燃烧热实验报告

2022-06-21

国民经济的快速发展下,越来越多的行业,开始通过报告的方式,用于记录工作内容。怎么样才能写出优质的报告呢?以下是小编收集整理的《2燃烧热实验报告》相关资料,欢迎阅读!

第一篇:2燃烧热实验报告

燃烧热实验报告

燃烧热的测定

摘要

本实验中借助氧弹式量热计,在测定标准物质苯甲酸的燃烧热的基础上,先求算出了所用仪器的量热计热容,再以此为基础测定了蔗糖的恒容燃烧热。文章末尾对实验中的误差和雷诺校正方法的合理性进行了讨论。

实验步骤(修正) 1. 取消硝酸滴定过程

2. 先向量热器内加入2000mL去离子水,放入氧弹后再加入1000mL去离子水。 3. 实验过程中,在开始时恒温段每30s记录一个数据,维持5min;之后使用电极点火燃烧,燃烧过程中每15s记录一个数据,直至温度升高并恒定;温度升高并恒定后再次恢复至每30s记录一个数据。

数据记录及处理

1. 样品质量的测量:

表1 样品质量测定

样品 苯甲酸 m粗/g

m线/g

mNi/g m总/g m剩/g 1.2142

0.0158 0.0146 0.6245 0.0094 蔗糖 1.0404

0.0169 0.0163 0.9292 0.0078

2、水当量的测定:

表2 苯甲酸T-t数据表

t/s T/℃ 435 0.879 450 0.924 465 0.956 480 0.982 495 1.002 510 1.019 525 1.032

(失误漏记) 540

555 1.052 570 1.06 585 1.067 600 1.072 615 1.077 630 1.081 645 1.084 660 1.086 675 1.089 690 1.091 t/s 0 30 60 90 120 150 180 210 240 270 300 330 345 360 375 390 405 420 T/℃ 0 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.001 点火 0.007 0.079 0.325 0.571 0.725 0.815 t/s 705 720 735 750 765 780 810 840 870 900 930 960 990 1020 1050 1080

T/℃ 1.092 1.093 1.095 1.096 1.096 1.097 1.098 1.098 1.098 1.098 1.098 1.097 1.097 1.097 1.097 1.097

3、蔗糖燃烧热的测定:

表3 蔗糖T-t数据表

t/s T/℃

405 0.799 420 0.860 435 0.898 450 0.924 465 0.944 480 0.960 495 0.971 510 0.980 525 0.988 540 0.995 555 1.001 t/s 0 30 60 90 120 150 180 210 240 270 300 T/℃ 0 0 0 -0.001 -0.001 -0.001 -0.001 -0.002 -0.001 -0.001 -0.001 t/s

645 660 690 720 750 780 810 840 870 900 930 T/℃ 1.02 1.022 1.024 1.026 1.027 1.028 1.029 1.029 1.029 1.029 1.029 330 点火 570 345 0.023 585 360 0.257 600 375 0.529 615 390 0.712 630

4、苯甲酸燃烧T-t数据作图(雷诺校正)

1.005 1.009 1.013 1.016 1.018 960 990 1020

1.028 1.028 1.028

H1.000CD0.800E0.600T/C°0.4000.2000.000A0200BG4006008001000由雷诺校正图可知,升温△T=1.098K,t=409.8s

5、蔗糖燃烧T-t数据作图(雷诺校正)

t/s

1.200H1.0000.800E0.6000.4000.2000.000CDT/C°A0200BG4006008001000由雷诺校正图可知,升温△T=1.030K,t=391.3s

6.水当量的计算

(1) 引燃用镍丝的校正:

t/s

mNi0.01460.00940.0052g

qNiQvNimNi3243kJ/g0.0052g17J (2) 棉线的校正:

q棉Qv棉m棉16736kJ/g0.0158g264J (3) 量热计常数的计算: 苯甲酸燃烧反应式:C7H6O2(s)+对于气体产物而言n=-0.5 已知苯甲酸恒压热容为:Qp26460J/g 则QvQp15O2(g)=7CO2(g)+3H2O(l)2

nRT0.58.314289.452646026450(J/g) M122.125燃烧物质质量G0.61100.01460.01580.5806g

qq棉qNi26417281J

认为体系中已经将氮气排尽从而忽略由于形成硝酸造成的误差,计算可得

WQvGq264500.5941281DC水=3000.00.99887914.18182036(J/K)T1.098

7、 计算蔗糖的恒容燃烧热Qv和恒压燃烧热Qp (1)引燃用镍丝的校正:

mNi0.01630.00780.0085g qNiQvNimNi32430.008528J

(2) 棉线的校正:

q棉Qv棉m棉167360.0169283J (3) 蔗糖恒容燃烧热:

Qv已知W2036J/K

(WDC水)TqG

D3000.00.99887912996.6g

qq棉qNi28328311J

G0.92920.01690.01630.9060g

Qv(20362996.64.1818)1.0303111.640104(J/g)

0.8960(4) 蔗糖的恒压溶解热:

由方程:C12H22O11(s)12O2(g)12CO2(g)11H2O(l),可知n0 于是QpQv

误差分析 nRTQv1.640104(J/g) M由查阅文献可知,蔗糖燃烧热为-16490(J/g)。相对偏差

1649016400100%0.6%16490

实验值与理论值较为接近。

e1. 定量误差分析 (1) 质量称量误差

以万分天平计,称量误差为0.0002g,镍丝质量为差值法得到,误差应为0.0004g。

镍丝燃烧误差:

QvNi3243mNi0.00041.2(J/K)T1.098(刻意多保留一位有效数字) Q3243QvvNimNi0.00041.4(J/g)G0.9060W棉线燃烧误差:

167360.00023.0(J/K)T1.098(刻意多保留一位有效数字)

Q16736Qvv棉m棉0.00023.7(J/g)G0.9060Wm棉Qv棉

Qv26450G0.000615(J/K)T1.030燃烧物称量误差:

Q26450QvvG0.000627(J/g)G0.5806W累计加和来看,

W19100%0.93%W2036

Qv32100%0.20%Qv16400由此分析,称量本身系统误差对最终结果造成影响较小。

值得一提的是,在实验过程中称量结束至燃烧过程中,需使用棉线及镍丝固定待测物;这一过程中难免会有待测物压片散块造成质量偏差。这是实验中非常重要的一个误差来源,其质量偏差将会线性传递至最终误差里。

在实际操作中,为了减少这类误差;可以在结束后将栓系绳子的工作放于一称量纸上完成,将待测物固定完成后再称量纸上洒落样品。从而弥补由于样品易散造成的误差。

(2) 水的体积测量造成的误差

为便于讨论,假设两次使用2000mL及1000mL容量瓶会累计造成5mL误差(认为容量瓶本身存在千分之一误差,再考虑挂壁、溅出等影响)

WC水水V4.18180.998871521(J/K)QvC水水TG 4.18180.9988711.030V524(J/g)0.9060W21100%1.03%W2036

Qv24100%0.146%Qv16400由此可见,加入水量的误差在极大估计条件下(5mL)也不会对最终结果造成太大影响。

(3) 温度波动造成的误差

在实验的非加热段,由数据显示温度波动为0.01K,则

QvGq264501.0881304(T)0.01132(J/K)T21.9822

WDC水20362996.64.1818Qv(T)0.01163(J/g)G0.8960WW132100%6.50%W2036

Qv163100%0.994%Qv16400本实验中,由温度波动0.01K即可对最终结果造成1%误差,由此可见温度波动是实验误差的另一主要因素。因此,采用雷诺校正是很有必要的。

(4)是否进行酸校正的定量分析:

假设氧弹内容积为1L(偏大估计),即含有790mL氮气。本实验中反复冲入氧气至1MP再放气至常压,重复三次除去氮气。则剩余氮气量可计算为790*0.13=0.79mL 换算为物质的量n(氮气)=0.033mmol

151N2(g)+O2(g)+H20==HNO3(l)242H59800 J /molUHnRT598001.758.314(273.1516.4)55587J/mol

由氮气产生的热效应Q55587J/mol*0.033mmol1.8J

此数值仅与镍丝称量误差带来的影响大致相同,对于整个实验体系可以忽略不计。因此本实验省略酸校正分析是合理的。

2.定性误差分析 (1)热容值变化的讨论

理论上,热容随温度变化而变化;因此c=c(T)并非一个常量。在本实验中,通过计算水当量表征仪器的吸热效应,同时控制燃烧标准物质和待测物质时体系上升大致相同的温度。同时,体系整体温度上升幅度并不大(1.1℃左右),因此粗略地认为热容随温度变化幅度可忽略是合理的。

(2)待测物质量

本实验定量分析过程中可发现,待测物质量大小对最终的误差有很大影响。在实验过程第一次压片过程中,由于操作并不熟练,压制得到的苯甲酸固体质量偏小;仅仅0.6g,计算发现由此导致的系统误差是较大的。因此,在蔗糖燃烧实验中改进了压片手法,增加了待测物质量,分析得到的系统误差显著下降。

实验操作讨论

在实验过程中,我认为有如下操作值得反思和注意 (1)压片操作

如果压片过松,则所得药片的强度较差,不宜成型,遇到外部振动或者在移动过程中会出现碎裂、散落现象。如果压片过紧,则压片器容易卡主,在取出样品过程中可能又会造成样品的损坏。

相较而言,苯甲酸标准物质颗粒较小,分布均匀,较为容易压片。而蔗糖晶体必须充分研磨成细末状再进行压片才会相对容易。 (2)固定压片的操作

将压片与点火器件稳定固定在氧弹中是本实验中最难的操作。首先需要明确,镍丝的作用是产生火花引燃体系,棉线的作用是将镍丝与待测物空间上固定在一起,同时起到引燃的作用。讲义上指出可以将镍丝压入样品内,但在本实验中受限于设备限制,以下操作更为合理:压出的样品用棉线固定捆住,同时棉线本身提供镍丝的固定支撑点,令镍丝穿过细线并环绕住压片。

同时在固定操作中,建议在下方放置称量纸。以便于收集散落的待测物,称量后校正得到正确的燃烧物质量。

(3)对于氧弹的清洁操作

两次测定之间除了需要擦净量热桶内壁、氧弹外壁的水分外,还需要将氧弹内筒仔细擦干净,除去上一次燃烧过程中产生的水,减少误差。

结论

本实验通过在氧弹式量热计中燃烧苯甲酸,通过使用雷诺校正,计算出水当量的方法作为基准,求得了蔗糖的恒压(恒容)燃烧热为1.640*104J/g。之后通过定量、定性误差分析,讨论了实验过程中应当特别注意的细节。

思考题

1. 雷诺图解法的本质和适用范围

在量热实验中,量热计与周围环境的热交换无法完全避免,对温差测量值的影响可用雷诺(Renolds) 温度校正图校正。

1.200H1.0000.800E0.6000.4000.2000.000CDT/C°A0200BG400600800 1000t/s如图所示,图中B点意味着燃烧开始,热传入介质;HG为线延长并交温度曲线于E点,其间的温度差值即为经过校正的 。E点认为是环境均衡温度。图中(G-A)为开始燃烧到温度上升至室温这一段时间内,由环境辐射和搅拌引进的能量所造成的升温,故应予扣除。同理(H-C)由室温升高到最高点这一段时间内,热量计向环境的热漏造成的温度波动,计算时必须考虑在内。故可认为,HG两点的差值较客观地表示了样品燃烧引起的升温数值。

在量热实验中,如果无法保证体系完全与外界隔绝热交换,则需要用雷诺校正法扣除环境影响。同时在某些情况下,量热计的绝热性能良好,但搅拌器功率较大,可能由于搅拌造成温度波动,也需要用雷诺校正减小误差。

总之,雷诺校正的目的是使实验中温差变化能客观反映仅仅由燃烧产热而不受环境影响的结果。 2. 标准物质苯甲酸的恒压燃烧热Qp=-26460J/g,恒容燃烧热为多少?

见实验部分数据呈现及处理。 3. 搅拌过快或过慢有何影响?

搅拌过快可能造成由机械搅拌做功导致体系温度升高,从而引入不必要误差;搅拌过慢会使得温度计受热不均,测量值与真实值产生偏差。 4. 本实验中苯甲酸的作用是什么?可否将一定量的苯甲酸与蔗糖混合在一起只进行一次测量求蔗糖的燃烧热? 不可。

这样求蔗糖的燃烧热。由公式(WDC水)TQVGq可知,若将苯甲酸和蔗糖一起燃烧,则存在有W和Qv(蔗糖)两个未知数,无法单独求出蔗糖的燃烧热。

如果适当改进,至少进行两次测定并严格计算二者比例,可以通过解方程组确定蔗糖的燃烧热 5. 实验中“准确量取低于环境温度为1℃的自来水3000mL,顺筒壁小心倒入内筒”,为什么加入内筒的水温度要选择比环境低1℃左右? 由雷诺校正定义可知,应当使得环境温度处于燃烧前后温度差之间;若超出此范围,则雷诺校正无效。

参考资料 [1] 韩德刚,高执隶,高盘良.物理化学.高等教育出版社.2001 [2] 物理化学实验第4版.北京大学出版社.2001

第二篇:燃烧热测定,实验报告

20XX 报 告 汇 编 Compilation of reports

报告文档·借鉴学习 word 可编辑·实用文档

燃烧热的测定 一、实验目的  使用氧弹式量热计测定固体有机物质(萘)的恒容燃烧热,并由此求算其摩尔燃烧热。

 了解氧弹式量热计的结构及各部分作用,掌握氧弹式量热计的使用方法,熟悉贝克曼温度计的调节和使用方法  掌握恒容燃烧热和恒压燃烧热的差异和相互换算 二、实验原理 焓 摩尔燃烧焓  cHm

恒容燃烧热 QV  rHm = Qp

 rUm = QV 对于单位燃烧反应,气相视为理想气体  cHm = QV +    BRT =

QV + △ n(g)RT 氧弹中 放热( 样品、点火丝) =吸热(水 水 、氧弹、量热计、温度计) 待测物质

QV -摩尔恒容燃烧热

Mx -摩尔质量   -点火丝热值

bx -所耗点火丝质量 q -助燃棉线热值

cx -所耗棉线质量 K -氧弹量热计常数

 Tx -体系温度改变值

xV x x xxWQ (x) + εb +qc = KΔTM

报告文档·借鉴学习 word 可编辑·实用文档 三、仪器及设备 标准物质:苯甲酸

待测物质:萘 氧弹式量热计

1 -恒热夹套

2弹 -氧弹 3 -量器 热容器 4片 -绝热垫片 5 -隔热盖盖板

6 -马达 7, ,10 -搅拌器 8 -伯克曼温度计 9 -读数放大镜 11 -振动器12 -温度计

报告文档·借鉴学习 word 可编辑·实用文档 四、实验步骤 1.量热计常数 K 的测定 (1) 苯甲酸约 1.0g ,压片,中部系一已知质量棉线,称取洁净坩埚放量 置样片前后质量 W1 和 和 W2 (2) 把盛有苯甲酸片的坩埚放于氧弹内的坩埚架上,连接好点火丝和助燃棉线 (3) 盖好氧弹,与减压阀相连,充气到弹内压力为 1.2MPa 为止 (4) 把氧弹放入量热容器中,加入 3000ml 水 (5) 调节贝克曼温度计,水银球应在氧弹高度约 1/2 处 (6) 接好电路 ,计时开关指向“1 分” ,点火开关到向“ 振动” ,开启电约 源。约 10min 后,若温度变化均匀,开始读取温度。读数前 5s 振动隔 器自动振动,两次振动间隔 1min ,每次振动结束读数。

(7) 在第 10min 读数后按下“ 点火” 开关,同时将计时开关倒向“ 半分” ,点火指示灯亮。加大点火电流使点火指示灯熄灭,样品燃烧。灯灭时读取温度。

(8) 温度变化率降为 0.05 °C·min-1 后,改为 1min 计时,在记录温度少 读数至少 10min ,关闭电源。先取出贝克曼温度计,再取氧弹,旋松放气口排除废气。

(9) 称量剩余点火丝质量。清洗氧弹内部及 坩埚。

实验步骤 2.

萘的恒容燃烧热的测定

取萘 0.6g 压片,重复上述步骤进行实验,记录燃烧过程中温度

报告文档·借鉴学习 word 可编辑·实用文档 随时间变化的数据 注意 1.为避免腐蚀,必须清洗氧弹 2.

点火成败是实验关键。应仔细安装点火丝和坩埚。点火丝不应与弹体内壁接触,坩埚支持架不应与另一电极接触。

3.每次实验前均应称量坩埚 数据记录和处理 1.记录室温、大气压、样品质量(W2 -W1 )和剩余燃烧丝质量 2.列表记录温度随时间变化数据 3.画出雷诺图进行温度读数校正,求出在绝热条件下的真实温度改值 变值  Te 和 和  Tx 4.计算量热计常数 K 5.计算萘的恒容燃烧热 QV 6.计算萘的摩尔燃烧焓  cHm ,并与文献值比较

报告文档·借鉴学习 word 可编辑·实用文档

报告文档·借鉴学习 word 可编辑·实用文档

由图得:苯甲酸 *t=1.7K

萘*t=2.9K,苯甲酸恒容摩尔燃烧热为-3228kj/mol 再由

和 K=n1C1+C 热量计的 K=18.9KJ/K  rUm 萘 = QV=-10022.4KJ/mol

xV x x xxWQ (x) + εb +qc = KΔTM

报告文档·借鉴学习 word 可编辑·实用文档 五、思考题; 1.加入内筒中水的温度为什么要选择比外筒水温低?低多少合适?为什么? 2.在燃烧热测定实验中,哪些是体系?哪些是环境?有无热交换?这些热交换对实验结果有何影响? 3.在燃烧热测定的实验中,哪些因素容易造成实验误差?如何提高实验的准确度? ①检验多功能控制器数显读数是否稳定。熟习压片和氧弹装样操作,量热计安装注意探头不得碰弯,温度与温差的切换功能键钮,报时及灯闪烁提示功能等。

②干燥恒重苯甲酸(0.9~1.2g)和萘(0.6~0.8g)压片,注意紧实度,分析天平称样。③容量瓶量取 3000mL 水,调节水温低于室温 1K。

④量取两根 10 厘米点火丝,中段在原珠笔蕊上绕几圈。燃烧丝缚紧使接触电阻尽可能小。氧弹充氧注意小动作缓缓旋开减压阀。

⑤氧弹内预滴 10mL 水,促产物凝聚成硝酸。

(1)实验关键:点火成功、试样完全燃烧是实验成败关键,可以考虑以下几项技术措施:

①试样应进行磨细、烘干、干燥器恒重等前处理,潮湿样品不易燃烧且有误差。

压片紧实度:一般硬到表面有较细密的光洁度,棱角无粗粒,使能燃烧又不至于引起爆炸性燃烧残剩黑糊等状。

②点火丝与电极接触电阻要尽可能小,注意电极松动和铁丝碰杯短路问题。

报告文档·借鉴学习 word 可编辑·实用文档 ③充足氧(2MPa)并保证氧弹不漏氧,保证充分燃烧。燃烧不完全,还时常形 成灰白相间如散棉絮状。

④注意点火前才将二电极插上氧弹再按点火钮,否则因仪器未设互锁功能,极易发生(按搅拌钮或置 0 时)误点火,样品先已燃烧的事故。

(2) 氧弹内预滴几滴水,使氧弹为水汽饱和,燃烧后气态水易凝结为液态水。

试样在氧弹中燃烧产生的压力可达 14MPa,长期使用,可能引起弹壁的腐蚀,减少其强度。故氧弹应定期进行 20MPa 水压检查,每年一次。

氧弹、量热容器、搅拌器等,在使用完毕后,应用干布擦去水迹,保持表面清洁干燥。恒温外套(即外筒)内的水,应采用软水。长期不使用时应将水倒掉。

氧弹以及氧气通过的各个部件,各联接部分不允许有油污,更不允许使用润滑油,在必须润滑时,可用少量的甘油。

5℃。每次测定时室温变化不得大于 1℃。因此。室内禁止使用各种热源,如电炉、火炉、暖气等。(3)仪器应置放在不受阳光直射的单独一间试验室内进行工作。室内温度和湿度应尽可能变化小。最适宜的温度是 20

5K。国产型号为半自动 HR—15A(B)数显微机型或 WHR—15 全自动微机型氧弹式热量计。进入了全面启用电脑处理数据的新时代。4~10(4) 如用贝克曼温度计,其调节可以归纳为倒立连接、设定温

报告文档·借鉴学习 word 可编辑·实用文档 度、正立震断和校验四步,注意别让水银过多地流向弯曲贮管,导致因水银重而在正立时,玻管扩张处挂不住。也绝不允许放在电炉上烤等骤冷骤热情况出现。在精密的测量中,应进行贝克曼温度计的校正。改进后的本实验普遍采用热敏电阻温度计、铂电阻温度计或者热电堆等,相应配以电桥、指示 mV 值,实际已转换为温度 (数显温度计) 的仪器,能自动记录温度,精密度可达 10 (5)苯甲酸和萘燃烧产物的热容差别因为产物量小而仪器热容的基数相对较大而可以忽略。

(6)量热方法和仪器多种多样,可参阅复旦大学物理化学实验教材。量热法广泛用来测量各种反应热如相变热等。本实验装置除可用作测定各种有机物质、燃料、谷物等固体、液体物质的燃烧热外,还可以研究物质在充入其它气体时反应热效应的变化情况。

第三篇:物化实验报告:燃烧热测定_苯甲酸_萘

华南师范大学实验报告 课程名称 物理化学实验 实验项目 燃烧热的测定 _________

【实验目的】

① 明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的区别。

② 掌握量热技术的基本原理,学会测定奈的燃烧热。

③ 了解氧弹卡计主要部件的作用,掌握氧弹量热计的实验技术。

④ 学会雷诺图解法校正温度改变值。

【实验原理】

燃烧热是指 1 摩尔物质完全燃烧时所放出的热量。在恒容条件下测得的燃烧热称为恒容燃烧热( O v ), 恒容燃烧热这个过程的内能变化( △ U)

。在恒压条件下测得的燃烧热称为恒压燃烧热( Q p ),恒压燃烧热 等于这个过程的热焓变化( △ H )。若把参加反应的气体和反应生成的气体作为理想气体处理,则有下列关 系式:

-c H m = Q p = Q + A n RT ( 1 )

本实验采用氧弹式量热计测量蔗糖的燃烧热。测量的基本原理是将一定量待测物质样品在氧弹 中完全燃烧,燃烧时放出的热量使卡计本身及氧弹周围介质(本实验用水)的温度升高。

氧弹是一个特制的不锈钢容器(如图)为了保证化妆品在若完全燃烧,氧弹中应充以高压氧气(或者 其他氧化剂),还必须使燃烧后放出的热量尽可能全部传递给量热计本身和其中盛放的水,而几乎不与周 围环境发生热交换。

但是,热量的散失仍然无法完全避免,这可以是同于环境向量热计辐射进热量而使其温度升高, 也可以是由于量热计向环境辐射出热量而使量热计的温度降低。因此燃烧前后温度的变化值不能直接准确 测量,而必须经过作图法进行校正。

放出热 ( 样品 + 点火丝 )

=吸收热 ( 水、氧弹、量热计、温度计 )

量热原理一能量守恒定律 在盛有定水的容器中,样品物质的量为 n 摩尔,放入密闭氧弹充氧,使样品完全燃烧,放出的热量传 给水及仪器各部件,引起温度上升。设系统(包括内水桶,氧弹本身、测温器件、搅拌器和水)的总热容 为 C (通常称为仪器的水当量,即量热计及水每升高 1K 所需吸收的热量),假设系统与环境之间没有热交 换,燃烧前、后的温度分别为 T 1 、T 2 ,则此样品的恒容摩尔燃烧热为 :

(2 )

1)

; n 为样品的摩尔数( mol)

; C 为仪器的总热容 J ・ K -1

图 1 氧弹量热计构造示意图图 2 氧弹构造示意图 1 、氧弹

1 —厚壁圆筒; 2 —弹盖 2 、内水桶 (量热容器)

3 —螺帽; 4 —进气孔 3 、电极 4 、温度计 5 —排气孔; 6 —电极 5 、搅拌器 6 、恒温外套 8 —电极(也是进气管)

但是, 由于( 1 ):氧弹量热计不可能完全绝热,热漏在所难免。

因此,燃烧前后温度的变化不能直接 用测到的燃烧前后的温度差来计算,必须经过合理的雷诺校正才能得到准确的温差变化。

( 2 )多数物质不 能自燃,如本实验所用萘,必须借助电流引燃点火丝,再引起萘的燃烧,因此,等式( 2 )左边必须把点 火丝燃烧所放热量考虑进去就如等式( 3 ): - nQ v,m -m 点火丝Q点火丝 HC

(3 3)

式中:

m 点火丝为点火丝的质量, Q 点火丝为点火丝的燃烧热,为 -6694.4 J / g ,„汀为校正后的温度 升高值。

仪器热容的求法是用已知燃烧焓的物质 ( 如本实验用苯甲酸 )

,放在量热计中燃烧,测其始、末温度, 经雷诺校正后,按上式即可求出 Co 雷诺校正:消除体系与环境间存在热交换造成的对体系温度变化的影响。

方法:将燃烧前后历次观察的贝氏温度计读数对时间作图,联成 FHDG 线如图 2 -1-2 。图中 H 相当于 开始燃烧之点, D 点为观察到最高温度读数点,将 H 所对应的温度 T 1 , D 所对应的温度 T 2 ,计算其平均温 度,过 T 点作横坐标的平行线,交 FHDG 线于一点,过该点作横坐标的垂线 a, 然后将 FH 线和 GD 线外延交 a 线于 A 、C 两点 ,A 点与 C 点所表示的温度差即为欲求温度的升高 厶 T o 图中 AA 表示由环境辐射进来的热 量和搅拌引进的能量而造成卡计温度的升高,必须扣除之。

CC 表示卡计向环境辐射出热量和搅拌而造成 卡计温度的降低,因此,需要加上,由此可见, AC 两点的温度差是客观地表示了由于样品燃烧使卡计温度 升高的数值 有时卡计的绝热情况良好,热漏小,而搅拌器功率大,不断稍微引进热量,使得燃烧后的最高点不出 现,如图 2-1-3 ,这种情况下„汀仍可以按同法校正之。

【实验仪器与药品】

仪器:

外槽恒温式氧弹卡计 ( 一个 )

;氧气钢瓶 ( 一瓶 )

;压片机 ( 2 台 )

;数字式贝克曼温度计 ( 一台 )

; 0 〜 100 C 温度计( 一支 )

;万用电表(一个);扳手(一把)

; 药品:

萘( A .R );苯甲酸( A.R 或燃烧热专用);铁丝( 10cm 长); 【实验步骤】

一、量热计常数 K 的测定。

1 、苯甲酸约 1.0g ,压片,中部系一已知质量棉线,称取洁净坩埚放置样片前后质量 W1 和 W2 。

2 、苯甲酸约 1.0g ,压片,中部系一已知质量棉线,称取洁净坩埚放置样片前后质量 W1 和 W2 。

3 、把盛有苯甲酸片的坩埚放于氧弹内的坩埚架上,连接好点火丝和助燃棉线。

4 、盖好氧弹,与减压阀相连,充气到弹内压力为 1.2MPa 为止。

6 、把氧弹放入量热容器中,加入 3000ml 水。

7 、插入数显贝克曼温度计的温度探头。

&接好电路,计时开关指向 “1 分”,点火开关到向“振动”,开启电源。约 10min 后,若温度变化 均匀,开始读取温度。读数前 5s 振动器自动振动,两次振动间隔 1min ,每次振动结束读数。

9 、在第 10min 读数后按下“点火”开关,同时将计时开关倒向“半分”,点火指示灯亮。加大点火 电流使点火指示灯熄灭,样品燃烧。灯灭时读取温度。

10 、温度变化率降为 0.05 ° C- min-1 后,改为 1min 计时,在记录温度读数至少 10min ,关闭电源。

先取出贝克曼温度计,再取氧弹,旋松放气口排除废气。

11 、称量剩余点火丝质量。清洗氧弹内部及坩埚。

二、萘的恒容燃烧热的测定 1 、取萘 0.6g 压片,重复上述步骤进行实验,记录燃烧过程中温度随时间变化的数据。

【注意事项】

① 为避免腐蚀,必须清洗氧弹

② 点火成败是实验关键。应仔细安装点火丝和坩埚。点火丝不应与弹体内壁接触,坩埚支持架不应与 另一电极接触。

③ 每次实验前均应称量坩埚。

【文献值】

恒压燃烧热 kcal/mol kJ/mol J/g 测定条件 苯甲酸 -771.24 -3226.9 -26410 p?,2 5 C 萘 -1231.8 -5153.8 -40205 p?,25 C C p , m ( H 2 OI )= 75.291 J/mol?K

C p , m ( CO 2 g )= 37.11 J/mol?K C p , m ( O 2 g )= 29.36 J/mol?K C p , m (苯甲酸 s )= 146.8 J/mol 水 C p , m

(萘 s )= 165.7 J/mol?K 【实验数据与处理】

[实验原始数据 ] 第一组测定的数据:苯甲酸① 点火丝:

0.0121g 苯甲酸 + 点火丝(精测):

1.5072g 点火后剩余:

0.0040g 苯甲酸净含量:

1.4951g 点火丝消耗质量:

8.1 X 10 -3

g

时间 /t(60s 每次 )

温度 /T( C ) 时间 /t(15s 每次 )

温度 /T( C ) 时间 /t(15s 每次 )

温度 /T( C ) 1 7.871 8 10.092 26 10.550 2 7.874 9 10.161 27 10.557 3 7.875 10 10.220 28 10.564 4 7.877 11 10.268 29 10.570 5 7.880 12 10.306 30 10.574 6 7.882 13 10.340 31 10.579 7 7.885 14 10.368 时间 /t(60s 每次)

温度 /T( C ) 8 7.886 15 10.394 1 10.583 9 7.890 16 10.418 2 10.600 10 7.891 17 10.439 3 10.608 时间 /t(15s 每次 )

温度 /T (C) 18 10.456 4 10.611 1 8.364 19 10.472 5 10.614 2 8.672 20 10.486 6 10.613 3 9.074 21 10.501 7 10.612 4 9.377 22 10.513 8 10.610 5 9.638 23 10.523 9 10.608 6 9.834 24 10.532 10 10.606 7 9.983 25 10.542

第二组测定的数据:苯甲酸② 点火丝:

0.0120g 苯甲酸 + 点火丝(精测):

1.2750g 点火后剩余:

0.0088g 苯甲酸净含量:/ 点火丝消耗质量:

.2630g 3.2 X 10 -3 g

时间 /t(60s 每次 )

温度 /T( C ) 时间 /t(30s 每次 温度 /T( C ) 时间 /t(30s 每次 )

温度 /T( C ) 1 8.128 8 10.071 26 10.421 2 8.136 9 10.115 27 10.428 3 8.143 10 10.154 28 10.433 4 8.149 11 10.191 29 10.437 5 8.154 12 10.214 30 10.450 6 8.156 13 10.248 时间 /t(60s 每次 )

温度 /T( C 7 8.169 14 10.274 1 10.461 8 8.164 15 10.292 2 10.467 9 8.167 16 10.311 3 10.472 10 8.170 17 10.328 4 10.474 时间 /t(15s 每次 )

温度 /T( C ) 18 10.341 5 10.474 1 8.540 19 10.357 6 10.475 2 8.925 20 10.368 7 10.474 3 9.327 21 10.379 8 10.472 4 9.577 22 10.390 9 10.471 5 9.789 23 10.398 10 10.470 6 9.915 24 10.406

7 10.007 25 10.415

第三组测定的数据:萘① 点火丝:

0.0140g 萘 + 点火丝(精测):

1.0051g 点火后剩余:

0.0061g 萘净含量:

0.9911g 点火丝消耗质量:

7.9 X 10 -3

g

时间 /t(60s 每次 )

温度 /T( C ) 时间 /t(30s 每次 温度 /T( C ) 时间 /t(30s 每次 )

温度 /T( C ) 1 8.100 8 10.358 26 10.840 2 8.105 9 10.435 27 10.846 3 8.109 10 10.494 28 10.850 4 8.113 11 10.541 29 10.854 5 8.115 12 10.580 时间 /t(60s 每次 )

温度 /T( C 6 8.119 13 10.615 1 10.865 7 8.121 14 10.643 2 10.872 8 8.124 15 10.669 3 10.877 9 8.127 16 10.691 4 10.878

10 8.130 17 10.713 5 10.878 时间 /t(15s 每次 ) 温度 /T( C ) 18 10.747 6 10.879 1 8.435 19 10.762 7 10.877 2 8.845 20 10.774 8 10 .875 3 9.236 21 10.787

4 9.571 22 10.790

5 9.968 23 10.807

6 10.119 24 10.823

7 10.259 25 10.829

[ 实验数据的处理 ] ① 雷诺校正作图 ② 计算卡计的热容 C,并求出两次实验所得水当量的平均值。

苯甲酸的燃烧反应方程式为:

C 7 H 6 O 2 (s )+^O 2 (g 戸 7CO 2 (g )+3H 2 O(l ), A c H^ -3226.0kJ moL 根据基尔霍夫定律: 15 --△ C p, m = 7 X C p, m ( CO,g )+ 3 X C p, m ( H 2 O,l ) — G, m (苯甲酸 ,s ) —

---

C p, m ( Q,g ) 2 = 154.6805 J/mol ?K „„„当室温为 26.0 C 时苯甲酸的燃烧焓为:

△ cHn ( 26.0 《)=△ c H.( 25.0 C) + △ C p X^ T = -3226.9 + 154.6805 X (26.0-25.0) X 10 -3

= -3225.84 kJ/mol 则:苯甲酸的恒容摩尔燃烧热为:

Q V

= △ c U m =A c Hi — RT 刀 B V B ©) = -3225.84 — 8.314 X 299.15 X (7 — 7.5) X 10 -3

= -3224.6 kJ/mol 又: nQ = -C △ T -Q V 点火线 „ m 点火线 „ (I) 苯甲酸①燃烧的数据处理:

Q 点火丝 • m 点火丝 = -6694.4 X 10 -3

X 3.7 X 10 -3

= -0.02477 kJ

C =(15.517 + 15.866 )+ 2 = 15.692 kJ/ C ③ 计算萘的恒容摩尔燃烧热 Q V , m C= -nQv , m -Q 丝 5 丝 = AT

0 4354 (-3224.6) - (-0.006025) 122.12

= 15.866 kJ/ C 31.373-30.648 (n) 苯甲酸②燃烧的数据处理: Q 点火丝 „ m 点火丝 = -6694.4 X 10-3

X 9 X 10 -4

= -6.025 X 10 -3

kJ (川)两次实验所得水当量的平均值为:

根据公式:

nQ = -C

△ T - Q V 点火线 „ m 点火线 则:( I) 萘①燃烧的数据处理:

_3 _3 Q 点火丝 • m 点火丝 = -6694.4 X 10 _ 3

X 5.4 X 10 _ 3

= -0.03615 kJ Q V , m =( -C △ T -Q V 点火线 „ m 点火线 ) /n -15.692 29.695 -28.47 -0.03615 一 c … _ = =— 5217.9 kJ/mol 0.4731 128.18 (n) 萘②燃烧的数据处理:

Q 点火丝 • m 点火丝 = -6694.4 X 10 -3

X 1.7 X 10 -3

= -0.01138 kJ Q V , m =( -C △ T -Q

V 点火线 „ m点火线 ) /n -15.692 28.867 -27.627 -0.01138 = =— 5178 kJ/mol 0.4819 128.18 (川)萘的恒容摩尔燃烧热平均值为 Q v , m

= ( — 5217.9 — 5178) + 2 = — 5197.5 kJ/mol ④ 求萘的恒压摩尔燃烧热 Q , m (即△ c Hn) 萘燃烧的化学方程式为:

C 10 H 8 s 12O 2 g > 10CO 2 g 4H 2 O l "、B ( g)=— 2 , B 根据基尔霍夫定律:

• C p , m = 10 X C p , m ( CO 2 ,g )+ 4 X C p , m ( H 2 O,l ) — C p , m (奈 ,s) — 12C p > m ( O 2 ,g ) = 154.304 J/mol?K „ 26.0 C 时奈的燃烧焓为:

△ c H m ( 26.0 《)=△ c U k + RT 刀 BW (g) =— 5206.63 + 8.314 X 299.15 X(— 2 )X 10 -3

=— 5211.604 kJ/mol ⑤ 由基尔霍夫定律将△ cHn (T)换成△ cf (298.15K),并与文献比较 △ c H m ( 25.0 《)=△ c Hn ( 26.0 《)+△ GXA T =— 5211.604 + 154.304 X (25.0 — 26.0) X 10 -3

=— 5211.758 kJ/mol 相对误差:二 十 5 211 .75 8

-(®53 8 ) |

go%” % 5153.8 【实验结果与讨论】

实验求得萘的燃烧热 Q, 实 与文献值 Q, 标二』 153.85 kJ mol 」的误差为 1.12% (小于 3% 。可见本实验温 度对萘的燃烧焓值

影响很小,实验结果较为准确。产生误差的原因除了仪器误差之外,主要还有以下几个 方面:

① 使用雷诺图解法时,要做切线,切线分别表示正常温度上升和量热系统温度降低,切线拟合的结果 对△ T 的影响很大,此次实验结果很大程度上取决于这一步数据处理。

② 在实验进行过程中,夹套水温也不可能恒定,这会对 △ T 的求算造成影响。但是夹套中水很多,且 为了调零水温只比夹套水温 1K 左右,所以此误差可以忽略,这也是步骤中调整水温的原因。

③ 萘为易挥发性物质,压片称量后应该迅速放入氧弹中,以免因挥发而损失过多的质量,给实验带来 误差,使实验结果偏大。

④ 氧弹内可能存在少量空气,空气中 N 2 的氧化会产生热效应。

⑤ 若试样未完全燃烧,造成的影响很大,若有明显的黑色残渣,实验应重做。

⑥ 量取 3000mL 水使用的 2000mL 量筒的称量误差很大。

⑦ 水温改变带来的误差:由于此次实验是测量的内桶的水温,且总的波动不超过 3 C, 所以水温的改 变会对实验结果造成较大影响。

热量交换很难测量,温度或温度变化却很容易测量。本实验中采用标准物质标定法, 根据能量守恒原 理,标准物质苯甲酸燃烧放出的热量全部被氧弹及周围的介质等吸收,使得测量体系的温度变化,标定出 氧弹卡计的热容。再进行奈的燃烧热测量和计算。

测量体系与环境之间有热量的交换,因为理想的绝热条件是不可能达到的。同时影响热量的交换量大小的 因素也比较多,①与体系、环境的材质有关;②与体系、环境的接触界面积大小有关;③与体系、环境的 温差有关,所以要定量准确地测量出体系与环境交换的热量是比较困难的。如果有净的热量交换的话,将 会增大实验的测量误差。

在本实验中采用的是恒容方法先测量恒容燃烧热,然后再换算得到恒压燃烧热。原因为:①如果是使 用恒压燃烧方法,就需要有一个无摩擦的活塞,这是机械摩擦的理想境界,是做不到的;②做燃烧热实验 需要尽可能达到完全燃烧,恒压燃烧方法难于使另一反应物 一一“氧气”的压力(或浓度)达到高压,会造 成燃烧不完全,带来实验测定的实验误差。

【实验评注与拓展】

( 1 )实验关键:点火成功、试样完全燃烧是实验成败关键,可以考虑以下几项技术措施:

① 试样应进行磨细、烘干、干燥器恒重等前处理,潮湿样品不易燃烧且有误差。

压片紧实度:一般硬到表面有较细密的光洁度,棱角无粗粒,使能燃烧又不至于引起爆炸性燃烧残剩黑糊 等状。

② 点火丝与电极接触电阻要尽可能小,注意电极松动和铁丝碰杯短路问题。

③ 充足氧 ( 2MPa)

并保证氧弹不漏氧,保证充分燃烧。燃烧不完全,还时常形 成灰白相间如散棉絮状。

④ 注意点火前才将二电极插上氧弹再按点火钮,否则因仪器未设互锁功能,极易发生(按搅拌钮或 置 0 时)误点火,样品先已燃烧的事故。

(2)

氧弹内预滴几滴水,使氧弹为水汽饱和,燃烧后气态水易凝结为液态水。

试样在氧弹中燃烧产生的压力可达 14MPa ,长期使用,可能引起弹壁的腐蚀,减少其强度。故氧弹应 定期进行 20MPa 水压检查,每年一次。

氧弹、量热容器、搅拌器等,在使用完毕后,应用干布擦去水迹,保持表面清洁干燥。恒温外套(即 外筒)内的水,应采用软水。长期不使用时应将水倒掉。

氧弹以及氧气通过的各个部件,各联接部分不允许有油污,更不允许使用润滑油,在必须润滑时,可 用少量的甘油。

(3)

仪器应置放在不受阳光直射的单独一间试验室内进行工作。

室内温度和湿度应尽可能变化小。

最适 宜的温度是 20 _5 C 。每次测定时室温变化不得大于 1 C 。因此。室内禁止使用各种热源,如电炉、火炉、暖气等。

(4) 如用贝克曼温度计,其调节可以归纳为倒立连接、设定温度、正立震断和校验四步,注意别让水 银过多地流向弯曲贮管,导致因水银重而在正立时,玻管扩张处挂不住。也绝不允许放在电炉上烤等骤冷 骤热情况出现。在精密的测量中,应进行贝克曼温度计的校正。

改进后的本实验普遍采用热敏电阻温度计、铂电阻温度计或者

热电堆等,相应配以电桥、指示 mV 值,实际已转换为温度 ( 数显温度计 ) 的仪器,能 自动记录温度,精密度可达 10 , ~10^K 。国产型号为半自动 HR — 15A(B) 数显微机型或 WHR — 15 全自动 微机型氧弹式热量计。进入了全面启用电脑处理数据的新时代。

(5) 苯甲酸和萘燃烧产物的热容差别因为产物量小而仪器热容的基数相对较大而可以忽略。

(6) 量热方法和仪器多种多样,可参阅复旦大学物理化学实验教材。

量热法广泛用来测量各种反应热如 相变热等。本实验装置除可用作测定各种有机物质、燃料、谷物等固体、液体物质的燃烧热外,还可以研 究物质在充入其它气体时反应热效应的变化情况。

【提问与思考】

(1) 什么是燃烧热?它在化学计算中有何应用? 答:在 101 kPa 时, 1 mol 可燃物完全燃烧生成稳定的化合物时所放出的热量, 叫做该物质的燃烧热.单 位为 kJ/mol 。反应热中 AH 为负,则为放热反应;为正,则为吸热反应,燃烧热为反应热的一种,其 AH 为负值含相同碳原子数的烷烃异构体中,直链烷烃的燃烧热最大,支链越多燃烧热越小。

⑵什么是卡计和水的热当量?如何测得? 答:卡计和水当量就是量热仪内筒水温每升高一度所吸收的热量(即量热计的热容量) 。单位是:焦 耳 / 度 测法:用已知燃烧焓的物质(如本实验用的苯甲酸) ,放在量热计中燃烧,测量其始、末温度,经雷 诺校正后,按下式:

—n Q v,m — m 点火丝 Q 点火丝 =C AT 即可求出。

(3) 测量燃烧热两个关键要求是什么?如何保证达到这两个要求?答:

实验关键:点火成功、试样完全燃烧是实验成败关键,可以考虑以下几项技术措施:

① 试样应进行磨细、烘干、干燥器恒重等前处理,潮湿样品不易燃烧且有误差。

压片紧实度:一般硬到表面有较细密的光洁度,棱角无粗粒,使能燃烧又不至于引起爆炸性燃烧残剩黑糊 等状。

② 点火丝与电极接触电阻要尽可能小,注意电极松动和铁丝碰杯短路问题。

③ 充足氧 (2MPa) 并保证氧弹不漏氧,保证充分燃烧。燃烧不完全,还时常形 成灰白相间如散棉絮状。

④ 注意点火前才将二电极插上氧弹再按点火钮,否则因仪器未设互锁功能,极易发生(按搅拌钮或置 0 时)误点火,样品先已燃烧的事故。

(4) 实验测量到的温度差值为何要经过雷诺作图法校正,还有哪些误差来源会影响测量的结果? 答:实际上,热量计与周围环境的热交换无法完全避免,它对温度测量值的影响可用雷诺温度校正图 校正。还可能带来误差的可能有:①实验过程中的系统误差;②可能与当天的温度和气压有关;③样品可 能受潮使称量时产生误差;④样品可能中可能含有杂质。

第四篇:山大物化实验燃烧热

第二篇 基础实验

化学热力学 实验一 燃烧热的测定

【目的要求】

1. 通过测定萘的燃烧热,掌握有关热化学实验的一般知识和技术。 2. 掌握氧弹式量热计的原理、构造及其使用方法。 3. 掌握高压钢瓶的有关知识并能正确使用。 【实验原理】

燃烧热是指1 mol物质完全燃烧时的热效应,是热化学中重要的基本数据。一般化学反应的热效应,往往因为反应太慢或反应不完全,因而难以直接测定。但是,通过盖斯定律可用燃烧热数据间接求算。因此燃烧热广泛地用在各种热化学计算中。许多物质的燃烧热和反应热已经精确测定。测定燃烧热的氧弹式量热计是重要的热化学仪器,在热化学、生物化学以及某些工业部门中广泛应用。 燃烧热可在恒容或恒压情况下测定。由热力学第一定律可知:在不做非膨胀功情况下,恒容反应热QV=ΔU,恒压反应热Qp=ΔH。在氧弹式量热计中所测燃烧热为QV,而一般热化学计算用的值为Qp,这两者可通过下式进行换算:

Qp=QV + ΔnRT (1) 式中:Δn为反应前后生成物与反应物中气体的摩尔数之差;R为摩尔气体常数;T为反应温度(K)。

在盛有定量水的容器中,放入内装有一定量样品和氧气的密闭氧弹,然后使样品完全燃烧,放出的热量通过氧弹传给水及仪器,引起温度升高。氧弹量热计的基本原理是能量守恒定律,测量介质在燃烧前后温度的变化值,则恒容燃烧热为:

QV =(M/m)· W·(t终-t始) (2) 式中:W为样品等物质燃烧放热使水及仪器每升高1℃所需的热量,称为水当量。

水当量的求法是用已知燃烧热的物质(如本实验用苯甲酸)放在量热计中燃烧,测定其始、终态温度,一般来说,对不同样品,只要每次的水量相同,水当量就是定值。 热化学实验常用的量热计有环境恒温式量热计和绝热式量热计两种。环境恒温式量热计的构造如图2-1-1所示。

由图可知,环境恒温式量热计的最外层是储满水的外筒(图中5),当氧弹中的样品开始燃烧时,内筒与外筒之间有少许热交换,因此不能直接测出初温和最高温度,需要由温度—时间曲线(即雷诺曲线)进行确定,详细步骤如下:

将样品燃烧前后历次观察的水温对时间作图,联成FHIDG折线,如图2-1-2所示。图中H相当于开始燃烧之点,D为观察到的最高温度读数点,作相当于环境温度之平行线JI交折线于I过I点作ab垂线,然后将FH线和GD线外延交ab线A、C两点,A点与C点所表示的温度差即为欲求温度的升高ΔT。图中AA′为开始燃烧到温度上升至环境温度这一段时间Δt1内,由环境辐射进来和搅拌引进的能量而造成体系温度的升高必须扣除,CC′为 温度由环境温度升高到最高点D这一段时间Δt2内,体系向环境辐射出能图2-1-1 环境恒温式氧弹量热计

量而造成体系温度的降低,因此需要添加上。由此可见AC两点的温差是较1-氧弹;2-温度传感器;3-内筒;4-空气隔层;5-外筒;6-搅拌

客观地表示了由于样 品燃烧致使量热计温度升高的数值。

有时量热计的绝热情况良好,热漏小,而搅拌器功率大,不断稍微引进能量使得燃烧后的最高点不出现,如图2-1-3所示。这种情况下ΔT仍然可以按照同样方法校正。

图2-1-2 绝热较差时的雷诺校正图 图2-1-3 绝热良好时的雷诺校正图

【仪器试剂】

氧弹式量热计1套;氧气钢瓶(带氧气表)1个;台称1只;电子天平1台(0.0001g)。 苯甲酸(A.R.);萘(A.R.);燃烧丝;棉线。 【实验步骤】 1. 水当量的测定:

(1) 仪器预热 将量热计及其全部附件清理干净,将有关仪器通电预热。 (2) 样品压片 在电子台秤上粗称0.7~0.8g苯甲酸,在压片机中压成片状;取约10cm长的燃烧丝和棉线各一根,分别在电子天平上准确称重;用棉线把燃烧丝绑在苯甲酸片上,准确称重。

(3) 氧弹充氧 将氧弹的弹头放在弹头架上,把燃烧丝的两端分别紧绕在氧弹头上的两根电极上;在氧弹中加入10mL蒸馏水,把弹头放入弹杯中,拧紧。 当充氧时,开始先充约0.5MPa氧气,然后开启出口,借以赶出氧弹中的空气。再充入1MPa氧气。氧弹放入量热计中,接好点火线。

(4) 调节水温 准备一桶自来水,调节水温约低于外筒水温1℃。用容量瓶量取一定体积(视内筒容积而定)已调温的水注入内筒,水面盖过氧弹。装好搅拌头。 (5) 测定水当量 打开搅拌器,待温度稳定后开始记录温度,每隔30s记录一次,直到连续几min水温有规律微小变化,开启“点火”按钮,当温度明显升高时,说明点火成功,继续每30s记录一次;到温度升至最高点后,再记录几min,停止实验。

停止搅拌,取出氧弹,放出余气,打开氧弹盖,若氧弹中无灰烬,表示燃烧完全,将剩余燃烧丝称重,待处理数据时用。

2. 测量萘的燃烧热 称取0.6~0.7g萘,重复上述步骤测定之。 【注意事项】

— 内筒中加3000mL水后若有气泡逸出,说明氧弹漏气,设法排除。 — 搅拌时不得有摩擦声。

— 燃烧样品萘时,内筒水要更换且需重新调温。 — 氧气瓶在开总阀前要检查减压阀是否关好;实验结束后要关上钢瓶总阀,注意排净余气,使指针回零。 【数据处理】

1. 将实验条件和原始数据列表记录。

2. 由实验数据分别求出苯甲酸、萘燃烧前后的t始和t终。 3.由苯甲酸数据求出水当量W。

Q总热量=Q样品·(M/m)+Q燃丝·m燃丝+Q棉线·m棉线-5.983·VNaOH= W·(t终-t始) 式中:Q铁丝= -6695J·g-1;Q镍铬丝=-1400.8J·g-1;Q棉线=-17479J·g-1。 4.求出萘的燃烧热QV,换算成Qp。

5. 将所测萘的燃烧热值与文献值比较,求出误差,分析误差产生的原因。

思 考 题

1. 在氧弹里加10mL蒸馏水起什么作用?2. 本实验中,那些为体系?那些为环境?实验过程中有无热损耗,如何降低热损耗?盛水桶内部物质及空间为系统,除盛水桶内部物质及空间的热量计其余部分为环境,系统和环境之间有热交换,热交换的存在会影响燃烧热测定的准确值,可通过雷诺校正曲线校正来减小其影响。

3. 在环境恒温式量热计中,为什么内筒水温要比外筒水温低?低多少合适? 4. 欲测定液体样品的燃烧热,你能想出测定方法吗?玻璃泡中 【讨论】

1. 量热计的类型很多,分类方法也不统一。常用的为环境恒温式和绝热式量热计两种。绝热式量热计的外筒中有温度控制系统,在实验过程中,内桶与外筒温度始终相同或始终略低0.3℃,热损失可以降低到极微小程度,因而,可以直接测出初温和最高温度。

2. 在燃烧过程中,当氧弹内存在微量空气时,N2的氧化会产生热效应。在一般的实验中,可以忽略不计;在精确的实验中,这部分热效应应予校正,方法如下:用0.1mol·dm-3 NaOH 溶液滴定洗涤氧弹内壁的蒸馏水,每毫升0.1 mol·dm-3 NaOH溶液相当于5.983 J(放热)。

1.常用的热量计分为哪几种?

2.燃烧热测定中,我们在样品上绑棉线的目的是什么?

3.用钢瓶对氧弹充氧时应遵循什么顺序?

4.样品在氧弹中燃烧后,水温的升高是由那些因素引起的? 5.换另一个样品时,内筒水是否更换?为什么? 6.氧弹内加入少量水的作用是什么? 7.雷诺校正是校正什么?

8.怎样测定液体样品的燃烧热?计算公式? 9.燃烧热测量中,记录外筒水温的目的是什么?

第五篇:燃烧热 能源 教案

《燃烧热 能源》教案

一、教材内容分析

内容:本节位于《化学反应原理》第一章第二节,本节分为两部分,第一部分简单介绍了燃烧热,其中突出了对燃烧热定义的介绍,并引导学生从诸多因素出发讨论选择燃料的标准,培养学生综合考虑问题的能力;第二部分,结合燃烧热的利用介绍了能源的开发与利用,特别是化石燃料的利弊以及能源与人类生存和发展的关系。

二、教学目标

1.了解燃烧热概念,并能进行简单的计算。

2.知道化学反应中能量转化的原因,能说出常见的能量转化形式。 3.通过查阅资料说明能源是人类生存和发展的重要基础,了解化学在解决能源危机中的重要作用。知道节约能源、提高能量利用效率的实际意义。

三、教学重难点

燃烧热概念及相关计算

四、教学过程

(一) 预习检查,检查学生的预习情况,统计学生对该知识点的了解情况,然后进行教学过程。(若有预习检测,就利用其来检验学生的预习情况,根据学生的情况来进行上课精讲部分的调整。)

(二) 情景导入,展示目标

列举一部分燃烧反应,要求学生观察其热化学方程式是否正确,然后从中提出燃烧热的概念。(复习上节课学习的热化学方程式的书写,并引入本节课的重难点——燃烧热)

[板书] 第二节燃烧热能源

一、燃烧热

1.定义:在25 ℃、101 kPa时,lmol物质完全燃烧生成稳定的氧化物时所放出的热量,叫做该物质的燃烧热。

[问题] 解释H2的燃烧热为285.8 kJ / mol所表示的含义: H2(g)+1/2O2(g)=H2O(l)ΔH=-285.8kJ/mol 实验测得25ºC,101kPa时1molH2完全燃烧生成液态水放出285.8 kJ的热量。

[讨论]你是如何理解燃烧热的定义的?(5’) (1)条件:25 ℃、101 kPa (2)可燃物的用量:lmol (3)生成稳定的氧化物:如C完全燃烧应生成CO2(g), H2燃烧生成H2O(l),S生成SO2 (4)单位:kJ / mol (5)书写燃烧热的热化学方程式时,以1mol可燃物为配平标准,其余可出现分数。 [板书]2.研究物质燃烧热的意义

(学生通过阅读教材,找到人们研究燃烧热的意义,增强学生处理课本和整理信息的能力) 燃烧热的定义:了解化学反应完成时产生热量的多少,以便更好地控制反应条件,充分利用能源。 [探究] 分析教材中表1-1,讨论应根据什么标准来选择燃料。试举例说明

[提示] 可根据物质的燃烧热、燃料的储量、开采、储存的条件、价格、对生态环境的影响等综合考虑。

[板书]3.有关燃烧热的计算

(利用优化设计P11有关燃烧热的计算的例子,给学生讲解这部分内容,并得到一个结论:

Q放=n×▏ΔH▕(ΔH表示燃烧热))

[过渡]我们已经知道利用物质燃烧放出的热量,那么怎样合理的利用这些物质的燃烧,这是世界各国普遍关注的能源问题。 [板书]

二、能源

[自主学习]阅读教材回答下列问题 1.指出能源的定义及分类。

能源就是能提供能量的自然资源,它包括化石燃料、阳光、风力、流水、潮汐及柴草等等。我国目前使用的主要能源是化石燃料。

[讨论1] 分析教材中资料卡片并阅读教材讨论我国能源的现状如何? 1.主要是化石燃料蕴藏量有限,而且不能再生,最终将枯竭。 2.能源利用率低,浪费严重。

3.能源储量丰富,我国的人均能源拥有量较低。 4.近年来能源的总消费量与人均消费量情况呈下降趋势,但是,仍然出现了能源危机问题。 [讨论2] 如何解决我国的能源危机问题? 1.调整和优化能源结构。

2.加强科技投入,提高管理水平,科学的控制燃烧反应,使燃料充分燃烧,提高能源的使用效率。

3.节约利用现有能源。 4.研究开发新能源。

[讲述]在现有的能源即将出现危机之时,人们很自然地把目光转向那些储量更丰富、更清洁、可以再生的新能源,并惊奇地发现,这些新能源大多数与我们日常生活一直息息相关。人们在不知不觉地使用着它们,只不过今后我们将采取新的方式利用它们。 2.新能源包括那些?有什么特点?

太阳能、生物能、风能、氢能、地热能、海洋能和生物质能等。特点:资源丰富,可以再生,没有污染或很少污染。

科学视野∶太阳能,氢能,地热能,风能等。

(三)课堂总结

一、燃烧热

定义:在25 ℃、101 kPa时,lmol物质完全燃烧生成稳定的氧化物时所放出的热量,叫做该物质的燃烧热。

二、能源

(四)课后作业

完成优化设计训练与测评P4-5页

五、教学反思

上一篇:9岁女儿生日寄语下一篇:700字优秀作文