暖通空调监控设计

2022-07-10

第一篇:暖通空调监控设计

暖通空调监控

良好的工作环境,要求室内温度适宜,湿度恰当,空气洁净。暖通空调系统就是为了营造良好的工作环境,并对大厦大量暖通空调设备进行全面管理而实施的监控。暖通空调系统的监控内容如下:

空调系统的监控、

1)新风机组的监控

新风机组中空气——水换热器,夏季通入冷水对新风降温除湿,冬季通入热水对空气加热,干蒸汽加湿器用于冬季对新风加湿。对新风机组进行监控的要求如下:

(1)检测功能:监视风机电机的运行/停止状态;监测风机出口空气温、湿度参数;监测新风过滤器两侧压差,以了解过滤器是否需要更换;监视新风阀打开/关闭状态;

(2)控制功能:控制风机启动/停止;控制空气——热水换热器水侧调节阀,使风机出口温度达到设定值;控制干蒸汽加湿器阀门,使冬季风机出口空气湿度达到设定值。

(3)保护功能:冬季当某种原因造成热水温度降低或热水停供时,应停止风机,并关闭新风阀门,以防机组内温度过低冻裂空气——水换热器;当热水恢复正常供热时,应能启动风机,打开新风阀,恢复机组正常工作。

(4)集中管理功能:智能大楼各机组附近的DDC控制装置通过现场总线与相应的中央管理机相连,于是可以显示各机组启/停状态,送风温、湿度、各阀门状态值;发出任一机组的启/停控制信号,修改送风参数设定值;任一新风机组工作出现异常时,发出报警信号。

2)空调机组的监控

空调机组的调节对象是相应区域的温、湿度,因此送入 装置的输入信号还包括被调区域内的温湿度信号。当被调区域较大时,应安装几组温、湿度测点,以各点测量信号的平均值或重要位置的测量只值作为反馈信号;若被调区域与空调机组DDC 装置安装现场距离较远时,可专设一台智能化的数据采集装置,装于被调区域,将测量信息处理后通过现场总线将测量信号送至空调DDC装置。在控制方式上一般采用串级调节形式,以防室内外的热干扰、空调区域的热惯性以及各种调节阀门的非线形等因素的影响。对于带有回风的空调机组而言,除了保证经过处理的空气参数满足舒适性要求外,还要考虑节能问题。由于存在回风,需增加新、回风空气参数测点。但回风道存在较大的惯性,使得回风空气状态不完全等同于室内空气状态,因此室内空气参数信号必须由设在空调区域的传感器取得。另外,新风、回风混合后,空气流通混乱,温度也很不均匀,很难得到混合后的平均空气参数。因此,不测量混合空气的状态,也不用该状态作为 DDC控制的任何依据。

3). 变风量系统的监控

变风量系统(VAV)是一处新型的空调方式,在智能化大楼的空调中被越来越多的地采用。带有VAV 装置的空调系统各环节需要协调控制,其内容主要体现在以下几个方面:

(1)由于送入各房间风量是变化的,空调机组的风量将随之变化,因此应采用调速装置对送风机转速进行调节,使之与变化风量相适应。

(2)送风机速度调节时,需引入送风压力检测信号参与控制,从而不使各房间内压力出现大的变化,保证 装置正常工作。

(3)对于VAV 系统,需要检测各房间风量、温度及风阀位置等信号并经过统一的分析处理后才能给出送风温度设定值。

(4)在进行送风量调节的同时,还应调节新、回风阀,以使各房间有足够的新风。

暖通系统的监控

暖通系统主要包括热水锅炉房,换热站及供热网,根据智能化大楼的特点,下面主要针对供暖锅炉房的监控进行概要介绍。

供暖锅炉房的监控对象可分为燃烧系统及水系统两大部分,其监控系统可以由若干台DDC及一台中央管理机构成。各DDC装置分别对燃烧系统、水系统进行监测控制,根据供热状况控制锅炉及各循环泵的开启台数,设定供水温度及循环流量,协调各台DDC完成监控管理功能。

锅炉燃烧系统的监控

热水锅炉燃烧过程的监控任务主要是根据对产热量的要求控制送煤链条速度及进煤挡板高度,根据炉内燃烧情况,排烟含氧量及炉内负压控制鼓风、引风机的风量。为此检测的参数有:排烟温度;炉膛出口、省煤器及空气欲热器出口温度;供水温度;炉膛、对流受热面进出口、省煤器、空气预热器、除尘器出口烟气压力;一次风、二次风压力;空气预热器前后压差;排烟含氧量信号;挡煤板高度位置信号。燃烧系统需要控制的参数有炉排速度,鼓风机、引风机风量及挡煤板高度等。

锅炉水系统的监控

锅炉水系统监控的主要任务有以下3个方面:

(1)保证系统安全运行:主要保证主循环泵的正常工作及补水泵的及时补水,使锅炉中循环水不致中断,也不会由于欠压缺水而放空。

(2)计量和统计:测定供回水温度、循环水量和补水流量,从而获得实际供热量和累计补水量等统计信息。

(3)运行工况调整:根据要求改变循环水泵运行台数或改变循环水泵转速,调整循环流量,以适应供暖符负荷的变化,节省电能。

冷热源及其水系统的监控

智能化大厦中的冷热源主要包括冷却水、冷冻水及热水制备系统 ,其监控特点如下:

冷却水系统的监控

冷却水系统的作用是通过冷却塔和冷却水泵及管道系统向制冷几机提供冷水,监控的目的主要是保证冷却塔风机、冷却水泵安全运行;确保制冷机冷凝器侧有足够的冷却水通过;根据室外气候情况及冷负荷调整冷却水运行工况,使冷却水温度在要求的设定范围内。

冷冻水系统的监控

冷冻水系统由冷冻水循环泵通过管道系统连接冷冻机蒸发器及用户各种冷水设备(如空调机和风机盘管)组成。对其进行监控的目的主要是保证冷冻机蒸发器通过足够的水量以使蒸发器正常工作;向冷冻水用户提供足够的水量以满足使用要求;在满足使用要求的前提下尽可能减少水泵耗电,实现节能运行。

热水制备系统的监控

热水制备系统以热交换器为主要设备,其作用是产生生活、空调及供暖用热水。对这一系统进行监控的主要目的是监测水力工况以保证热水系统的正常循环,控制热交换过程以保证要求的供热水参数.

第二篇:空调系统监控系统

中央空调节能调适系统

ECS2010产品控制原理

中央空调(冷/热水机组)系统的建设(设备的投入、电网的设计等)都是按照最大负荷来设计的,因此中央空调(冷/热水机组)大部分时问都处于部分负荷状态下,在实际运行中,中央空调(冷/热水机组)负荷减少时并没有减少多少消耗的能量,显然这是不合理的。随着技术的进步,促进了变频器的小型化和实用化,为了降低中央空调(冷/热水机组)系统的能源浪费,人们开始采用变频器来控制空调系统的水泵和风机实现节能的效果。

传统的中央空调(冷/热水机组)控制方法通过采集水循环系统的压差和温度,采用可编程序控制器(PLC),对水泵进行PI(比例、积分)调节控制或者PID(比例、微分、积分)调节控制,以实现节能。PLC能实现简单的逻辑功能,最常见的节能控制方法有恒温差控制和恒压差控制,PLC控制方法可以达到一定的节能效果,而且PID控制原理简单、使用方便,价格也比较便宜,但其也存在一些不足:

PI或者PID调节器最重要调节系数Kp(比例系数)、T(、Td (微i积分时间常数)分时间常数)只能是一个固定值,通常是在设备调试阶段,由经验丰富的调试人员手工整定的,数据一旦整定后,它就是固定不变的了,不能随着受控环境的变化而自动调整。而实际上,中央空调(冷/热水机组)系统是一个时变的动态系统,其运行工况是和气候条件、建筑物材料、建筑内人流量等多种因素密不可分的,是随时变化的。因此,静态参数的控制方法并不适合于中央空调(冷/热水机组)系统的节能控制。此外,PLC只能实现单参量的简单控制功能,当用于控制中央空调(冷/热水机组)系统这样多参量、非线性时变高耦合复杂系统时,容易引起系统震荡,使得控制温度在较大范围内变化,及影响了系统的稳定性、又降低了空调系统的舒适性。

针对PID控制方法的不足,有些厂家提出了一些基于人工智能技术的控制方法,其中比较有代表性的是中央空调(冷/热水机组)节能模糊控制方法。该控制方法主要是模拟人类的思维模式,当一个熟练的操作工人,遇到工况变化的情况,经过自身大脑的思维判断,给出控制量来控制系统。例如当工人发现冷冻水供回水温差小于某个设定值(系统负荷降低),可以选择降低冷冻泵的控制频率,达到节能的效果。而当冷冻水供回水温差大于某个设定值(系统负荷增加),则必须增加冷冻泵的控制频率,保证空调系统制冷效果。

中央空调(冷/热水机组)节能模糊控制方法主要是模拟人类的思维模式来对中央空调(冷/热水机组)系统进行控制,包括了温差偏差变量模糊化、温差偏差变化率模糊化、模糊推理、模糊量清晰化处理和清晰量输出等几个主要过程。和传统PID方法相比,更加符合中央空调的复杂性、动态性和模糊性,能够实现比PID更加精准的控制效果,实现更大的节能效果。但是它也同样存在着一些不足。

首先模糊控制方法是根据专家的丰富实践经验和思维过程构建的模糊规则,然后依此规则作为控制控制的基础,因此规则库制定方法对控制效率有着决定性作用,但是规则库的建立需要依赖大量的实践数据,从大量的应用环境中收集最有效的控制规则,但是如何评价采用的规则是最有效的,现在并没有定论。而且规则库考虑的是大多数应用的普遍性,但是每个具体应用的工况也是有所区别,因此并不能达到最优化的控制。最终要一点,采用模糊控制方法主要只是针对了中央空调(冷/热水机组)系统中的水泵系统进行节能控制,而水泵变频对制冷主机效率和冷却塔效率的影响并没有考虑,例如冷却水泵降低频率可以节省水泵电量,但是主机的耗电量有可能会上升,因此这种方法并不能体现系统整体节能的最优化控制。

综上所述,通过检测和控制技术发现建筑物中合理能耗,按照需求供给能量,则就能够实现中央空调系统的节能。当前的中央空调(冷/热水机组)节能控制策略主要针对系统中的单个设备和局部环节,事实已经证明这种控制策略并不能很好的实现节能的要求。由于中央空调本身是一个热交换过程,具有大滞后、多干扰特点,是一个多输入多输出的高度耦合系统,所以为了提高控制的效果,必须从整体上和以负荷为对象来考虑系统的设计。

为了解决中央空调(冷/热水机组)节能优化控制问题,上海信业智能科技股份有限公司和清华大学自控系联合开发了ECS2010中央空调(冷/热水机组)调适系统,该系统通过全面的参数采集,实时监控中央空调(冷/热水机组)系统的运行,将冷冻站系统中各电气设备耗能情况实时计量分析,建立运行专家系统数据库,对冷冻站设备的能耗模型进行辨识。冷冻水采用动态规则模糊控制算法,根据运行状况在线更新规则库;冷却水采用启发式搜索算法对系统总能耗进行实时优化,在保证制冷量的前提下使系统的总能耗最低。

ECS2010中央空调调适系统是由中央管理站、各种现场数字控制器及各类传感器、远传智能电表组成的、能够完成多种控制及管理功能的网络系统。它是随着节能减排在社会前景中的应用而发展起来的一种智能化电气节能控制管理网络。目前,系统中的各个组成部分已从过去的非标准化的设计产生,发展成标准化、专业化产品,从而使系统的设计安装及扩展更加方便和灵活,系统的运行更加可靠,系统的投资大大降低。

ECS2010软件

2.1系统简介

中央空调系统包括冷冻水循环、主机制冷剂循环和冷却水循环三个循环系统,通过冷冻水将末端热量传递到主机,再由主机制冷剂循环传递到冷却水,由冷却水传递到冷却塔,然后由冷却塔将热量散发到大气中。

2.2安装说明

硬件配置:

服务器端:CPU:P4 3.6G/HZ,1G内存,120G硬盘

客户端:CPU:PIII, 512MB内存,60G硬盘 软件配置:

操作系统:Windows XP/2000(客户端),Windows NT/2003(服务器端) 浏览器:Internet Explorer 6.0或以上版本 后台数据库:SQL SERVER 2000(SP4)/2005 安装要求:

企业要有相应的计算机网络结构,及带有域功能的计算机网络,所以首先要在服务器上配置计算机的域,然后把每台客户机都加入到该域中,这样就能保证了每个计算机都能访问域中的任何一台计算机以及域服务器及数据库服务器。 使用ECS2010中央空调节能系统,客户端只要安装了该软件的客户端软件就可以运行该软件,服务器端需要安装有SQL SERVER 2000,并且打有SP4的补丁。 2.3系统功能说明

ECS2010中央空调节能系统登录界面如下图3-1所示:

图3-1 登录界面

用户在username和password栏输入输入用户和密码,点击登入按钮,如果用户名密码验证通过才能进入到本系统中,如果用户在输入用户名和口令的时候出现错误的话,系统会提示相关错误信息。

系统支持用户的分级管理,权限分为普通用户、系统操作员和系统管理员三个级别。普通用户可以查看系统实时运行状态,查看系统历史运行数据曲线等;系统操作员可以除了包含普通用户权限之外,还可以对设备启停进行控制,调整系统运行策略;系统管理员权限包含系统操作员的所有功能,此外还可以对系统的重要参数进行设置。

进入到系统后你会看到如下的界面菜单,也就是系统的主界面菜单(如图3-2所示):

图3-2 系统主要功能分成5个大类,包括实时监控、数据分析、数据报表、系统日志和实时帮助,其中实时监控包括实时运行、实时能效比、主机系统、冷冻泵系统、冷却泵系统、冷却塔系统、控制策略共7个子菜单;数据分析包括系统COP分析、主机COP分析、冷冻泵分析、冷却泵分析、冷却塔分析、冷冻水分析、冷却水分析和综合分析共8个子菜单;数据报表包括系统组件报表、水温报表和节费与减排报表共3个子菜单;系统日志部分包括报警日志和操作日志;实时帮助可显示公司和产品相关信息。下面对系统中主要子系统功能进行介绍。

系统实时运行界面

图2-3 实时运行界面 实时运行界面如图2-3所示,界面可显示系统中各个机电设备的运行状态及相关参数显示。

设备(空调主机、冷却冷冻水泵、冷却塔)正常运行时,界面上会仿真模拟设备运行,例如冷却塔风机旋转等。设备停止运行,则相应设备显示停止状态。当设备存在故障或者是不受控状态(旁路或者就地)时,该设备会通过不同的颜色显示相应的状态。

界面可实时显示系统中的重要运行参数。在系统的管路附近,标注了当前管道的水温,有冷冻水出水、回水温度和冷却水出水、回水温度,在界面的右边,显示了当前室外温度、湿度、湿球温度、冷冻水流量、冷却水流量和供回水压差。

当鼠标移动到设备上面时,可以显示该设备的相关信息,包括开关机时间、当前运行频率等。双击设备,可以跳转到设备的运行界面。

实时能效比监控界面

图2-4实时能效比监控

实时能效比监控界面如图2-4所示,界面分成三个部分,上端从左到右分别显示系统实时统计信息(总功率、总制冷量、总耗电量、总运行时间)、系统实时COP值、室外温度、室外湿度和建筑环境的相关介绍。

界面左下方区域可实时计算并显示系统当日、当月、当年的节省电量,根据电量计算的CO2减排量和节省费用数量。 界面右下方区域显示系统中重要数据的实时曲线,包括实时COP曲线、实时功率曲线、节能量曲线、室外温度曲线、室外湿度曲线、冷冻水供回水曲线、冷却水供回水曲线、冷冻冷却水流量曲线。点击上面的标签栏进行切换曲线类型。

主机系统监控

主机系统监控界面中可实时查看系统中制冷主机的运行状态参数,包括主机设备运行状态、故障状态、设备实时功率、三相电流、三相电压;

界面中间通过动画模拟显示设备的运行状态,同时实时显示了与主机相关的几个重要参数,冷冻水进水出水温度、冷却水进水出水温度。

在界面的右面可以对系统中的主机设备进行选择,可显示主机的一些统计参数,包括当天累计时间、总共累计时间、当天累计电量、总共累计电量、当天开机时间和当天关机时间等。

冷冻泵设备监控界面

冷冻泵系统监控界面中可实时查看系统中冷冻水泵的运行状态参数,包括水泵运行状态(运行停止)、工作模式(正常就地旁路)、故障状态、设备实时功率、设备实时运行频率、三相电流、三相电压;

在界面的右面可以对系统中的设备进行选择,可显示冷冻泵的一些统计参数,包括当天累计时间、总共累计时间、当天累计电量、总共累计电量、当天开机时间和当天关机时间等。

系统操作员可以通过左上角的设备启停按钮来启停设备,当点击运行/停止按钮时,系统会弹出相应的提示框确认操作,当操作确认成功后,系统会对设备发送相应的启停命令,实现对设备的启停操作。

冷却泵设备监控界面

冷却泵系统监控界面中可实时查看系统中冷冻水泵的运行状态参数,包括水泵运行状态(运行停止)、工作模式(正常就地旁路)、故障状态、设备实时功率、设备实时运行频率、三相电流、三相电压;

在界面的右面可以对系统中的设备进行选择,可显示冷却泵的一些统计参数,包括当天累计时间、总共累计时间、当天累计电量、总共累计电量、当天开机时间和当天关机时间等。

系统操作员可以通过左上角的设备启停按钮来启停设备,当点击运行/停止按钮时,系统会弹出相应的提示框确认操作,当操作确认成功后,系统会对设备发送相应的启停命令,实现对设备的启停操作。

冷却塔设备监控界面

冷却塔系统监控界面中可实时查看系统中冷冻水泵的运行状态参数,包括冷却塔运行状态(运行停止)、工作模式(正常就地旁路)、故障状态、设备实时功率、设备实时运行频率、三相电流、三相电压;

在界面的右面可以对系统中的设备进行选择,可显示冷却塔的一些统计参数,包括当天累计时间、总共累计时间、当天累计电量、总共累计电量、当天开机时间和当天关机时间等。

系统操作员可以通过左上角的设备启停按钮来启停设备,当点击运行/停止按钮时,系统会弹出相应的提示框确认操作,当操作确认成功后,系统会对设备发送相应的启停命令,实现对设备的启停操作。

控制策略选择界面

系统提供两种控制模式进行选择,自动控制模式和紧急控制模式。自动控制模式下,系统根据全面的参数的采集分析,计算得到设备最优的控制频率,在保证制冷量的前提下,使得系统耗能最低。紧急控制模式是提供给用户一个手动模式,用户可以在输入框内填入固定频率值,控制设备以这个固定频率运行。

主机COP分析界面

可通过时间和主机设备编号查询主机系统任一天的运行COP曲线,还有冷冻站当天的统计信息,包括系统总耗电量、总制冷量、总运行时间、当天开机时间、当天关机时间、当天平均COP。

系统综合分析界面

系统可通过选择起始时间,将这一段时间的数据绘制成曲线,方便用户做数据分析。数据分析对象包括系统总耗电量、系统总功率、系统总制冷量、系统平均COP值、系统节电量、系统减排CO2数量和系统节约费用数量。

系统组件能耗报表

系统通过选择起始时间,将这一段时间的设备能耗情况按照设备分类统计成报表输出,方便用户查看。

系统节费与减排报表

系统通过选择起始时间,将这一段时间的设备节费与减排数据统计成报表输出,方便用户查看。

用户操作日志

可查看系统任一天的操作记录。

第三篇:暖通空调数据采集与监控系统的几点想法

摘要: 本文就 目前 流行的楼宇自动化技术,谈了几点关于暖通空调监控系统 应用 的实际 问题 。RS-485技术在控制 网络 中的应用;利用VC++技术自编监控软件;模糊控制与PID算法的结合应用。 关键词: RS485 面向对象 PID 模糊控制

1 前言 21世纪信息化的 时代 已经到来,以网络通讯和 计算 机技术为背景的建筑智能化正是顺应这一时代潮流的必然趋势。作为智能建筑3A系统之一的楼宇自动化系统(BAS)对大楼的水电暖通等机电设备进行集中的监控和管理已日益成为 现代 建筑中必不可少的配臵。下面就其中暖通空调系统的监控谈几点看法。2 RS485网络 中央空调系统管理复杂,运行工况多变,是建筑物能耗大户。为此,实施BA系统一般将空调系统作为监控的重点,往往投入60%以上的监控点和超过水电监控投资总和的投入。但是不同厂商提供了不同功能的产品和系统,采用不同的通信协议,致使它们之间依靠网关和大量软件的互联成为高成本、低性能的解决方案。从资源的利用,系统的设计、调试、扩张、更新、维

1

护等方面来看,都给业主带来不利。因此,目前BAS 发展 的技术趋势是现场总线技术(FCS)。美国Echelon公司于1990年12月推出的Lonworks技术正是采用了FCS技术,这是一种开放系统的通用总线。它的技术核心是神经元芯片(Neuron Chip)和LonTalk协议。但对于中小型的监控系统,全面采用Lonworks技术,并不具有技术优势和完善的工程实现。部分采用或支持现场总线技术的产品在目前大量的中小型系统中更具有应用性。以控制网络而言,LonTalk总线在 理论 上可以组成任意拓扑结构的网络。这种布线设计的随意性,如果运用不当,在工程实践中仍然是有技术风险的,并可能造成系统投资的增加。所以,中小型工程推荐运用基于RS-485总线的控制网络。该技术抗噪声干扰性好,广泛应用于过程控制领域,技术成熟,实现成本也较低。在使用RS-485接口的总线时,对于特定的传输线路,从发生器到负载,其数据信号传输所允许的最大电缆长度是数据信号速率的函数,这个长度数据主要是受信号失真及噪声等 影响 所限制,两者成反比。图一所示的最大电缆长度与信号速率的关系曲线是使用24AWG铜芯双绞电话电缆(线径为0.51mm),线间旁路电容为52.5PF/M,终端负载电阻为100欧时所得出。(曲线引自GB11014-89附录A)。由图中可知,当数据信号速率降低到90Kbit/S以下时,假定最大允许的信号损失为6dBV时, 则电缆长度可达1200m。实际上,图中的曲线是很保守的,在实

2

际使用时是完全可以取得比它大的电缆长度。

图一 电缆长度与信号速率的关系曲线对于总线上的连接点的问题,根据规定,每个标准RS-485接口的输入阻抗为≥12kΩ,相应的标准驱动节点数为32。为适应更多节点的通信场合,有些芯片的输入阻抗设计成1/2负载(≥24kΩ)、1/4负载(≥48kΩ)、甚至1/8负载(≥96kΩ),相应的节点数可增加到6

4、128和256。下表为一些常见芯片的可连接节点数。节点数 型 号 32 SN75176,SN75276,SN75179,SN75180,MAX485,MAX488,MAX490 64 SN75LBC184 128 MAX487,MAX1487 256 MAX1482,MAX1483,MAX3080~MAX3089 这样RS-485接口在总线上允许连接多达256个收发器。即具有多站能力,便于我们方便的利用单一的RS-485接口方便地建立起连接若干个现场控制子系统的网络。以暖通空调系统典型的温控来说,每个节点现场控制器,可挂接多片温度传感器,以实现多点温度监测,距离在20~50m。从监控范围和监控对象来说,足以满足一般中小型暖通空调监控系统的要求。对于更大范围的系统来说,也可通过在RS-485总线加装中继器来实现。3 系统软件 从系统软件的设计来看,由组态软件进行二次设计,一定程度上可以缩短开发周期。目前楼宇设备控制组态软件市场为Johnson Control′s,Simens,Honeywell等几家公司所主宰。这些软件功能丰富,借助其完

3

善的楼宇自控硬件设备,占有绝大部分的市场份额。但存在着硬件设备要求较高的问题,出于对内嵌的设备驱动程序(I/O Server),及被处理数据结构等原因的考虑,一般需要配用其专用的网络设备。而且它的一些核心技术封装在模块中,非厂家专业人员很难进行维护、调试。对于大量的中小型空调系统来说,其价格成本也较高。 所以借鉴组态软件面向对象的设计思想,以实际系统中与各硬件直接相关的各控制量为对象名,作为系统设计的核心。软件系统则以与控制量映射的对象名作为各种操作的对象,通过对对象名的属性和值进行定义、赋值来实现硬件系统的状态变化。在此核心思想的基础上,以Windows为平台,VC++作为开发工具,建立①CobjectName(对象名信息类),包括AI型、AO型、DI型、DO型四类,每一个类中包括控制量的属性和相关信息;②CtreeView(树形显示类),帮助建立系统结构;③Ccomm(串行通信类),实现RS-485总线上多机系统之间的通信功能,包括创建、初始化、读写、关闭等操作;④CODBCRecord(数据记录类),实现重要运行参数的保存,及相关查询更新操作;⑤CalarmError(故障记录报警类),对参数值超过设定上下限的现场运行状况进行提示。整个软件系统则分为三个功能模块:①设臵模块,定义各硬件地址,IO口对象名等;②界面模块,建立人机对话界面;③后台模块,控制硬件采集、传输现场数据,及相关操作。由于该软件系统基于面向对象的

4

设计思想,使得它的稳定、高效、及维护、扩展等性能得到了保证。4 控制算法 对于中央空调监控系统来说,传统的控制器多为PID控制算法。即,以设定值w与实际输出值y构成的控制偏差e(e=w-y)的比例,积分,微分通过线性组合构成控制量式中:K p 是比例系数,T i 为积分时间,T d 为微分时间。在控制器中改写成差分形式,在采样时刻t=iT(T为采样周期)时: 采用增量形式:这样只要保存近两个控制周期的输出值u i 、u i-1 ,和近三个控制周期的偏差e i 、e i-1 、e i-2 就可以了。由于具有积分环节,PID控制器可消除稳态误差,在工作点附近有较好的稳态精度。但对于空调系统特有的大惯性、纯滞后、时变等特点,单纯的PID调节,会存在积分饱和现象,使系统超调较大,延长了过渡过程。而如果简单的采用高PID系数,虽然可以缩短过渡过程,但容易使控制失稳,而导致室温振荡。所以,利用双回路控制,在较大偏差下利用模糊控制,屏蔽积分作用,实时整定PID系数,以改善系统动态性能,成为高精度空调控制系统的考虑。信号处理流程如图二所示。首先,确定控制规则:IF{e i }AND{é i } THEN {K}其中{e i }、{é i }为误差e、误差变化率é的模糊变量集合,{K}为比例控制系数K P 、积分控制系数K I 、和微分控制系数K D 的集合。然后,建立模糊变量集合和模糊控制规则表,以明确输出的模糊量。5 结论 随着 社会 经济 的 发展 ,空调

5

系统的舒适性和节能性对系统的控制提出了更高的要求。计算 机及 网络 技术的发展已经逐步要求或被要求进入暖通行业,对这方面 内容 的 研究 必将促进暖通行业新的发展。参考 文献 1 王学慧 微机模糊控制 理论 及其 应用 .北京: 电子 工业 出版社,19872 江亿 暖通空调系统的计算机控制管理【J】, 暖通空调,1997,3(4):6-73 苏学花 等 基于RS-485的分布式监控系统的设计,计算机应用,2001年第8期4 霍振龙 RS-485总线在多机通信系统中的应用,工矿自动化,2002年第3期 5 龙马工作室 Visual C++ 6.0 程序设计学与用教程,机械工业出版社,2003-05-01 6

第四篇:漏水控制器监控空调漏水操作方案

漏水控制器

监控空调漏水 解决方案

祥为测控 2018-5-25

关键词:漏水控制器

烈日炎炎,都说“我这条命就是空调给的”,还有什么比待在空调房间里更舒服的事吗?若是在你享受“凉凉”的空调冷气时,遇上空调漏水的这问题,那就实在太扫兴了。

伴随着制冷技术的成熟发展及人民生活水平的提高,家用空调从普通的挂机,到柜机,再到中央空调。中央空调凭借其舒适、智能、环保等优势倍受人们的欢迎,其最主要的一点即通过巧妙的隐藏式的设计和安装方式,实现与整体装修风格相协调,在不影响室内的装修风格的前提下,满足了不同人群的个性化需求。

那究竟是什么原因造成了中央空调出现漏水呢?接下来咱们来分析一下可能发生漏水的原委吧!

第一个原因是空气湿度大,我国夏季空气湿度大,在使用中央空调时,如果空调出风口处的湿度特别大,空调吹送冷气时遇上较大的湿度容易在出风口处凝结成水滴,水滴越积越多,即会出现漏水情况。

第二个原因是安装问题,空调界,乃至整个装修界,一句久负盛名的话:三分产品七分安装。空调室内机放的位置偏移的话,就会导致排水管排水不畅或者是水平度不合格,也会因为水份聚集过多导致漏水。

第三个原因是管道保温问题,由于铜管内流通的冷媒温度非常低,管路表面容易造成凝露,最终导致浸湿天花板及墙面。

第四个原因是空调使用不当,当排水管不易排出的水逐渐溢至室内的接水槽口时,就会出现漏水现象。以上四大原因是造成空调漏水的罪魁祸首,那么出现漏水该怎么办,如何监控漏水情况并及时报警呢?

XW-DC-01

XW-DC-02

这时候就要用到祥为漏水控制器,祥为漏水监控系统可贴近冷源部署,针对固定泄漏点位可使用点式漏水控制器进行监控,亦可部署在冷源及管道四周,使用线缆式漏水控制器实现区域式的漏水监控。

此漏水控制器,一旦出现漏水情况,能在第一时间发现漏水情况,通过外接设备以声光报警、短信等方式告知空调使用者或运维者,早期发现漏水及时处理,避免造成不可估量的损失,保证了空调的运行及使用寿命。

深圳祥为致力于中高端漏水检测设备及温湿度传感器的开发集成与销售服务! 深圳市祥为测控技术有限公司原创,如需转载请注明出处

第五篇:暖通空调设计规范

一、 空气调节

GB50019-2003采暖通风与空气调节设计规范

二、 能耗计量

GB50019-2003采暖通风与空气调节设计规范

《公共建筑节能设计标准》GB50189

三、 冷热水系统

《公共建筑节能设计标准》GB50189

GB50019-2003采暖通风与空气调节设计规范

《公共建筑节能设计标准》GB50189

GB50019-2003采暖通风与空气调节设计规范

四、 冷却水系统

GB50019-2003采暖通风与空气调节设计规范

《公共建筑节能设计标准》GB50189

五、 风系统

《公共建筑节能设计标准》GB50189

GB50019-2003采暖通风与空气调节设计规范

《公共建筑节能设计标准》GB50189

六、 检测与控制

《绿色建筑评价标准》GB50378 4.2.10采暖和(或)空调能耗不高于国家和地方建筑节能标准规定值的80%。 5.2.15 楼宇自控系统功能完善,各子系统均能实现自动检测与控制。

5.5.1 采用中央空调的建筑,房间内的温度、湿度、风速等参数满足设计要求。 GB50019-2003采暖通风与空气调节设计规范

《公共建筑节能设计标准》GB50189

七、 公共建筑节能改造

《公共建筑节能改造技术规范》JGJ176

上一篇:内勤培训心得体会下一篇:奶奶笑了看图说话