面,当故障一旦发生时,应该迅速而有选择地切除故障元件,使故障的影响范围尽可能缩小,这一任务是由继电保护与安全自动装置来完成的。电网继电保护的基本任务在于: 1(有选择地将故障元件从电网中快速、自动切除,使其损坏程度减至最轻,并保证最大限度地迅速恢复无故障部分的正常运行。

2(反应电气元件的异常运行工况,根据运行维护的具体条件和设各的承受能力,发出警报信号、减负荷或延时跳闸。 3(根据实际情况,尽快自动恢复停电部分的供电。

由此可见,继电保护实际上是一种电网的反事故自动装置。它是电网的一个重要组成部分,尤其对于超高压,超大容量的电网,继电保护对保持电网的安全稳定运行起着极其重要的作用。

1.2 电网继电保护的配置和原理

电力系统各元件都有其额定参数(电流、电压、功率等),短路或异常工况发生时,这些运行参数对额定值的偏离超出极限允许范围,对电力设备和电网安全构成威胁。

故障的一个显著特征是电流剧增,继电保护的最初原理反应电流剧增这一特征,即熔断器保护和过电流保护。故障的另一特征是电压锐减,相应有低电压保护。同时反应电压降低和电流增大的一种保护为阻抗(距离保护),它以阻抗降低的多少反应故障点距离的远近,决定保护的动作与否。

随着电力系统的发展,电网结构日益复杂,机组容量不断增大,电压等级也越来越高,对继电保护的要求必然相应提高,要求选择性更好,可靠性更高,动作速度更快。因而促进了继电保护技术的发展,使保护的新原理、新装置不断问世。

2 一般来说,电网继电保护装置包括测量部分和定值调整部分、逻辑部分和执行部分。测量部分从被保护对象输入有关信号,与给定的整定值相比较,决定保护是否动作。根据测量部分各输出量的大小、性质、出现的顺序或它们的组合,使保护装置按一定的逻辑关系工作,最后确定保护应有的动作行为,由执行部分立即或延时发出警报信号或跳闸信号。

1.3 35kV线路保护配置原则

(1)每回35kV线路应按近后备原则配置双套完整的、独立的能反映各种类型故障、具有选相功能全线速动保护 (2)每回35kV线路应配置双套远方跳闸保护。断路器失灵保护、过电压保护和不设独立电抗器断路器的500kV高压并联电抗器保护动作均应起动远跳。

(3)根据系统工频过电压的要求,对可能产生过电压的500kV线路应配置双套过电压保护。

(4)装有串联补偿电容的线路,应采用双套光纤分相电流差动保护作主保护。 (5)对电缆、架空混合出线,每回线路宜配置两套光纤分相电流差动保护作为主保护,同时应配有包含过负荷报警功能的完整的后备保护。

(6)双重化配置的线路主保护、后备保护、过电压保护、远方跳闸保护的交流电压回路、电流回路、直流电源、开关量输入、跳闸回路、起动远跳和远方信号传输通道均应彼此完全独立没有电气联系。

(7)双重化配置的线路保护每套保护只作用于断路器的一组跳闸线圈。 (8)线路主保护、后备保护应起动断路器失灵保护。 第二章 继电保护整定计算

2.1 继电保护整定计算的与基本任务及步骤

继电保护整定计算的基本任务,就是要对系统装设的各种继电保护装置进行整定计算并给出整定值。任务的实施需要对电力系统中的各种继电保护,编制出一个整体的整定方案。整定方案通常按两种方法确定,一种是按电力系统的电压等级或设备来编制,另一种按继电保护的功能划分方案来编制。

因为各种保护装置适应电力系统运行变化的能力都是有限的,所以继电保护整定方案也不是一成不变的。随着电力系统运行情况的变化(包括基本建设发展和运行方式变化),当其超出预定的适应范围时,就需要对全部或部分保护定值重新进行整定,以

3 满足新的运行需要.如何获得一个最佳的整定方案,要考虑到继电保护的快速性、可靠性、灵敏性之间求得妥协和平衡。因此,整定计算要综合、辨证、统一的运用。

进行整定计算的步骤大致如下: (1) 按继电保护功能分类拟定短路计算的运行方式,选择短路类型,选择分支系数的计算条件。

(2) 进行短路故障计算。

(3) 按同一功能的保护进行整定计算,如按距离保护或按零序电流保护分别进行整定计算,选取出整定值,并做出定值图。

(4) 对整定结果进行比较,重复修改,选出最佳方案。最后归纳出存在的问题,并提出运行要求。

(5) 画出定稿的定值图,并编写整定方案说明书。 2.2 继电保护整定计算的研究与发展状况

继电保护整定计算的工具和方法随着科学技术的不断进步而不断地改进。无论国际还是国内,就其发展历程而言,大致可归纳为三个阶段: 第一阶段是全人工计算阶段。整定人员通过Y/?变换简化网络,计算出分支系数和短路电流,在按照整定规则对各种继电保护装置逐一整定,工作难度很大,效率十分低下。

第二阶段是半人工计算阶段.即:人工计算十故障电流计算程序。保护定值计算中各种故障电流的分析计算用计算机来完成,保护定值的计算还需要整定人员手工完成. 第三阶段是计算机整定阶段。较为成熟可靠的整定计算程序完全取代了整定人员的手工劳动,使继电保护整定计算工作变得准确和快捷。 目前,在我国各大电网继电保护整定过程中,计算机的应用还比较少,其主要工作还是由人工来完成的。继电保护整定计算时,一般先对整个电网进行分析,确定继电保护的整定顺序以及各继电器之间的主/从保护顺序,然后应用计算机进行故障计算,按照继电保护的整定规程,在考虑了各种可能发生的故障情况下,获取保护的整定值,同时应注意到各继电器之间的配合关系,以保证继电保护的速动性、选择性和灵敏性的要求。

4 第三章 线路保护整定计算 3.1设计的原始材料分析

本次变电所设计为一区域性变电所,以供给附近地区的工业,农业,居民等用电。本期工程一次建成,设计中因为需要考虑到留有扩建的余地;初步设计总装机容量为2×31.5MVA,本期先建成2台。考虑到实际情况,110kV出线先输出6回,厂用电一回。其输出数据如下: 1.单回6000kW,cosφ=0.65,架空线长6km; 2.单回8000kW,cosφ=0.73,架空线长8km; 3.单回5000kW,cosφ=0.75,架空线长15km; 4.双回7000kW,cosφ=0.70,架空线长22km; 5.单回5000kW,cosφ=0.7,架空线长10km; 6.所用电380/220V,100 kW,cosφ=0.8. 主接线图如下:

简化系统图如下: 5

图中参数如下表 系统阻T1容 Xl1 T2漏

抗 量 XlX13 X14 X15 X16 X17 最大负荷 抗 X MVA 2 kM kM kM kM kM Ω xt kM 1.62/231.5 6 8 15 22 22 10 31.5MW 22.8 .37 变压器短路电压比均按10.5,计算,线路阻抗按0.4Ω/kM计算, 3.2 参数计算

折算到35kV系统的阻抗如下。

系统阻抗:,X=2.1Ω s.Min22变压器T1阻抗:X=10.5%U/S=0.105×35?31.5=4.08Ω T1 变压器T2阻抗:X=22.8Ω T2 X=8.8Ω 11 线路Xl2阻抗:X=6×0.4=2.4Ω 12 线路Xl3阻抗:X=8×0.4=3.2Ω 13 线路Xl4阻抗:X=15×0.4=6Ω 14 线路Xl5阻抗:X=22×0.4=8.8Ω 15 线路Xl6阻抗:X=22×0.4=8.8Ω 16 线路Xl7阻抗:X=10×0.4=4Ω 17 6 3 线路最大负荷电流:I=P/cosφ/(×35)=31.5×10?0.8??35=169A 33L.MAX 将参数标于图上,化简后得到整定计算用图。

3.3 电流保护的整定计算

1、保护1电流I段整定计算

I(1)求动作电流。按躲过最大运行方式下本线路末端(即B母线处)三相短路时I1.op (3)流过保护的最大短路电流整定。 Ik.max (3)最大短路电流为 Ik.max (3)I=E/(Zs.min,Z)=37//(2.1+8.8)=1.95(kA) 3k.B。maxAB 动作电流为: II(3)I=KI=1.25×1.95=2.44(kA) 1.0Prelk.B。max (2)动作时限。为保护固有动作时间。 (3)灵敏系数校验。 ?段保护的灵敏度用保护区长度表示。 1)最大保护区

EI , l=10kM , 最大百分比=Imaxact,0.4Zlsminmax, lmax=,100%=45.45% ; lXl1 2)最小保护区 7 E3lImin,=I ,=5kM , 最小百分比=100%=22.72% l,actmin,Zl0.42lsmaxmin,Xl1 2(保护1电流?段整定计算 II (1)求动作电流 I1.op 、Xl

3、Xl

4、Xl

5、Xl

6、Xl7属于同一等级,所以只用X12换算 由于Xl2 (3)I=E/(Zs.min,Z,Z)=37//(2.1+8.8+2.4)=1.6(kA) 3k.C。maxABBC II(3)I=KI=1.25×1.6=2(kA) 2.0Prelk.C。max IIII(3)I=KI=1.2×2=2.4(kA) 1.0Prelk.C。Max (2)灵敏系数校验。 (2) I=/2×E/(Zs.max,Z)=/2×37//(6.18+8.8)=1.23(kA) 333k.B。minAB II(2)II K=I/I=1.23/2.4=0.51 senk.B。min1.0P 该段保护的灵敏系数不满足要求,可与线路BC的?段配合整定,或者使用性能 更好的距离保护等保护。 3(保护1电流?段整定计算

III(1)求动作电流。按躲过本线路可能流过的最大负荷电流来整定,即: IopIIIIIII=KKL/K=1.2×1.3/0.85×0.169=0.31(kA) 1.oprelastL.maxres

(2)灵敏系数校验。

1)作线路Xl1的近后备时,利用最小运行方式下本线路末端两相金属性短路时流

过保护的电流校验灵敏系数,即 III(2)IIIK=I/I=1.23/0.31=4.0 senk.B。min1.op 近后备灵敏度满足要求。

2)作远后备时。利用最小运行方式下相邻设备末端发生两相金属性短路时流过保

护的电流校验灵敏系数。

(2)C母线两相短路最小电流为: Ik.C.min (2)I=/2×E/(Zs.max,Z,Z)=/2×37//(6.18+8.8+2.4)=1.06(kA) 333k.C。maxABBC 则作为线路BC远后备保护的灵敏系数为: III(2)IIIK=I/I=1.06/0.31=3.4>1.2 senk.C。min1.op (2)D母线两相短路最小电流为: Ik.D.min (2)I=/2×E/(Zs.max,Z,Z)=/2×37//(6.18+8.8+22.8)=0.48 333k.D。minABT2 则作为变压器T2低压母线远后备保护的灵敏系数为: III(2)IIIK=I/I=0.48/0.31=1.54>1.2 senk.D。min1.op 8 可见,远后备灵敏度满足要求。

(3)动作时限,应比相邻设备保护的最大动作时限高一个时限级差,t,如线路BC与

III变压器T2后备保护动作时间为1s,则 t,1.5(s)1 最后,将整定计算结果列表如下: 动作值(kA) 动作时间(s) 灵敏度 电流保护I段 2.44 0 0.48,45.45% 电流保护II段 2.4 0.5 0.51 电流保护?段 0.31 1.5 4.0,3.2,1.54 总 结

通过这两周的综合课程设计,使我得到了很多的经验,并且巩固和加深以及扩大了专业知识面,锻炼综合及灵活运用所学知识的能力,正确使用技术资料的能力。为进一步成为优秀的技术人员奠定基础。这次课程设计首先使我巩固和加深专业知识面,锻炼综合及灵活运用所学知识的能力。其次通过大量参数计算,锻炼从事工程技术设计的综合运算能力,参数计算尽可能采用先进的计算方法。最后培养了参加手工实践,进行安装,调试和运行的能力。

通过这次设计,在获得知识之余,还加强了个人的独立提出问题、思考问题、解决问题能力,从中得到了不少的收获和心得。在思想方面上更加成熟,个人能力有进一步发展,本次课程设计使本人对自己所学专业知识有了新了、更深层次的认识。在这次设计中,我深深体会到理论知识的重要性,只有牢固掌握所学的知识,才能更好的应用到实践中去。这次设计提高了我们思考问题、解决问题的能力,它使我们的思维更加缜密,这将对我们今后的学习、工作大有裨益。

参考文献: ,1,谷水清编, 《电力系统继电保护》, 中国电力出版社,2005年出版。。 ,2,陈根永编, 《电力系统继电保护整定计算原理与算例》 ,化学工业出版社,2010年

9

第二篇:110kv变电站安全距离110kv变电站设计规范

110kv变电站安全距离

国家《电磁辐射管理办法》规定100千伏以上为电磁强辐射工程,第二十条规定:在集中使用大型电磁辐射设备或高频设备的周围,按环境保护和城市规划要求,在规划限制区内不得修建居民住房、幼儿园等敏感建筑。

不过,据环保部门介绍,我国目前对设备与建筑物之间的距离有一定要求。比如一般10KV—35KV变电站,要求正面距居民住宅12米以上,侧面8米以上;35KV以上变电站的建设,要求正面距居民住宅15米以上,侧面12米以上;箱式变电站距居民住宅5米以上。

北京市规划委(2004规意字0638号)110千伏的地下高压变电站工程项目,明确要求距离不得少于300米。

35~110KV变电站设计规范 第一章 总则

第1.0.1条 为使变电所的设计认真执行国家的有关技术经济政策,符合安全可靠、技术先进和经济合理的要求,制订本规范。

第1.0.2条 本规范适用于电压为35~110kV,单台变压器容量为5000kVA及以上新建变电所的设计。

第1.0.3条 变电所的设计应根据工程的5~10年发展规划进行,做到远、近期结合,以近期为主,正确处理近期建设与远期发展的关系,适当考虑扩建的可能。

第1.0.4条 变电所的设计,必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件,结合国情合理地确定设计方案。 第1.0.5条 变电所的设计,必须坚持节约用地的原则。

第1.0.6条 变电所设计除应执行本规范外,尚应符合现行的国家有关标准和规范的规定。 第二章 所址选择和所区布置

第2.0.1条 变电所所址的选择,应根据下列要求,综合考虑确定:

一、靠近负荷中心;

二、节约用地,不占或少占耕地及经济效益高的土地;

三、与城乡或工矿企业规划相协调,便于架空和电缆线路的引入和引出;

四、交通运输方便;

五、周围环境宜无明显污秽,如空气污秽时,所址宜设在受污源影响最小处;

六、具有适宜的地质、地形和地貌条件(例如避开断层、滑坡、塌陷区、溶洞地带、山区风口和有危岩或易发生滚石的场所),所址宜避免选在有重要文物或开采后对变电所有影响的矿藏地点,否则应征得有关部门的同意;

七、所址标高宜在50年一遇高水位之上,否则,所区应有可靠的防洪措施或与地区(工业企业)的防洪标准相一致,但仍应高于内涝水位;

八、应考虑职工生活上的方便及水源条件;

九、应考虑变电所与周围环境、邻近设施的相互影响。 第2.0.2条 变电所的总平面布置应紧凑合理。

第2.0.3条 变电所宜设置不低于2.2m高的实体围墙。城网变电所、工业企业变电所围墙的高度及形式,应与周围环境相协调。

第2.0.4条 变电所内为满足消防要求的主要道路宽度,应为3.5m。主要设备运输道路的宽度可根据运输要求确定,并应具备回车条件。 第2.0.5条 变电所的场地设计坡度,应根据设备布置、土质条件、排水方式和道路纵坡确定,宜为0.5%~2%,最小不应小于0.3%,局部最大坡度不宜大于6%,平行于母线方向的坡度,应满足电气及结构布置的要求。当利用路边明沟排水时,道路及明沟的纵向坡度最小不宜小于0.5%,局部困难地段不应小于0.3%;最大不宜大于3%,局部困难地段不应大于6%。电缆沟及其他类似沟道的沟底纵坡,不宜小于0.5%。

第2.0.6条 变电所内的建筑物标高、基础埋深、路基和管线埋深,应相互配合;建筑物内地面标高,宜高出屋外地面0.3m;屋外电缆沟壁,宜高出地面0.1m。

第2.0.7条 各种地下管线之间和地下管线与建筑物、构筑物、道路之间的最小净距,应满足安全、检修安装及工艺的要求,并宜符合附录一和附录二的规定。 第2.0.8条 变电所所区场地宜进行绿化。绿化规划应与周围环境相适应并严防绿化物影响电气的安全运行。绿化宜分期、分批进行。

第2.0.9条 变电所排出的污水必须符合现行国家标准《工业企业设计卫生标准》的有关规定。 第三章 电气部分 第一节 主变压器

第3.1.1条 主变压器的台数和容量,应根据地区供电条件、负荷性质、用电容量和运行方式等条件综合考虑确定。

第3.1.2条 在有

一、二级负荷的变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。如变电所可由中、低压侧电力网取得足够容量的备用电源时,可装设一台主变压器。

第3.1.3条 装有两台及以上主变压器的变电所,当断开一台时,其余主变压器的容量不应小于60%的全部负荷,并应保证用户的

一、二级负荷。 第3.1.4条 具有三种电压的变电所,如通过主变压器各侧线圈的功率均达到该变压器容量的15%以上,主变压器宜采用三线圈变压器。

第3.1.5条 电力潮流变化大和电压偏移大的变电所,如经计算普通变压器不能满足电力系统和用户对电压质量的要求时,应采用有载调压变压器。 第二节 电气主接线

第3.2.1条 变电所的主接线,应根据变电所在电力网中的地位、出线回路数、设备特点及负荷性质等条件确定。并应满足供电可靠、运行灵活、操作检修方便、节约投资和便于扩建等要求。

第3.2.2条 当能满足运行要求时,变电所高压侧宜采用断路器较少或不用断路器的接线。 第3.2.3条 35~110kV线路为两回及以下时,宜采用桥 形、线路变压器组或线路分支接线。超过两回时,宜采用扩大桥形、单母线或分段单母线的接线。35~63kV线路为8回及以上时,亦可采用双母线接线。110kV线路为6回及以上时,宜采用双母线接线。

第3.2.4条 在采用单母线、分段单母线或双母线的35~110kV主接线中,当不允许停电检修断路器时,可设置旁路设施。当有旁路母线时,首先宜采用分段断路器或母联断路器兼作旁路断路器的接线。当110kV线路为6回及以上,35~63kV线路为8回及以上时,可装设专用的旁路断路器。主变压器35~110kV回路中的断路器,有条件时亦可接入旁路母线。采用SF6断路器的主接线不宜设旁路设施。

第3.2.5条 当变电所装有两台主变压器时,6~10kV侧宜采用分段单母线。线路为12回及以上时,亦可采用双母线。当不允许停电检修断路器时,可设置旁路设施。当6~35kV配电装置采用手车式高压开关柜时,不宜设置旁路设施。

第3.2.6条 当需限制变电所6~10kV线路的短路电流时,可采用下列措施之一:

一、变压器分列运行;

二、采用高阻抗变压器;

三、在变压器回路中装设电抗器。 第3.2.7条 接在母线上的避雷器和电压互感器,可合用一组隔离开关。对接在变压器引出线上的避雷器,不宜装设隔离开关。

第三节 所用电源和操作电源

第3.3.1条 在有两台及以上主变压器的变电所中,宜装设两台容量相同可互为备用的所用变压器。如能从变电所外引入一个可靠的低压备用所用电源时,亦可装设一台所用变压器。当35kV变电所只有一回电源进线及一台主变压器时,可在电源进线断路器之前装设一台所用变压器。

第3.3.2条 变电所的直流母线,宜采用单母线或分段单母线的接线。采用分段单母线时,蓄电池应能切换至任一母线。

第3.3.3条 重要变电所的操作电源,宜采用一组110V或220V固定铅酸蓄电池组或镉镍蓄电池组。作为充电、浮充电用的硅整流装置宜合用一套。其他变电所的操作电源,宜采用成套的小容量镉镍电池装置或电容储能装置。. 第3.3.4条 蓄电池组的容量,应满足下列要求:

一、全所事故停电1h的放电容量:

二、事故放电末期最大冲击负荷容量。小容量镉镍电池装置中的镉镍电池容量,应满足分闸、信号和继电保护的要求。

第3.3.5条 变电所宜设置固定的检修电源。 第四节 控制室

第3.4.1条 控制室应位于运行方便、电缆较短、朝向良好和便于观察屋外主要设备的地方。 第3.4.2条 控制屏(台)的排列布置,宜与配电装置的间隔排列次序相对应。 第3.4.3条 控制室的建筑,应按变电所的规划容量在第一期工程中一次建成。无人值班变电所的控制室,应适当简化,面积应适当减小。 第五节 二次接线

第3.5.1条 变电所内的下列元件,应在控制室内控制:

一、主变压器;

二、母线分段、旁路及母联断路器;

三、63~110kV屋内外配电装置的线路,35kV屋外配电装置的线路。6~35kV屋内配电装置馈电线路,宜采用就地控制。

第3.5.2条 有人值班的变电所,宜装设能重复动作、延时自动解除,或手动解除音响的中央事故信号和预告信号装置。驻所值班的变电所,可装设简单的事故信号和能重复动作的预告信号装置。无人值班的变电所,可装设当远动装置停用时转为变电所就地控制的简单的事故信号和预告信号。断路器的控制回路,应有监视信号。

第3.5.3条 隔离开关与相应的断路器和接地刀闸之间,应装设团锁装置。屋内的配电装置,尚应装设防止误入带电间隔的设施。闭锁联锁回路的电源,应与继电保护、控制信号回路的电源分开。 第六节 照明

第3.6.1条 变电所的照明设计,应符合现行国家标准《工业企业照明设计标准》的要求。 第3.6.2条 在控制室、屋内配电装置室、蓄电池室及屋内主要通道等处,应装设事故照明。 第3.6.3条 照明设备的安装位置,应便于维修。屋外配电装置的照明,可利用配电装置构架装设照明器,但应符合现行国家标准《电力装置的过电压保护设计规范》的要求。 第3.6.4条 在控制室主要监屏位置和屏前工作位置观察屏面时,不应有明显的反射眩光和直接阳光。

第3.6.5条 铅酸蓄电池室内的照明,应采用防爆型照明器,不应在蓄电池室内装设开关、熔断器和插座等可能产生火花的电器。

第3.6.6条 电缆隧道内的照明电压不应高于36V,如高于36V应采取防止触电的安全措施。 第七节 并联电容器装置

第3.7.1条 自然功率因数未达到规定标准的变电所,应装设并联电容器装置。其容量和分组宜根据就地补偿、便于调整电压及不发生谐振的原则进行配置。电容器装置宜装设在主变压器的低压侧或主要负荷侧。 第3.7.2条 电容器装置的接线,应使电容器组的额定电压与接入电网的运行电压相配合。电容器组的绝缘水平,应与电网的绝缘水平相配合。电容器装置宜采用中性点不接地的星形或双星形接线。

第3.7.3条 电容器装置的电器和导体的长期允许电流,不应小于电容器组额定电流的1.35倍。

第3.7.4条 电容器装置应装设单独的控制、保护和放电等设备,并应设置单台电容器的熔断器保护。

第3.7.5条 当装设电容器装置处的高次谐波含量超过规定允许值或需要限制合闸涌流时,应在并联电容器组回路中设置串联电抗器。

第3.7.6条 电容器装置应根据环境条件、设备技术参数及当地的实践经验,采用屋外、半露天或屋内的布置。电容器组的布置,应考虑维护和检修方便。 第八节 电缆敷设

第3.8.1条 所区内的电缆,根据具体情况可敷设在地面槽沟、沟道、管道或隧道中,少数电缆亦可直埋。

第3.8.2条 电缆路径的选择,应符合下列要求:

一、避免电缆受到各种损坏及腐蚀;

二、避开规划中建筑工程需要挖掘施工的地方;

三、便于运行维修;

四、电缆较短。

第3.8.3条 在电缆隧道或电缆沟内,通道宽度及电缆支架的层间距离,应能满足敷设和更换电缆的要求。

第3.8.4条 电缆外护层应根据敷设方式和环境条件选择。直埋电缆应采用铠装并有黄麻、聚乙烯或聚氯乙烯外护层的电缆。在电缆隧道、电缆沟内以及沿墙壁或楼板下敷设的电缆,不应有黄麻外护层。 第九节 远动和通信

第3.9.1条 远动装置应根据审定的调度自动化规划设计的要求设置或预留位置。

第3.9.2条 遥信、遥测、遥控装置的信息内容,应根据安全监控、经济调度和保证电能质量以及节约投资的要求确定。

第3.9.3条 无人值班的变电所,宜装设遥信、遥测装置。需要时可装设遥控装置。 第3.9.4条 工业企业的变电所,宜装设与该企业中央控制室联系的有关信号。 第3.9.5条 远动通道宜采用载波或有线音频通道。 第3.9.6条 变电所应装设调度通信;工业企业变电所尚应装设与该企业内部的通信;对重要变电所必要时可装设与当地电话局的通信。

第3.9.7条 远动和通信设备应有可靠的事故备用电源,其容量应满足电源中断1h的使用要求。

第十节 屋内外配电装置

第3.10.1条 变电所屋内外配电装置的设计,应符合现行国家标准《3~110kV高压配电装置设计规范》的要求。 第十一节 继电保护和自动装置

第3.11.1条 变电所继电保护和自动装置的设计,应符合现行国家标准《电力装置的继电保护和自动装置设计规范》的要求。 第十二节 电测量仪表装置

第3.12.1条 第3.12.1条 变电所电测量仪表装置的设计,应符合现行国家标准《电力装置的电测量仪表装置设计规范》的要求。 第十三节 过电压保护

第3.13.1条 变电所过电压保护的设计,应符合现行国家标准《电力装置的过电压保护设计规范》的要求。 第十四节 接地

第3.14.1条 变电所接地的设计,应符合现行国家标准《电力装置的接地设计规范》的要求。

第一节 一般规定

第4.1.1条 建筑物、构筑物及有关设施的设计应统一规划、造型协调、便于生产及生活,所选择的结构类型及材料品种应经过合理归并简化,以利备料、加工、施工及运行。变电所的建筑设计还应与周围环境相协调。

第4.1.2条 建筑物、构筑物的设计应考虑下列两种极限状态:

一、承载能力极限状态:这种极限状态对应于结构或结构构件达到最大承载能力或不适于继续承载的变形。要求在设计荷载作用下所产生的结构效应应小于或等于结构的抗力或设计强度。计算中所采用的结构重要性系数ro,荷载分项系数r,可变荷载组合系数ψc及其他有关系数均按本规范的有关规定采用,结构的设计强度则应遵照有关的现行国家标准采用。

二、正常使用极限状态:这种极限状态对应于结构或结构构件达到正常使用或耐久性能的某项规定极限值。要求在标准荷载作用下所产生的结构长期及短期效应,不宜超过附录三的规定值。计算中所采用的可变荷载组合系数ψc及准永久值系数ψq按本规范的有关规定采用。 第4.1.3条 建筑物、构筑物的安全等级,均应采用二级,相应的结构重要性系数应为1.0。 第4.1.4条 屋外构筑物的基础,当验算上拔或倾覆稳定性时,设计荷载所引起的基础上拔力或倾覆弯矩应小于或等于基础抗拔力或抗倾覆弯矩除以表4.1.4的稳定系数。当基础处于稳定的地下水位以下时,应考虑浮力的影响,此时基础容重取混凝土或钢筋混凝土的容重减10kN/,土容重宜取10~11kN/。 表4.1.4 基础上拨或倾覆稳定系数 计算方法 荷载类型

在长期荷载作用下 在短期荷载作用下

按考虑土抗力来验算倾覆或考虑锥形土体来验算上拔 1.8 1.5

仅考虑基础自重及阶梯以上的土重来验算倾覆或上拔 1.15 1.0

注:短期荷载系指风荷载、地震作用和短路电动力三种,其余均为长期荷载。 第二节 荷载

第4.2.1条 荷载分为永久荷载、可变荷载及偶然荷载三类。

一、永久荷载:结构自重(含导线及避雷线自重)、固定的设备重、土重、土压力、水压力等:

二、可变荷载:风荷载、冰荷载、雪荷载、活荷载、安装及检修荷载、地震作用、温度变化及车辆荷载等;

三、偶然荷载:短路电动力、验算(稀有)风荷载及验算(稀有)冰荷载。 第4.2.2条 荷载分项系数的采用应符合下列规定:

一、永久荷载的荷载分项系数r宜采用1.2,当其效应对结构抗力有利时宜采用1.0;对导线及避雷线的张力宜采用1.25;

二、可变荷载的荷载分项系数rq宜采用1.4,对温度变化作用宜采用1.0,对地震作用宜采用1.3,对安装情况的导线和避雷线的紧线张力宜采用1.4;注:在大风、覆冰、低湿、检修、地震情况下的导线与避雷线张力均作为准永久性荷载处理,其荷载分项系数宜采用1.25,但安装情况的紧线张力宜作可变荷载处理,其荷载分项系数宜采用1.4。

三、偶然荷载的荷载分项系数rqi宜采用1.0。

第4.2.3条 可变荷载的荷载组合系数ψc,应按下列规定采用:

一、房屋建筑的基本组合情况:风荷载组合系数ψcw取0.6;

二、构筑物的大风情况:对连续架构,温度变化作用组合系数ψcr取0.8;

三、构筑物最严重覆冰情况:风荷载组合系数ψcw取0.15(冰厚≦10mm)或0.25(冰厚>10mm);

四、构筑物的安装或检修情况:风荷载组合系数ψcw取0.15;

五、地震作用情况:建筑物的活荷载组合系数ψcw取0.5,构筑物的风荷载组合系数ψcw取0.2,构筑物的冰荷载组合系数ψcj取0.5。

第4.2.4条 房屋建筑的活荷载应根据实际的工艺及设备情况确定。其标准值及有关系数不应低于本规范附录四所列的数值。

第4.2.5条 架构及其基础宜根据实际受力条件,包括远景可能发生的不利情况,分别按终端或中间架构来设计,下列四种荷载情况应作为承载能力极限状态的基本组合,其中最低气温情况还宜作为正常使用极限状态的条件对变形及裂缝进行校验。

一、运行情况:取30年一遇的最大风(无冰、相应气温)、最低气温(无冰、无风)及最严重覆冰(相应气温及风荷载)等三种情况及其相应的导线及避雷线张力、自重等;

二、安装情况:指导线及避雷线的架设,此时应考虑梁上作用人和工具重2kN以及相应的风荷载、导线及避雷线张力、自重等。

三、检修情况:根据实际检修方式的需要,可考虑三相同时上人停电检修及单相跨中上人带电检修两种情况的导线张力、相应的风荷载及自重等,对档距内无引下线的情况可不考虑跨中上人;

四、地震情况:考虑水平地震作用及相应的风荷载或相应的冰荷载、导线及避雷线张力、自重等,地震情况下的结构抗力或设计强度均允许提高25%使用,即承载力抗震调整系数采用0.8。

第4.2.6条 设备支架及其基础应以下列三种荷载情况作为承载能力极限状态的基本组合,其中最大风情况及操作情况的标准荷载,还宜作为正常使用极限状态的条件对变形及裂缝进行校验。

一、最大风情况:取30年一遇的设计最大风荷载及相应的引线张力、自重等;

二、操作情况:取最大操作荷载及相应的风荷载、相应的引线张力、自重等;

三、地震情况:考虑水平地震作用及相应的风荷载、引线张力、自重等,地震情况下的结构抗力或设计强度均允许提高25%使用,即承载力抗震调整系数采用0.8。 第4.2.7条 架构的导线安装荷载,应根据所采用的施工方法及程序确定,并将荷载图及紧线时引线的对地夹角在施工图中表示清楚。导线紧线时引线的对地夹角宜取45°~60°。 第4.2.8条 高型及半高型配电装置的平台、走道及天桥的活荷载标准值宜采用1.5kN/㎡,装配式板应取1.5kN集中荷载验算。在计算梁、柱和基础时,活荷载乘折减系数;当荷重面积为10~20㎡时宜取0.7,超过20㎡时宜取0.6。. 第三节 建筑物

第4.3.1条 主控制楼(室)根据规模和需要可布置成平房、两层或三层建筑。主控制室顶棚到楼板面的净高:对控制屏与继电器屏分开成两室布置时宜采用3.4~4.0m;对合在一起布置时宜采用3.8~4.4m。当采用空调设施时,上述高度可适当降低。电缆隔层的板间净高宜采用2.3~2.6m,大梁底对楼板面的净高不应低于2m。底层辅助生产房屋楼板底到地面的净高宜采用3.0~3.4m。

第4.3.2条 当控制屏与继电器屏采用分室布置时,两部分的建筑装修、照明、采暖通风等设计均宜采用不同的标准。

第4.3.3条 对主控制楼及屋内配电装置楼等设有重要电气设备的建筑,其屋面防水标准宜根据需要适当提高。屋面排水坡度不应小于1/50,并采用有组织排水。

第4.3.4条 主控制室及通信室等对防尘有较高要求的房间,地坪应采用不起尘的材料。 第4.3.5条 蓄电池室与调酸室的墙面、顶棚、门窗、排风机的外露部分及其他金属结构或零件,均应涂耐酸漆或耐酸涂料。地面、墙裙及支墩宜选用耐酸且易于清洗的面层材料,面层与基层之间应设防酸隔离层。当采用全封闭防酸隔爆式蓄电池并有可靠措施时,地面、墙裙及支墩的防酸材料可适当降低标准。地面应有排水坡度,将酸水集中后作妥善处理。 第4.3.6条 变电所内的主要建筑物及多层砖承重的建筑物,在地震设防烈度为6度的地区宜隔层设置圈梁,7度及以上地区宜每层设置圈梁。圈梁应沿外墙、纵墙及横墙设置,沿横墙设置的圈梁的间距不宜大于7m,否则应利用横梁与圈梁拉通。对于现浇的或有配筋现浇层的装配整体式楼面或屋面,允许不设置圈梁,但板与墙体必需有可靠的连结。 第4.3.7条 在地震设防烈度为6度及以上的变电所,其主要建筑物及多层砖承重建筑,在下列部位应设置钢筋混凝土构造柱:

一、外墙四角;

二、房屋错层部位的纵横墙交接处;

三、楼梯间纵横墙交接处;

四、层高等于或大于3.6m或墙长大于或等于7m的纵横墙交接处;

五、8度及以上地区的建筑物的所有纵横墙交接处,

六、7度地区的建筑物,纵横墙交接处一隔一设置。

第4.3.8条 变电所内的主要砖承重建筑及多层砖承重建筑,其抗震横墙除应满足抗震强度要求外,其间距不应超过附录五的规定。

第4.3.9条 多层砖承重建筑的局部尺寸宜符合附录六的规定,但对设有钢筋混凝构造柱的部位,不受该表限制。 第四节 构筑物

第4.4.1条 结构的计算刚度,对电焊或法兰连结的钢构件可取弹性刚度,对螺栓连结的钢构件可近似采用0.80倍弹性刚度,对钢筋混凝土构件可近似采用0.60~0.80倍弹性刚度,对预应力钢筋混凝土构件可近似采用0.65~0.85倍弹性刚度。长期荷载对钢筋混凝土结构刚度的影响应另外考虑。 第4.4.2条 钢结构构件最大长细比应符合表4.4.2的规定。各种架构受压柱的整体长细比,不宜超过150,当杆件受力有较大裕度时,上述长细比允许放宽10%~15%。 第4.4.3条 人字柱的受压杆计算长度,可按本规范附录七采用。

第4.4.4条 打拉线(条)架构的受压杆件计算长度,可按本规范附录八采用。 表4.4.2 钢结构构件最大长细比 构件名称

受压弦杆支座处受压腹杆 一般受压腹杆 辅助杆 受拉杆

预应力受拉杆

容许最大长细比 150 220 250 400 不限

第4.4.5条 格构式钢梁或钢柱,其弦杆及腹杆的受压计算长度,可按下列规定采用:

一、弦杆:正面与侧面腹杆不叉开布置时,计算长度取1.0倍节间长度;正面与侧面腹杆叉开布置且弦杆使用角钢时,计算长度取1.2倍节间长度,相应的角钢回转半径取平行轴的值,如弦杆采用钢管则计算长度仍取1.0倍节间长度。

二、腹杆:对单系腹杆计算长度取中心线长度;对交叉布置腹杆,当两腹杆均不开断且交会点用螺栓或电焊连结时,计算长度取交叉分段中较长一段的中心线长度。

第4.4.6条 人字柱及打拉线(条)柱,其根开与柱高(基础而到柱的交点)之比分别不宜小于1/7及1/5。

第4.4.7条 格构式钢梁梁高与跨度之比,不宜小于1/25,钢筋混凝土梁此比值,不宜小于1/20。

第4.4.8条 架构及设备支架柱插入基础杯口的深度不应小于表4.4.8的规定值。根据吊装稳定需要,柱插入杯口深度还应不小于0.05倍柱长,但当施工采取设临时拉线等措施时,可不受限制。

表4.4.8 柱插入杯口深度 柱的类型

钢筋混凝土矩型、工字型断面 水泥杆 钢管

插入杯口最小深度 架构 1.25B 1.5D 2.0D 支架 1.0B 1.0D 1.0D

注:B及D分别为柱的长边尺寸及柱的直径。 第五节 采暖通风

第4.5.1条 变电所的采暖通风及空调设计应符合现行国家标准《采暖通风与空气调节设计规范》的有关规定。在严寒地区,凡所内有人值班、办公及生活的房间以及工艺、设备需要采暖的房间均应设置采暖设施。在寒冷地区,凡工艺或设备需要,不采暖难以满足生产要求的房间均可设置采暖设施。不属于严寒或寒冷的地区,在主控制室等经常有人值班的房间可根据实际气温情况,采用局部采暖设施。采暖的方式可根据变电所的规模,结合当地经验作技术经济比较后确定,但必需符合工艺及防火要求。

第4.5.2条 主控制室及通信室的夏季室温不宜超过35℃;继电器室、电力电容器室、蓄电池室及屋内配电装置室的夏季室温不宜超过40℃:油浸变压器室的夏季室温不宜超过45℃;电抗器室的夏季室温不宜超过55℃。

第4.5.3条 屋内配电装置室及采用全封闭防酸隔爆式蓄电池的蓄电池室和调酸室,每小时通风换气次数均不应低于6次。蓄电池室的风机,应采用防爆式。 第六节 防火

第4.6.1条 变电所内建筑物、构筑物的耐火等级,不应低于本规范附录九的要求。

第4.6.2条 变电所与所外的建筑物、堆场、储罐之间的防火净距,应符合现行国家标准《建筑设计防火规范》的规定。变电所内部的设备之间、建筑物之间及设备与建筑物、构筑物之间的最小防火净距,应符合本规范附录十的规定。

第4.6.3条 变电所应根据容量大小及其重要性,对主变压器等各种带油电气设备及建筑物,配备适当数量的手提式及推车式化学灭火器。对主控制室等设有精密仪器、仪表设备的房间,应在房间内或附近走廊内配置灭火后不会引起污损的灭火器。 第4.6.4条 屋外油浸变压器之间,当防火净距小于本规范附录十的规定值时,应设置防火隔墙,墙应高出油枕顶,墙长应大于贮油坑两侧各0.5m。屋外油浸变压器与油量在600kg以上的本回路充油电气设备之间的防火净距不应小于5m。

第4.6.5条 主变压器等充油电气设备,当单个油箱的油量在1000kg及以上时,应同时设置贮油坑及总事故油池,其容量分别不小于单台设备油量的20%及最大单台设备油量的60%。贮油坑的长宽尺寸宜较设备外廓尺寸每边大1m,总事故油池应有油水分离的功能,其出口应引至安全处所。

第4.6.6条 主变压器的油释放装置或防爆管,其出口宜引至贮油坑的排油口处。

第4.6.7条 充油电气设备间的总油量在100kg及以上且门外为公共走道或其他建筑物的房间时,应采用非燃烧或难燃烧的实体门。

第4.6.8条 电缆从室外进入室内的入口处、电缆竖井的出入口处及主控制室与电缆层之间,应采取防止电缆火灾蔓延的阻燃及分隔措施。 第4.6.9条 设在城市市区的无人值班变电所,宜设置火灾检测装置并遥信有关单位。对位于特别重要场所的无人值班变电所,可以装设自动灭火装置。

.

转自:生活安全网(http://anquanweb.com)

第三篇:110kV用户变电所接入系统设计要求

1.用户背景资料简介

工厂情况

用电情况(本期负荷、远景负荷),如果用户对本期变电所接线、主变容量

有设想,在此叙述。 2.电力系统简介 3.接入系统方案

如果用户对本期变电所接线、主变容量还没有设想的话,在此提出推荐方案

提出接入系统方案,一般选一至二个方案。对过渡方案、远景方案需一并提

出。 4.短路电流计算

由于用户变电所一般都是开环运行的,可从电源侧母线短路容量为基准进行

计算。

5.调压计算(根据需要)

用户对电压要求比较高时进行,进行电压计算,推荐调压方案。

6.无功补偿(根据需要)

根据用户的用电性质、车间无功补偿情况,计算并提出需补偿的电容器容量

以及分组情况。 7.系统保护配置

主要是跟系统有关的保护配置要求,比如110kV出线的保护配置。

8.远动

提出需要送县调(配调)、区调的信息量

9.通信

提出通道组织

10.计量

提出计费点以及计量要求 11.外部工程投资估算

接入系统设计费

进线工程费

电源侧间隔工程费

通信(光缆)工程费

调度接口费 12.结论

如果只有一个方案则不需要

13.附图(接入系统方案图等) 14.附件(委托书、有关批文等)

附件

其中1,2,3,4,9,10是必须的。

今年的电工技难比武,是全能性的,在监考中,看到很多电工应会的比较多,但也有不少的人缺少基本操作技能。

考试(不是理论)是动手操作,有四个教室轮流,参加者每人都要到每一个教室:

1、每人一台电脑,根据电脑中的表格,填写一张(高压开关柜试验)第一种电气工作票、一张(高压电机检修)作业指导书、一张(PLC控制线路)故障查找程序(45分钟);

2、每人一个操作台,根据考试卷上要求和台上元件,安装接线(开关、熔断器、接触器、热继电器、按钮、端子排、三相电机),线路要求起动、停止、点动(45分钟);

3、每人一台已拆开的电机、流标卡、千分卡、千分表、单臂电桥,要求测量出前轴承外径、端盖轴承孔内径、端盖安装外径、定子端盖安装内径、绕组直流电阻(45分钟);

4、每人一段低压电缆、一根黄绿双色线,根据试卷要求做好干包电缆头。

基本上有90%的人时间不够,且许多人的操作过程不规范,做电缆头要求钢铠不松动,而参考者一开始就把外护套给割开了,无法做到钢铠不松!

低压电缆用故障仪测不出来,高压电缆可以,原理是给电缆直流升压,接地点就放电,产生高频脉冲,故障仪感应,找出故障点,低压电缆不能加高压,电压太

低,放电太弱,故障仪无法探测

我用过一个方法供楼主参考.故障相同.先在电缆中段挖开.将电缆钢皮断开.测接地相与断开钢皮的通断.接地点在与钢皮通的一端,用同样的方法逐步缩小故障范围.直到查出接地点.测量时接地相绝缘皮不必剥开.用针刺入即可.故障处理完后将钢皮用绑线捆绑焊锡

第四篇:110kv变电站典型设计初设计

A方案

(一)工程建设规模

a)主变压器:终期2×31.5MVA,本期1×31.5MVA; b)电压等级:110/35/10kV三级; c)出线回路数: 1)110kV出线: 终期4回,本期2回; 2)35kV出线: 终期8回,本期4回; 3)10kV出线: 终期12回,本期6回; 4)无功功率补偿: 终期4×3Mvar,本期2×3Mvar;

(二)设计范围

1)本典型设计范围包括变电所内下列部分: a)电力变压器及各级电压配电装置,所用电系统设备,过电压保护及接地装置,直流操作电源系统设备;相应的继电保护及自动装置,就地测量及控制操作设备,自动化系统设备以及电缆设施等。

b)与电气设备相关的建筑物、构筑物,给水排水设施,通风设施,消防设施,安全防范及环境保护措施。

2)系统通信设施、所外道路、所外上下水系统、场地平整和特殊基础处理、大件设备运输措施等不纳入本典型设计范围。其中由于通信设施需根据外部通信系统条件确定,本典型设计中仅留布置安装条件,不作具体设计。

3)设计分界点

a)变电所与线路的分界点为:110kV、35kV配电装置以架空进线耐张线夹(不含)为界。10kV配电装置以开关柜内电缆头(不含)为界。

b)进所道路设计以变电所大门为界,大门外不属本典型设计范围。

(三) 设计条件 2.4.1 发电机参数 1)所址自然条件 环境温度:-10℃~40℃ 最热月平均最高温度:35℃ 设计风速:30m/s 覆冰厚度:5mm 海拔高度:<1000m 地震烈度:6度

污秽等级:II级

设计所址高程:>频率为2%洪水位

凡所址自然条件较以上条件恶劣时,工程设计应作调整。 2)系统条件

按照系统的情况,设定110kV系统短路电流为25kA,要求10kV母线的短路电流不超过20kA (四)主要技术经济指标 2.4.1 发电机参数 1)投资: 静态投资: 1367.45 万元,单位投资: 434 元/kVA; 动态投资: 1398.96 万元,单位投资: 444 元/kVA; 2)占地面积

所区围墙内占地面积:7695.96m2 所区围墙内建筑面积: 560m2 主控制楼面积: 422.5m2 (五)电气主接线

变电所主接线110kV、35kV及10kV终期均为单母线分段接线,初期为单母线接线。详见图“W851A02-A02-001”。

(六)电气设备布置

35kV 及110kV配电装置采用户外中型软母线布置方式,35kV配电装置与110kV配电装置成垂直布置。

两台主变位于110kV配电装置和10kV配电装置室之间。10kV配电装置采用户内成套高压开关柜,单列布置,采用架空或电缆出线。

10kV电容补偿装置为户外型,布置在10kV配电装置室左侧户外空地上,本期布置二组。变电所纵向长度为108.7m,横向宽度为70.8m,占地面积为7695.96m2。

电气总平面布置详见图“W951A02-A02-002”。

(七) 配电装置

1) 35kV及 110kV配电装置

35kV及110kV断路器选用单断口瓷柱SF6断路器。 35kV及110kV隔离开关选用GW4型隔离开关,110kV隔离开关配电动操作机构。35kV隔离开关配手动操作机构。

110kV电流互感器选用油浸式电流互感器。 110kV电压互感器选用电容式电压互感器。 110kV避雷器选用氧化锌避雷器。 2)10kV配电装置

选用XGN2-12型固定式高压开关柜,配真空断路器, 真空断路器配一体化弹簧操作机构,采用架空或电缆出线¡£ÎªÏû³ýгÕñÓ°Ïì,10kV电压互感器选用抗铁磁谐振三相电压互感器,型号为JSXNGF-10¡£

3)无功补偿装置

无功补偿容量及分组按就地补偿,便于调节及不产生谐振的原则配置,本典型设计无功补偿容量按主变容量20%左右考虑,本期工程装设2组3000kvar无功补偿装置成套装置。

4)35kV中性点消弧线圈

35kV电网中性点不接地系统单相接地电容电流按规程要求不超过10A,本典型设计对单相接地电容电流补偿暂按选用智能型油浸式消弧线圈,容量为550kVA考虑,调节范围为9挡,具体工程设置按系统情况而定。

(八) 继电保护和安全稳定控制装置的配置

变电所根据《继电保护和安全自动装置技术规程》的要求,及广西电网运行情况进行系统继电保护和安全稳定控制装置的配置。

1) 110kV系统

每回线应装设反应相间短路和接地短路的保护。配置三段式相间距离、接地距离、零序电流方向保护,三相一次重合闸,带电压切换回路及断路器操作回路。后备保护采用远后备方式。组屏采用2回线路保护合用一面屏的方式。

(九)系统通信

本变电所由所在网区地调调度管理,为满足综合自动化的要求,变电所应具有光纤或其他形式可靠的通信通道,并设一门邮电公网电话。由于各地区通信条件差异较大,在典型设计中难以统一,由相应工程设计时根据具体情况而定,本典型设计仅预留通信设备装设位置,不作具体设计。

(十)微机监控装置

控制功能由微机监控系统实现,取消常规的控制屏和中央音响信号系统,声光报警由微机监控系统实现。

微机监控系统采用分层分布式,分为变电所层和现地设备层。现地设备层按所内一次设备布置间隔来划分配置。各间隔的监控设备相对独立,这些设备通过现地局域网实现数据链路的连接,可完成他们之间的信息传送。 所内局域网按单网考虑,通信介质采用光纤,变电所层可采用总线型结构或星型结构;现地设备层宜采用总线型结构。

(十一)土建部分

地基和抗震

建(构)筑物按天然地基承载力特征值fa=150kPa设计,场地和地基条件简单,地基基础设计等级为丙级。初期基础工程量未考虑有软弱下卧层估算,具体工程应根据其地质报告复核基础设计,必要时应修改基础设计或结合当地经验采用人工地基。

根据《建筑抗震设计规范(GB50011-2001)》广西大部分地区抗震设防烈度为6度,设计基本地震加速度值为0.05g,本标准设计的建(构)筑物设防标准按一般变电所,即丙类建筑物设防,其地震作用和抗震措施均按6度抗震设防烈度设计。

B方案

(一)工程建设规模

a)主变压器:终期2×31.5MVA,本期1×31.5MVA; b)电压等级:110/35/10kV三级; c)出线回路数: 1)110kV出线: 终期2回,本期1回; 2)35kV出线: 终期8回,本期4回; 3)10kV出线: 终期12回,本期6回; 4)无功功率补偿: 终期4×3Mvar,本期2×3Mvar; (一)工程建设规模

a)主变压器:终期2×31.5MVA,本期1×31.5MVA; b)电压等级:110/35/10kV三级; c)出线回路数: 1)110kV出线: 终期2回,本期1回; 2)35kV出线: 终期8回,本期4回; 3)10kV出线: 终期12回,本期6回; 4)无功功率补偿: 终期4×3Mvar,本期2×3Mvar; (二)设计范围及设计条件

设计范围及设计条件与A方案相同。 (三) 主要技术经济指标 1)投资: 方 案 一

方 案 二

静态投资:1194.5 万元 1204.81 万元

静态单位投资:379 元/kVA382 元/kVA 动态投资:1222.03 万元 1232.57 万元

静态单位投资:388 元/kVA391 元/kVA 2)占地面积

方 案 一

方 案 二

所区围墙内占地面积:5618.3m25961.06m2

所区围墙内建筑面积: 454.3m2454.3m2 主控制楼面积: 316.8m2316.8m2 (五)电气主接线

方案一本方案变电所主接线110kV终期为内桥接线, 初期为线路变压器组接线;35kV及10kV终期均为单母线分段接线,初期为单母线接线。详见图“W851B02-A02-001”。考虑在110kV侧计费, 110kV出线安装三相电压互感器。

方案二本方案变电所主接线110kV终期为单母线接线, 初期为线路变压器组接线;35kV及10kV终期均为单母线分段接线,初期为单母线接线。详见图“W851B02-A02-002”。

(六)电气设备布置

35kV 及110kV配电装置采用户外中型软母线布置方式,35kV配电装置与110kV配电装置成垂直布置。

两台主变位于110kV配电装置和10kV配电装置室之间。10kV配电装置采用户内成套高压开关柜,单列布置,采用架空或电缆出线。

10kV电容补偿装置为户外型,布置在10kV配电室左侧主控制楼前户外空地上,本期布置二组。

变电所电气总平面布置详见图“W951B02-A02-00

3、004”; 方案一占地面积为5618.3m2, 方案二占地面积为5961.06m2。

(七) 设备选型

主要设备选型、系统继电保护和安全稳定控制装置的配置、系统通信要求、基本与A方案相同。

第五篇:110KV降压变电所一次系统设计文献综述

永城化工厂110kV降压变电所一次系统设计

变电所一次系统设计探究

摘要:随着工业时代的发展,电力已成为人类历史发展的主要动力资源,要科学合理的驾驭电力必须从电力工程的设计原则和方法上理解和掌握其精髓,提高电力系统的安全可靠性和运行效率。从而达到降低生产成本提高经济效益的目的。变电所是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。目前,国内110kv及以下中低压变电所,主接线为了安全,可靠起见多选单母线接线。另外,合理的选择各种一次设备也能够提高变电所的安全系数及其经济性。 关键词:变电所 /安全/可靠/经济

永城化工厂110kV降压变电所一次系统设计

1 我国电能与变电站现状

电能是发展国民经济的基础,是一种无形的、不能大量存储的二次能源,同时也是现代社会中最重要也是最方便的能源[3]。电能的发、变、送、配电和用电,几乎是在同一时间完成的,须相互协调与平衡[2]。变电和配电是为了电能的传输和合理的分配,在电力系统中占很重要的地位,其都是由电力变压器来完成的,因此变电所在供电系统中的作用是不言而语的。

变电所是联系发电厂和用户的中间环节,起着变换和分配电能的作用[2]。因此,变电所的作用显得尤为重要。首先要满足的就是变电所的设计规范。安全可靠地发、供电是对电力系统运行的首要要求[10]。

(1)变电所的设计要认真执行国家的有关技术经济政策,符合安全可靠、技术先进和经济合理的要求。

(2)变电所的设计应根据工程的5~10年发展规划进行,做到远、近期结合,以近期为主,正确处理近期建设与远期发展的关系,适当考虑扩建的可能。

(3)变电缩的设计,必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件,结合国情合理的确定设计方案。

(4)变电所的设计,必须坚持节约用地的原则。其次,变电所所址的选择,应根据要求,综合考虑确定[1]。

2 设计变电站着手方面

2.1 电气主接线方案的选定

电气主接线是整个变电所电气部分的主干。变电所电气主接线指的是变电所中汇集、分配电能的电路,通常称为变电所一次接线,是由变压器、断路器、隔离开关、互感器、母线、避雷器等电气设备按一定顺序连接而成的。[4]它是电力系统总体设计的重要组成部份。变电站主接线形式应根据变电站在电力系统中的地位、作用、回路数、设备特点及负荷性质等条件确定,并且应满足运行可靠、简单灵活、操作方便和节约投资等要求[2]。主接线设计的基本要求为:

(1)供电可靠性。主接线的设计首先应满足这一要求;当系统发生故障时,要求停电范围小,恢复供电快。

(2)适应性和灵活性。能适应一定时期内没有预计到的负荷水平变化;改变 2

永城化工厂110kV降压变电所一次系统设计

运行方式时操作方便,便于变电站的扩建。

(3)经济性。在确保供电可靠、满足电能质量的前提下,要尽量节省建设投资和运行费用,减少用地面积。

(4)简化主接线。配网自动化、变电站无人化是现代电网发展必然趋势,简化主接线为这一技术全面实施,创造更为有利的条件。

(5)设计标准化。同类型变电站采用相同的主接线形式,可使主接线规范化、标准化,有利于系统运行和设备检修[1]。

随着电力系统的发展、调度自动化水平的提高及新设备新技术的广泛应用,变电站电气主接线形式亦有了很大变化。目前常用的主接线形式有:单母线、单母线分段、单母线分段带旁路、双母线、双母线分段带旁路、1个半断路器接线、桥形接线及线路变压器组接线等[6]。

1997年后建成的变电站中接线型式以单母、桥形和线路变压器组为主。达到了85%。而带旁路母线的,接线型式只有1座,仅占5%[5]。我国变电站设计开始趋向于变电站接线方案简单,近期国内新建的许多变电站220 k V及110kV电压等级的接线采用双母线而不带旁路母线。采用GIS的情况下,优先采用单母线分段接线。终端变电站中,尽量采用线路变压器组接线等。大量采用新的技术,变电站电气设备档次不断提高,配电装置也从传统的形式走向无油化、真空开关、SF6开关和机、电组合一体化的小型设备发展。从形式上看,主接线的发展过程是由简单到复杂,再由复杂到简单的过程。在70年代,由于当时受电气设备制造技术、通信技术和控制技术等条件的制约,为了提高系统供电可靠性,产生了从简单到复杂的主接线演变过程。在当今的技术环境中,随着新技术、高质量电气产品广泛应用,在某些条件下采用简单主接线方式比复杂主接线方式更可靠、更安全,变电站主接线日趋简化。因此,变电站电气主接线形式应根据可靠性、灵活性、经济性及技术环境统一性来决定。

电气主接线方案的选定对变电所电气设备的选择,现场布置,保护与控制所采取的方式,运行的可靠性、灵活性、经济性,检修、运行维护的安全性等,都有直接的影响,因此,选择优化的电气主接线方式,具有特别重要的意义。

3 选择更安全可靠的一次电气设备

3.1 变电所主要电气设备及其作用

永城化工厂110kV降压变电所一次系统设计

(1)高压断路器(或称高压开关)线路正常时,用来通断负荷电流;线路故障时,用来切断巨大的短路电流。断路器具有良好的灭弧装置和较强的灭弧能力。按灭弧介质划分,断路器分为油断路器、空气断路器、SF6断路器等。

(2)负荷开关 线路正常时,用来通断负荷电流,但不能用来切断短路电流。负荷开关只有简易的灭弧装置,其灭弧能力有限。负荷开关在断开后具有明显的断开点。

(3)隔离开关(或称高压刀闸)隔离开关没有灭弧装置,其灭弧能力很小。仅当电气设备停电检修时,用来隔离电源,造成一个明显的断开点,以保证检修人员的工作安全。

(4)高压熔断器 在过负荷或短路时,能利用熔体熔断来切除故障。在某些情况下,熔断器可与负荷开关或隔离开关配合使用,以代替价格昂贵的高压断路器,以节约工程投资[17]。

(5)电流互感器 将主回路中的大电流变换为小电流,供计量和继电保护用。电流互感器二次侧额定电流通常为5A或1A[16],使用中二次侧不允许开路。

(6)电压互感器 将高电压变换成低电压,供计量和继电保护用。电压互感器二次侧额定电压通常为100V[16],使用中二次侧不允许短路。

(7)避雷器 避雷器主要用来抑制架空线路和配电母线上的雷电过电压可操作过电压,以保护电器设备免受损害。

(8)所用变压器 向变电所内部动力及照明负荷、操作电源提供电力[8]。 如上所述,各种电器对我们的变电站设计都有至关重要的作用。所以合理的配置是关键中的关键。

首先就要说到具备更高可靠性的SF6和真空断路器全面取代少油或多油式断路器。设置旁路设施的目的是为了减少在断路器检修时对用户供电的影响。SF6断路器和真空断路器的检修周期可长达20年,在变电所中选用了SF6断路器和真空断路器后,断路器检修几率大为减少,提高单回线路供电可靠性的根本措施转变为建设第二供电回路.因为在单回线路供电情况下中断供电的主要因素已经是线路故障.而不是断路器检修。故随着近十多年来SF6和真空断路器在110kV变电站中的普遍应用,带旁路母线的接线方式在110kV及其以下电压等级已告别了历史舞台。其他设备我们也应该按照计算和设计的需要合理选择,从而保证安全性 4

永城化工厂110kV降压变电所一次系统设计

和经济性。

3.2 电气配置

3.2.1 隔离开关的配置

(1)中小型发电机出口一般应装设隔离开关:容量为220MW及以上大机组与双绕组变压器为单元连接时,其出口不装设隔离开关,但应有可拆连接点[11]。

(2)在出线上装设电抗器的6—10KV配电装置中,当向不同用户供电的两回线共用一台断路器和一组电抗器时,每回线上应各装设一组出线隔离开关[11]。

(3)接在发电机、变压器因出线或中性点上的避雷器不可装设隔离开关。 (4)中性点直接接地的普通型变压器均应通过隔离开关接地;自藕变压器的中性点则不必装设隔离开关[12]。

3.2.2电压互感器的配置

(1)电压互感器的数量和配置与主接线方式有关,并应满足测量、保护、同期和自动装置的要求。电压互感器的配置应能保证在运行方式改变时,保护装置不得失压,同期点的两侧都能提取到电压[11]。

(2)6—220KV电压等级的每组母线的三相上应装设电压互感器。旁路母线上是否需要装设电压互感器,应视各回出线外侧装设电压互感器的情况和需要确定。

(3)当需要监视和检测线路侧有无电压时,出线侧的一相上应装设电压互感器[11]。

(4)当需要在330KV及以下主变压器回路中提取电压时,可尽量利用变压器电容式套管上的电压抽取装置[15]。

3.2.3 电流互感器的配置

(1)凡装有断路器的回路均应装设电流互感器其数量应满足测量仪表、保护和自动装置要求。

(2)在未设断路器的下列地点也应装设电流互感器:发电机和变压器的中性点、发电机和变压器的出口、桥形接线的跨条上等。

(3)对直接接地系统,一般按三相配置。对非直接接地系统,依具体要求按两相或三相配置。

永城化工厂110kV降压变电所一次系统设计

(4)一台半断路器接线中,线路—线路串可装设四组电流互感器,在能满足保护和测量要求的条件下也可装设三组电流互感器。线路—变压器串,当变压器的套管电流互感器可以利用时,可装设三组电流互感器[11]。

3.2.4 避雷器的装置

(1)配电装置的每组母线上,应装设避雷器,但进出线装设避雷器时除外。 (2)旁路母线上是否需要装设避雷器,应视在旁路母线投入运行时,避雷器到被保护设备的电气距离是否满足要求而定。

(3)220KV及以下变压器到避雷器的电气距离超过允许值时,应在变压器附近增设一组避雷器。

(4)三绕组变压器低压侧的一相上宜设置一台避雷器。 (5)下列情况的变压器中性点应装设避雷器

1) 直接接地系统中,变压器中性点为分级绝缘且装有隔离开关时。 2) 直接接地系统中,变压器中性点为全绝缘,但变电所为单进线且为 单台变压器运行时。

3) 接地和经消弧线圈接地系统中,多雷区的单进线变压器中性点上。 (6)发电厂变电所35KV及以上电缆进线段,在电缆与架空线的连接处应装设避雷器。

(7)SF6全封闭电器的架空线路侧必须装设避雷器。 (8)110—220KV线路侧一般不装设避雷器[11]。

4 做好变电站的防雷和保护接地

变电所的防雷设计应做到设备先进、保护动作灵敏、安全可靠、维护试验方便,并在在保证可靠性的前提下力求经济性。[14]防止雷电直击的主要电气设备是避雷针,避雷针由接闪器和引下线、接地装置等构成。[13]避雷针的位置确定,是变电所防雷设计的关键步骤。首先应根据变电所电气设备的总平面布置图确定,避雷针的初步选定安装位置与设备的电气距离应符合各种规程范围的要求,初步确定避雷针的安装位置后再根据公式进行,校验是否在保护范围之内。[13]同时做好变电站的接地电网,也可以有效的防止电力事故的发生。

永城化工厂110kV降压变电所一次系统设计

4.1 所用变的设置

为保证重要变电所的安全用电,所以需装设两台所用变以备用。为了保证供电的可靠性应在低电压等级即10KV母线上各装设一台变压器(每段各一台)。这样就可以避免由于低压线路故障率较高所引起的所内停电事故,从而保证变电所的不间断供电[11]。

4.2 继电保护的配置

在电力系统的运行中,变电所可能出现各种故障和不正常运行状态。最常见同时也是最危险的故障是各种类型的短路,其中包括相间短路和接地短路。此外,还可能发生输电线路断线,旋转电机、变压器同一绕组的匝间短路等,这样,供电系统就不能顺利完成输送电。此时,继电保护就显的很重要。继电保护系统的主要作用:保护作用、控制作用 、监视作用 、事故分析与事故处理作用、自动化作用。继电保护装置在电力系统中的主要作用是通过预防事故或缩小事故范围来提高系统可靠性,是电力系统中重要的组成部分,是保证电力系统安全可靠运行的重要技术措施之一。在现在电力系统中,如果没有继电保护装置,就无法维持系统正常运行[7]。

鉴于其在系统中的重要性,有如下要求:(1)选择性,即仅将故障元件从系统中切除,保证非故障元件正常运行,提高系统供电可靠性;(2)速动性,快速地切除故障元件可以提高系统并列运行的可靠性,减少用户在电压降低的情况下的工作时间,以缩小故障元件的损坏程度。只要求速动性是不行的,要根据电力系统的接线以及被保护元件的具体情况来确定,例如当发电厂或母线电压低于允许值时,继电保护动作等;(3)灵敏性,它要求保护装置在事先规定的保护范围内发生故障时,不论短路点的位置,短路类型,以及短路点是否有过渡电阻,都应敏锐感觉,正确反应;(4)可靠性,它主要针对保护装置本身的质量和运行维护水平而言,一般来说,保护装置的组成元件的质量越高,回路中继电器的触电就越少,保护装置的可靠性就越高,同时,正确的设计和整定计算,保证安装、调试试验的质量,提高运行维护水平,对提高保护装置的可靠性有重要作用[9]。因此在电气设计中将继电保护配置好是一个很重要的环节,同时我们应该按照要求进行合理配置。

现如今在我国,变电所设计还存在很多不足,面临很多问题比如损耗和可靠

永城化工厂110kV降压变电所一次系统设计

性问题。我国经济的发展也电力带来了很多问题比如:(1)对电能的需求日益增长,城市和农村用电密度每天都在变化,所以给变电所的容量设计带来了很多麻烦。(2)我国国土面积大,尤其是西北地区电力用户较分散,电力的传输需要导线,这样就会使线路的功率损耗增加。(3)建立稳定的变电所必须占用较大的土地,然而在城市土地单价昂贵环境要求严格在用电用户稠密的地域建设变电所相对较困难,从而增加了在线路上的电能损耗。以上所说的问题都是我国先目前变电手面临的问题,这些问题正期待我们的解决[2]。

如果上面所述的部分我们都能够很好的综合考虑那么变电站的初步设计就会相对来说比较安全经济。这也就达到我们的提高电力系统的安全可靠性和运行效率,从而达到降低生产成本提高经济效益的目的。

永城化工厂110kV降压变电所一次系统设计

结束语

电网运行的最基本要求是安全与稳定。电网安全稳定的核心问题是要建立一个与该供电网络相适应的、合理的电网结构[19]。110kV电力网络和变电站在系统中的地位和功能发生了很大变化。110kV电力网络已下降为配电网络,大多数110KV变电站也沦为负荷型的终端变电站[5]。配电电压升高,电力系统安全更要时刻抓紧。建设变电站时,在保证安全的前提下还要保证其经济性和灵活性。随着电力人不断的努力,变电站的设计一定会不断完善的。

永城化工厂110kV降压变电所一次系统设计

参考文献

[1] 35~110KV 变电所设计规范 GB50059-92 [2]熊信银.范锡普《发电厂电气部分》.中国电力出版社

[3] 何仰赞.温增银.《电力系统分析》(上、下册).华中科技大学出版社 [4] 熊信银.张步涵《电气工程基础》.华中科技大学出版社 [5] 蔡伟君.电站电气装置型式变化情况及前景探讨.《广东科技》 [6]李景禄.《实用配电网技术》.中国水利水电出版社

[7]国家电力调度通信中心组编.《发电机变压器继电保护应用》.中国电力出版社 [8]卓乐友《电力工程电气设计》.中国电力出版社 [9]刘学军.《继电保护原理》.中国电力出版社 [10]南京工学院.《电力系统》.电力工业出版社

[11]国家电力公司农电工作部.《35kv及以上工程》(上、下).电力工业出版社 [12]西安理工大学.余健明.同向前.苏文成.《供电技术》.机械工业出版社 [13]胡国根.王战铎.《高电压技术》.重庆大学出版社 [14]郭仲礼.于曰浩.《高压电工实用技术》.机械工业出版社 [15]隋振有.《中低压配电实用技术》.机械工业出版社

[16]王宁会.《电气工程常用数据速查手册》.中国建材工业出版社 [17] 刘从爱.徐中立.《电力工程》.机械工业出版社

[18] J.Duncan Glover,Power System Analysis and Design,China Machine Press.2004 [19] Zhu Bangshen China Safety Science Journal , China Science Press .2004

上一篇:形势政策心得体会下一篇:x镇2003党建工作总结